merge main

This commit is contained in:
zxhlyh 2025-07-17 16:48:43 +08:00
commit 01566035e3
452 changed files with 14838 additions and 3321 deletions

View File

@ -8,13 +8,15 @@ body:
label: Self Checks
description: "To make sure we get to you in time, please check the following :)"
options:
- label: I have read the [Contributing Guide](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md) and [Language Policy](https://github.com/langgenius/dify/issues/1542).
required: true
- label: This is only for bug report, if you would like to ask a question, please head to [Discussions](https://github.com/langgenius/dify/discussions/categories/general).
required: true
- label: I have searched for existing issues [search for existing issues](https://github.com/langgenius/dify/issues), including closed ones.
required: true
- label: I confirm that I am using English to submit this report (我已阅读并同意 [Language Policy](https://github.com/langgenius/dify/issues/1542)).
- label: I confirm that I am using English to submit this report, otherwise it will be closed.
required: true
- label: "[FOR CHINESE USERS] 请务必使用英文提交 Issue否则会被关闭。谢谢:)"
- label: 【中文用户 & Non English User】请使用英语提交否则会被关闭
required: true
- label: "Please do not modify this template :) and fill in all the required fields."
required: true
@ -42,20 +44,22 @@ body:
attributes:
label: Steps to reproduce
description: We highly suggest including screenshots and a bug report log. Please use the right markdown syntax for code blocks.
placeholder: Having detailed steps helps us reproduce the bug.
placeholder: Having detailed steps helps us reproduce the bug. If you have logs, please use fenced code blocks (triple backticks ```) to format them.
validations:
required: true
- type: textarea
attributes:
label: ✔️ Expected Behavior
placeholder: What were you expecting?
description: Describe what you expected to happen.
placeholder: What were you expecting? Please do not copy and paste the steps to reproduce here.
validations:
required: false
required: true
- type: textarea
attributes:
label: ❌ Actual Behavior
placeholder: What happened instead?
description: Describe what actually happened.
placeholder: What happened instead? Please do not copy and paste the steps to reproduce here.
validations:
required: false

View File

@ -1,5 +1,11 @@
blank_issues_enabled: false
contact_links:
- name: "\U0001F4A1 Model Providers & Plugins"
url: "https://github.com/langgenius/dify-official-plugins/issues/new/choose"
about: Report issues with official plugins or model providers, you will need to provide the plugin version and other relevant details.
- name: "\U0001F4AC Documentation Issues"
url: "https://github.com/langgenius/dify-docs/issues/new"
about: Report issues with the documentation, such as typos, outdated information, or missing content. Please provide the specific section and details of the issue.
- name: "\U0001F4E7 Discussions"
url: https://github.com/langgenius/dify/discussions/categories/general
about: General discussions and request help from the community
about: General discussions and seek help from the community

View File

@ -1,24 +0,0 @@
name: "📚 Documentation Issue"
description: Report issues in our documentation
labels:
- documentation
body:
- type: checkboxes
attributes:
label: Self Checks
description: "To make sure we get to you in time, please check the following :)"
options:
- label: I have searched for existing issues [search for existing issues](https://github.com/langgenius/dify/issues), including closed ones.
required: true
- label: I confirm that I am using English to submit report (我已阅读并同意 [Language Policy](https://github.com/langgenius/dify/issues/1542)).
required: true
- label: "[FOR CHINESE USERS] 请务必使用英文提交 Issue否则会被关闭。谢谢:)"
required: true
- label: "Please do not modify this template :) and fill in all the required fields."
required: true
- type: textarea
attributes:
label: Provide a description of requested docs changes
placeholder: Briefly describe which document needs to be corrected and why.
validations:
required: true

View File

@ -8,11 +8,11 @@ body:
label: Self Checks
description: "To make sure we get to you in time, please check the following :)"
options:
- label: I have read the [Contributing Guide](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md) and [Language Policy](https://github.com/langgenius/dify/issues/1542).
required: true
- label: I have searched for existing issues [search for existing issues](https://github.com/langgenius/dify/issues), including closed ones.
required: true
- label: I confirm that I am using English to submit this report (我已阅读并同意 [Language Policy](https://github.com/langgenius/dify/issues/1542)).
required: true
- label: "[FOR CHINESE USERS] 请务必使用英文提交 Issue否则会被关闭。谢谢:)"
- label: I confirm that I am using English to submit this report, otherwise it will be closed.
required: true
- label: "Please do not modify this template :) and fill in all the required fields."
required: true

View File

@ -1,55 +0,0 @@
name: "🌐 Localization/Translation issue"
description: Report incorrect translations. [please use English :)]
labels:
- translation
body:
- type: checkboxes
attributes:
label: Self Checks
description: "To make sure we get to you in time, please check the following :)"
options:
- label: I have searched for existing issues [search for existing issues](https://github.com/langgenius/dify/issues), including closed ones.
required: true
- label: I confirm that I am using English to submit this report (我已阅读并同意 [Language Policy](https://github.com/langgenius/dify/issues/1542)).
required: true
- label: "[FOR CHINESE USERS] 请务必使用英文提交 Issue否则会被关闭。谢谢:)"
required: true
- label: "Please do not modify this template :) and fill in all the required fields."
required: true
- type: input
attributes:
label: Dify version
description: Hover over system tray icon or look at Settings
validations:
required: true
- type: input
attributes:
label: Utility with translation issue
placeholder: Some area
description: Please input here the utility with the translation issue
validations:
required: true
- type: input
attributes:
label: 🌐 Language affected
placeholder: "German"
validations:
required: true
- type: textarea
attributes:
label: ❌ Actual phrase(s)
placeholder: What is there? Please include a screenshot as that is extremely helpful.
validations:
required: true
- type: textarea
attributes:
label: ✔️ Expected phrase(s)
placeholder: What was expected?
validations:
required: true
- type: textarea
attributes:
label: Why is the current translation wrong
placeholder: Why do you feel this is incorrect?
validations:
required: true

View File

@ -65,7 +65,7 @@ Dify is an open-source platform for developing LLM applications. Its intuitive i
</br>
The easiest way to start the Dify server is through [docker compose](docker/docker-compose.yaml). Before running Dify with the following commands, make sure that [Docker](https://docs.docker.com/get-docker/) and [Docker Compose](https://docs.docker.com/compose/install/) are installed on your machine:
The easiest way to start the Dify server is through [Docker Compose](docker/docker-compose.yaml). Before running Dify with the following commands, make sure that [Docker](https://docs.docker.com/get-docker/) and [Docker Compose](https://docs.docker.com/compose/install/) are installed on your machine:
```bash
cd dify
@ -205,6 +205,7 @@ If you'd like to configure a highly-available setup, there are community-contrib
- [Helm Chart by @magicsong](https://github.com/magicsong/ai-charts)
- [YAML file by @Winson-030](https://github.com/Winson-030/dify-kubernetes)
- [YAML file by @wyy-holding](https://github.com/wyy-holding/dify-k8s)
- [🚀 NEW! YAML files (Supports Dify v1.6.0) by @Zhoneym](https://github.com/Zhoneym/DifyAI-Kubernetes)
#### Using Terraform for Deployment
@ -261,8 +262,8 @@ At the same time, please consider supporting Dify by sharing it on social media
## Security disclosure
To protect your privacy, please avoid posting security issues on GitHub. Instead, send your questions to security@dify.ai and we will provide you with a more detailed answer.
To protect your privacy, please avoid posting security issues on GitHub. Instead, report issues to security@dify.ai, and our team will respond with detailed answer.
## License
This repository is available under the [Dify Open Source License](LICENSE), which is essentially Apache 2.0 with a few additional restrictions.
This repository is licensed under the [Dify Open Source License](LICENSE), based on Apache 2.0 with additional conditions.

View File

@ -188,6 +188,7 @@ docker compose up -d
- [رسم بياني Helm من قبل @magicsong](https://github.com/magicsong/ai-charts)
- [ملف YAML من قبل @Winson-030](https://github.com/Winson-030/dify-kubernetes)
- [ملف YAML من قبل @wyy-holding](https://github.com/wyy-holding/dify-k8s)
- [🚀 جديد! ملفات YAML (تدعم Dify v1.6.0) بواسطة @Zhoneym](https://github.com/Zhoneym/DifyAI-Kubernetes)
#### استخدام Terraform للتوزيع

View File

@ -204,6 +204,8 @@ GitHub-এ ডিফাইকে স্টার দিয়ে রাখুন
- [Helm Chart by @magicsong](https://github.com/magicsong/ai-charts)
- [YAML file by @Winson-030](https://github.com/Winson-030/dify-kubernetes)
- [YAML file by @wyy-holding](https://github.com/wyy-holding/dify-k8s)
- [🚀 নতুন! YAML ফাইলসমূহ (Dify v1.6.0 সমর্থিত) তৈরি করেছেন @Zhoneym](https://github.com/Zhoneym/DifyAI-Kubernetes)
#### টেরাফর্ম ব্যবহার করে ডিপ্লয়

View File

@ -194,9 +194,9 @@ docker compose up -d
如果您需要自定义配置,请参考 [.env.example](docker/.env.example) 文件中的注释,并更新 `.env` 文件中对应的值。此外,您可能需要根据您的具体部署环境和需求对 `docker-compose.yaml` 文件本身进行调整,例如更改镜像版本、端口映射或卷挂载。完成任何更改后,请重新运行 `docker-compose up -d`。您可以在[此处](https://docs.dify.ai/getting-started/install-self-hosted/environments)找到可用环境变量的完整列表。
#### 使用 Helm Chart 部署
#### 使用 Helm Chart 或 Kubernetes 资源清单YAML部署
使用 [Helm Chart](https://helm.sh/) 版本或者 YAML 文件,可以在 Kubernetes 上部署 Dify。
使用 [Helm Chart](https://helm.sh/) 版本或者 Kubernetes 资源清单YAML,可以在 Kubernetes 上部署 Dify。
- [Helm Chart by @LeoQuote](https://github.com/douban/charts/tree/master/charts/dify)
- [Helm Chart by @BorisPolonsky](https://github.com/BorisPolonsky/dify-helm)
@ -204,6 +204,10 @@ docker compose up -d
- [YAML 文件 by @Winson-030](https://github.com/Winson-030/dify-kubernetes)
- [YAML file by @wyy-holding](https://github.com/wyy-holding/dify-k8s)
- [🚀 NEW! YAML 文件 (支持 Dify v1.6.0) by @Zhoneym](https://github.com/Zhoneym/DifyAI-Kubernetes)
#### 使用 Terraform 部署
使用 [terraform](https://www.terraform.io/) 一键将 Dify 部署到云平台

View File

@ -203,6 +203,7 @@ Falls Sie eine hochverfügbare Konfiguration einrichten möchten, gibt es von de
- [Helm Chart by @magicsong](https://github.com/magicsong/ai-charts)
- [YAML file by @Winson-030](https://github.com/Winson-030/dify-kubernetes)
- [YAML file by @wyy-holding](https://github.com/wyy-holding/dify-k8s)
- [🚀 NEW! YAML files (Supports Dify v1.6.0) by @Zhoneym](https://github.com/Zhoneym/DifyAI-Kubernetes)
#### Terraform für die Bereitstellung verwenden

View File

@ -203,6 +203,7 @@ Si desea configurar una configuración de alta disponibilidad, la comunidad prop
- [Gráfico Helm por @magicsong](https://github.com/magicsong/ai-charts)
- [Ficheros YAML por @Winson-030](https://github.com/Winson-030/dify-kubernetes)
- [Ficheros YAML por @wyy-holding](https://github.com/wyy-holding/dify-k8s)
- [🚀 ¡NUEVO! Archivos YAML (compatible con Dify v1.6.0) por @Zhoneym](https://github.com/Zhoneym/DifyAI-Kubernetes)
#### Uso de Terraform para el despliegue

View File

@ -201,6 +201,7 @@ Si vous souhaitez configurer une configuration haute disponibilité, la communau
- [Helm Chart par @magicsong](https://github.com/magicsong/ai-charts)
- [Fichier YAML par @Winson-030](https://github.com/Winson-030/dify-kubernetes)
- [Fichier YAML par @wyy-holding](https://github.com/wyy-holding/dify-k8s)
- [🚀 NOUVEAU ! Fichiers YAML (compatible avec Dify v1.6.0) par @Zhoneym](https://github.com/Zhoneym/DifyAI-Kubernetes)
#### Utilisation de Terraform pour le déploiement

View File

@ -202,6 +202,7 @@ docker compose up -d
- [Helm Chart by @magicsong](https://github.com/magicsong/ai-charts)
- [YAML file by @Winson-030](https://github.com/Winson-030/dify-kubernetes)
- [YAML file by @wyy-holding](https://github.com/wyy-holding/dify-k8s)
- [🚀 新着YAML ファイルDify v1.6.0 対応by @Zhoneym](https://github.com/Zhoneym/DifyAI-Kubernetes)
#### Terraformを使用したデプロイ

View File

@ -201,6 +201,7 @@ If you'd like to configure a highly-available setup, there are community-contrib
- [Helm Chart by @magicsong](https://github.com/magicsong/ai-charts)
- [YAML file by @Winson-030](https://github.com/Winson-030/dify-kubernetes)
- [YAML file by @wyy-holding](https://github.com/wyy-holding/dify-k8s)
- [🚀 NEW! YAML files (Supports Dify v1.6.0) by @Zhoneym](https://github.com/Zhoneym/DifyAI-Kubernetes)
#### Terraform atorlugu pilersitsineq

View File

@ -195,6 +195,7 @@ Dify를 Kubernetes에 배포하고 프리미엄 스케일링 설정을 구성했
- [Helm Chart by @magicsong](https://github.com/magicsong/ai-charts)
- [YAML file by @Winson-030](https://github.com/Winson-030/dify-kubernetes)
- [YAML file by @wyy-holding](https://github.com/wyy-holding/dify-k8s)
- [🚀 NEW! YAML files (Supports Dify v1.6.0) by @Zhoneym](https://github.com/Zhoneym/DifyAI-Kubernetes)
#### Terraform을 사용한 배포

View File

@ -200,6 +200,7 @@ Se deseja configurar uma instalação de alta disponibilidade, há [Helm Charts]
- [Helm Chart de @magicsong](https://github.com/magicsong/ai-charts)
- [Arquivo YAML por @Winson-030](https://github.com/Winson-030/dify-kubernetes)
- [Arquivo YAML por @wyy-holding](https://github.com/wyy-holding/dify-k8s)
- [🚀 NOVO! Arquivos YAML (Compatível com Dify v1.6.0) por @Zhoneym](https://github.com/Zhoneym/DifyAI-Kubernetes)
#### Usando o Terraform para Implantação

View File

@ -201,6 +201,7 @@ Star Dify on GitHub and be instantly notified of new releases.
