Merge branch 'main' into feat/rag-pipeline

This commit is contained in:
twwu 2025-06-03 18:44:53 +08:00
commit 0a9f50e85f
40 changed files with 752 additions and 769 deletions

View File

@ -1,6 +1,6 @@
#!/bin/bash
npm add -g pnpm@10.8.0
npm add -g pnpm@10.11.1
cd web && pnpm install
pipx install uv

View File

@ -846,6 +846,9 @@ def clear_orphaned_file_records(force: bool):
{"type": "text", "table": "workflow_node_executions", "column": "outputs"},
{"type": "text", "table": "conversations", "column": "introduction"},
{"type": "text", "table": "conversations", "column": "system_instruction"},
{"type": "text", "table": "accounts", "column": "avatar"},
{"type": "text", "table": "apps", "column": "icon"},
{"type": "text", "table": "sites", "column": "icon"},
{"type": "json", "table": "messages", "column": "inputs"},
{"type": "json", "table": "messages", "column": "message"},
]

View File

@ -60,8 +60,7 @@ class NacosHttpClient:
sign_str = tenant + "+"
if group:
sign_str = sign_str + group + "+"
if sign_str:
sign_str += ts
sign_str += ts # Directly concatenate ts without conditional checks, because the nacos auth header forced it.
return sign_str
def get_access_token(self, force_refresh=False):

View File

@ -70,7 +70,7 @@ class ModelConfigConverter:
if not model_mode:
model_mode = LLMMode.CHAT.value
if model_schema and model_schema.model_properties.get(ModelPropertyKey.MODE):
model_mode = LLMMode.value_of(model_schema.model_properties[ModelPropertyKey.MODE]).value
model_mode = LLMMode(model_schema.model_properties[ModelPropertyKey.MODE]).value
if not model_schema:
raise ValueError(f"Model {model_name} not exist.")

View File

@ -15,6 +15,7 @@ from core.helper.code_executor.python3.python3_transformer import Python3Templat
from core.helper.code_executor.template_transformer import TemplateTransformer
logger = logging.getLogger(__name__)
code_execution_endpoint_url = URL(str(dify_config.CODE_EXECUTION_ENDPOINT))
class CodeExecutionError(Exception):
@ -64,7 +65,7 @@ class CodeExecutor:
:param code: code
:return:
"""
url = URL(str(dify_config.CODE_EXECUTION_ENDPOINT)) / "v1" / "sandbox" / "run"
url = code_execution_endpoint_url / "v1" / "sandbox" / "run"
headers = {"X-Api-Key": dify_config.CODE_EXECUTION_API_KEY}

View File

@ -7,29 +7,28 @@ from configs import dify_config
from core.helper.download import download_with_size_limit
from core.plugin.entities.marketplace import MarketplacePluginDeclaration
marketplace_api_url = URL(str(dify_config.MARKETPLACE_API_URL))
def get_plugin_pkg_url(plugin_unique_identifier: str):
return (URL(str(dify_config.MARKETPLACE_API_URL)) / "api/v1/plugins/download").with_query(
unique_identifier=plugin_unique_identifier
)
def get_plugin_pkg_url(plugin_unique_identifier: str) -> str:
return str((marketplace_api_url / "api/v1/plugins/download").with_query(unique_identifier=plugin_unique_identifier))
def download_plugin_pkg(plugin_unique_identifier: str):
url = str(get_plugin_pkg_url(plugin_unique_identifier))
return download_with_size_limit(url, dify_config.PLUGIN_MAX_PACKAGE_SIZE)
return download_with_size_limit(get_plugin_pkg_url(plugin_unique_identifier), dify_config.PLUGIN_MAX_PACKAGE_SIZE)
def batch_fetch_plugin_manifests(plugin_ids: list[str]) -> Sequence[MarketplacePluginDeclaration]:
if len(plugin_ids) == 0:
return []
url = str(URL(str(dify_config.MARKETPLACE_API_URL)) / "api/v1/plugins/batch")
url = str(marketplace_api_url / "api/v1/plugins/batch")
response = requests.post(url, json={"plugin_ids": plugin_ids})
response.raise_for_status()
return [MarketplacePluginDeclaration(**plugin) for plugin in response.json()["data"]["plugins"]]
def record_install_plugin_event(plugin_unique_identifier: str):
url = str(URL(str(dify_config.MARKETPLACE_API_URL)) / "api/v1/stats/plugins/install_count")
url = str(marketplace_api_url / "api/v1/stats/plugins/install_count")
response = requests.post(url, json={"unique_identifier": plugin_unique_identifier})
response.raise_for_status()

