Merge branch 'main' into feat/node-execution-retry

This commit is contained in:
Novice Lee 2024-12-20 11:21:53 +08:00
commit 07528f82b9
36 changed files with 351 additions and 43 deletions

View File

@ -50,6 +50,9 @@ jobs:
- name: Run ModelRuntime
run: poetry run -C api bash dev/pytest/pytest_model_runtime.sh
- name: Run dify config tests
run: poetry run -C api python dev/pytest/pytest_config_tests.py
- name: Run Tool
run: poetry run -C api bash dev/pytest/pytest_tools.sh

View File

@ -70,7 +70,6 @@ ignore = [
"SIM113", # eumerate-for-loop
"SIM117", # multiple-with-statements
"SIM210", # if-expr-with-true-false
"SIM300", # yoda-conditions,
]
[lint.per-file-ignores]

View File

@ -9,7 +9,7 @@ class PackagingInfo(BaseSettings):
CURRENT_VERSION: str = Field(
description="Dify version",
default="0.14.0",
default="0.14.1",
)
COMMIT_SHA: str = Field(

View File

@ -31,7 +31,7 @@ def admin_required(view):
if auth_scheme != "bearer":
raise Unauthorized("Invalid Authorization header format. Expected 'Bearer <api-key>' format.")
if dify_config.ADMIN_API_KEY != auth_token:
if auth_token != dify_config.ADMIN_API_KEY:
raise Unauthorized("API key is invalid.")
return view(*args, **kwargs)

View File

@ -13,6 +13,7 @@ app_fields = {
"name": fields.String,
"mode": fields.String,
"icon": fields.String,
"icon_type": fields.String,
"icon_url": AppIconUrlField,
"icon_background": fields.String,
}

View File

@ -819,6 +819,82 @@ LLM_BASE_MODELS = [
),
),
),
AzureBaseModel(
base_model_name="gpt-4o-2024-11-20",
entity=AIModelEntity(
model="fake-deployment-name",
label=I18nObject(
en_US="fake-deployment-name-label",
),
model_type=ModelType.LLM,
features=[
ModelFeature.AGENT_THOUGHT,
ModelFeature.VISION,
ModelFeature.MULTI_TOOL_CALL,
ModelFeature.STREAM_TOOL_CALL,
],
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={
ModelPropertyKey.MODE: LLMMode.CHAT.value,
ModelPropertyKey.CONTEXT_SIZE: 128000,
},
parameter_rules=[
ParameterRule(
name="temperature",
**PARAMETER_RULE_TEMPLATE[DefaultParameterName.TEMPERATURE],
),
ParameterRule(
name="top_p",
**PARAMETER_RULE_TEMPLATE[DefaultParameterName.TOP_P],
),
ParameterRule(
name="presence_penalty",
**PARAMETER_RULE_TEMPLATE[DefaultParameterName.PRESENCE_PENALTY],
),
ParameterRule(
name="frequency_penalty",
**PARAMETER_RULE_TEMPLATE[DefaultParameterName.FREQUENCY_PENALTY],
),
_get_max_tokens(default=512, min_val=1, max_val=16384),
ParameterRule(
name="seed",
label=I18nObject(zh_Hans="种子", en_US="Seed"),
type="int",
help=AZURE_DEFAULT_PARAM_SEED_HELP,
required=False,
precision=2,
min=0,
max=1,
),
ParameterRule(
name="response_format",
label=I18nObject(zh_Hans="回复格式", en_US="response_format"),
type="string",
help=I18nObject(
zh_Hans="指定模型必须输出的格式", en_US="specifying the format that the model must output"
),
required=False,
options=["text", "json_object", "json_schema"],
),
ParameterRule(
name="json_schema",
label=I18nObject(en_US="JSON Schema"),
type="text",
help=I18nObject(
zh_Hans="设置返回的json schemallm将按照它返回",
en_US="Set a response json schema will ensure LLM to adhere it.",
),
required=False,
),
],
pricing=PriceConfig(
input=5.00,
output=15.00,
unit=0.000001,
currency="USD",
),
),
),
AzureBaseModel(
base_model_name="gpt-4-turbo",
entity=AIModelEntity(