- [Helm Chart by @BorisPolonsky](https://github.com/BorisPolonsky/dify-helm)
- [YAML file by @Winson-030](https://github.com/Winson-030/dify-kubernetes)
- [YAML file by @wyy-holding](https://github.com/wyy-holding/dify-k8s)
- [🚀 NEW! YAML files (Supports Dify v1.6.0) by @Zhoneym](https://github.com/Zhoneym/DifyAI-Kubernetes)
#### Uporaba Terraform za uvajanje

View File

@ -194,6 +194,7 @@ Yüksek kullanılabilirliğe sahip bir kurulum yapılandırmak isterseniz, Dify'
- [@BorisPolonsky tarafından Helm Chart](https://github.com/BorisPolonsky/dify-helm)
- [@Winson-030 tarafından YAML dosyası](https://github.com/Winson-030/dify-kubernetes)
- [@wyy-holding tarafından YAML dosyası](https://github.com/wyy-holding/dify-k8s)
- [🚀 YENİ! YAML dosyaları (Dify v1.6.0 destekli) @Zhoneym tarafından](https://github.com/Zhoneym/DifyAI-Kubernetes)
#### Dağıtım için Terraform Kullanımı

View File

@ -197,12 +197,13 @@ Dify 的所有功能都提供相應的 API因此您可以輕鬆地將 Dify
如果您需要自定義配置,請參考我們的 [.env.example](docker/.env.example) 文件中的註釋,並在您的 `.env` 文件中更新相應的值。此外,根據您特定的部署環境和需求,您可能需要調整 `docker-compose.yaml` 文件本身,例如更改映像版本、端口映射或卷掛載。進行任何更改後,請重新運行 `docker-compose up -d`。您可以在[這裡](https://docs.dify.ai/getting-started/install-self-hosted/environments)找到可用環境變數的完整列表。
如果您想配置高可用性設置,社區貢獻的 [Helm Charts](https://helm.sh/) 和 YAML 文件允許在 Kubernetes 上部署 Dify。
如果您想配置高可用性設置,社區貢獻的 [Helm Charts](https://helm.sh/) 和 Kubernetes 資源清單YAML允許在 Kubernetes 上部署 Dify。
- [由 @LeoQuote 提供的 Helm Chart](https://github.com/douban/charts/tree/master/charts/dify)
- [由 @BorisPolonsky 提供的 Helm Chart](https://github.com/BorisPolonsky/dify-helm)
- [由 @Winson-030 提供的 YAML 文件](https://github.com/Winson-030/dify-kubernetes)
- [由 @wyy-holding 提供的 YAML 文件](https://github.com/wyy-holding/dify-k8s)
- [🚀 NEW! YAML 檔案(支援 Dify v1.6.0by @Zhoneym](https://github.com/Zhoneym/DifyAI-Kubernetes)
### 使用 Terraform 進行部署

View File

@ -196,6 +196,7 @@ Nếu bạn muốn cấu hình một cài đặt có độ sẵn sàng cao, có
- [Helm Chart bởi @BorisPolonsky](https://github.com/BorisPolonsky/dify-helm)
- [Tệp YAML bởi @Winson-030](https://github.com/Winson-030/dify-kubernetes)
- [Tệp YAML bởi @wyy-holding](https://github.com/wyy-holding/dify-k8s)
- [🚀 MỚI! Tệp YAML (Hỗ trợ Dify v1.6.0) bởi @Zhoneym](https://github.com/Zhoneym/DifyAI-Kubernetes)
#### Sử dụng Terraform để Triển khai

View File

@ -449,6 +449,19 @@ MAX_VARIABLE_SIZE=204800
# hybrid: Save new data to object storage, read from both object storage and RDBMS
WORKFLOW_NODE_EXECUTION_STORAGE=rdbms
# Repository configuration
# Core workflow execution repository implementation
CORE_WORKFLOW_EXECUTION_REPOSITORY=core.repositories.sqlalchemy_workflow_execution_repository.SQLAlchemyWorkflowExecutionRepository
# Core workflow node execution repository implementation
CORE_WORKFLOW_NODE_EXECUTION_REPOSITORY=core.repositories.sqlalchemy_workflow_node_execution_repository.SQLAlchemyWorkflowNodeExecutionRepository
# API workflow node execution repository implementation
API_WORKFLOW_NODE_EXECUTION_REPOSITORY=repositories.sqlalchemy_api_workflow_node_execution_repository.DifyAPISQLAlchemyWorkflowNodeExecutionRepository
# API workflow run repository implementation
API_WORKFLOW_RUN_REPOSITORY=repositories.sqlalchemy_api_workflow_run_repository.DifyAPISQLAlchemyWorkflowRunRepository
# App configuration
APP_MAX_EXECUTION_TIME=1200
APP_MAX_ACTIVE_REQUESTS=0
@ -482,6 +495,8 @@ ENDPOINT_URL_TEMPLATE=http://localhost:5002/e/{hook_id}
# Reset password token expiry minutes
RESET_PASSWORD_TOKEN_EXPIRY_MINUTES=5
CHANGE_EMAIL_TOKEN_EXPIRY_MINUTES=5
OWNER_TRANSFER_TOKEN_EXPIRY_MINUTES=5
CREATE_TIDB_SERVICE_JOB_ENABLED=false
@ -492,6 +507,8 @@ LOGIN_LOCKOUT_DURATION=86400
# Enable OpenTelemetry
ENABLE_OTEL=false
OTLP_TRACE_ENDPOINT=
OTLP_METRIC_ENDPOINT=
OTLP_BASE_ENDPOINT=http://localhost:4318
OTLP_API_KEY=
OTEL_EXPORTER_OTLP_PROTOCOL=

View File

@ -31,6 +31,15 @@ class SecurityConfig(BaseSettings):
description="Duration in minutes for which a password reset token remains valid",
default=5,
)
CHANGE_EMAIL_TOKEN_EXPIRY_MINUTES: PositiveInt = Field(
description="Duration in minutes for which a change email token remains valid",
default=5,
)
OWNER_TRANSFER_TOKEN_EXPIRY_MINUTES: PositiveInt = Field(
description="Duration in minutes for which a owner transfer token remains valid",
default=5,
)
LOGIN_DISABLED: bool = Field(
description="Whether to disable login checks",
@ -537,6 +546,33 @@ class WorkflowNodeExecutionConfig(BaseSettings):
)
class RepositoryConfig(BaseSettings):
"""
Configuration for repository implementations
"""
CORE_WORKFLOW_EXECUTION_REPOSITORY: str = Field(
description="Repository implementation for WorkflowExecution. Specify as a module path",
default="core.repositories.sqlalchemy_workflow_execution_repository.SQLAlchemyWorkflowExecutionRepository",
)
CORE_WORKFLOW_NODE_EXECUTION_REPOSITORY: str = Field(
description="Repository implementation for WorkflowNodeExecution. Specify as a module path",
default="core.repositories.sqlalchemy_workflow_node_execution_repository.SQLAlchemyWorkflowNodeExecutionRepository",
)
API_WORKFLOW_NODE_EXECUTION_REPOSITORY: str = Field(
description="Service-layer repository implementation for WorkflowNodeExecutionModel operations. "
"Specify as a module path",
default="repositories.sqlalchemy_api_workflow_node_execution_repository.DifyAPISQLAlchemyWorkflowNodeExecutionRepository",
)
API_WORKFLOW_RUN_REPOSITORY: str = Field(
description="Service-layer repository implementation for WorkflowRun operations. Specify as a module path",
default="repositories.sqlalchemy_api_workflow_run_repository.DifyAPISQLAlchemyWorkflowRunRepository",
)
class AuthConfig(BaseSettings):
"""
Configuration for authentication and OAuth
@ -587,6 +623,16 @@ class AuthConfig(BaseSettings):
default=86400,
)
CHANGE_EMAIL_LOCKOUT_DURATION: PositiveInt = Field(
description="Time (in seconds) a user must wait before retrying change email after exceeding the rate limit.",
default=86400,
)
OWNER_TRANSFER_LOCKOUT_DURATION: PositiveInt = Field(
description="Time (in seconds) a user must wait before retrying owner transfer after exceeding the rate limit.",
default=86400,
)
class ModerationConfig(BaseSettings):
"""
@ -903,6 +949,7 @@ class FeatureConfig(
MultiModalTransferConfig,
PositionConfig,
RagEtlConfig,
RepositoryConfig,
SecurityConfig,
ToolConfig,
UpdateConfig,

View File

@ -162,6 +162,11 @@ class DatabaseConfig(BaseSettings):
default=3600,
)
SQLALCHEMY_POOL_USE_LIFO: bool = Field(
description="If True, SQLAlchemy will use last-in-first-out way to retrieve connections from pool.",
default=False,
)
SQLALCHEMY_POOL_PRE_PING: bool = Field(
description="If True, enables connection pool pre-ping feature to check connections.",
default=False,
@ -199,6 +204,7 @@ class DatabaseConfig(BaseSettings):
"pool_recycle": self.SQLALCHEMY_POOL_RECYCLE,
"pool_pre_ping": self.SQLALCHEMY_POOL_PRE_PING,
"connect_args": connect_args,
"pool_use_lifo": self.SQLALCHEMY_POOL_USE_LIFO,
}

View File

@ -12,6 +12,16 @@ class OTelConfig(BaseSettings):
default=False,
)
OTLP_TRACE_ENDPOINT: str = Field(
description="OTLP trace endpoint",
default="",
)
OTLP_METRIC_ENDPOINT: str = Field(
description="OTLP metric endpoint",
default="",
)
OTLP_BASE_ENDPOINT: str = Field(
description="OTLP base endpoint",
default="http://localhost:4318",

View File

@ -151,6 +151,7 @@ class AppApi(Resource):
parser.add_argument("icon", type=str, location="json")
parser.add_argument("icon_background", type=str, location="json")
parser.add_argument("use_icon_as_answer_icon", type=bool, location="json")
parser.add_argument("max_active_requests", type=int, location="json")
args = parser.parse_args()
app_service = AppService()

View File

@ -35,16 +35,20 @@ class AppMCPServerController(Resource):
@get_app_model
@marshal_with(app_server_fields)
def post(self, app_model):
# The role of the current user in the ta table must be editor, admin, or owner
if not current_user.is_editor:
raise NotFound()
parser = reqparse.RequestParser()
parser.add_argument("description", type=str, required=True, location="json")
parser.add_argument("description", type=str, required=False, location="json")
parser.add_argument("parameters", type=dict, required=True, location="json")
args = parser.parse_args()
description = args.get("description")
if not description:
description = app_model.description or ""
server = AppMCPServer(
name=app_model.name,
description=args["description"],
description=description,
parameters=json.dumps(args["parameters"], ensure_ascii=False),
status=AppMCPServerStatus.ACTIVE,
app_id=app_model.id,
@ -65,14 +69,22 @@ class AppMCPServerController(Resource):
raise NotFound()
parser = reqparse.RequestParser()
parser.add_argument("id", type=str, required=True, location="json")
parser.add_argument("description", type=str, required=True, location="json")
parser.add_argument("description", type=str, required=False, location="json")
parser.add_argument("parameters", type=dict, required=True, location="json")
parser.add_argument("status", type=str, required=False, location="json")
args = parser.parse_args()
server = db.session.query(AppMCPServer).filter(AppMCPServer.id == args["id"]).first()
if not server:
raise NotFound()
server.description = args["description"]
description = args.get("description")
if description is None:
pass
elif not description:
server.description = app_model.description or ""
else:
server.description = description
server.parameters = json.dumps(args["parameters"], ensure_ascii=False)
if args["status"]:
if args["status"] not in [status.value for status in AppMCPServerStatus]:

View File

@ -2,6 +2,7 @@ from datetime import datetime
from decimal import Decimal
import pytz
import sqlalchemy as sa
from flask import jsonify
from flask_login import current_user
from flask_restful import Resource, reqparse
@ -9,10 +10,11 @@ from flask_restful import Resource, reqparse
from controllers.console import api
from controllers.console.app.wraps import get_app_model
from controllers.console.wraps import account_initialization_required, setup_required
from core.app.entities.app_invoke_entities import InvokeFrom
from extensions.ext_database import db
from libs.helper import DatetimeString
from libs.login import login_required
from models.model import AppMode
from models import AppMode, Message
class DailyMessageStatistic(Resource):
@ -85,46 +87,41 @@ class DailyConversationStatistic(Resource):
parser.add_argument("end", type=DatetimeString("%Y-%m-%d %H:%M"), location="args")
args = parser.parse_args()
sql_query = """SELECT
DATE(DATE_TRUNC('day', created_at AT TIME ZONE 'UTC' AT TIME ZONE :tz )) AS date,
COUNT(DISTINCT messages.conversation_id) AS conversation_count
FROM
messages
WHERE
app_id = :app_id"""
arg_dict = {"tz": account.timezone, "app_id": app_model.id}
timezone = pytz.timezone(account.timezone)
utc_timezone = pytz.utc
stmt = (
sa.select(
sa.func.date(
sa.func.date_trunc("day", sa.text("created_at AT TIME ZONE 'UTC' AT TIME ZONE :tz"))
).label("date"),
sa.func.count(sa.distinct(Message.conversation_id)).label("conversation_count"),
)
.select_from(Message)
.where(Message.app_id == app_model.id, Message.invoke_from != InvokeFrom.DEBUGGER.value)
)
if args["start"]:
start_datetime = datetime.strptime(args["start"], "%Y-%m-%d %H:%M")
start_datetime = start_datetime.replace(second=0)
start_datetime_timezone = timezone.localize(start_datetime)
start_datetime_utc = start_datetime_timezone.astimezone(utc_timezone)
sql_query += " AND created_at >= :start"
arg_dict["start"] = start_datetime_utc
stmt = stmt.where(Message.created_at >= start_datetime_utc)
if args["end"]:
end_datetime = datetime.strptime(args["end"], "%Y-%m-%d %H:%M")
end_datetime = end_datetime.replace(second=0)
end_datetime_timezone = timezone.localize(end_datetime)
end_datetime_utc = end_datetime_timezone.astimezone(utc_timezone)
stmt = stmt.where(Message.created_at < end_datetime_utc)
sql_query += " AND created_at < :end"
arg_dict["end"] = end_datetime_utc
sql_query += " GROUP BY date ORDER BY date"
stmt = stmt.group_by("date").order_by("date")
response_data = []
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query), arg_dict)
for i in rs:
response_data.append({"date": str(i.date), "conversation_count": i.conversation_count})
rs = conn.execute(stmt, {"tz": account.timezone})
for row in rs:
response_data.append({"date": str(row.date), "conversation_count": row.conversation_count})
return jsonify({"data": response_data})

View File

@ -68,13 +68,18 @@ def _create_pagination_parser():
return parser
def _serialize_variable_type(workflow_draft_var: WorkflowDraftVariable) -> str:
value_type = workflow_draft_var.value_type
return value_type.exposed_type().value
_WORKFLOW_DRAFT_VARIABLE_WITHOUT_VALUE_FIELDS = {
"id": fields.String,
"type": fields.String(attribute=lambda model: model.get_variable_type()),
"name": fields.String,
"description": fields.String,
"selector": fields.List(fields.String, attribute=lambda model: model.get_selector()),
"value_type": fields.String,
"value_type": fields.String(attribute=_serialize_variable_type),
"edited": fields.Boolean(attribute=lambda model: model.edited),
"visible": fields.Boolean,
}
@ -90,7 +95,7 @@ _WORKFLOW_DRAFT_ENV_VARIABLE_FIELDS = {
"name": fields.String,
"description": fields.String,
"selector": fields.List(fields.String, attribute=lambda model: model.get_selector()),
"value_type": fields.String,
"value_type": fields.String(attribute=_serialize_variable_type),
"edited": fields.Boolean(attribute=lambda model: model.edited),
"visible": fields.Boolean,
}
@ -396,7 +401,7 @@ class EnvironmentVariableCollectionApi(Resource):
"name": v.name,
"description": v.description,
"selector": v.selector,
"value_type": v.value_type.value,
"value_type": v.value_type.exposed_type().value,
"value": v.value,
# Do not track edited for env vars.
"edited": False,

View File

@ -35,8 +35,6 @@ def get_app_model(view: Optional[Callable] = None, *, mode: Union[AppMode, list[
raise AppNotFoundError()
app_mode = AppMode.value_of(app_model.mode)
if app_mode == AppMode.CHANNEL:
raise AppNotFoundError()
if mode is not None:
if isinstance(mode, list):

View File

@ -27,7 +27,19 @@ class InvalidTokenError(BaseHTTPException):
class PasswordResetRateLimitExceededError(BaseHTTPException):
error_code = "password_reset_rate_limit_exceeded"
description = "Too many password reset emails have been sent. Please try again in 1 minutes."
description = "Too many password reset emails have been sent. Please try again in 1 minute."
code = 429
class EmailChangeRateLimitExceededError(BaseHTTPException):
error_code = "email_change_rate_limit_exceeded"
description = "Too many email change emails have been sent. Please try again in 1 minute."
code = 429
class OwnerTransferRateLimitExceededError(BaseHTTPException):
error_code = "owner_transfer_rate_limit_exceeded"
description = "Too many owner transfer emails have been sent. Please try again in 1 minute."
code = 429
@ -65,3 +77,39 @@ class EmailPasswordResetLimitError(BaseHTTPException):
error_code = "email_password_reset_limit"
description = "Too many failed password reset attempts. Please try again in 24 hours."
code = 429
class EmailChangeLimitError(BaseHTTPException):
error_code = "email_change_limit"
description = "Too many failed email change attempts. Please try again in 24 hours."
code = 429
class EmailAlreadyInUseError(BaseHTTPException):
error_code = "email_already_in_use"
description = "A user with this email already exists."
code = 400
class OwnerTransferLimitError(BaseHTTPException):
error_code = "owner_transfer_limit"
description = "Too many failed owner transfer attempts. Please try again in 24 hours."
code = 429
class NotOwnerError(BaseHTTPException):
error_code = "not_owner"
description = "You are not the owner of the workspace."
code = 400
class CannotTransferOwnerToSelfError(BaseHTTPException):
error_code = "cannot_transfer_owner_to_self"
description = "You cannot transfer ownership to yourself."
code = 400
class MemberNotInTenantError(BaseHTTPException):
error_code = "member_not_in_tenant"
description = "The member is not in the workspace."
code = 400

View File

@ -25,12 +25,6 @@ class UnsupportedFileTypeError(BaseHTTPException):
code = 415
class HighQualityDatasetOnlyError(BaseHTTPException):
error_code = "high_quality_dataset_only"
description = "Current operation only supports 'high-quality' datasets."
code = 400
class DatasetNotInitializedError(BaseHTTPException):
error_code = "dataset_not_initialized"
description = "The dataset is still being initialized or indexing. Please wait a moment."