View File

@ -17,19 +17,6 @@ class LLMMode(StrEnum):
COMPLETION = "completion"
CHAT = "chat"
@classmethod
def value_of(cls, value: str) -> "LLMMode":
"""
Get value of given mode.
:param value: mode value
:return: mode
"""
for mode in cls:
if mode.value == value:
return mode
raise ValueError(f"invalid mode value {value}")
class LLMUsage(ModelUsage):
"""

View File

@ -1,7 +1,11 @@
from abc import ABC, abstractmethod
from sqlalchemy.orm import Session
from core.ops.entities.config_entity import BaseTracingConfig
from core.ops.entities.trace_entity import BaseTraceInfo
from extensions.ext_database import db
from models import Account, App, TenantAccountJoin
class BaseTraceInstance(ABC):
@ -24,3 +28,38 @@ class BaseTraceInstance(ABC):
Subclasses must implement specific tracing logic for activities.
"""
...
def get_service_account_with_tenant(self, app_id: str) -> Account:
"""
Get service account for an app and set up its tenant.
Args:
app_id: The ID of the app
Returns:
Account: The service account with tenant set up
Raises:
ValueError: If app, creator account or tenant cannot be found
"""
with Session(db.engine, expire_on_commit=False) as session:
# Get the app to find its creator
app = session.query(App).filter(App.id == app_id).first()
if not app:
raise ValueError(f"App with id {app_id} not found")
if not app.created_by:
raise ValueError(f"App with id {app_id} has no creator (created_by is None)")
service_account = session.query(Account).filter(Account.id == app.created_by).first()
if not service_account:
raise ValueError(f"Creator account with id {app.created_by} not found for app {app_id}")
current_tenant = (
session.query(TenantAccountJoin).filter_by(account_id=service_account.id, current=True).first()
)
if not current_tenant:
raise ValueError(f"Current tenant not found for account {service_account.id}")
service_account.set_tenant_id(current_tenant.tenant_id)
return service_account

View File

@ -4,7 +4,7 @@ from datetime import datetime, timedelta
from typing import Optional
from langfuse import Langfuse # type: ignore
from sqlalchemy.orm import Session, sessionmaker
from sqlalchemy.orm import sessionmaker
from core.ops.base_trace_instance import BaseTraceInstance
from core.ops.entities.config_entity import LangfuseConfig
@ -31,8 +31,7 @@ from core.ops.utils import filter_none_values
from core.repositories import SQLAlchemyWorkflowNodeExecutionRepository
from core.workflow.nodes.enums import NodeType
from extensions.ext_database import db
from models import Account, App, EndUser, WorkflowNodeExecutionTriggeredFrom
from models.account import TenantAccountJoin
from models import EndUser, WorkflowNodeExecutionTriggeredFrom
logger = logging.getLogger(__name__)
@ -115,28 +114,11 @@ class LangFuseDataTrace(BaseTraceInstance):
# through workflow_run_id get all_nodes_execution using repository
session_factory = sessionmaker(bind=db.engine)
# Find the app's creator account
with Session(db.engine, expire_on_commit=False) as session:
# Get the app to find its creator
app_id = trace_info.metadata.get("app_id")
if not app_id:
raise ValueError("No app_id found in trace_info metadata")
app_id = trace_info.metadata.get("app_id")
if not app_id:
raise ValueError("No app_id found in trace_info metadata")
app = session.query(App).filter(App.id == app_id).first()
if not app:
raise ValueError(f"App with id {app_id} not found")
if not app.created_by:
raise ValueError(f"App with id {app_id} has no creator (created_by is None)")
service_account = session.query(Account).filter(Account.id == app.created_by).first()
if not service_account:
raise ValueError(f"Creator account with id {app.created_by} not found for app {app_id}")
current_tenant = (
session.query(TenantAccountJoin).filter_by(account_id=service_account.id, current=True).first()
)
if not current_tenant:
raise ValueError(f"Current tenant not found for account {service_account.id}")
service_account.set_tenant_id(current_tenant.tenant_id)
service_account = self.get_service_account_with_tenant(app_id)
workflow_node_execution_repository = SQLAlchemyWorkflowNodeExecutionRepository(
session_factory=session_factory,