View File

@ -171,6 +171,12 @@ model_credential_schema:
show_on:
- variable: __model_type
value: llm
- label:
en_US: gpt-4o-2024-11-20
value: gpt-4o-2024-11-20
show_on:
- variable: __model_type
value: llm
- label:
en_US: gpt-4-turbo
value: gpt-4-turbo

View File

@ -92,7 +92,10 @@ class AzureOpenAITextEmbeddingModel(_CommonAzureOpenAI, TextEmbeddingModel):
average = embeddings_batch[0]
else:
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
embeddings[i] = (average / np.linalg.norm(average)).tolist()
embedding = (average / np.linalg.norm(average)).tolist()
if np.isnan(embedding).any():
raise ValueError("Normalized embedding is nan please try again")
embeddings[i] = embedding
# calc usage
usage = self._calc_response_usage(model=model, credentials=credentials, tokens=used_tokens)

View File

@ -1,11 +1,19 @@
from collections.abc import Mapping
import boto3
from botocore.config import Config
from core.model_runtime.errors.invoke import InvokeBadRequestError
def get_bedrock_client(service_name: str, credentials: Mapping[str, str]):
region_name = credentials.get("aws_region")
if not region_name:
raise InvokeBadRequestError("aws_region is required")
client_config = Config(region_name=region_name)
aws_access_key_id = credentials.get("aws_access_key_id")
aws_secret_access_key = credentials.get("aws_secret_access_key")
def get_bedrock_client(service_name, credentials=None):
client_config = Config(region_name=credentials["aws_region"])
aws_access_key_id = credentials["aws_access_key_id"]
aws_secret_access_key = credentials["aws_secret_access_key"]
if aws_access_key_id and aws_secret_access_key:
# use aksk to call bedrock
client = boto3.client(

View File

@ -62,7 +62,10 @@ class BedrockRerankModel(RerankModel):
}
)
modelId = model
region = credentials["aws_region"]
region = credentials.get("aws_region")
# region is a required field
if not region:
raise InvokeBadRequestError("aws_region is required in credentials")
model_package_arn = f"arn:aws:bedrock:{region}::foundation-model/{modelId}"
rerankingConfiguration = {
"type": "BEDROCK_RERANKING_MODEL",

View File

@ -88,7 +88,10 @@ class CohereTextEmbeddingModel(TextEmbeddingModel):
average = embeddings_batch[0]
else:
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
embeddings[i] = (average / np.linalg.norm(average)).tolist()
embedding = (average / np.linalg.norm(average)).tolist()
if np.isnan(embedding).any():
raise ValueError("Normalized embedding is nan please try again")
embeddings[i] = embedding
# calc usage
usage = self._calc_response_usage(model=model, credentials=credentials, tokens=used_tokens)

View File

@ -1,4 +1,5 @@
- gemini-2.0-flash-exp
- gemini-2.0-flash-thinking-exp-1219
- gemini-1.5-pro
- gemini-1.5-pro-latest
- gemini-1.5-pro-001

View File

@ -0,0 +1,39 @@
model: gemini-2.0-flash-thinking-exp-1219
label:
en_US: Gemini 2.0 Flash Thinking Exp 1219
model_type: llm
features:
- agent-thought
- vision
- document
- video
- audio
model_properties:
mode: chat
context_size: 32767
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_output_tokens
use_template: max_tokens
default: 8192
min: 1
max: 8192
- name: json_schema
use_template: json_schema
pricing:
input: '0.00'
output: '0.00'
unit: '0.000001'
currency: USD

View File

@ -97,7 +97,10 @@ class OpenAITextEmbeddingModel(_CommonOpenAI, TextEmbeddingModel):
average = embeddings_batch[0]
else:
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
embeddings[i] = (average / np.linalg.norm(average)).tolist()
embedding = (average / np.linalg.norm(average)).tolist()
if np.isnan(embedding).any():
raise ValueError("Normalized embedding is nan please try again")
embeddings[i] = embedding
# calc usage
usage = self._calc_response_usage(model=model, credentials=credentials, tokens=used_tokens)