View File

@ -4,10 +4,20 @@ import pytz
from flask import request
from flask_login import current_user
from flask_restful import Resource, fields, marshal_with, reqparse
from sqlalchemy import select
from sqlalchemy.orm import Session
from configs import dify_config
from constants.languages import supported_language
from controllers.console import api
from controllers.console.auth.error import (
EmailAlreadyInUseError,
EmailChangeLimitError,
EmailCodeError,
InvalidEmailError,
InvalidTokenError,
)
from controllers.console.error import AccountNotFound, EmailSendIpLimitError
from controllers.console.workspace.error import (
AccountAlreadyInitedError,
CurrentPasswordIncorrectError,
@ -18,15 +28,17 @@ from controllers.console.workspace.error import (
from controllers.console.wraps import (
account_initialization_required,
cloud_edition_billing_enabled,
enable_change_email,
enterprise_license_required,
only_edition_cloud,
setup_required,
)
from extensions.ext_database import db
from fields.member_fields import account_fields
from libs.helper import TimestampField, timezone
from libs.helper import TimestampField, email, extract_remote_ip, timezone
from libs.login import login_required
from models import AccountIntegrate, InvitationCode
from models.account import Account
from services.account_service import AccountService
from services.billing_service import BillingService
from services.errors.account import CurrentPasswordIncorrectError as ServiceCurrentPasswordIncorrectError
@ -369,6 +381,134 @@ class EducationAutoCompleteApi(Resource):
return BillingService.EducationIdentity.autocomplete(args["keywords"], args["page"], args["limit"])
class ChangeEmailSendEmailApi(Resource):
@enable_change_email
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("email", type=email, required=True, location="json")
parser.add_argument("language", type=str, required=False, location="json")
parser.add_argument("phase", type=str, required=False, location="json")
parser.add_argument("token", type=str, required=False, location="json")
args = parser.parse_args()
ip_address = extract_remote_ip(request)
if AccountService.is_email_send_ip_limit(ip_address):
raise EmailSendIpLimitError()
if args["language"] is not None and args["language"] == "zh-Hans":
language = "zh-Hans"
else:
language = "en-US"
account = None
user_email = args["email"]
if args["phase"] is not None and args["phase"] == "new_email":
if args["token"] is None:
raise InvalidTokenError()
reset_data = AccountService.get_change_email_data(args["token"])
if reset_data is None:
raise InvalidTokenError()
user_email = reset_data.get("email", "")
if user_email != current_user.email:
raise InvalidEmailError()
else:
with Session(db.engine) as session:
account = session.execute(select(Account).filter_by(email=args["email"])).scalar_one_or_none()
if account is None:
raise AccountNotFound()
token = AccountService.send_change_email_email(
account=account, email=args["email"], old_email=user_email, language=language, phase=args["phase"]
)
return {"result": "success", "data": token}
class ChangeEmailCheckApi(Resource):
@enable_change_email
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("email", type=email, required=True, location="json")
parser.add_argument("code", type=str, required=True, location="json")
parser.add_argument("token", type=str, required=True, nullable=False, location="json")
args = parser.parse_args()
user_email = args["email"]
is_change_email_error_rate_limit = AccountService.is_change_email_error_rate_limit(args["email"])
if is_change_email_error_rate_limit:
raise EmailChangeLimitError()
token_data = AccountService.get_change_email_data(args["token"])
if token_data is None:
raise InvalidTokenError()
if user_email != token_data.get("email"):
raise InvalidEmailError()
if args["code"] != token_data.get("code"):
AccountService.add_change_email_error_rate_limit(args["email"])
raise EmailCodeError()
# Verified, revoke the first token
AccountService.revoke_change_email_token(args["token"])
# Refresh token data by generating a new token
_, new_token = AccountService.generate_change_email_token(
user_email, code=args["code"], old_email=token_data.get("old_email"), additional_data={}
)
AccountService.reset_change_email_error_rate_limit(args["email"])
return {"is_valid": True, "email": token_data.get("email"), "token": new_token}
class ChangeEmailResetApi(Resource):
@enable_change_email
@setup_required
@login_required
@account_initialization_required
@marshal_with(account_fields)
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("new_email", type=email, required=True, location="json")
parser.add_argument("token", type=str, required=True, nullable=False, location="json")
args = parser.parse_args()
reset_data = AccountService.get_change_email_data(args["token"])
if not reset_data:
raise InvalidTokenError()
AccountService.revoke_change_email_token(args["token"])
if not AccountService.check_email_unique(args["new_email"]):
raise EmailAlreadyInUseError()
old_email = reset_data.get("old_email", "")
if current_user.email != old_email:
raise AccountNotFound()
updated_account = AccountService.update_account(current_user, email=args["new_email"])
return updated_account
class CheckEmailUnique(Resource):
@setup_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("email", type=email, required=True, location="json")
args = parser.parse_args()
if not AccountService.check_email_unique(args["email"]):
raise EmailAlreadyInUseError()
return {"result": "success"}
# Register API resources
api.add_resource(AccountInitApi, "/account/init")
api.add_resource(AccountProfileApi, "/account/profile")
@ -385,5 +525,10 @@ api.add_resource(AccountDeleteUpdateFeedbackApi, "/account/delete/feedback")
api.add_resource(EducationVerifyApi, "/account/education/verify")
api.add_resource(EducationApi, "/account/education")
api.add_resource(EducationAutoCompleteApi, "/account/education/autocomplete")
# Change email
api.add_resource(ChangeEmailSendEmailApi, "/account/change-email")
api.add_resource(ChangeEmailCheckApi, "/account/change-email/validity")
api.add_resource(ChangeEmailResetApi, "/account/change-email/reset")
api.add_resource(CheckEmailUnique, "/account/change-email/check-email-unique")
# api.add_resource(AccountEmailApi, '/account/email')
# api.add_resource(AccountEmailVerifyApi, '/account/email-verify')

View File

@ -13,12 +13,6 @@ class CurrentPasswordIncorrectError(BaseHTTPException):
code = 400
class ProviderRequestFailedError(BaseHTTPException):
error_code = "provider_request_failed"
description = None
code = 400
class InvalidInvitationCodeError(BaseHTTPException):
error_code = "invalid_invitation_code"
description = "Invalid invitation code."

View File

@ -1,22 +1,34 @@
from urllib import parse
from flask import request
from flask_login import current_user
from flask_restful import Resource, abort, marshal_with, reqparse
import services
from configs import dify_config
from controllers.console import api
from controllers.console.error import WorkspaceMembersLimitExceeded
from controllers.console.auth.error import (
CannotTransferOwnerToSelfError,
EmailCodeError,
InvalidEmailError,
InvalidTokenError,
MemberNotInTenantError,
NotOwnerError,
OwnerTransferLimitError,
)
from controllers.console.error import EmailSendIpLimitError, WorkspaceMembersLimitExceeded
from controllers.console.wraps import (
account_initialization_required,
cloud_edition_billing_resource_check,
is_allow_transfer_owner,
setup_required,
)
from extensions.ext_database import db
from fields.member_fields import account_with_role_list_fields
from libs.helper import extract_remote_ip
from libs.login import login_required
from models.account import Account, TenantAccountRole
from services.account_service import RegisterService, TenantService
from services.account_service import AccountService, RegisterService, TenantService
from services.errors.account import AccountAlreadyInTenantError
from services.feature_service import FeatureService
@ -156,8 +168,146 @@ class DatasetOperatorMemberListApi(Resource):
return {"result": "success", "accounts": members}, 200
class SendOwnerTransferEmailApi(Resource):
"""Send owner transfer email."""
@setup_required
@login_required
@account_initialization_required
@is_allow_transfer_owner
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("language", type=str, required=False, location="json")
args = parser.parse_args()
ip_address = extract_remote_ip(request)
if AccountService.is_email_send_ip_limit(ip_address):
raise EmailSendIpLimitError()
# check if the current user is the owner of the workspace
if not TenantService.is_owner(current_user, current_user.current_tenant):
raise NotOwnerError()
if args["language"] is not None and args["language"] == "zh-Hans":
language = "zh-Hans"
else:
language = "en-US"
email = current_user.email
token = AccountService.send_owner_transfer_email(
account=current_user,
email=email,
language=language,
workspace_name=current_user.current_tenant.name,
)
return {"result": "success", "data": token}
class OwnerTransferCheckApi(Resource):
@setup_required
@login_required
@account_initialization_required
@is_allow_transfer_owner
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("code", type=str, required=True, location="json")
parser.add_argument("token", type=str, required=True, nullable=False, location="json")
args = parser.parse_args()
# check if the current user is the owner of the workspace
if not TenantService.is_owner(current_user, current_user.current_tenant):
raise NotOwnerError()
user_email = current_user.email
is_owner_transfer_error_rate_limit = AccountService.is_owner_transfer_error_rate_limit(user_email)
if is_owner_transfer_error_rate_limit:
raise OwnerTransferLimitError()
token_data = AccountService.get_owner_transfer_data(args["token"])
if token_data is None:
raise InvalidTokenError()
if user_email != token_data.get("email"):
raise InvalidEmailError()
if args["code"] != token_data.get("code"):
AccountService.add_owner_transfer_error_rate_limit(user_email)
raise EmailCodeError()
# Verified, revoke the first token
AccountService.revoke_owner_transfer_token(args["token"])
# Refresh token data by generating a new token
_, new_token = AccountService.generate_owner_transfer_token(user_email, code=args["code"], additional_data={})
AccountService.reset_owner_transfer_error_rate_limit(user_email)
return {"is_valid": True, "email": token_data.get("email"), "token": new_token}
class OwnerTransfer(Resource):
@setup_required
@login_required
@account_initialization_required
@is_allow_transfer_owner
def post(self, member_id):
parser = reqparse.RequestParser()
parser.add_argument("token", type=str, required=True, nullable=False, location="json")
args = parser.parse_args()
# check if the current user is the owner of the workspace
if not TenantService.is_owner(current_user, current_user.current_tenant):
raise NotOwnerError()
if current_user.id == str(member_id):
raise CannotTransferOwnerToSelfError()
transfer_token_data = AccountService.get_owner_transfer_data(args["token"])
if not transfer_token_data:
raise InvalidTokenError()
if transfer_token_data.get("email") != current_user.email:
raise InvalidEmailError()
AccountService.revoke_owner_transfer_token(args["token"])
member = db.session.get(Account, str(member_id))
if not member:
abort(404)
else:
member_account = member
if not TenantService.is_member(member_account, current_user.current_tenant):
raise MemberNotInTenantError()
try:
assert member is not None, "Member not found"
TenantService.update_member_role(current_user.current_tenant, member, "owner", current_user)
AccountService.send_new_owner_transfer_notify_email(
account=member,
email=member.email,
workspace_name=current_user.current_tenant.name,
)
AccountService.send_old_owner_transfer_notify_email(
account=current_user,
email=current_user.email,
workspace_name=current_user.current_tenant.name,
new_owner_email=member.email,
)
except Exception as e:
raise ValueError(str(e))
return {"result": "success"}
api.add_resource(MemberListApi, "/workspaces/current/members")
api.add_resource(MemberInviteEmailApi, "/workspaces/current/members/invite-email")
api.add_resource(MemberCancelInviteApi, "/workspaces/current/members/<uuid:member_id>")
api.add_resource(MemberUpdateRoleApi, "/workspaces/current/members/<uuid:member_id>/update-role")
api.add_resource(DatasetOperatorMemberListApi, "/workspaces/current/dataset-operators")
# owner transfer
api.add_resource(SendOwnerTransferEmailApi, "/workspaces/current/members/send-owner-transfer-confirm-email")
api.add_resource(OwnerTransferCheckApi, "/workspaces/current/members/owner-transfer-check")
api.add_resource(OwnerTransfer, "/workspaces/current/members/<uuid:member_id>/owner-transfer")

View File

@ -235,3 +235,29 @@ def email_password_login_enabled(view):
abort(403)
return decorated
def enable_change_email(view):
@wraps(view)
def decorated(*args, **kwargs):
features = FeatureService.get_system_features()
if features.enable_change_email:
return view(*args, **kwargs)
# otherwise, return 403
abort(403)
return decorated
def is_allow_transfer_owner(view):
@wraps(view)
def decorated(*args, **kwargs):
features = FeatureService.get_features(current_user.current_tenant_id)
if features.is_allow_transfer_workspace:
return view(*args, **kwargs)
# otherwise, return 403
abort(403)
return decorated

View File

@ -3,7 +3,7 @@ import logging
from dateutil.parser import isoparse
from flask_restful import Resource, fields, marshal_with, reqparse
from flask_restful.inputs import int_range
from sqlalchemy.orm import Session
from sqlalchemy.orm import Session, sessionmaker
from werkzeug.exceptions import InternalServerError
from controllers.service_api import api
@ -30,7 +30,7 @@ from fields.workflow_app_log_fields import workflow_app_log_pagination_fields
from libs import helper
from libs.helper import TimestampField
from models.model import App, AppMode, EndUser
from models.workflow import WorkflowRun
from repositories.factory import DifyAPIRepositoryFactory
from services.app_generate_service import AppGenerateService
from services.errors.llm import InvokeRateLimitError
from services.workflow_app_service import WorkflowAppService
@ -63,7 +63,15 @@ class WorkflowRunDetailApi(Resource):
if app_mode not in [AppMode.WORKFLOW, AppMode.ADVANCED_CHAT]:
raise NotWorkflowAppError()
workflow_run = db.session.query(WorkflowRun).filter(WorkflowRun.id == workflow_run_id).first()
# Use repository to get workflow run
session_maker = sessionmaker(bind=db.engine, expire_on_commit=False)
workflow_run_repo = DifyAPIRepositoryFactory.create_api_workflow_run_repository(session_maker)
workflow_run = workflow_run_repo.get_workflow_run_by_id(
tenant_id=app_model.tenant_id,
app_id=app_model.id,
run_id=workflow_run_id,
)
return workflow_run

View File

@ -25,12 +25,6 @@ class UnsupportedFileTypeError(BaseHTTPException):
code = 415
class HighQualityDatasetOnlyError(BaseHTTPException):
error_code = "high_quality_dataset_only"
description = "Current operation only supports 'high-quality' datasets."
code = 400
class DatasetNotInitializedError(BaseHTTPException):
error_code = "dataset_not_initialized"
description = "The dataset is still being initialized or indexing. Please wait a moment."

View File

@ -3,6 +3,8 @@ import logging
import uuid
from typing import Optional, Union, cast
from sqlalchemy import select
from core.agent.entities import AgentEntity, AgentToolEntity
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
@ -417,12 +419,15 @@ class BaseAgentRunner(AppRunner):
if isinstance(prompt_message, SystemPromptMessage):
result.append(prompt_message)
messages: list[Message] = (
db.session.query(Message)
.filter(
Message.conversation_id == self.message.conversation_id,
messages = (
(
db.session.execute(
select(Message)
.where(Message.conversation_id == self.message.conversation_id)
.order_by(Message.created_at.desc())
)
)
.order_by(Message.created_at.desc())
.scalars()
.all()
)

View File

@ -41,6 +41,7 @@ class AgentStrategyParameter(PluginParameter):