View File

@ -6,7 +6,7 @@ from typing import Optional, cast
from langsmith import Client
from langsmith.schemas import RunBase
from sqlalchemy.orm import Session, sessionmaker
from sqlalchemy.orm import sessionmaker
from core.ops.base_trace_instance import BaseTraceInstance
from core.ops.entities.config_entity import LangSmithConfig
@ -31,7 +31,7 @@ from core.repositories import SQLAlchemyWorkflowNodeExecutionRepository
from core.workflow.entities.workflow_node_execution import WorkflowNodeExecutionMetadataKey
from core.workflow.nodes.enums import NodeType
from extensions.ext_database import db
from models import Account, App, EndUser, MessageFile, WorkflowNodeExecutionTriggeredFrom
from models import EndUser, MessageFile, WorkflowNodeExecutionTriggeredFrom
logger = logging.getLogger(__name__)
@ -139,22 +139,11 @@ class LangSmithDataTrace(BaseTraceInstance):
# through workflow_run_id get all_nodes_execution using repository
session_factory = sessionmaker(bind=db.engine)
# Find the app's creator account
with Session(db.engine, expire_on_commit=False) as session:
# Get the app to find its creator
app_id = trace_info.metadata.get("app_id")
if not app_id:
raise ValueError("No app_id found in trace_info metadata")
app_id = trace_info.metadata.get("app_id")
if not app_id:
raise ValueError("No app_id found in trace_info metadata")
app = session.query(App).filter(App.id == app_id).first()
if not app:
raise ValueError(f"App with id {app_id} not found")
if not app.created_by:
raise ValueError(f"App with id {app_id} has no creator (created_by is None)")
service_account = session.query(Account).filter(Account.id == app.created_by).first()
if not service_account:
raise ValueError(f"Creator account with id {app.created_by} not found for app {app_id}")
service_account = self.get_service_account_with_tenant(app_id)
workflow_node_execution_repository = SQLAlchemyWorkflowNodeExecutionRepository(
session_factory=session_factory,

View File

@ -6,7 +6,7 @@ from typing import Optional, cast
from opik import Opik, Trace
from opik.id_helpers import uuid4_to_uuid7
from sqlalchemy.orm import Session, sessionmaker
from sqlalchemy.orm import sessionmaker
from core.ops.base_trace_instance import BaseTraceInstance
from core.ops.entities.config_entity import OpikConfig
@ -25,7 +25,7 @@ from core.repositories import SQLAlchemyWorkflowNodeExecutionRepository
from core.workflow.entities.workflow_node_execution import WorkflowNodeExecutionMetadataKey
from core.workflow.nodes.enums import NodeType
from extensions.ext_database import db
from models import Account, App, EndUser, MessageFile, WorkflowNodeExecutionTriggeredFrom
from models import EndUser, MessageFile, WorkflowNodeExecutionTriggeredFrom
logger = logging.getLogger(__name__)
@ -154,22 +154,11 @@ class OpikDataTrace(BaseTraceInstance):
# through workflow_run_id get all_nodes_execution using repository
session_factory = sessionmaker(bind=db.engine)
# Find the app's creator account
with Session(db.engine, expire_on_commit=False) as session:
# Get the app to find its creator
app_id = trace_info.metadata.get("app_id")
if not app_id:
raise ValueError("No app_id found in trace_info metadata")
app_id = trace_info.metadata.get("app_id")
if not app_id:
raise ValueError("No app_id found in trace_info metadata")
app = session.query(App).filter(App.id == app_id).first()
if not app:
raise ValueError(f"App with id {app_id} not found")
if not app.created_by:
raise ValueError(f"App with id {app_id} has no creator (created_by is None)")
service_account = session.query(Account).filter(Account.id == app.created_by).first()
if not service_account:
raise ValueError(f"Creator account with id {app.created_by} not found for app {app_id}")
service_account = self.get_service_account_with_tenant(app_id)
workflow_node_execution_repository = SQLAlchemyWorkflowNodeExecutionRepository(
session_factory=session_factory,