View File

@ -119,7 +119,7 @@ class ReplicateEmbeddingModel(_CommonReplicate, TextEmbeddingModel):
embeddings.append(result[0].get("embedding"))
return [list(map(float, e)) for e in embeddings]
elif "texts" == text_input_key:
elif text_input_key == "texts":
result = client.run(
replicate_model_version,
input={

View File

@ -18,7 +18,7 @@ class SiliconflowProvider(ModelProvider):
try:
model_instance = self.get_model_instance(ModelType.LLM)
model_instance.validate_credentials(model="deepseek-ai/DeepSeek-V2-Chat", credentials=credentials)
model_instance.validate_credentials(model="deepseek-ai/DeepSeek-V2.5", credentials=credentials)
except CredentialsValidateFailedError as ex:
raise ex
except Exception as ex:

View File

@ -100,7 +100,10 @@ class UpstageTextEmbeddingModel(_CommonUpstage, TextEmbeddingModel):
average = embeddings_batch[0]
else:
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
embeddings[i] = (average / np.linalg.norm(average)).tolist()
embedding = (average / np.linalg.norm(average)).tolist()
if np.isnan(embedding).any():
raise ValueError("Normalized embedding is nan please try again")
embeddings[i] = embedding
usage = self._calc_response_usage(model=model, credentials=credentials, tokens=used_tokens)

View File

@ -40,6 +40,10 @@ configs: dict[str, ModelConfig] = {
properties=ModelProperties(context_size=32768, max_tokens=4096, mode=LLMMode.CHAT),
features=[ModelFeature.TOOL_CALL],
),
"Doubao-pro-256k": ModelConfig(
properties=ModelProperties(context_size=262144, max_tokens=4096, mode=LLMMode.CHAT),
features=[],
),
"Doubao-pro-128k": ModelConfig(
properties=ModelProperties(context_size=131072, max_tokens=4096, mode=LLMMode.CHAT),
features=[ModelFeature.TOOL_CALL],

View File

@ -12,6 +12,7 @@ class ModelConfig(BaseModel):
ModelConfigs = {
"Doubao-embedding": ModelConfig(properties=ModelProperties(context_size=4096, max_chunks=32)),
"Doubao-embedding-large": ModelConfig(properties=ModelProperties(context_size=4096, max_chunks=32)),
}
@ -21,7 +22,7 @@ def get_model_config(credentials: dict) -> ModelConfig:
if not model_configs:
return ModelConfig(
properties=ModelProperties(
context_size=int(credentials.get("context_size", 0)),
context_size=int(credentials.get("context_size", 4096)),
max_chunks=int(credentials.get("max_chunks", 1)),
)
)

View File

@ -166,6 +166,12 @@ model_credential_schema:
show_on:
- variable: __model_type
value: llm
- label:
en_US: Doubao-pro-256k
value: Doubao-pro-256k
show_on:
- variable: __model_type
value: llm
- label:
en_US: Llama3-8B
value: Llama3-8B
@ -220,6 +226,12 @@ model_credential_schema:
show_on:
- variable: __model_type
value: text-embedding
- label:
en_US: Doubao-embedding-large
value: Doubao-embedding-large
show_on:
- variable: __model_type
value: text-embedding
- label:
en_US: Custom
zh_Hans: 自定义

View File

@ -65,6 +65,11 @@ class CacheEmbedding(Embeddings):
for vector in embedding_result.embeddings:
try:
normalized_embedding = (vector / np.linalg.norm(vector)).tolist()
# stackoverflow best way: https://stackoverflow.com/questions/20319813/how-to-check-list-containing-nan
if np.isnan(normalized_embedding).any():
# for issue #11827 float values are not json compliant
logger.warning(f"Normalized embedding is nan: {normalized_embedding}")
continue
embedding_queue_embeddings.append(normalized_embedding)
except IntegrityError:
db.session.rollback()
@ -111,6 +116,8 @@ class CacheEmbedding(Embeddings):
embedding_results = embedding_result.embeddings[0]
embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist()
if np.isnan(embedding_results).any():
raise ValueError("Normalized embedding is nan please try again")
except Exception as ex:
if dify_config.DEBUG:
logging.exception(f"Failed to embed query text '{text[:10]}...({len(text)} chars)'")