APP_SELECTOR = CommonParameterType.APP_SELECTOR.value
MODEL_SELECTOR = CommonParameterType.MODEL_SELECTOR.value
TOOLS_SELECTOR = CommonParameterType.TOOLS_SELECTOR.value
ANY = CommonParameterType.ANY.value
# deprecated, should not use.
SYSTEM_FILES = CommonParameterType.SYSTEM_FILES.value

View File

@ -25,8 +25,7 @@ from core.app.entities.task_entities import ChatbotAppBlockingResponse, ChatbotA
from core.model_runtime.errors.invoke import InvokeAuthorizationError
from core.ops.ops_trace_manager import TraceQueueManager
from core.prompt.utils.get_thread_messages_length import get_thread_messages_length
from core.repositories import SQLAlchemyWorkflowNodeExecutionRepository
from core.repositories.sqlalchemy_workflow_execution_repository import SQLAlchemyWorkflowExecutionRepository
from core.repositories import DifyCoreRepositoryFactory
from core.workflow.repositories.draft_variable_repository import (
DraftVariableSaverFactory,
)
@ -183,14 +182,14 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
workflow_triggered_from = WorkflowRunTriggeredFrom.DEBUGGING
else:
workflow_triggered_from = WorkflowRunTriggeredFrom.APP_RUN
workflow_execution_repository = SQLAlchemyWorkflowExecutionRepository(
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=workflow_triggered_from,
)
# Create workflow node execution repository
workflow_node_execution_repository = SQLAlchemyWorkflowNodeExecutionRepository(
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
@ -260,14 +259,14 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
# Create session factory
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
# Create workflow execution(aka workflow run) repository
workflow_execution_repository = SQLAlchemyWorkflowExecutionRepository(
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=WorkflowRunTriggeredFrom.DEBUGGING,
)
# Create workflow node execution repository
workflow_node_execution_repository = SQLAlchemyWorkflowNodeExecutionRepository(
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
@ -343,14 +342,14 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
# Create session factory
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
# Create workflow execution(aka workflow run) repository
workflow_execution_repository = SQLAlchemyWorkflowExecutionRepository(
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=WorkflowRunTriggeredFrom.DEBUGGING,
)
# Create workflow node execution repository
workflow_node_execution_repository = SQLAlchemyWorkflowNodeExecutionRepository(
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,

View File

@ -16,9 +16,10 @@ from core.app.entities.queue_entities import (
QueueTextChunkEvent,
)
from core.moderation.base import ModerationError
from core.variables.variables import VariableUnion
from core.workflow.callbacks import WorkflowCallback, WorkflowLoggingCallback
from core.workflow.entities.variable_pool import VariablePool
from core.workflow.enums import SystemVariableKey
from core.workflow.system_variable import SystemVariable
from core.workflow.variable_loader import VariableLoader
from core.workflow.workflow_entry import WorkflowEntry
from extensions.ext_database import db
@ -64,7 +65,7 @@ class AdvancedChatAppRunner(WorkflowBasedAppRunner):
if not workflow:
raise ValueError("Workflow not initialized")
user_id = None
user_id: str | None = None
if self.application_generate_entity.invoke_from in {InvokeFrom.WEB_APP, InvokeFrom.SERVICE_API}:
end_user = db.session.query(EndUser).filter(EndUser.id == self.application_generate_entity.user_id).first()
if end_user:
@ -136,23 +137,25 @@ class AdvancedChatAppRunner(WorkflowBasedAppRunner):
session.commit()
# Create a variable pool.
system_inputs = {
SystemVariableKey.QUERY: query,
SystemVariableKey.FILES: files,
SystemVariableKey.CONVERSATION_ID: self.conversation.id,
SystemVariableKey.USER_ID: user_id,
SystemVariableKey.DIALOGUE_COUNT: self._dialogue_count,
SystemVariableKey.APP_ID: app_config.app_id,
SystemVariableKey.WORKFLOW_ID: app_config.workflow_id,
SystemVariableKey.WORKFLOW_EXECUTION_ID: self.application_generate_entity.workflow_run_id,
}
system_inputs = SystemVariable(
query=query,
files=files,
conversation_id=self.conversation.id,
user_id=user_id,
dialogue_count=self._dialogue_count,
app_id=app_config.app_id,
workflow_id=app_config.workflow_id,
workflow_execution_id=self.application_generate_entity.workflow_run_id,
)
# init variable pool
variable_pool = VariablePool(
system_variables=system_inputs,
user_inputs=inputs,
environment_variables=workflow.environment_variables,
conversation_variables=conversation_variables,
# Based on the definition of `VariableUnion`,
# `list[Variable]` can be safely used as `list[VariableUnion]` since they are compatible.
conversation_variables=cast(list[VariableUnion], conversation_variables),
)
# init graph

View File

@ -61,12 +61,12 @@ from core.base.tts import AppGeneratorTTSPublisher, AudioTrunk
from core.model_runtime.entities.llm_entities import LLMUsage
from core.ops.ops_trace_manager import TraceQueueManager
from core.workflow.entities.workflow_execution import WorkflowExecutionStatus, WorkflowType
from core.workflow.enums import SystemVariableKey
from core.workflow.graph_engine.entities.graph_runtime_state import GraphRuntimeState
from core.workflow.nodes import NodeType
from core.workflow.repositories.draft_variable_repository import DraftVariableSaverFactory
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
from core.workflow.system_variable import SystemVariable
from core.workflow.workflow_cycle_manager import CycleManagerWorkflowInfo, WorkflowCycleManager
from events.message_event import message_was_created
from extensions.ext_database import db
@ -116,16 +116,16 @@ class AdvancedChatAppGenerateTaskPipeline:
self._workflow_cycle_manager = WorkflowCycleManager(
application_generate_entity=application_generate_entity,
workflow_system_variables={
SystemVariableKey.QUERY: message.query,
SystemVariableKey.FILES: application_generate_entity.files,
SystemVariableKey.CONVERSATION_ID: conversation.id,
SystemVariableKey.USER_ID: user_session_id,
SystemVariableKey.DIALOGUE_COUNT: dialogue_count,
SystemVariableKey.APP_ID: application_generate_entity.app_config.app_id,
SystemVariableKey.WORKFLOW_ID: workflow.id,
SystemVariableKey.WORKFLOW_EXECUTION_ID: application_generate_entity.workflow_run_id,
},
workflow_system_variables=SystemVariable(
query=message.query,
files=application_generate_entity.files,
conversation_id=conversation.id,
user_id=user_session_id,
dialogue_count=dialogue_count,
app_id=application_generate_entity.app_config.app_id,
workflow_id=workflow.id,
workflow_execution_id=application_generate_entity.workflow_run_id,
),
workflow_info=CycleManagerWorkflowInfo(
workflow_id=workflow.id,
workflow_type=WorkflowType(workflow.type),

View File

@ -38,69 +38,6 @@ _logger = logging.getLogger(__name__)
class AppRunner:
def get_pre_calculate_rest_tokens(
self,
app_record: App,
model_config: ModelConfigWithCredentialsEntity,
prompt_template_entity: PromptTemplateEntity,
inputs: Mapping[str, str],
files: Sequence["File"],
query: Optional[str] = None,
) -> int:
"""
Get pre calculate rest tokens
:param app_record: app record
:param model_config: model config entity
:param prompt_template_entity: prompt template entity
:param inputs: inputs
:param files: files
:param query: query
:return:
"""
# Invoke model
model_instance = ModelInstance(
provider_model_bundle=model_config.provider_model_bundle, model=model_config.model
)
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
max_tokens = 0
for parameter_rule in model_config.model_schema.parameter_rules:
if parameter_rule.name == "max_tokens" or (
parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
):
max_tokens = (
model_config.parameters.get(parameter_rule.name)
or model_config.parameters.get(parameter_rule.use_template or "")
) or 0
if model_context_tokens is None:
return -1
if max_tokens is None:
max_tokens = 0
# get prompt messages without memory and context
prompt_messages, stop = self.organize_prompt_messages(
app_record=app_record,
model_config=model_config,
prompt_template_entity=prompt_template_entity,
inputs=inputs,
files=files,
query=query,
)
prompt_tokens = model_instance.get_llm_num_tokens(prompt_messages)
rest_tokens: int = model_context_tokens - max_tokens - prompt_tokens
if rest_tokens < 0:
raise InvokeBadRequestError(
"Query or prefix prompt is too long, you can reduce the prefix prompt, "
"or shrink the max token, or switch to a llm with a larger token limit size."
)
return rest_tokens
def recalc_llm_max_tokens(
self, model_config: ModelConfigWithCredentialsEntity, prompt_messages: list[PromptMessage]
):

View File

@ -23,8 +23,7 @@ from core.app.entities.app_invoke_entities import InvokeFrom, WorkflowAppGenerat
from core.app.entities.task_entities import WorkflowAppBlockingResponse, WorkflowAppStreamResponse
from core.model_runtime.errors.invoke import InvokeAuthorizationError
from core.ops.ops_trace_manager import TraceQueueManager
from core.repositories import SQLAlchemyWorkflowNodeExecutionRepository
from core.repositories.sqlalchemy_workflow_execution_repository import SQLAlchemyWorkflowExecutionRepository
from core.repositories import DifyCoreRepositoryFactory
from core.workflow.repositories.draft_variable_repository import DraftVariableSaverFactory
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
@ -156,14 +155,14 @@ class WorkflowAppGenerator(BaseAppGenerator):
workflow_triggered_from = WorkflowRunTriggeredFrom.DEBUGGING
else:
workflow_triggered_from = WorkflowRunTriggeredFrom.APP_RUN
workflow_execution_repository = SQLAlchemyWorkflowExecutionRepository(
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=workflow_triggered_from,
)
# Create workflow node execution repository
workflow_node_execution_repository = SQLAlchemyWorkflowNodeExecutionRepository(
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
@ -306,16 +305,14 @@ class WorkflowAppGenerator(BaseAppGenerator):
# Create session factory
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
# Create workflow execution(aka workflow run) repository
workflow_execution_repository = SQLAlchemyWorkflowExecutionRepository(
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=WorkflowRunTriggeredFrom.DEBUGGING,
)
# Create workflow node execution repository
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
workflow_node_execution_repository = SQLAlchemyWorkflowNodeExecutionRepository(
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
@ -390,16 +387,14 @@ class WorkflowAppGenerator(BaseAppGenerator):
# Create session factory
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
# Create workflow execution(aka workflow run) repository
workflow_execution_repository = SQLAlchemyWorkflowExecutionRepository(
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=WorkflowRunTriggeredFrom.DEBUGGING,
)
# Create workflow node execution repository
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
workflow_node_execution_repository = SQLAlchemyWorkflowNodeExecutionRepository(
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,

View File

@ -11,7 +11,7 @@ from core.app.entities.app_invoke_entities import (
)
from core.workflow.callbacks import WorkflowCallback, WorkflowLoggingCallback
from core.workflow.entities.variable_pool import VariablePool
from core.workflow.enums import SystemVariableKey
from core.workflow.system_variable import SystemVariable
from core.workflow.variable_loader import VariableLoader
from core.workflow.workflow_entry import WorkflowEntry
from extensions.ext_database import db
@ -95,13 +95,14 @@ class WorkflowAppRunner(WorkflowBasedAppRunner):
files = self.application_generate_entity.files
# Create a variable pool.
system_inputs = {
SystemVariableKey.FILES: files,
SystemVariableKey.USER_ID: user_id,
SystemVariableKey.APP_ID: app_config.app_id,
SystemVariableKey.WORKFLOW_ID: app_config.workflow_id,
SystemVariableKey.WORKFLOW_EXECUTION_ID: self.application_generate_entity.workflow_execution_id,
}
system_inputs = SystemVariable(
files=files,
user_id=user_id,
app_id=app_config.app_id,
workflow_id=app_config.workflow_id,
workflow_execution_id=self.application_generate_entity.workflow_execution_id,
)
variable_pool = VariablePool(
system_variables=system_inputs,

View File

@ -3,7 +3,6 @@ import time
from collections.abc import Generator
from typing import Optional, Union
from sqlalchemy import select
from sqlalchemy.orm import Session
from constants.tts_auto_play_timeout import TTS_AUTO_PLAY_TIMEOUT, TTS_AUTO_PLAY_YIELD_CPU_TIME
@ -55,10 +54,10 @@ from core.app.task_pipeline.based_generate_task_pipeline import BasedGenerateTas
from core.base.tts import AppGeneratorTTSPublisher, AudioTrunk
from core.ops.ops_trace_manager import TraceQueueManager
from core.workflow.entities.workflow_execution import WorkflowExecution, WorkflowExecutionStatus, WorkflowType
from core.workflow.enums import SystemVariableKey
from core.workflow.repositories.draft_variable_repository import DraftVariableSaverFactory
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
from core.workflow.system_variable import SystemVariable
from core.workflow.workflow_cycle_manager import CycleManagerWorkflowInfo, WorkflowCycleManager
from extensions.ext_database import db
from models.account import Account
@ -68,7 +67,6 @@ from models.workflow import (
Workflow,
WorkflowAppLog,
WorkflowAppLogCreatedFrom,
WorkflowRun,
)
logger = logging.getLogger(__name__)
@ -109,13 +107,13 @@ class WorkflowAppGenerateTaskPipeline:
self._workflow_cycle_manager = WorkflowCycleManager(
application_generate_entity=application_generate_entity,
workflow_system_variables={
SystemVariableKey.FILES: application_generate_entity.files,
SystemVariableKey.USER_ID: user_session_id,
SystemVariableKey.APP_ID: application_generate_entity.app_config.app_id,
SystemVariableKey.WORKFLOW_ID: workflow.id,
SystemVariableKey.WORKFLOW_EXECUTION_ID: application_generate_entity.workflow_execution_id,
},
workflow_system_variables=SystemVariable(
files=application_generate_entity.files,
user_id=user_session_id,
app_id=application_generate_entity.app_config.app_id,
workflow_id=workflow.id,
workflow_execution_id=application_generate_entity.workflow_execution_id,
),
workflow_info=CycleManagerWorkflowInfo(
workflow_id=workflow.id,
workflow_type=WorkflowType(workflow.type),
@ -562,8 +560,6 @@ class WorkflowAppGenerateTaskPipeline:
tts_publisher.publish(None)
def _save_workflow_app_log(self, *, session: Session, workflow_execution: WorkflowExecution) -> None:
workflow_run = session.scalar(select(WorkflowRun).where(WorkflowRun.id == workflow_execution.id_))
assert workflow_run is not None
invoke_from = self._application_generate_entity.invoke_from
if invoke_from == InvokeFrom.SERVICE_API:
created_from = WorkflowAppLogCreatedFrom.SERVICE_API
@ -576,10 +572,10 @@ class WorkflowAppGenerateTaskPipeline:
return
workflow_app_log = WorkflowAppLog()
workflow_app_log.tenant_id = workflow_run.tenant_id
workflow_app_log.app_id = workflow_run.app_id
workflow_app_log.workflow_id = workflow_run.workflow_id
workflow_app_log.workflow_run_id = workflow_run.id
workflow_app_log.tenant_id = self._application_generate_entity.app_config.tenant_id
workflow_app_log.app_id = self._application_generate_entity.app_config.app_id
workflow_app_log.workflow_id = workflow_execution.workflow_id
workflow_app_log.workflow_run_id = workflow_execution.id_
workflow_app_log.created_from = created_from.value
workflow_app_log.created_by_role = self._created_by_role
workflow_app_log.created_by = self._user_id

View File

@ -62,6 +62,7 @@ from core.workflow.graph_engine.entities.event import (
from core.workflow.graph_engine.entities.graph import Graph
from core.workflow.nodes import NodeType
from core.workflow.nodes.node_mapping import NODE_TYPE_CLASSES_MAPPING
from core.workflow.system_variable import SystemVariable
from core.workflow.variable_loader import DUMMY_VARIABLE_LOADER, VariableLoader, load_into_variable_pool
from core.workflow.workflow_entry import WorkflowEntry
from extensions.ext_database import db
@ -166,7 +167,7 @@ class WorkflowBasedAppRunner(AppRunner):
# init variable pool
variable_pool = VariablePool(
system_variables={},
system_variables=SystemVariable.empty(),
user_inputs={},
environment_variables=workflow.environment_variables,
)
@ -263,7 +264,7 @@ class WorkflowBasedAppRunner(AppRunner):
# init variable pool
variable_pool = VariablePool(
system_variables={},
system_variables=SystemVariable.empty(),
user_inputs={},
environment_variables=workflow.environment_variables,
)

View File

@ -10,8 +10,3 @@ class RecordNotFoundError(TaskPipilineError):
class WorkflowRunNotFoundError(RecordNotFoundError):
def __init__(self, workflow_run_id: str):
super().__init__("WorkflowRun", workflow_run_id)
class WorkflowNodeExecutionNotFoundError(RecordNotFoundError):
def __init__(self, workflow_node_execution_id: str):
super().__init__("WorkflowNodeExecution", workflow_node_execution_id)

View File

@ -14,6 +14,7 @@ class CommonParameterType(StrEnum):
APP_SELECTOR = "app-selector"
MODEL_SELECTOR = "model-selector"
TOOLS_SELECTOR = "array[tools]"
ANY = "any"
# Dynamic select parameter
# Once you are not sure about the available options until authorization is done

View File

@ -7,13 +7,6 @@ if TYPE_CHECKING:
_tool_file_manager_factory: Callable[[], "ToolFileManager"] | None = None
class ToolFileParser:
@staticmethod
def get_tool_file_manager() -> "ToolFileManager":
assert _tool_file_manager_factory is not None
return _tool_file_manager_factory()
def set_tool_file_manager_factory(factory: Callable[[], "ToolFileManager"]) -> None:
global _tool_file_manager_factory
_tool_file_manager_factory = factory

View File

@ -5,6 +5,8 @@ from base64 import b64encode
from collections.abc import Mapping
from typing import Any
from core.variables.utils import SegmentJSONEncoder
class TemplateTransformer(ABC):
_code_placeholder: str = "{{code}}"
@ -43,17 +45,13 @@ class TemplateTransformer(ABC):
result_str = cls.extract_result_str_from_response(response)
result = json.loads(result_str)
except json.JSONDecodeError as e:
raise ValueError(f"Failed to parse JSON response: {str(e)}. Response content: {result_str[:200]}...")
raise ValueError(f"Failed to parse JSON response: {str(e)}.")