View File

@ -6,7 +6,7 @@ from typing import Any, Optional, cast
import wandb
import weave
from sqlalchemy.orm import Session, sessionmaker
from sqlalchemy.orm import sessionmaker
from core.ops.base_trace_instance import BaseTraceInstance
from core.ops.entities.config_entity import WeaveConfig
@ -26,7 +26,7 @@ from core.repositories import SQLAlchemyWorkflowNodeExecutionRepository
from core.workflow.entities.workflow_node_execution import WorkflowNodeExecutionMetadataKey
from core.workflow.nodes.enums import NodeType
from extensions.ext_database import db
from models import Account, App, EndUser, MessageFile, WorkflowNodeExecutionTriggeredFrom
from models import EndUser, MessageFile, WorkflowNodeExecutionTriggeredFrom
logger = logging.getLogger(__name__)
@ -133,22 +133,11 @@ class WeaveDataTrace(BaseTraceInstance):
# through workflow_run_id get all_nodes_execution using repository
session_factory = sessionmaker(bind=db.engine)
# Find the app's creator account
with Session(db.engine, expire_on_commit=False) as session:
# Get the app to find its creator
app_id = trace_info.metadata.get("app_id")
if not app_id:
raise ValueError("No app_id found in trace_info metadata")
app_id = trace_info.metadata.get("app_id")
if not app_id:
raise ValueError("No app_id found in trace_info metadata")
app = session.query(App).filter(App.id == app_id).first()
if not app:
raise ValueError(f"App with id {app_id} not found")
if not app.created_by:
raise ValueError(f"App with id {app_id} has no creator (created_by is None)")
service_account = session.query(Account).filter(Account.id == app.created_by).first()
if not service_account:
raise ValueError(f"Creator account with id {app.created_by} not found for app {app_id}")
service_account = self.get_service_account_with_tenant(app_id)
workflow_node_execution_repository = SQLAlchemyWorkflowNodeExecutionRepository(
session_factory=session_factory,

View File

@ -31,8 +31,7 @@ from core.plugin.impl.exc import (
PluginUniqueIdentifierError,
)
plugin_daemon_inner_api_baseurl = dify_config.PLUGIN_DAEMON_URL
plugin_daemon_inner_api_key = dify_config.PLUGIN_DAEMON_KEY
plugin_daemon_inner_api_baseurl = URL(str(dify_config.PLUGIN_DAEMON_URL))
T = TypeVar("T", bound=(BaseModel | dict | list | bool | str))
@ -53,9 +52,9 @@ class BasePluginClient:
"""
Make a request to the plugin daemon inner API.
"""
url = URL(str(plugin_daemon_inner_api_baseurl)) / path
url = plugin_daemon_inner_api_baseurl / path
headers = headers or {}
headers["X-Api-Key"] = plugin_daemon_inner_api_key
headers["X-Api-Key"] = dify_config.PLUGIN_DAEMON_KEY
headers["Accept-Encoding"] = "gzip, deflate, br"
if headers.get("Content-Type") == "application/json" and isinstance(data, dict):