View File

@ -11,7 +11,10 @@ class ComfyUIProvider(BuiltinToolProviderController):
def _validate_credentials(self, credentials: dict[str, Any]) -> None:
ws = websocket.WebSocket()
base_url = URL(credentials.get("base_url"))
ws_address = f"ws://{base_url.authority}/ws?clientId=test123"
ws_protocol = "ws"
if base_url.scheme == "https":
ws_protocol = "wss"
ws_address = f"{ws_protocol}://{base_url.authority}/ws?clientId=test123"
try:
ws.connect(ws_address)

View File

@ -40,7 +40,10 @@ class ComfyUiClient:
def open_websocket_connection(self) -> tuple[WebSocket, str]:
client_id = str(uuid.uuid4())
ws = WebSocket()
ws_address = f"ws://{self.base_url.authority}/ws?clientId={client_id}"
ws_protocol = "ws"
if self.base_url.scheme == "https":
ws_protocol = "wss"
ws_address = f"{ws_protocol}://{self.base_url.authority}/ws?clientId={client_id}"
ws.connect(ws_address)
return ws, client_id

View File

@ -1,4 +1,5 @@
import logging
import mimetypes
from collections.abc import Mapping, Sequence
from typing import Any
@ -165,20 +166,24 @@ class HttpRequestNode(BaseNode[HttpRequestNodeData]):
def extract_files(self, url: str, response: Response) -> list[File]:
"""
Extract files from response
Extract files from response by checking both Content-Type header and URL
"""
files = []
is_file = response.is_file
content_type = response.content_type
content = response.content
if is_file and content_type:
if is_file:
# Guess file extension from URL or Content-Type header
filename = url.split("?")[0].split("/")[-1] or ""
mime_type = content_type or mimetypes.guess_type(filename)[0] or "application/octet-stream"
tool_file = ToolFileManager.create_file_by_raw(
user_id=self.user_id,
tenant_id=self.tenant_id,
conversation_id=None,
file_binary=content,
mimetype=content_type,
mimetype=mime_type,
)
mapping = {

View File

@ -21,13 +21,13 @@ class MockXinferenceClass:
if not re.match(r"https?:\/\/[^\s\/$.?#].[^\s]*$", self.base_url):
raise RuntimeError("404 Not Found")
if "generate" == model_uid:
if model_uid == "generate":
return RESTfulGenerateModelHandle(model_uid, base_url=self.base_url, auth_headers={})
if "chat" == model_uid:
if model_uid == "chat":
return RESTfulChatModelHandle(model_uid, base_url=self.base_url, auth_headers={})
if "embedding" == model_uid:
if model_uid == "embedding":
return RESTfulEmbeddingModelHandle(model_uid, base_url=self.base_url, auth_headers={})
if "rerank" == model_uid:
if model_uid == "rerank":
return RESTfulRerankModelHandle(model_uid, base_url=self.base_url, auth_headers={})
raise RuntimeError("404 Not Found")

View File

@ -34,9 +34,9 @@ def test_api_tool(setup_http_mock):
response = tool.do_http_request(tool.api_bundle.server_url, tool.api_bundle.method, headers, parameters)
assert response.status_code == 200
assert "/p_param" == response.request.url.path
assert b"query_param=q_param" == response.request.url.query
assert "h_param" == response.request.headers.get("header_param")
assert "application/json" == response.request.headers.get("content-type")
assert "cookie_param=c_param" == response.request.headers.get("cookie")
assert response.request.url.path == "/p_param"
assert response.request.url.query == b"query_param=q_param"
assert response.request.headers.get("header_param") == "h_param"
assert response.request.headers.get("content-type") == "application/json"
assert response.request.headers.get("cookie") == "cookie_param=c_param"
assert "b_param" in response.content.decode()