except ValueError as e:
# Re-raise ValueError from extract_result_str_from_response
raise e
except Exception as e:
raise ValueError(f"Unexpected error during response transformation: {str(e)}")
# Check if the result contains an error
if isinstance(result, dict) and "error" in result:
raise ValueError(f"JavaScript execution error: {result['error']}")
if not isinstance(result, dict):
raise ValueError(f"Result must be a dict, got {type(result).__name__}")
if not all(isinstance(k, str) for k in result):
@ -95,7 +93,7 @@ class TemplateTransformer(ABC):
@classmethod
def serialize_inputs(cls, inputs: Mapping[str, Any]) -> str:
inputs_json_str = json.dumps(inputs, ensure_ascii=False).encode()
inputs_json_str = json.dumps(inputs, ensure_ascii=False, cls=SegmentJSONEncoder).encode()
input_base64_encoded = b64encode(inputs_json_str).decode("utf-8")
return input_base64_encoded

View File

@ -1,52 +0,0 @@
import base64
import hashlib
import hmac
import os
import time
from pydantic import BaseModel, Field
from configs import dify_config
class SignedUrlParams(BaseModel):
sign_key: str = Field(..., description="The sign key")
timestamp: str = Field(..., description="Timestamp")
nonce: str = Field(..., description="Nonce")
sign: str = Field(..., description="Signature")
class UrlSigner:
@classmethod
def get_signed_url(cls, url: str, sign_key: str, prefix: str) -> str:
signed_url_params = cls.get_signed_url_params(sign_key, prefix)
return (
f"{url}?timestamp={signed_url_params.timestamp}"
f"&nonce={signed_url_params.nonce}&sign={signed_url_params.sign}"
)
@classmethod
def get_signed_url_params(cls, sign_key: str, prefix: str) -> SignedUrlParams:
timestamp = str(int(time.time()))
nonce = os.urandom(16).hex()
sign = cls._sign(sign_key, timestamp, nonce, prefix)
return SignedUrlParams(sign_key=sign_key, timestamp=timestamp, nonce=nonce, sign=sign)
@classmethod
def verify(cls, sign_key: str, timestamp: str, nonce: str, sign: str, prefix: str) -> bool:
recalculated_sign = cls._sign(sign_key, timestamp, nonce, prefix)
return sign == recalculated_sign
@classmethod
def _sign(cls, sign_key: str, timestamp: str, nonce: str, prefix: str) -> str:
if not dify_config.SECRET_KEY:
raise Exception("SECRET_KEY is not set")
data_to_sign = f"{prefix}|{sign_key}|{timestamp}|{nonce}"
secret_key = dify_config.SECRET_KEY.encode()
sign = hmac.new(secret_key, data_to_sign.encode(), hashlib.sha256).digest()
encoded_sign = base64.urlsafe_b64encode(sign).decode()
return encoded_sign

View File

@ -148,9 +148,11 @@ class LLMGenerator:
model_manager = ModelManager()
model_instance = model_manager.get_default_model_instance(
model_instance = model_manager.get_model_instance(
tenant_id=tenant_id,
model_type=ModelType.LLM,
provider=model_config.get("provider", ""),
model=model_config.get("name", ""),
)
try:

View File

@ -240,7 +240,7 @@ def refresh_authorization(
response = requests.post(token_url, data=params)
if not response.ok:
raise ValueError(f"Token refresh failed: HTTP {response.status_code}")
return OAuthTokens.parse_obj(response.json())
return OAuthTokens.model_validate(response.json())
def register_client(

View File

@ -148,9 +148,7 @@ class MCPServerStreamableHTTPRequestHandler:
if not self.end_user:
raise ValueError("User not found")
request = cast(types.CallToolRequest, self.request.root)
args = request.params.arguments
if not args:
raise ValueError("No arguments provided")
args = request.params.arguments or {}
if self.app.mode in {AppMode.WORKFLOW.value}:
args = {"inputs": args}
elif self.app.mode in {AppMode.COMPLETION.value}:

View File

@ -1,7 +1,7 @@
import logging
import queue
from collections.abc import Callable
from concurrent.futures import ThreadPoolExecutor
from concurrent.futures import Future, ThreadPoolExecutor, TimeoutError
from contextlib import ExitStack
from datetime import timedelta
from types import TracebackType
@ -171,23 +171,41 @@ class BaseSession(
self._session_read_timeout_seconds = read_timeout_seconds
self._in_flight = {}
self._exit_stack = ExitStack()
# Initialize executor and future to None for proper cleanup checks
self._executor: ThreadPoolExecutor | None = None
self._receiver_future: Future | None = None
def __enter__(self) -> Self:
self._executor = ThreadPoolExecutor()
# The thread pool is dedicated to running `_receive_loop`. Setting `max_workers` to 1
# ensures no unnecessary threads are created.
self._executor = ThreadPoolExecutor(max_workers=1)
self._receiver_future = self._executor.submit(self._receive_loop)
return self
def check_receiver_status(self) -> None:
if self._receiver_future.done():
"""`check_receiver_status` ensures that any exceptions raised during the
execution of `_receive_loop` are retrieved and propagated."""
if self._receiver_future and self._receiver_future.done():
self._receiver_future.result()
def __exit__(
self, exc_type: type[BaseException] | None, exc_val: BaseException | None, exc_tb: TracebackType | None
) -> None:
self._exit_stack.close()
self._read_stream.put(None)
self._write_stream.put(None)
# Wait for the receiver loop to finish
if self._receiver_future:
try:
self._receiver_future.result(timeout=5.0) # Wait up to 5 seconds
except TimeoutError:
# If the receiver loop is still running after timeout, we'll force shutdown
pass
# Shutdown the executor
if self._executor:
self._executor.shutdown(wait=True)
def send_request(
self,
request: SendRequestT,

View File

@ -1,6 +1,8 @@
from collections.abc import Sequence
from typing import Optional
from sqlalchemy import select
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.file import file_manager
from core.model_manager import ModelInstance
@ -17,11 +19,15 @@ from core.prompt.utils.extract_thread_messages import extract_thread_messages
from extensions.ext_database import db
from factories import file_factory
from models.model import AppMode, Conversation, Message, MessageFile
from models.workflow import WorkflowRun
from models.workflow import Workflow, WorkflowRun
class TokenBufferMemory:
def __init__(self, conversation: Conversation, model_instance: ModelInstance) -> None:
def __init__(
self,
conversation: Conversation,
model_instance: ModelInstance,
) -> None:
self.conversation = conversation
self.model_instance = model_instance
@ -36,20 +42,8 @@ class TokenBufferMemory:
app_record = self.conversation.app
# fetch limited messages, and return reversed
query = (
db.session.query(
Message.id,
Message.query,
Message.answer,
Message.created_at,
Message.workflow_run_id,
Message.parent_message_id,
Message.answer_tokens,
)
.filter(
Message.conversation_id == self.conversation.id,
)
.order_by(Message.created_at.desc())
stmt = (
select(Message).where(Message.conversation_id == self.conversation.id).order_by(Message.created_at.desc())
)
if message_limit and message_limit > 0:
@ -57,7 +51,9 @@ class TokenBufferMemory:
else:
message_limit = 500
messages = query.limit(message_limit).all()
stmt = stmt.limit(message_limit)
messages = db.session.scalars(stmt).all()
# instead of all messages from the conversation, we only need to extract messages
# that belong to the thread of last message
@ -74,18 +70,20 @@ class TokenBufferMemory:
files = db.session.query(MessageFile).filter(MessageFile.message_id == message.id).all()
if files:
file_extra_config = None
if self.conversation.mode not in {AppMode.ADVANCED_CHAT, AppMode.WORKFLOW}:
if self.conversation.mode in {AppMode.AGENT_CHAT, AppMode.COMPLETION, AppMode.CHAT}:
file_extra_config = FileUploadConfigManager.convert(self.conversation.model_config)
elif self.conversation.mode in {AppMode.ADVANCED_CHAT, AppMode.WORKFLOW}:
workflow_run = db.session.scalar(
select(WorkflowRun).where(WorkflowRun.id == message.workflow_run_id)
)
if not workflow_run:
raise ValueError(f"Workflow run not found: {message.workflow_run_id}")
workflow = db.session.scalar(select(Workflow).where(Workflow.id == workflow_run.workflow_id))
if not workflow:
raise ValueError(f"Workflow not found: {workflow_run.workflow_id}")
file_extra_config = FileUploadConfigManager.convert(workflow.features_dict, is_vision=False)
else:
if message.workflow_run_id:
workflow_run = (
db.session.query(WorkflowRun).filter(WorkflowRun.id == message.workflow_run_id).first()
)
if workflow_run and workflow_run.workflow:
file_extra_config = FileUploadConfigManager.convert(
workflow_run.workflow.features_dict, is_vision=False
)
raise AssertionError(f"Invalid app mode: {self.conversation.mode}")
detail = ImagePromptMessageContent.DETAIL.LOW
if file_extra_config and app_record:

View File

@ -284,7 +284,8 @@ class AliyunDataTrace(BaseTraceInstance):
else:
node_span = self.build_workflow_task_span(trace_id, workflow_span_id, trace_info, node_execution)
return node_span
except Exception:
except Exception as e:
logging.debug(f"Error occurred in build_workflow_node_span: {e}", exc_info=True)
return None
def get_workflow_node_status(self, node_execution: WorkflowNodeExecution) -> Status:
@ -306,7 +307,7 @@ class AliyunDataTrace(BaseTraceInstance):
start_time=convert_datetime_to_nanoseconds(node_execution.created_at),
end_time=convert_datetime_to_nanoseconds(node_execution.finished_at),
attributes={
GEN_AI_SESSION_ID: trace_info.metadata.get("conversation_id", ""),
GEN_AI_SESSION_ID: trace_info.metadata.get("conversation_id") or "",
GEN_AI_SPAN_KIND: GenAISpanKind.TASK.value,
GEN_AI_FRAMEWORK: "dify",
INPUT_VALUE: json.dumps(node_execution.inputs, ensure_ascii=False),
@ -381,7 +382,7 @@ class AliyunDataTrace(BaseTraceInstance):
start_time=convert_datetime_to_nanoseconds(node_execution.created_at),
end_time=convert_datetime_to_nanoseconds(node_execution.finished_at),
attributes={
GEN_AI_SESSION_ID: trace_info.metadata.get("conversation_id", ""),
GEN_AI_SESSION_ID: trace_info.metadata.get("conversation_id") or "",
GEN_AI_SPAN_KIND: GenAISpanKind.LLM.value,
GEN_AI_FRAMEWORK: "dify",
GEN_AI_MODEL_NAME: process_data.get("model_name", ""),
@ -415,7 +416,7 @@ class AliyunDataTrace(BaseTraceInstance):
start_time=convert_datetime_to_nanoseconds(trace_info.start_time),
end_time=convert_datetime_to_nanoseconds(trace_info.end_time),
attributes={
GEN_AI_SESSION_ID: trace_info.metadata.get("conversation_id", ""),
GEN_AI_SESSION_ID: trace_info.metadata.get("conversation_id") or "",
GEN_AI_USER_ID: str(user_id),
GEN_AI_SPAN_KIND: GenAISpanKind.CHAIN.value,
GEN_AI_FRAMEWORK: "dify",

View File

@ -28,7 +28,7 @@ from core.ops.langfuse_trace.entities.langfuse_trace_entity import (
UnitEnum,
)
from core.ops.utils import filter_none_values
from core.repositories import SQLAlchemyWorkflowNodeExecutionRepository
from core.repositories import DifyCoreRepositoryFactory
from core.workflow.nodes.enums import NodeType
from extensions.ext_database import db
from models import EndUser, WorkflowNodeExecutionTriggeredFrom
@ -123,10 +123,10 @@ class LangFuseDataTrace(BaseTraceInstance):
service_account = self.get_service_account_with_tenant(app_id)
workflow_node_execution_repository = SQLAlchemyWorkflowNodeExecutionRepository(
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
session_factory=session_factory,
user=service_account,
app_id=trace_info.metadata.get("app_id"),
app_id=app_id,
triggered_from=WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN,
)

View File

@ -27,7 +27,7 @@ from core.ops.langsmith_trace.entities.langsmith_trace_entity import (
LangSmithRunUpdateModel,
)
from core.ops.utils import filter_none_values, generate_dotted_order
from core.repositories import SQLAlchemyWorkflowNodeExecutionRepository
from core.repositories import DifyCoreRepositoryFactory
from core.workflow.entities.workflow_node_execution import WorkflowNodeExecutionMetadataKey
from core.workflow.nodes.enums import NodeType
from extensions.ext_database import db
@ -145,10 +145,10 @@ class LangSmithDataTrace(BaseTraceInstance):
service_account = self.get_service_account_with_tenant(app_id)
workflow_node_execution_repository = SQLAlchemyWorkflowNodeExecutionRepository(
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
session_factory=session_factory,
user=service_account,
app_id=trace_info.metadata.get("app_id"),
app_id=app_id,
triggered_from=WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN,
)

View File

@ -21,7 +21,7 @@ from core.ops.entities.trace_entity import (
TraceTaskName,
WorkflowTraceInfo,
)
from core.repositories import SQLAlchemyWorkflowNodeExecutionRepository
from core.repositories import DifyCoreRepositoryFactory
from core.workflow.entities.workflow_node_execution import WorkflowNodeExecutionMetadataKey
from core.workflow.nodes.enums import NodeType
from extensions.ext_database import db
@ -160,10 +160,10 @@ class OpikDataTrace(BaseTraceInstance):
service_account = self.get_service_account_with_tenant(app_id)
workflow_node_execution_repository = SQLAlchemyWorkflowNodeExecutionRepository(
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
session_factory=session_factory,
user=service_account,
app_id=trace_info.metadata.get("app_id"),
app_id=app_id,
triggered_from=WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN,
)
@ -241,7 +241,7 @@ class OpikDataTrace(BaseTraceInstance):
"trace_id": opik_trace_id,
"id": prepare_opik_uuid(created_at, node_execution_id),
"parent_span_id": prepare_opik_uuid(trace_info.start_time, parent_span_id),
"name": node_type,
"name": node_name,
"type": run_type,
"start_time": created_at,
"end_time": finished_at,

View File

@ -22,7 +22,7 @@ from core.ops.entities.trace_entity import (
WorkflowTraceInfo,
)
from core.ops.weave_trace.entities.weave_trace_entity import WeaveTraceModel
from core.repositories import SQLAlchemyWorkflowNodeExecutionRepository
from core.repositories import DifyCoreRepositoryFactory
from core.workflow.entities.workflow_node_execution import WorkflowNodeExecutionMetadataKey
from core.workflow.nodes.enums import NodeType
from extensions.ext_database import db
@ -144,10 +144,10 @@ class WeaveDataTrace(BaseTraceInstance):
service_account = self.get_service_account_with_tenant(app_id)
workflow_node_execution_repository = SQLAlchemyWorkflowNodeExecutionRepository(
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
session_factory=session_factory,
user=service_account,
app_id=trace_info.metadata.get("app_id"),
app_id=app_id,
triggered_from=WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN,
)

View File

@ -5,6 +5,7 @@ from pydantic import BaseModel, Field, field_validator
from core.entities.parameter_entities import CommonParameterType
from core.tools.entities.common_entities import I18nObject
from core.workflow.nodes.base.entities import NumberType
class PluginParameterOption(BaseModel):
@ -38,6 +39,7 @@ class PluginParameterType(enum.StrEnum):
APP_SELECTOR = CommonParameterType.APP_SELECTOR.value
MODEL_SELECTOR = CommonParameterType.MODEL_SELECTOR.value
TOOLS_SELECTOR = CommonParameterType.TOOLS_SELECTOR.value
ANY = CommonParameterType.ANY.value
DYNAMIC_SELECT = CommonParameterType.DYNAMIC_SELECT.value
# deprecated, should not use.
@ -151,6 +153,10 @@ def cast_parameter_value(typ: enum.StrEnum, value: Any, /):
if value and not isinstance(value, list):
raise ValueError("The tools selector must be a list.")
return value
case PluginParameterType.ANY:
if value and not isinstance(value, str | dict | list | NumberType):
raise ValueError("The var selector must be a string, dictionary, list or number.")
return value
case PluginParameterType.ARRAY:
if not isinstance(value, list):
# Try to parse JSON string for arrays

View File

@ -141,17 +141,6 @@ class PluginEntity(PluginInstallation):
return self
class GithubPackage(BaseModel):
repo: str
version: str
package: str
class GithubVersion(BaseModel):
repo: str
version: str
class GenericProviderID:
organization: str
plugin_name: str

View File

@ -36,7 +36,7 @@ class PluginInstaller(BasePluginClient):
"GET",
f"plugin/{tenant_id}/management/list",
PluginListResponse,
params={"page": 1, "page_size": 256},
params={"page": 1, "page_size": 256, "response_type": "paged"},
)
return result.list
@ -45,7 +45,7 @@ class PluginInstaller(BasePluginClient):
"GET",
f"plugin/{tenant_id}/management/list",
PluginListResponse,
params={"page": page, "page_size": page_size},
params={"page": page, "page_size": page_size, "response_type": "paged"},
)
def upload_pkg(

View File

@ -158,7 +158,7 @@ class AdvancedPromptTransform(PromptTransform):
if prompt_item.edition_type == "basic" or not prompt_item.edition_type:
if self.with_variable_tmpl:
vp = VariablePool()
vp = VariablePool.empty()
for k, v in inputs.items():
if k.startswith("#"):
vp.add(k[1:-1].split("."), v)

View File

@ -1,10 +1,11 @@
from typing import Any
from collections.abc import Sequence
from constants import UUID_NIL
from models import Message
def extract_thread_messages(messages: list[Any]):
thread_messages = []
def extract_thread_messages(messages: Sequence[Message]):
thread_messages: list[Message] = []
next_message = None
for message in messages:

View File

@ -1,3 +1,5 @@
from sqlalchemy import select
from core.prompt.utils.extract_thread_messages import extract_thread_messages
from extensions.ext_database import db
from models.model import Message
@ -8,19 +10,9 @@ def get_thread_messages_length(conversation_id: str) -> int:
Get the number of thread messages based on the parent message id.