View File

@ -142,7 +142,7 @@ class ElasticSearchVector(BaseVector):
if score > score_threshold:
if doc.metadata is not None:
doc.metadata["score"] = score
docs.append(doc)
docs.append(doc)
return docs

View File

@ -97,6 +97,10 @@ class MilvusVector(BaseVector):
try:
milvus_version = self._client.get_server_version()
# Check if it's Zilliz Cloud - it supports full-text search with Milvus 2.5 compatibility
if "Zilliz Cloud" in milvus_version:
return True
# For standard Milvus installations, check version number
return version.parse(milvus_version).base_version >= version.parse("2.5.0").base_version
except Exception as e:
logger.warning(f"Failed to check Milvus version: {str(e)}. Disabling hybrid search.")

View File

@ -168,7 +168,7 @@ class ApiTool(Tool):
cookies[parameter["name"]] = value
elif parameter["in"] == "header":
headers[parameter["name"]] = value
headers[parameter["name"]] = str(value)
# check if there is a request body and handle it
if "requestBody" in self.api_bundle.openapi and self.api_bundle.openapi["requestBody"] is not None:

View File

@ -55,6 +55,13 @@ class ApiBasedToolSchemaParser:
# convert parameters
parameters = []
if "parameters" in interface["operation"]:
for i, parameter in enumerate(interface["operation"]["parameters"]):
if "$ref" in parameter:
root = openapi
reference = parameter["$ref"].split("/")[1:]
for ref in reference:
root = root[ref]
interface["operation"]["parameters"][i] = root
for parameter in interface["operation"]["parameters"]:
tool_parameter = ToolParameter(
name=parameter["name"],

View File

@ -53,7 +53,6 @@ from core.workflow.nodes.end.end_stream_processor import EndStreamProcessor
from core.workflow.nodes.enums import ErrorStrategy, FailBranchSourceHandle
from core.workflow.nodes.event import RunCompletedEvent, RunRetrieverResourceEvent, RunStreamChunkEvent
from core.workflow.nodes.node_mapping import NODE_TYPE_CLASSES_MAPPING
from extensions.ext_database import db
from models.enums import UserFrom
from models.workflow import WorkflowType
@ -607,8 +606,6 @@ class GraphEngine:
error=str(e),
)
)
finally:
db.session.remove()
def _run_node(
self,
@ -646,7 +643,6 @@ class GraphEngine:
agent_strategy=agent_strategy,
)
db.session.close()
max_retries = node_instance.node_data.retry_config.max_retries
retry_interval = node_instance.node_data.retry_config.retry_interval_seconds
retries = 0
@ -863,8 +859,6 @@ class GraphEngine:
except Exception as e:
logger.exception(f"Node {node_instance.node_data.title} run failed")
raise e
finally:
db.session.close()
def _append_variables_recursively(self, node_id: str, variable_key_list: list[str], variable_value: VariableValue):
"""

View File

@ -2,6 +2,9 @@ import json
from collections.abc import Generator, Mapping, Sequence
from typing import Any, Optional, cast
from sqlalchemy import select
from sqlalchemy.orm import Session
from core.agent.entities import AgentToolEntity
from core.agent.plugin_entities import AgentStrategyParameter
from core.memory.token_buffer_memory import TokenBufferMemory
@ -320,15 +323,12 @@ class AgentNode(ToolNode):
return None
conversation_id = conversation_id_variable.value
# get conversation
conversation = (
db.session.query(Conversation)
.filter(Conversation.app_id == self.app_id, Conversation.id == conversation_id)
.first()
)
with Session(db.engine, expire_on_commit=False) as session:
stmt = select(Conversation).where(Conversation.app_id == self.app_id, Conversation.id == conversation_id)
conversation = session.scalar(stmt)
if not conversation:
return None
if not conversation:
return None
memory = TokenBufferMemory(conversation=conversation, model_instance=model_instance)