View File

@ -384,7 +384,7 @@ def test_mock_404(setup_http_mock):
assert result.outputs is not None
resp = result.outputs
assert 404 == resp.get("status_code")
assert resp.get("status_code") == 404
assert "Not Found" in resp.get("body", "")

View File

@ -0,0 +1,111 @@
import yaml # type: ignore
from dotenv import dotenv_values
from pathlib import Path
BASE_API_AND_DOCKER_CONFIG_SET_DIFF = {
"APP_MAX_EXECUTION_TIME",
"BATCH_UPLOAD_LIMIT",
"CELERY_BEAT_SCHEDULER_TIME",
"CODE_EXECUTION_API_KEY",
"HTTP_REQUEST_MAX_CONNECT_TIMEOUT",
"HTTP_REQUEST_MAX_READ_TIMEOUT",
"HTTP_REQUEST_MAX_WRITE_TIMEOUT",
"KEYWORD_DATA_SOURCE_TYPE",
"LOGIN_LOCKOUT_DURATION",
"LOG_FORMAT",
"OCI_ACCESS_KEY",
"OCI_BUCKET_NAME",
"OCI_ENDPOINT",
"OCI_REGION",
"OCI_SECRET_KEY",
"REDIS_DB",
"RESEND_API_URL",
"RESPECT_XFORWARD_HEADERS_ENABLED",
"SENTRY_DSN",
"SSRF_DEFAULT_CONNECT_TIME_OUT",
"SSRF_DEFAULT_MAX_RETRIES",
"SSRF_DEFAULT_READ_TIME_OUT",
"SSRF_DEFAULT_TIME_OUT",
"SSRF_DEFAULT_WRITE_TIME_OUT",
"UPSTASH_VECTOR_TOKEN",
"UPSTASH_VECTOR_URL",
"USING_UGC_INDEX",
"WEAVIATE_BATCH_SIZE",
"WEAVIATE_GRPC_ENABLED",
}
BASE_API_AND_DOCKER_COMPOSE_CONFIG_SET_DIFF = {
"BATCH_UPLOAD_LIMIT",
"CELERY_BEAT_SCHEDULER_TIME",
"HTTP_REQUEST_MAX_CONNECT_TIMEOUT",
"HTTP_REQUEST_MAX_READ_TIMEOUT",
"HTTP_REQUEST_MAX_WRITE_TIMEOUT",
"KEYWORD_DATA_SOURCE_TYPE",
"LOGIN_LOCKOUT_DURATION",
"LOG_FORMAT",
"OPENDAL_FS_ROOT",
"OPENDAL_S3_ACCESS_KEY_ID",
"OPENDAL_S3_BUCKET",
"OPENDAL_S3_ENDPOINT",
"OPENDAL_S3_REGION",
"OPENDAL_S3_ROOT",
"OPENDAL_S3_SECRET_ACCESS_KEY",
"OPENDAL_S3_SERVER_SIDE_ENCRYPTION",
"PGVECTOR_MAX_CONNECTION",
"PGVECTOR_MIN_CONNECTION",
"PGVECTO_RS_DATABASE",
"PGVECTO_RS_HOST",
"PGVECTO_RS_PASSWORD",
"PGVECTO_RS_PORT",
"PGVECTO_RS_USER",
"RESPECT_XFORWARD_HEADERS_ENABLED",
"SCARF_NO_ANALYTICS",
"SSRF_DEFAULT_CONNECT_TIME_OUT",
"SSRF_DEFAULT_MAX_RETRIES",
"SSRF_DEFAULT_READ_TIME_OUT",
"SSRF_DEFAULT_TIME_OUT",
"SSRF_DEFAULT_WRITE_TIME_OUT",
"STORAGE_OPENDAL_SCHEME",
"SUPABASE_API_KEY",
"SUPABASE_BUCKET_NAME",
"SUPABASE_URL",
"USING_UGC_INDEX",
"VIKINGDB_CONNECTION_TIMEOUT",
"VIKINGDB_SOCKET_TIMEOUT",
"WEAVIATE_BATCH_SIZE",
"WEAVIATE_GRPC_ENABLED",
}
API_CONFIG_SET = set(dotenv_values(Path("api") / Path(".env.example")).keys())
DOCKER_CONFIG_SET = set(dotenv_values(Path("docker") / Path(".env.example")).keys())
DOCKER_COMPOSE_CONFIG_SET = set()
with open(Path("docker") / Path("docker-compose.yaml")) as f:
DOCKER_COMPOSE_CONFIG_SET = set(yaml.safe_load(f.read())["x-shared-env"].keys())
def test_yaml_config():
# python set == operator is used to compare two sets
DIFF_API_WITH_DOCKER = (
API_CONFIG_SET - DOCKER_CONFIG_SET - BASE_API_AND_DOCKER_CONFIG_SET_DIFF
)
if DIFF_API_WITH_DOCKER:
print(
f"API and Docker config sets are different with key: {DIFF_API_WITH_DOCKER}"
)
raise Exception("API and Docker config sets are different")
DIFF_API_WITH_DOCKER_COMPOSE = (
API_CONFIG_SET
- DOCKER_COMPOSE_CONFIG_SET
- BASE_API_AND_DOCKER_COMPOSE_CONFIG_SET_DIFF
)
if DIFF_API_WITH_DOCKER_COMPOSE:
print(
f"API and Docker Compose config sets are different with key: {DIFF_API_WITH_DOCKER_COMPOSE}"
)
raise Exception("API and Docker Compose config sets are different")
print("All tests passed!")
if __name__ == "__main__":
test_yaml_config()