"""
# Fetch all messages related to the conversation
query = (
db.session.query(
Message.id,
Message.parent_message_id,
Message.answer,
)
.filter(
Message.conversation_id == conversation_id,
)
.order_by(Message.created_at.desc())
)
stmt = select(Message).where(Message.conversation_id == conversation_id).order_by(Message.created_at.desc())
messages = query.all()
messages = db.session.scalars(stmt).all()
# Extract thread messages
thread_messages = extract_thread_messages(messages)

View File

@ -1,12 +0,0 @@
"""Abstract interface for document clean implementations."""
from core.rag.cleaner.cleaner_base import BaseCleaner
class UnstructuredNonAsciiCharsCleaner(BaseCleaner):
def clean(self, content) -> str:
"""clean document content."""
from unstructured.cleaners.core import clean_extra_whitespace
# Returns "ITEM 1A: RISK FACTORS"
return clean_extra_whitespace(content)

View File

@ -1,15 +0,0 @@
"""Abstract interface for document clean implementations."""
from core.rag.cleaner.cleaner_base import BaseCleaner
class UnstructuredGroupBrokenParagraphsCleaner(BaseCleaner):
def clean(self, content) -> str:
"""clean document content."""
import re
from unstructured.cleaners.core import group_broken_paragraphs
para_split_re = re.compile(r"(\s*\n\s*){3}")
return group_broken_paragraphs(content, paragraph_split=para_split_re)

View File

@ -1,12 +0,0 @@
"""Abstract interface for document clean implementations."""
from core.rag.cleaner.cleaner_base import BaseCleaner
class UnstructuredNonAsciiCharsCleaner(BaseCleaner):
def clean(self, content) -> str:
"""clean document content."""
from unstructured.cleaners.core import clean_non_ascii_chars
# Returns "This text contains non-ascii characters!"
return clean_non_ascii_chars(content)

View File

@ -1,12 +0,0 @@
"""Abstract interface for document clean implementations."""
from core.rag.cleaner.cleaner_base import BaseCleaner
class UnstructuredNonAsciiCharsCleaner(BaseCleaner):
def clean(self, content) -> str:
"""Replaces unicode quote characters, such as the \x91 character in a string."""
from unstructured.cleaners.core import replace_unicode_quotes
return replace_unicode_quotes(content)

View File

@ -1,11 +0,0 @@
"""Abstract interface for document clean implementations."""
from core.rag.cleaner.cleaner_base import BaseCleaner
class UnstructuredTranslateTextCleaner(BaseCleaner):
def clean(self, content) -> str:
"""clean document content."""
from unstructured.cleaners.translate import translate_text
return translate_text(content)

View File

@ -3,7 +3,7 @@ from concurrent.futures import ThreadPoolExecutor
from typing import Optional
from flask import Flask, current_app
from sqlalchemy.orm import load_only
from sqlalchemy.orm import Session, load_only
from configs import dify_config
from core.rag.data_post_processor.data_post_processor import DataPostProcessor
@ -144,7 +144,8 @@ class RetrievalService:
@classmethod
def _get_dataset(cls, dataset_id: str) -> Optional[Dataset]:
return db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
with Session(db.engine) as session:
return session.query(Dataset).filter(Dataset.id == dataset_id).first()
@classmethod
def keyword_search(

View File

@ -4,6 +4,7 @@ from typing import Any, Optional
import tablestore # type: ignore
from pydantic import BaseModel, model_validator
from tablestore import BatchGetRowRequest, TableInBatchGetRowItem
from configs import dify_config
from core.rag.datasource.vdb.field import Field
@ -50,6 +51,29 @@ class TableStoreVector(BaseVector):
self._index_name = f"{collection_name}_idx"
self._tags_field = f"{Field.METADATA_KEY.value}_tags"
def create_collection(self, embeddings: list[list[float]], **kwargs):
dimension = len(embeddings[0])
self._create_collection(dimension)
def get_by_ids(self, ids: list[str]) -> list[Document]:
docs = []
request = BatchGetRowRequest()
columns_to_get = [Field.METADATA_KEY.value, Field.CONTENT_KEY.value]
rows_to_get = [[("id", _id)] for _id in ids]
request.add(TableInBatchGetRowItem(self._table_name, rows_to_get, columns_to_get, None, 1))
result = self._tablestore_client.batch_get_row(request)
table_result = result.get_result_by_table(self._table_name)
for item in table_result:
if item.is_ok and item.row:
kv = {k: v for k, v, t in item.row.attribute_columns}
docs.append(
Document(
page_content=kv[Field.CONTENT_KEY.value], metadata=json.loads(kv[Field.METADATA_KEY.value])
)
)
return docs
def get_type(self) -> str:
return VectorType.TABLESTORE

View File

@ -1,17 +0,0 @@
from typing import Optional
from pydantic import BaseModel
class ClusterEntity(BaseModel):
"""
Model Config Entity.
"""
name: str
cluster_id: str
displayName: str
region: str
spendingLimit: Optional[int] = 1000
version: str
createdBy: str

View File

@ -9,8 +9,7 @@ from __future__ import annotations
import contextlib
import mimetypes
from abc import ABC, abstractmethod
from collections.abc import Generator, Iterable, Mapping
from collections.abc import Generator, Mapping
from io import BufferedReader, BytesIO
from pathlib import Path, PurePath
from typing import Any, Optional, Union
@ -143,21 +142,3 @@ class Blob(BaseModel):
if self.source:
str_repr += f" {self.source}"
return str_repr
class BlobLoader(ABC):
"""Abstract interface for blob loaders implementation.
Implementer should be able to load raw content from a datasource system according
to some criteria and return the raw content lazily as a stream of blobs.
"""
@abstractmethod
def yield_blobs(
self,
) -> Iterable[Blob]:
"""A lazy loader for raw data represented by Blob object.
Returns:
A generator over blobs
"""

View File

@ -1,47 +0,0 @@
import logging
from core.rag.extractor.extractor_base import BaseExtractor
from core.rag.models.document import Document
logger = logging.getLogger(__name__)
class UnstructuredPDFExtractor(BaseExtractor):
"""Load pdf files.
Args:
file_path: Path to the file to load.
api_url: Unstructured API URL
api_key: Unstructured API Key
"""
def __init__(self, file_path: str, api_url: str, api_key: str):
"""Initialize with file path."""
self._file_path = file_path
self._api_url = api_url
self._api_key = api_key
def extract(self) -> list[Document]:
if self._api_url:
from unstructured.partition.api import partition_via_api
elements = partition_via_api(
filename=self._file_path, api_url=self._api_url, api_key=self._api_key, strategy="auto"
)
else:
from unstructured.partition.pdf import partition_pdf
elements = partition_pdf(filename=self._file_path, strategy="auto")
from unstructured.chunking.title import chunk_by_title
chunks = chunk_by_title(elements, max_characters=2000, combine_text_under_n_chars=2000)
documents = []
for chunk in chunks:
text = chunk.text.strip()
documents.append(Document(page_content=text))
return documents

View File

@ -1,34 +0,0 @@
import logging
from core.rag.extractor.extractor_base import BaseExtractor
from core.rag.models.document import Document
logger = logging.getLogger(__name__)
class UnstructuredTextExtractor(BaseExtractor):
"""Load msg files.
Args:
file_path: Path to the file to load.
"""
def __init__(self, file_path: str, api_url: str):
"""Initialize with file path."""
self._file_path = file_path
self._api_url = api_url
def extract(self) -> list[Document]:
from unstructured.partition.text import partition_text
elements = partition_text(filename=self._file_path)
from unstructured.chunking.title import chunk_by_title
chunks = chunk_by_title(elements, max_characters=2000, combine_text_under_n_chars=2000)
documents = []
for chunk in chunks:
text = chunk.text.strip()
documents.append(Document(page_content=text))
return documents

View File

@ -9,6 +9,7 @@ from typing import Any, Optional, Union, cast
from flask import Flask, current_app
from sqlalchemy import Float, and_, or_, text
from sqlalchemy import cast as sqlalchemy_cast
from sqlalchemy.orm import Session
from core.app.app_config.entities import (
DatasetEntity,
@ -598,7 +599,8 @@ class DatasetRetrieval:
metadata_condition: Optional[MetadataCondition] = None,
):
with flask_app.app_context():
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
with Session(db.engine) as session:
dataset = session.query(Dataset).filter(Dataset.id == dataset_id).first()
if not dataset:
return []

View File

@ -10,7 +10,6 @@ from typing import (
Any,
Literal,
Optional,
TypedDict,
TypeVar,
Union,
)
@ -168,167 +167,6 @@ class TextSplitter(BaseDocumentTransformer, ABC):
raise NotImplementedError
class CharacterTextSplitter(TextSplitter):
"""Splitting text that looks at characters."""
def __init__(self, separator: str = "\n\n", **kwargs: Any) -> None:
"""Create a new TextSplitter."""
super().__init__(**kwargs)
self._separator = separator
def split_text(self, text: str) -> list[str]:
"""Split incoming text and return chunks."""
# First we naively split the large input into a bunch of smaller ones.
splits = _split_text_with_regex(text, self._separator, self._keep_separator)
_separator = "" if self._keep_separator else self._separator
_good_splits_lengths = [] # cache the lengths of the splits
if splits:
_good_splits_lengths.extend(self._length_function(splits))
return self._merge_splits(splits, _separator, _good_splits_lengths)
class LineType(TypedDict):
"""Line type as typed dict."""
metadata: dict[str, str]
content: str
class HeaderType(TypedDict):
"""Header type as typed dict."""
level: int
name: str
data: str
class MarkdownHeaderTextSplitter:
"""Splitting markdown files based on specified headers."""
def __init__(self, headers_to_split_on: list[tuple[str, str]], return_each_line: bool = False):
"""Create a new MarkdownHeaderTextSplitter.
Args:
headers_to_split_on: Headers we want to track
return_each_line: Return each line w/ associated headers
"""
# Output line-by-line or aggregated into chunks w/ common headers
self.return_each_line = return_each_line
# Given the headers we want to split on,
# (e.g., "#, ##, etc") order by length
self.headers_to_split_on = sorted(headers_to_split_on, key=lambda split: len(split[0]), reverse=True)
def aggregate_lines_to_chunks(self, lines: list[LineType]) -> list[Document]:
"""Combine lines with common metadata into chunks
Args:
lines: Line of text / associated header metadata
"""
aggregated_chunks: list[LineType] = []
for line in lines:
if aggregated_chunks and aggregated_chunks[-1]["metadata"] == line["metadata"]:
# If the last line in the aggregated list
# has the same metadata as the current line,
# append the current content to the last lines's content
aggregated_chunks[-1]["content"] += " \n" + line["content"]
else:
# Otherwise, append the current line to the aggregated list
aggregated_chunks.append(line)
return [Document(page_content=chunk["content"], metadata=chunk["metadata"]) for chunk in aggregated_chunks]
def split_text(self, text: str) -> list[Document]:
"""Split markdown file
Args:
text: Markdown file"""
# Split the input text by newline character ("\n").
lines = text.split("\n")
# Final output
lines_with_metadata: list[LineType] = []
# Content and metadata of the chunk currently being processed
current_content: list[str] = []
current_metadata: dict[str, str] = {}
# Keep track of the nested header structure
# header_stack: List[Dict[str, Union[int, str]]] = []
header_stack: list[HeaderType] = []
initial_metadata: dict[str, str] = {}
for line in lines:
stripped_line = line.strip()
# Check each line against each of the header types (e.g., #, ##)
for sep, name in self.headers_to_split_on:
# Check if line starts with a header that we intend to split on
if stripped_line.startswith(sep) and (
# Header with no text OR header is followed by space
# Both are valid conditions that sep is being used a header
len(stripped_line) == len(sep) or stripped_line[len(sep)] == " "
):
# Ensure we are tracking the header as metadata
if name is not None:
# Get the current header level
current_header_level = sep.count("#")
# Pop out headers of lower or same level from the stack
while header_stack and header_stack[-1]["level"] >= current_header_level:
# We have encountered a new header
# at the same or higher level
popped_header = header_stack.pop()
# Clear the metadata for the
# popped header in initial_metadata
if popped_header["name"] in initial_metadata:
initial_metadata.pop(popped_header["name"])
# Push the current header to the stack
header: HeaderType = {
"level": current_header_level,
"name": name,
"data": stripped_line[len(sep) :].strip(),
}
header_stack.append(header)
# Update initial_metadata with the current header
initial_metadata[name] = header["data"]
# Add the previous line to the lines_with_metadata
# only if current_content is not empty
if current_content:
lines_with_metadata.append(
{
"content": "\n".join(current_content),
"metadata": current_metadata.copy(),
}
)
current_content.clear()
break
else:
if stripped_line:
current_content.append(stripped_line)
elif current_content:
lines_with_metadata.append(
{
"content": "\n".join(current_content),
"metadata": current_metadata.copy(),
}
)
current_content.clear()
current_metadata = initial_metadata.copy()
if current_content:
lines_with_metadata.append({"content": "\n".join(current_content), "metadata": current_metadata})
# lines_with_metadata has each line with associated header metadata
# aggregate these into chunks based on common metadata
if not self.return_each_line:
return self.aggregate_lines_to_chunks(lines_with_metadata)
else:
return [
Document(page_content=chunk["content"], metadata=chunk["metadata"]) for chunk in lines_with_metadata
]
# should be in newer Python versions (3.10+)
# @dataclass(frozen=True, kw_only=True, slots=True)
@dataclass(frozen=True)
class Tokenizer:

View File

@ -5,8 +5,11 @@ This package contains concrete implementations of the repository interfaces
defined in the core.workflow.repository package.
"""
from core.repositories.factory import DifyCoreRepositoryFactory, RepositoryImportError
from core.repositories.sqlalchemy_workflow_node_execution_repository import SQLAlchemyWorkflowNodeExecutionRepository
__all__ = [
"DifyCoreRepositoryFactory",
"RepositoryImportError",
"SQLAlchemyWorkflowNodeExecutionRepository",
]

View File

@ -0,0 +1,224 @@
"""
Repository factory for dynamically creating repository instances based on configuration.
This module provides a Django-like settings system for repository implementations,
allowing users to configure different repository backends through string paths.
"""
import importlib
import inspect
import logging
from typing import Protocol, Union
from sqlalchemy.engine import Engine
from sqlalchemy.orm import sessionmaker
from configs import dify_config
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
from models import Account, EndUser
from models.enums import WorkflowRunTriggeredFrom
from models.workflow import WorkflowNodeExecutionTriggeredFrom
logger = logging.getLogger(__name__)
class RepositoryImportError(Exception):
"""Raised when a repository implementation cannot be imported or instantiated."""
pass
class DifyCoreRepositoryFactory:
"""
Factory for creating repository instances based on configuration.
This factory supports Django-like settings where repository implementations
are specified as module paths (e.g., 'module.submodule.ClassName').
"""
@staticmethod
def _import_class(class_path: str) -> type:
"""
Import a class from a module path string.
Args:
class_path: Full module path to the class (e.g., 'module.submodule.ClassName')
Returns:
The imported class
Raises:
RepositoryImportError: If the class cannot be imported
"""
try:
module_path, class_name = class_path.rsplit(".", 1)
module = importlib.import_module(module_path)
repo_class = getattr(module, class_name)
assert isinstance(repo_class, type)
return repo_class
except (ValueError, ImportError, AttributeError) as e:
raise RepositoryImportError(f"Cannot import repository class '{class_path}': {e}") from e
@staticmethod
def _validate_repository_interface(repository_class: type, expected_interface: type[Protocol]) -> None: # type: ignore
"""
Validate that a class implements the expected repository interface.
Args:
repository_class: The class to validate
expected_interface: The expected interface/protocol
Raises:
RepositoryImportError: If the class doesn't implement the interface
"""
# Check if the class has all required methods from the protocol
required_methods = [
method
for method in dir(expected_interface)
if not method.startswith("_") and callable(getattr(expected_interface, method, None))
]
missing_methods = []
for method_name in required_methods:
if not hasattr(repository_class, method_name):
missing_methods.append(method_name)
if missing_methods:
raise RepositoryImportError(
f"Repository class '{repository_class.__name__}' does not implement required methods "
f"{missing_methods} from interface '{expected_interface.__name__}'"
)
@staticmethod
def _validate_constructor_signature(repository_class: type, required_params: list[str]) -> None:
"""
Validate that a repository class constructor accepts required parameters.