View File

@ -8,6 +8,7 @@ from typing import Any, Optional, cast
from sqlalchemy import Float, and_, func, or_, text
from sqlalchemy import cast as sqlalchemy_cast
from sqlalchemy.orm import Session
from core.app.app_config.entities import DatasetRetrieveConfigEntity
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
@ -95,14 +96,15 @@ class KnowledgeRetrievalNode(LLMNode):
redis_client.zremrangebyscore(key, 0, current_time - 60000)
request_count = redis_client.zcard(key)
if request_count > knowledge_rate_limit.limit:
# add ratelimit record
rate_limit_log = RateLimitLog(
tenant_id=self.tenant_id,
subscription_plan=knowledge_rate_limit.subscription_plan,
operation="knowledge",
)
db.session.add(rate_limit_log)
db.session.commit()
with Session(db.engine) as session:
# add ratelimit record
rate_limit_log = RateLimitLog(
tenant_id=self.tenant_id,
subscription_plan=knowledge_rate_limit.subscription_plan,
operation="knowledge",
)
session.add(rate_limit_log)
session.commit()
return NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
inputs=variables,
@ -173,7 +175,9 @@ class KnowledgeRetrievalNode(LLMNode):
dataset_retrieval = DatasetRetrieval()
if node_data.retrieval_mode == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE.value:
# fetch model config
model_instance, model_config = self._fetch_model_config(node_data.single_retrieval_config.model) # type: ignore
if node_data.single_retrieval_config is None:
raise ValueError("single_retrieval_config is required")
model_instance, model_config = self.get_model_config(node_data.single_retrieval_config.model)
# check model is support tool calling
model_type_instance = model_config.provider_model_bundle.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
@ -424,7 +428,7 @@ class KnowledgeRetrievalNode(LLMNode):
raise ValueError("metadata_model_config is required")
# get metadata model instance
# fetch model config
model_instance, model_config = self._fetch_model_config(node_data.metadata_model_config) # type: ignore
model_instance, model_config = self.get_model_config(metadata_model_config)
# fetch prompt messages
prompt_template = self._get_prompt_template(
node_data=node_data,
@ -550,14 +554,7 @@ class KnowledgeRetrievalNode(LLMNode):
variable_mapping[node_id + ".query"] = node_data.query_variable_selector
return variable_mapping
def _fetch_model_config(self, model: ModelConfig) -> tuple[ModelInstance, ModelConfigWithCredentialsEntity]: # type: ignore
"""
Fetch model config
:param model: model
:return:
"""
if model is None:
raise ValueError("model is required")
def get_model_config(self, model: ModelConfig) -> tuple[ModelInstance, ModelConfigWithCredentialsEntity]:
model_name = model.name
provider_name = model.provider