View File

@ -2,7 +2,7 @@ version: '3'
services:
# API service
api:
image: langgenius/dify-api:0.14.0
image: langgenius/dify-api:0.14.1
restart: always
environment:
# Startup mode, 'api' starts the API server.
@ -227,7 +227,7 @@ services:
# worker service
# The Celery worker for processing the queue.
worker:
image: langgenius/dify-api:0.14.0
image: langgenius/dify-api:0.14.1
restart: always
environment:
CONSOLE_WEB_URL: ''
@ -397,7 +397,7 @@ services:
# Frontend web application.
web:
image: langgenius/dify-web:0.14.0
image: langgenius/dify-web:0.14.1
restart: always
environment:
# The base URL of console application api server, refers to the Console base URL of WEB service if console domain is

View File

@ -107,6 +107,7 @@ ACCESS_TOKEN_EXPIRE_MINUTES=60
# The maximum number of active requests for the application, where 0 means unlimited, should be a non-negative integer.
APP_MAX_ACTIVE_REQUESTS=0
APP_MAX_EXECUTION_TIME=1200
# ------------------------------
# Container Startup Related Configuration
@ -606,6 +607,7 @@ UPLOAD_AUDIO_FILE_SIZE_LIMIT=50
# Sentry Configuration
# Used for application monitoring and error log tracking.
# ------------------------------
SENTRY_DSN=
# API Service Sentry DSN address, default is empty, when empty,
# all monitoring information is not reported to Sentry.

View File

@ -2,7 +2,7 @@ x-shared-env: &shared-api-worker-env
services:
# API service
api:
image: langgenius/dify-api:0.14.0
image: langgenius/dify-api:0.14.1
restart: always
environment:
# Use the shared environment variables.
@ -25,7 +25,7 @@ services:
# worker service
# The Celery worker for processing the queue.
worker:
image: langgenius/dify-api:0.14.0
image: langgenius/dify-api:0.14.1
restart: always
environment:
# Use the shared environment variables.
@ -47,7 +47,7 @@ services:
# Frontend web application.
web:
image: langgenius/dify-web:0.14.0
image: langgenius/dify-web:0.14.1
restart: always
environment:
CONSOLE_API_URL: ${CONSOLE_API_URL:-}