Args:
repository_class: The class to validate
required_params: List of required parameter names
Raises:
RepositoryImportError: If the constructor doesn't accept required parameters
"""
try:
# MyPy may flag the line below with the following error:
#
# > Accessing "__init__" on an instance is unsound, since
# > instance.__init__ could be from an incompatible subclass.
#
# Despite this, we need to ensure that the constructor of `repository_class`
# has a compatible signature.
signature = inspect.signature(repository_class.__init__) # type: ignore[misc]
param_names = list(signature.parameters.keys())
# Remove 'self' parameter
if "self" in param_names:
param_names.remove("self")
missing_params = [param for param in required_params if param not in param_names]
if missing_params:
raise RepositoryImportError(
f"Repository class '{repository_class.__name__}' constructor does not accept required parameters: "
f"{missing_params}. Expected parameters: {required_params}"
)
except Exception as e:
raise RepositoryImportError(
f"Failed to validate constructor signature for '{repository_class.__name__}': {e}"
) from e
@classmethod
def create_workflow_execution_repository(
cls,
session_factory: Union[sessionmaker, Engine],
user: Union[Account, EndUser],
app_id: str,
triggered_from: WorkflowRunTriggeredFrom,
) -> WorkflowExecutionRepository:
"""
Create a WorkflowExecutionRepository instance based on configuration.
Args:
session_factory: SQLAlchemy sessionmaker or engine
user: Account or EndUser object
app_id: Application ID
triggered_from: Source of the execution trigger
Returns:
Configured WorkflowExecutionRepository instance
Raises:
RepositoryImportError: If the configured repository cannot be created
"""
class_path = dify_config.CORE_WORKFLOW_EXECUTION_REPOSITORY
logger.debug(f"Creating WorkflowExecutionRepository from: {class_path}")
try:
repository_class = cls._import_class(class_path)
cls._validate_repository_interface(repository_class, WorkflowExecutionRepository)
cls._validate_constructor_signature(
repository_class, ["session_factory", "user", "app_id", "triggered_from"]
)
return repository_class( # type: ignore[no-any-return]
session_factory=session_factory,
user=user,
app_id=app_id,
triggered_from=triggered_from,
)
except RepositoryImportError:
# Re-raise our custom errors as-is
raise
except Exception as e:
logger.exception("Failed to create WorkflowExecutionRepository")
raise RepositoryImportError(f"Failed to create WorkflowExecutionRepository from '{class_path}': {e}") from e
@classmethod
def create_workflow_node_execution_repository(
cls,
session_factory: Union[sessionmaker, Engine],
user: Union[Account, EndUser],
app_id: str,
triggered_from: WorkflowNodeExecutionTriggeredFrom,
) -> WorkflowNodeExecutionRepository:
"""
Create a WorkflowNodeExecutionRepository instance based on configuration.
Args:
session_factory: SQLAlchemy sessionmaker or engine
user: Account or EndUser object
app_id: Application ID
triggered_from: Source of the execution trigger
Returns:
Configured WorkflowNodeExecutionRepository instance
Raises:
RepositoryImportError: If the configured repository cannot be created
"""
class_path = dify_config.CORE_WORKFLOW_NODE_EXECUTION_REPOSITORY
logger.debug(f"Creating WorkflowNodeExecutionRepository from: {class_path}")
try:
repository_class = cls._import_class(class_path)
cls._validate_repository_interface(repository_class, WorkflowNodeExecutionRepository)
cls._validate_constructor_signature(
repository_class, ["session_factory", "user", "app_id", "triggered_from"]
)
return repository_class( # type: ignore[no-any-return]
session_factory=session_factory,
user=user,
app_id=app_id,
triggered_from=triggered_from,
)
except RepositoryImportError:
# Re-raise our custom errors as-is
raise
except Exception as e:
logger.exception("Failed to create WorkflowNodeExecutionRepository")
raise RepositoryImportError(
f"Failed to create WorkflowNodeExecutionRepository from '{class_path}': {e}"
) from e

View File

@ -16,6 +16,7 @@ from core.plugin.entities.parameters import (
cast_parameter_value,
init_frontend_parameter,
)
from core.rag.entities.citation_metadata import RetrievalSourceMetadata
from core.tools.entities.common_entities import I18nObject
from core.tools.entities.constants import TOOL_SELECTOR_MODEL_IDENTITY
@ -179,6 +180,10 @@ class ToolInvokeMessage(BaseModel):
data: Mapping[str, Any] = Field(..., description="Detailed log data")
metadata: Optional[Mapping[str, Any]] = Field(default=None, description="The metadata of the log")
class RetrieverResourceMessage(BaseModel):
retriever_resources: list[RetrievalSourceMetadata] = Field(..., description="retriever resources")
context: str = Field(..., description="context")
class MessageType(Enum):
TEXT = "text"
IMAGE = "image"
@ -191,13 +196,22 @@ class ToolInvokeMessage(BaseModel):
FILE = "file"
LOG = "log"
BLOB_CHUNK = "blob_chunk"
RETRIEVER_RESOURCES = "retriever_resources"
type: MessageType = MessageType.TEXT
"""
plain text, image url or link url
"""
message: (
JsonMessage | TextMessage | BlobChunkMessage | BlobMessage | LogMessage | FileMessage | None | VariableMessage
JsonMessage
| TextMessage
| BlobChunkMessage
| BlobMessage
| LogMessage
| FileMessage
| None
| VariableMessage
| RetrieverResourceMessage
)
meta: dict[str, Any] | None = None
@ -243,6 +257,7 @@ class ToolParameter(PluginParameter):
FILES = PluginParameterType.FILES.value
APP_SELECTOR = PluginParameterType.APP_SELECTOR.value
MODEL_SELECTOR = PluginParameterType.MODEL_SELECTOR.value
ANY = PluginParameterType.ANY.value
DYNAMIC_SELECT = PluginParameterType.DYNAMIC_SELECT.value
# MCP object and array type parameters

View File

@ -1,5 +1,4 @@
import re
import uuid
from json import dumps as json_dumps
from json import loads as json_loads
from json.decoder import JSONDecodeError
@ -154,7 +153,7 @@ class ApiBasedToolSchemaParser:
# remove special characters like / to ensure the operation id is valid ^[a-zA-Z0-9_-]{1,64}$
path = re.sub(r"[^a-zA-Z0-9_-]", "", path)
if not path:
path = str(uuid.uuid4())
path = "<root>"
interface["operation"]["operationId"] = f"{path}_{interface['method']}"

View File

@ -1,9 +1,9 @@
import json
import sys
from collections.abc import Mapping, Sequence
from typing import Any
from typing import Annotated, Any, TypeAlias
from pydantic import BaseModel, ConfigDict, field_validator
from pydantic import BaseModel, ConfigDict, Discriminator, Tag, field_validator
from core.file import File
@ -11,6 +11,11 @@ from .types import SegmentType
class Segment(BaseModel):
"""Segment is runtime type used during the execution of workflow.
Note: this class is abstract, you should use subclasses of this class instead.
"""
model_config = ConfigDict(frozen=True)
value_type: SegmentType
@ -73,7 +78,7 @@ class StringSegment(Segment):
class FloatSegment(Segment):
value_type: SegmentType = SegmentType.NUMBER
value_type: SegmentType = SegmentType.FLOAT
value: float
# NOTE(QuantumGhost): seems that the equality for FloatSegment with `NaN` value has some problems.
# The following tests cannot pass.
@ -92,7 +97,7 @@ class FloatSegment(Segment):
class IntegerSegment(Segment):
value_type: SegmentType = SegmentType.NUMBER
value_type: SegmentType = SegmentType.INTEGER
value: int
@ -181,3 +186,46 @@ class ArrayFileSegment(ArraySegment):
@property
def text(self) -> str:
return ""
def get_segment_discriminator(v: Any) -> SegmentType | None:
if isinstance(v, Segment):
return v.value_type
elif isinstance(v, dict):
value_type = v.get("value_type")
if value_type is None:
return None
try:
seg_type = SegmentType(value_type)
except ValueError:
return None
return seg_type
else:
# return None if the discriminator value isn't found
return None
# The `SegmentUnion`` type is used to enable serialization and deserialization with Pydantic.
# Use `Segment` for type hinting when serialization is not required.
#
# Note:
# - All variants in `SegmentUnion` must inherit from the `Segment` class.
# - The union must include all non-abstract subclasses of `Segment`, except:
# - `SegmentGroup`, which is not added to the variable pool.
# - `Variable` and its subclasses, which are handled by `VariableUnion`.
SegmentUnion: TypeAlias = Annotated[
(
Annotated[NoneSegment, Tag(SegmentType.NONE)]
| Annotated[StringSegment, Tag(SegmentType.STRING)]
| Annotated[FloatSegment, Tag(SegmentType.FLOAT)]
| Annotated[IntegerSegment, Tag(SegmentType.INTEGER)]
| Annotated[ObjectSegment, Tag(SegmentType.OBJECT)]
| Annotated[FileSegment, Tag(SegmentType.FILE)]
| Annotated[ArrayAnySegment, Tag(SegmentType.ARRAY_ANY)]
| Annotated[ArrayStringSegment, Tag(SegmentType.ARRAY_STRING)]
| Annotated[ArrayNumberSegment, Tag(SegmentType.ARRAY_NUMBER)]
| Annotated[ArrayObjectSegment, Tag(SegmentType.ARRAY_OBJECT)]
| Annotated[ArrayFileSegment, Tag(SegmentType.ARRAY_FILE)]
),
Discriminator(get_segment_discriminator),
]

View File

@ -1,8 +1,27 @@
from collections.abc import Mapping
from enum import StrEnum
from typing import Any, Optional
from core.file.models import File
class ArrayValidation(StrEnum):
"""Strategy for validating array elements"""
# Skip element validation (only check array container)
NONE = "none"
# Validate the first element (if array is non-empty)
FIRST = "first"
# Validate all elements in the array.
ALL = "all"
class SegmentType(StrEnum):
NUMBER = "number"
INTEGER = "integer"
FLOAT = "float"
STRING = "string"
OBJECT = "object"
SECRET = "secret"
@ -19,16 +38,139 @@ class SegmentType(StrEnum):
GROUP = "group"
def is_array_type(self):
def is_array_type(self) -> bool:
return self in _ARRAY_TYPES
@classmethod
def infer_segment_type(cls, value: Any) -> Optional["SegmentType"]:
"""
Attempt to infer the `SegmentType` based on the Python type of the `value` parameter.
Returns `None` if no appropriate `SegmentType` can be determined for the given `value`.
For example, this may occur if the input is a generic Python object of type `object`.
"""
if isinstance(value, list):
elem_types: set[SegmentType] = set()
for i in value:
segment_type = cls.infer_segment_type(i)
if segment_type is None:
return None
elem_types.add(segment_type)
if len(elem_types) != 1:
if elem_types.issubset(_NUMERICAL_TYPES):
return SegmentType.ARRAY_NUMBER
return SegmentType.ARRAY_ANY
elif all(i.is_array_type() for i in elem_types):
return SegmentType.ARRAY_ANY
match elem_types.pop():
case SegmentType.STRING:
return SegmentType.ARRAY_STRING
case SegmentType.NUMBER | SegmentType.INTEGER | SegmentType.FLOAT:
return SegmentType.ARRAY_NUMBER
case SegmentType.OBJECT:
return SegmentType.ARRAY_OBJECT
case SegmentType.FILE:
return SegmentType.ARRAY_FILE
case SegmentType.NONE:
return SegmentType.ARRAY_ANY
case _:
# This should be unreachable.
raise ValueError(f"not supported value {value}")
if value is None:
return SegmentType.NONE
elif isinstance(value, int) and not isinstance(value, bool):
return SegmentType.INTEGER
elif isinstance(value, float):
return SegmentType.FLOAT
elif isinstance(value, str):
return SegmentType.STRING
elif isinstance(value, dict):
return SegmentType.OBJECT
elif isinstance(value, File):
return SegmentType.FILE
else:
return None
def _validate_array(self, value: Any, array_validation: ArrayValidation) -> bool:
if not isinstance(value, list):
return False
# Skip element validation if array is empty
if len(value) == 0:
return True
if self == SegmentType.ARRAY_ANY:
return True
element_type = _ARRAY_ELEMENT_TYPES_MAPPING[self]
if array_validation == ArrayValidation.NONE:
return True
elif array_validation == ArrayValidation.FIRST:
return element_type.is_valid(value[0])
else:
return all([element_type.is_valid(i, array_validation=ArrayValidation.NONE)] for i in value)
def is_valid(self, value: Any, array_validation: ArrayValidation = ArrayValidation.FIRST) -> bool:
"""
Check if a value matches the segment type.
Users of `SegmentType` should call this method, instead of using
`isinstance` manually.
Args:
value: The value to validate
array_validation: Validation strategy for array types (ignored for non-array types)
Returns:
True if the value matches the type under the given validation strategy
"""
if self.is_array_type():
return self._validate_array(value, array_validation)
elif self == SegmentType.NUMBER:
return isinstance(value, (int, float))
elif self == SegmentType.STRING:
return isinstance(value, str)
elif self == SegmentType.OBJECT:
return isinstance(value, dict)
elif self == SegmentType.SECRET:
return isinstance(value, str)
elif self == SegmentType.FILE:
return isinstance(value, File)
elif self == SegmentType.NONE:
return value is None
else:
raise AssertionError("this statement should be unreachable.")
def exposed_type(self) -> "SegmentType":
"""Returns the type exposed to the frontend.
The frontend treats `INTEGER` and `FLOAT` as `NUMBER`, so these are returned as `NUMBER` here.
"""
if self in (SegmentType.INTEGER, SegmentType.FLOAT):
return SegmentType.NUMBER
return self
_ARRAY_ELEMENT_TYPES_MAPPING: Mapping[SegmentType, SegmentType] = {
# ARRAY_ANY does not have correpond element type.
SegmentType.ARRAY_STRING: SegmentType.STRING,
SegmentType.ARRAY_NUMBER: SegmentType.NUMBER,
SegmentType.ARRAY_OBJECT: SegmentType.OBJECT,
SegmentType.ARRAY_FILE: SegmentType.FILE,
}
_ARRAY_TYPES = frozenset(
[
list(_ARRAY_ELEMENT_TYPES_MAPPING.keys())
+ [
SegmentType.ARRAY_ANY,
SegmentType.ARRAY_STRING,
SegmentType.ARRAY_NUMBER,
SegmentType.ARRAY_OBJECT,
SegmentType.ARRAY_FILE,
]
)
_NUMERICAL_TYPES = frozenset(
[
SegmentType.NUMBER,
SegmentType.INTEGER,
SegmentType.FLOAT,
]
)

View File

@ -3,6 +3,10 @@ from typing import Any, cast
from uuid import uuid4
from pydantic import BaseModel, Field
from typing import Annotated, TypeAlias, cast
from uuid import uuid4
from pydantic import Discriminator, Field, Tag
from core.helper import encrypter
@ -20,6 +24,7 @@ from .segments import (
ObjectSegment,
Segment,
StringSegment,
get_segment_discriminator,
)
from .types import SegmentType
@ -27,6 +32,10 @@ from .types import SegmentType
class Variable(Segment):
"""
A variable is a segment that has a name.
It is mainly used to store segments and their selector in VariablePool.
Note: this class is abstract, you should use subclasses of this class instead.