View File

@ -7,6 +7,8 @@ from datetime import UTC, datetime
from typing import TYPE_CHECKING, Any, Optional, cast
import json_repair
from sqlalchemy import select, update
from sqlalchemy.orm import Session
from configs import dify_config
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
@ -303,8 +305,6 @@ class LLMNode(BaseNode[LLMNodeData]):
prompt_messages: Sequence[PromptMessage],
stop: Optional[Sequence[str]] = None,
) -> Generator[NodeEvent, None, None]:
db.session.close()
invoke_result = model_instance.invoke_llm(
prompt_messages=list(prompt_messages),
model_parameters=node_data_model.completion_params,
@ -603,15 +603,11 @@ class LLMNode(BaseNode[LLMNodeData]):
return None
conversation_id = conversation_id_variable.value
# get conversation
conversation = (
db.session.query(Conversation)
.filter(Conversation.app_id == self.app_id, Conversation.id == conversation_id)
.first()
)
if not conversation:
return None
with Session(db.engine, expire_on_commit=False) as session:
stmt = select(Conversation).where(Conversation.app_id == self.app_id, Conversation.id == conversation_id)
conversation = session.scalar(stmt)
if not conversation:
return None
memory = TokenBufferMemory(conversation=conversation, model_instance=model_instance)
@ -847,20 +843,24 @@ class LLMNode(BaseNode[LLMNodeData]):
used_quota = 1
if used_quota is not None and system_configuration.current_quota_type is not None:
db.session.query(Provider).filter(
Provider.tenant_id == tenant_id,
# TODO: Use provider name with prefix after the data migration.
Provider.provider_name == ModelProviderID(model_instance.provider).provider_name,
Provider.provider_type == ProviderType.SYSTEM.value,
Provider.quota_type == system_configuration.current_quota_type.value,
Provider.quota_limit > Provider.quota_used,
).update(
{
"quota_used": Provider.quota_used + used_quota,
"last_used": datetime.now(tz=UTC).replace(tzinfo=None),
}
)
db.session.commit()
with Session(db.engine) as session:
stmt = (
update(Provider)
.where(
Provider.tenant_id == tenant_id,
# TODO: Use provider name with prefix after the data migration.
Provider.provider_name == ModelProviderID(model_instance.provider).provider_name,
Provider.provider_type == ProviderType.SYSTEM.value,
Provider.quota_type == system_configuration.current_quota_type.value,
Provider.quota_limit > Provider.quota_used,
)
.values(
quota_used=Provider.quota_used + used_quota,
last_used=datetime.now(tz=UTC).replace(tzinfo=None),
)
)
session.execute(stmt)
session.commit()
@classmethod
def _extract_variable_selector_to_variable_mapping(

View File

@ -31,7 +31,6 @@ from core.workflow.entities.workflow_node_execution import WorkflowNodeExecution
from core.workflow.nodes.enums import NodeType
from core.workflow.nodes.llm import LLMNode, ModelConfig
from core.workflow.utils import variable_template_parser
from extensions.ext_database import db
from .entities import ParameterExtractorNodeData
from .exc import (
@ -259,8 +258,6 @@ class ParameterExtractorNode(LLMNode):
tools: list[PromptMessageTool],
stop: list[str],
) -> tuple[str, LLMUsage, Optional[AssistantPromptMessage.ToolCall]]:
db.session.close()
invoke_result = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=node_data_model.completion_params,

View File

@ -79,9 +79,13 @@ class QuestionClassifierNode(LLMNode):
memory=memory,
max_token_limit=rest_token,
)
# Some models (e.g. Gemma, Mistral) force roles alternation (user/assistant/user/assistant...).
# If both self._get_prompt_template and self._fetch_prompt_messages append a user prompt,
# two consecutive user prompts will be generated, causing model's error.
# To avoid this, set sys_query to an empty string so that only one user prompt is appended at the end.
prompt_messages, stop = self._fetch_prompt_messages(
prompt_template=prompt_template,
sys_query=query,
sys_query="",
memory=memory,
model_config=model_config,
sys_files=files,

View File

@ -1,7 +1,8 @@
from typing import Literal, Optional
from typing import Optional
from pydantic import BaseModel
from core.variables.types import SegmentType
from core.workflow.nodes.base import BaseNodeData
@ -17,7 +18,7 @@ class AdvancedSettings(BaseModel):
Group.
"""
output_type: Literal["string", "number", "object", "array[string]", "array[number]", "array[object]"]
output_type: SegmentType
variables: list[list[str]]
group_name: str

View File

@ -28,7 +28,8 @@ class SMTPClient:
else:
smtp = smtplib.SMTP(self.server, self.port, timeout=10)
if self.username and self.password:
# Only authenticate if both username and password are non-empty
if self.username and self.password and self.username.strip() and self.password.strip():
smtp.login(self.username, self.password)
msg = MIMEMultipart()