View File

@ -18,6 +18,7 @@ x-shared-env: &shared-api-worker-env
LOG_DATEFORMAT: ${LOG_DATEFORMAT:-"%Y-%m-%d %H:%M:%S"}
LOG_TZ: ${LOG_TZ:-UTC}
DEBUG: ${DEBUG:-false}
SENTRY_DSN: ${SENTRY_DSN:-}
FLASK_DEBUG: ${FLASK_DEBUG:-false}
SECRET_KEY: ${SECRET_KEY:-sk-9f73s3ljTXVcMT3Blb3ljTqtsKiGHXVcMT3BlbkFJLK7U}
INIT_PASSWORD: ${INIT_PASSWORD:-}
@ -28,6 +29,7 @@ x-shared-env: &shared-api-worker-env
FILES_ACCESS_TIMEOUT: ${FILES_ACCESS_TIMEOUT:-300}
ACCESS_TOKEN_EXPIRE_MINUTES: ${ACCESS_TOKEN_EXPIRE_MINUTES:-60}
APP_MAX_ACTIVE_REQUESTS: ${APP_MAX_ACTIVE_REQUESTS:-0}
APP_MAX_EXECUTION_TIME: ${APP_MAX_EXECUTION_TIME:-1200}
DIFY_BIND_ADDRESS: ${DIFY_BIND_ADDRESS:-0.0.0.0}
DIFY_PORT: ${DIFY_PORT:-5001}
SERVER_WORKER_AMOUNT: ${SERVER_WORKER_AMOUNT:-}
@ -389,7 +391,7 @@ x-shared-env: &shared-api-worker-env
services:
# API service
api:
image: langgenius/dify-api:0.14.0
image: langgenius/dify-api:0.14.1
restart: always
environment:
# Use the shared environment variables.
@ -412,7 +414,7 @@ services:
# worker service
# The Celery worker for processing the queue.
worker:
image: langgenius/dify-api:0.14.0
image: langgenius/dify-api:0.14.1
restart: always
environment:
# Use the shared environment variables.
@ -434,7 +436,7 @@ services:
# Frontend web application.
web:
image: langgenius/dify-web:0.14.0
image: langgenius/dify-web:0.14.1
restart: always
environment:
CONSOLE_API_URL: ${CONSOLE_API_URL:-}

View File

@ -1,13 +1,19 @@
'use client'
import { useSearchParams } from 'next/navigation'
import { useTranslation } from 'react-i18next'
const Empty = () => {
const { t } = useTranslation()
const searchParams = useSearchParams()
return (
<div className='flex flex-col items-center'>
<div className="shrink-0 w-[163px] h-[149px] bg-cover bg-no-repeat bg-[url('~@/app/components/tools/add-tool-modal/empty.png')]"></div>
<div className='mb-1 text-[13px] font-medium text-text-primary leading-[18px]'>{t('tools.addToolModal.emptyTitle')}</div>
<div className='text-[13px] text-text-tertiary leading-[18px]'>{t('tools.addToolModal.emptyTip')}</div>
<div className='mb-1 text-[13px] font-medium text-text-primary leading-[18px]'>
{t(`tools.addToolModal.${searchParams.get('category') === 'workflow' ? 'emptyTitle' : 'emptyTitleCustom'}`)}
</div>
<div className='text-[13px] text-text-tertiary leading-[18px]'>
{t(`tools.addToolModal.${searchParams.get('category') === 'workflow' ? 'emptyTip' : 'emptyTipCustom'}`)}
</div>
</div>
)
}

View File

@ -31,6 +31,8 @@ const translation = {
manageInTools: 'Manage in Tools',
emptyTitle: 'No workflow tool available',
emptyTip: 'Go to "Workflow -> Publish as Tool"',
emptyTitleCustom: 'No custom tool available',
emptyTipCustom: 'Create a custom tool',
},
createTool: {
title: 'Create Custom Tool',

View File

@ -31,6 +31,8 @@ const translation = {
manageInTools: '去工具列表管理',
emptyTitle: '没有可用的工作流工具',
emptyTip: '去 “工作流 -> 发布为工具” 添加',
emptyTitleCustom: '没有可用的自定义工具',
emptyTipCustom: '创建自定义工具',
},
createTool: {
title: '创建自定义工具',

View File

@ -1,6 +1,6 @@
{
"name": "dify-web",
"version": "0.14.0",
"version": "0.14.1",
"private": true,
"engines": {
"node": ">=18.17.0"