"""
id: str = Field(
@ -122,3 +131,26 @@ class RAGPipelineVariable(BaseModel):
class RAGPipelineVariableInput(BaseModel):
variable: RAGPipelineVariable
value: Any
# The `VariableUnion`` type is used to enable serialization and deserialization with Pydantic.
# Use `Variable` for type hinting when serialization is not required.
#
# Note:
# - All variants in `VariableUnion` must inherit from the `Variable` class.
# - The union must include all non-abstract subclasses of `Segment`, except:
VariableUnion: TypeAlias = Annotated[
(
Annotated[NoneVariable, Tag(SegmentType.NONE)]
| Annotated[StringVariable, Tag(SegmentType.STRING)]
| Annotated[FloatVariable, Tag(SegmentType.FLOAT)]
| Annotated[IntegerVariable, Tag(SegmentType.INTEGER)]
| Annotated[ObjectVariable, Tag(SegmentType.OBJECT)]
| Annotated[FileVariable, Tag(SegmentType.FILE)]
| Annotated[ArrayAnyVariable, Tag(SegmentType.ARRAY_ANY)]
| Annotated[ArrayStringVariable, Tag(SegmentType.ARRAY_STRING)]
| Annotated[ArrayNumberVariable, Tag(SegmentType.ARRAY_NUMBER)]
| Annotated[ArrayObjectVariable, Tag(SegmentType.ARRAY_OBJECT)]
| Annotated[ArrayFileVariable, Tag(SegmentType.ARRAY_FILE)]
| Annotated[SecretVariable, Tag(SegmentType.SECRET)]
),
Discriminator(get_segment_discriminator),
]

View File

@ -1,7 +1,7 @@
import re
from collections import defaultdict
from collections.abc import Mapping, Sequence
from typing import Any, Union
from typing import Annotated, Any, Union, cast
from pydantic import BaseModel, Field
@ -17,6 +17,9 @@ from core.workflow.constants import (
SYSTEM_VARIABLE_NODE_ID,
)
from core.workflow.enums import SystemVariableKey
from core.variables.variables import VariableUnion
from core.workflow.constants import CONVERSATION_VARIABLE_NODE_ID, ENVIRONMENT_VARIABLE_NODE_ID, SYSTEM_VARIABLE_NODE_ID
from core.workflow.system_variable import SystemVariable
from factories import variable_factory
VariableValue = Union[str, int, float, dict, list, File]
@ -29,24 +32,24 @@ class VariablePool(BaseModel):
# The first element of the selector is the node id, it's the first-level key in the dictionary.
# Other elements of the selector are the keys in the second-level dictionary. To get the key, we hash the
# elements of the selector except the first one.
variable_dictionary: dict[str, dict[int, Segment]] = Field(
variable_dictionary: defaultdict[str, Annotated[dict[int, VariableUnion], Field(default_factory=dict)]] = Field(
description="Variables mapping",
default=defaultdict(dict),
)
# TODO: This user inputs is not used for pool.
# The `user_inputs` is used only when constructing the inputs for the `StartNode`. It's not used elsewhere.
user_inputs: Mapping[str, Any] = Field(
description="User inputs",
default_factory=dict,
)
system_variables: Mapping[SystemVariableKey, Any] = Field(
system_variables: SystemVariable = Field(
description="System variables",
default_factory=dict,
)
environment_variables: Sequence[Variable] = Field(
environment_variables: Sequence[VariableUnion] = Field(
description="Environment variables.",
default_factory=list,
)
conversation_variables: Sequence[Variable] = Field(
conversation_variables: Sequence[VariableUnion] = Field(
description="Conversation variables.",
default_factory=list,
)
@ -56,8 +59,8 @@ class VariablePool(BaseModel):
)
def model_post_init(self, context: Any, /) -> None:
for key, value in self.system_variables.items():
self.add((SYSTEM_VARIABLE_NODE_ID, key.value), value)
# Create a mapping from field names to SystemVariableKey enum values
self._add_system_variables(self.system_variables)
# Add environment variables to the variable pool
for var in self.environment_variables:
self.add((ENVIRONMENT_VARIABLE_NODE_ID, var.name), var)
@ -96,8 +99,22 @@ class VariablePool(BaseModel):
segment = variable_factory.build_segment(value)
variable = variable_factory.segment_to_variable(segment=segment, selector=selector)
hash_key = hash(tuple(selector[1:]))
self.variable_dictionary[selector[0]][hash_key] = variable
key, hash_key = self._selector_to_keys(selector)
# Based on the definition of `VariableUnion`,
# `list[Variable]` can be safely used as `list[VariableUnion]` since they are compatible.
self.variable_dictionary[key][hash_key] = cast(VariableUnion, variable)
@classmethod
def _selector_to_keys(cls, selector: Sequence[str]) -> tuple[str, int]:
return selector[0], hash(tuple(selector[1:]))
def _has(self, selector: Sequence[str]) -> bool:
key, hash_key = self._selector_to_keys(selector)
if key not in self.variable_dictionary:
return False
if hash_key not in self.variable_dictionary[key]:
return False
return True
def get(self, selector: Sequence[str], /) -> Segment | None:
"""
@ -115,8 +132,8 @@ class VariablePool(BaseModel):
if len(selector) < MIN_SELECTORS_LENGTH:
return None
hash_key = hash(tuple(selector[1:]))
value = self.variable_dictionary[selector[0]].get(hash_key)
key, hash_key = self._selector_to_keys(selector)
value: Segment | None = self.variable_dictionary[key].get(hash_key)
if value is None:
selector, attr = selector[:-1], selector[-1]
@ -149,8 +166,8 @@ class VariablePool(BaseModel):
if len(selector) == 1:
self.variable_dictionary[selector[0]] = {}
return
hash_key = hash(tuple(selector[1:]))
self.variable_dictionary[selector[0]].pop(hash_key, None)
key, hash_key = self._selector_to_keys(selector)
self.variable_dictionary[key].pop(hash_key, None)
def convert_template(self, template: str, /):
parts = VARIABLE_PATTERN.split(template)
@ -167,3 +184,20 @@ class VariablePool(BaseModel):
if isinstance(segment, FileSegment):
return segment
return None
def _add_system_variables(self, system_variable: SystemVariable):
sys_var_mapping = system_variable.to_dict()
for key, value in sys_var_mapping.items():
if value is None:
continue
selector = (SYSTEM_VARIABLE_NODE_ID, key)
# If the system variable already exists, do not add it again.
# This ensures that we can keep the id of the system variables intact.
if self._has(selector):
continue
self.add(selector, value) # type: ignore
@classmethod
def empty(cls) -> "VariablePool":
"""Create an empty variable pool."""
return cls(system_variables=SystemVariable.empty())

View File

@ -1,79 +0,0 @@
from typing import Optional
from pydantic import BaseModel
from core.app.entities.app_invoke_entities import InvokeFrom
from core.workflow.nodes.base import BaseIterationState, BaseLoopState, BaseNode
from models.enums import UserFrom
from models.workflow import Workflow, WorkflowType
from .node_entities import NodeRunResult
from .variable_pool import VariablePool
class WorkflowNodeAndResult:
node: BaseNode
result: Optional[NodeRunResult] = None
def __init__(self, node: BaseNode, result: Optional[NodeRunResult] = None):
self.node = node
self.result = result
class WorkflowRunState:
tenant_id: str
app_id: str
workflow_id: str
workflow_type: WorkflowType
user_id: str
user_from: UserFrom
invoke_from: InvokeFrom
workflow_call_depth: int
start_at: float
variable_pool: VariablePool
total_tokens: int = 0
workflow_nodes_and_results: list[WorkflowNodeAndResult]
class NodeRun(BaseModel):
node_id: str
iteration_node_id: str
loop_node_id: str
workflow_node_runs: list[NodeRun]
workflow_node_steps: int
current_iteration_state: Optional[BaseIterationState]
current_loop_state: Optional[BaseLoopState]
def __init__(
self,
workflow: Workflow,
start_at: float,
variable_pool: VariablePool,
user_id: str,
user_from: UserFrom,
invoke_from: InvokeFrom,
workflow_call_depth: int,
):
self.workflow_id = workflow.id
self.tenant_id = workflow.tenant_id
self.app_id = workflow.app_id
self.workflow_type = WorkflowType.value_of(workflow.type)
self.user_id = user_id
self.user_from = user_from
self.invoke_from = invoke_from
self.workflow_call_depth = workflow_call_depth
self.start_at = start_at
self.variable_pool = variable_pool
self.total_tokens = 0
self.workflow_node_steps = 1
self.workflow_node_runs = []
self.current_iteration_state = None
self.current_loop_state = None

View File

@ -17,8 +17,12 @@ class GraphRuntimeState(BaseModel):
"""total tokens"""
llm_usage: LLMUsage = LLMUsage.empty_usage()
"""llm usage info"""
# The `outputs` field stores the final output values generated by executing workflows or chatflows.
#
# Note: Since the type of this field is `dict[str, Any]`, its values may not remain consistent
# after a serialization and deserialization round trip.
outputs: dict[str, Any] = {}
"""outputs"""
node_run_steps: int = 0
"""node run steps"""

View File

@ -1,4 +1,5 @@
from collections.abc import Mapping, Sequence
from decimal import Decimal
from typing import Any, Optional
from configs import dify_config
@ -114,8 +115,10 @@ class CodeNode(BaseNode[CodeNodeData]):
)
if isinstance(value, float):
decimal_value = Decimal(str(value)).normalize()
precision = -decimal_value.as_tuple().exponent if decimal_value.as_tuple().exponent < 0 else 0 # type: ignore[operator]
# raise error if precision is too high
if len(str(value).split(".")[1]) > dify_config.CODE_MAX_PRECISION:
if precision > dify_config.CODE_MAX_PRECISION:
raise OutputValidationError(
f"Output variable `{variable}` has too high precision,"
f" it must be less than {dify_config.CODE_MAX_PRECISION} digits."

View File

@ -521,18 +521,52 @@ class IterationNode(BaseNode[IterationNodeData]):
)
return
elif self.node_data.error_handle_mode == ErrorHandleMode.TERMINATED:
yield IterationRunFailedEvent(
iteration_id=self.id,
iteration_node_id=self.node_id,
iteration_node_type=self.node_type,
iteration_node_data=self.node_data,
start_at=start_at,
inputs=inputs,
outputs={"output": None},
steps=len(iterator_list_value),
metadata={"total_tokens": graph_engine.graph_runtime_state.total_tokens},
error=event.error,
yield NodeInIterationFailedEvent(
**metadata_event.model_dump(),
)
outputs[current_index] = None
# clean nodes resources
for node_id in iteration_graph.node_ids:
variable_pool.remove([node_id])
# iteration run failed
if self.node_data.is_parallel:
yield IterationRunFailedEvent(
iteration_id=self.id,
iteration_node_id=self.node_id,
iteration_node_type=self.node_type,
iteration_node_data=self.node_data,
parallel_mode_run_id=parallel_mode_run_id,
start_at=start_at,
inputs=inputs,
outputs={"output": outputs},
steps=len(iterator_list_value),
metadata={"total_tokens": graph_engine.graph_runtime_state.total_tokens},
error=event.error,
)
else:
yield IterationRunFailedEvent(
iteration_id=self.id,
iteration_node_id=self.node_id,
iteration_node_type=self.node_type,
iteration_node_data=self.node_data,
start_at=start_at,
inputs=inputs,
outputs={"output": outputs},
steps=len(iterator_list_value),
metadata={"total_tokens": graph_engine.graph_runtime_state.total_tokens},
error=event.error,
)
# stop the iterator
yield RunCompletedEvent(
run_result=NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
error=event.error,
)
)
return
yield metadata_event
current_output_segment = variable_pool.get(self.node_data.output_selector)

View File

@ -144,6 +144,8 @@ class KnowledgeRetrievalNode(LLMNode):
error=str(e),
error_type=type(e).__name__,
)
finally:
db.session.close()
def _fetch_dataset_retriever(self, node_data: KnowledgeRetrievalNodeData, query: str) -> list[dict[str, Any]]:
available_datasets = []
@ -171,6 +173,9 @@ class KnowledgeRetrievalNode(LLMNode):
.all()
)
# avoid blocking at retrieval
db.session.close()
for dataset in results:
# pass if dataset is not available
if not dataset:

View File

@ -1,11 +1,29 @@
from collections.abc import Mapping
from typing import Any, Literal, Optional
from typing import Annotated, Any, Literal, Optional
from pydantic import BaseModel, Field
from pydantic import AfterValidator, BaseModel, Field
from core.variables.types import SegmentType
from core.workflow.nodes.base import BaseLoopNodeData, BaseLoopState, BaseNodeData
from core.workflow.utils.condition.entities import Condition
_VALID_VAR_TYPE = frozenset(
[
SegmentType.STRING,
SegmentType.NUMBER,
SegmentType.OBJECT,
SegmentType.ARRAY_STRING,
SegmentType.ARRAY_NUMBER,
SegmentType.ARRAY_OBJECT,
]
)
def _is_valid_var_type(seg_type: SegmentType) -> SegmentType:
if seg_type not in _VALID_VAR_TYPE:
raise ValueError(...)
return seg_type
class LoopVariableData(BaseModel):
"""
@ -13,7 +31,7 @@ class LoopVariableData(BaseModel):
"""
label: str
var_type: Literal["string", "number", "object", "array[string]", "array[number]", "array[object]"]
var_type: Annotated[SegmentType, AfterValidator(_is_valid_var_type)]
value_type: Literal["variable", "constant"]
value: Optional[Any | list[str]] = None

View File

@ -7,14 +7,9 @@ from typing import TYPE_CHECKING, Any, Literal, cast
from configs import dify_config
from core.variables import (
ArrayNumberSegment,
ArrayObjectSegment,
ArrayStringSegment,
IntegerSegment,
ObjectSegment,
Segment,
SegmentType,
StringSegment,
)
from core.workflow.entities.node_entities import NodeRunResult
from core.workflow.entities.workflow_node_execution import WorkflowNodeExecutionMetadataKey, WorkflowNodeExecutionStatus
@ -39,6 +34,7 @@ from core.workflow.nodes.enums import NodeType
from core.workflow.nodes.event import NodeEvent, RunCompletedEvent
from core.workflow.nodes.loop.entities import LoopNodeData
from core.workflow.utils.condition.processor import ConditionProcessor
from factories.variable_factory import TypeMismatchError, build_segment_with_type
if TYPE_CHECKING:
from core.workflow.entities.variable_pool import VariablePool
@ -505,23 +501,21 @@ class LoopNode(BaseNode[LoopNodeData]):
return variable_mapping
@staticmethod
def _get_segment_for_constant(var_type: str, value: Any) -> Segment:
def _get_segment_for_constant(var_type: SegmentType, value: Any) -> Segment:
"""Get the appropriate segment type for a constant value."""
segment_mapping: dict[str, tuple[type[Segment], SegmentType]] = {
"string": (StringSegment, SegmentType.STRING),
"number": (IntegerSegment, SegmentType.NUMBER),
"object": (ObjectSegment, SegmentType.OBJECT),
"array[string]": (ArrayStringSegment, SegmentType.ARRAY_STRING),
"array[number]": (ArrayNumberSegment, SegmentType.ARRAY_NUMBER),
"array[object]": (ArrayObjectSegment, SegmentType.ARRAY_OBJECT),
}
if var_type in ["array[string]", "array[number]", "array[object]"]:
if value:
if value and isinstance(value, str):
value = json.loads(value)
else:
value = []
segment_info = segment_mapping.get(var_type)
if not segment_info:
raise ValueError(f"Invalid variable type: {var_type}")
segment_class, value_type = segment_info
return segment_class(value=value, value_type=value_type)
try:
return build_segment_with_type(var_type, value)
except TypeMismatchError as type_exc:
# Attempt to parse the value as a JSON-encoded string, if applicable.
if not isinstance(value, str):
raise
try:
value = json.loads(value)
except ValueError:
raise type_exc
return build_segment_with_type(var_type, value)

View File

@ -16,7 +16,7 @@ class StartNode(BaseNode[StartNodeData]):
def _run(self) -> NodeRunResult:
node_inputs = dict(self.graph_runtime_state.variable_pool.user_inputs)
system_inputs = self.graph_runtime_state.variable_pool.system_variables
system_inputs = self.graph_runtime_state.variable_pool.system_variables.to_dict()
# TODO: System variables should be directly accessible, no need for special handling
# Set system variables as node outputs.

View File

@ -22,7 +22,7 @@ from core.workflow.enums import SystemVariableKey
from core.workflow.graph_engine.entities.event import AgentLogEvent
from core.workflow.nodes.base import BaseNode
from core.workflow.nodes.enums import NodeType
from core.workflow.nodes.event import RunCompletedEvent, RunStreamChunkEvent
from core.workflow.nodes.event import RunCompletedEvent, RunRetrieverResourceEvent, RunStreamChunkEvent
from core.workflow.utils.variable_template_parser import VariableTemplateParser
from extensions.ext_database import db
from factories import file_factory
@ -373,6 +373,12 @@ class ToolNode(BaseNode[ToolNodeData]):
agent_logs.append(agent_log)
yield agent_log
elif message.type == ToolInvokeMessage.MessageType.RETRIEVER_RESOURCES:
assert isinstance(message.message, ToolInvokeMessage.RetrieverResourceMessage)
yield RunRetrieverResourceEvent(
retriever_resources=message.message.retriever_resources,
context=message.message.context,
)
# Add agent_logs to outputs['json'] to ensure frontend can access thinking process
json_output: list[dict[str, Any]] = []

View File

@ -130,6 +130,7 @@ class VariableAssignerNode(BaseNode[VariableAssignerData]):
def get_zero_value(t: SegmentType):
# TODO(QuantumGhost): this should be a method of `SegmentType`.
match t:
case SegmentType.ARRAY_OBJECT | SegmentType.ARRAY_STRING | SegmentType.ARRAY_NUMBER:
return variable_factory.build_segment([])
@ -137,6 +138,10 @@ def get_zero_value(t: SegmentType):
return variable_factory.build_segment({})
case SegmentType.STRING:
return variable_factory.build_segment("")
case SegmentType.INTEGER:
return variable_factory.build_segment(0)
case SegmentType.FLOAT:
return variable_factory.build_segment(0.0)
case SegmentType.NUMBER:
return variable_factory.build_segment(0)
case _:

View File

@ -1,5 +1,6 @@
from core.variables import SegmentType
# Note: This mapping is duplicated with `get_zero_value`. Consider refactoring to avoid redundancy.
EMPTY_VALUE_MAPPING = {
SegmentType.STRING: "",
SegmentType.NUMBER: 0,

Some files were not shown because too many files have changed in this diff Show More