View File

@ -14,7 +14,7 @@ dependencies = [
"chardet~=5.1.0",
"flask~=3.1.0",
"flask-compress~=1.17",
"flask-cors~=5.0.0",
"flask-cors~=6.0.0",
"flask-login~=0.6.3",
"flask-migrate~=4.0.7",
"flask-restful~=0.3.10",
@ -36,7 +36,6 @@ dependencies = [
"mailchimp-transactional~=1.0.50",
"markdown~=3.5.1",
"numpy~=1.26.4",
"oci~=2.135.1",
"openai~=1.61.0",
"openpyxl~=3.1.5",
"opik~=1.7.25",
@ -143,13 +142,16 @@ dev = [
"types-requests~=2.32.0",
"types-requests-oauthlib~=2.0.0",
"types-shapely~=2.0.0",
"types-simplejson~=3.20.0",
"types-six~=1.17.0",
"types-tensorflow~=2.18.0",
"types-tqdm~=4.67.0",
"types-ujson~=5.10.0",
"types-simplejson>=3.20.0",
"types-six>=1.17.0",
"types-tensorflow>=2.18.0",
"types-tqdm>=4.67.0",
"types-ujson>=5.10.0",
"boto3-stubs>=1.38.20",
"types-jmespath>=1.0.2.20240106",
"types_pyOpenSSL>=24.1.0",
"types_cffi>=1.17.0",
"types_setuptools>=80.9.0",
]
############################################################

File diff suppressed because it is too large Load Diff

View File

@ -6,7 +6,7 @@ LABEL maintainer="takatost@gmail.com"
# RUN sed -i 's/dl-cdn.alpinelinux.org/mirrors.aliyun.com/g' /etc/apk/repositories
RUN apk add --no-cache tzdata
RUN npm install -g pnpm@10.8.0
RUN npm install -g pnpm@10.11.1
ENV PNPM_HOME="/pnpm"
ENV PATH="$PNPM_HOME:$PATH"

View File

@ -366,8 +366,9 @@ export const useChat = (
if (!newResponseItem)
return
const isUseAgentThought = newResponseItem.agent_thoughts?.length > 0
updateChatTreeNode(responseItem.id, {
content: newResponseItem.answer,
content: isUseAgentThought ? '' : newResponseItem.answer,
log: [
...newResponseItem.message,
...(newResponseItem.message[newResponseItem.message.length - 1].role !== 'assistant'

View File

@ -2,7 +2,7 @@
// DON NOT EDIT IT MANUALLY
import * as React from 'react'
import data from './OpenaiTale.json'
import data from './OpenaiTeal.json'
import IconBase from '@/app/components/base/icons/IconBase'
import type { IconData } from '@/app/components/base/icons/IconBase'
@ -15,6 +15,6 @@ const Icon = (
},
) => <IconBase {...props} ref={ref} data={data as IconData} />
Icon.displayName = 'OpenaiTale'
Icon.displayName = 'OpenaiTeal'
export default Icon

View File

@ -28,9 +28,9 @@ export { default as Microsoft } from './Microsoft'
export { default as OpenaiBlack } from './OpenaiBlack'
export { default as OpenaiBlue } from './OpenaiBlue'
export { default as OpenaiGreen } from './OpenaiGreen'
export { default as OpenaiTeal } from './OpenaiTeal'
export { default as OpenaiText } from './OpenaiText'
export { default as OpenaiTransparent } from './OpenaiTransparent'
export { default as OpenaiTale } from './OpenaiTale'
export { default as OpenaiViolet } from './OpenaiViolet'
export { default as OpenaiYellow } from './OpenaiYellow'
export { default as OpenllmText } from './OpenllmText'

View File

@ -37,14 +37,15 @@ export default function Radio({
const isChecked = groupContext ? groupContext.value === value : checked
const divClassName = `
flex items-center py-1 relative
px-7 cursor-pointer hover:bg-gray-200 rounded
px-7 cursor-pointer text-text-secondary rounded
bg-components-option-card-option-bg hover:bg-components-option-card-option-bg-hover hover:shadow-xs
`
return (
<div className={cn(
s.label,
disabled ? s.disabled : '',
isChecked ? 'bg-white shadow' : '',
isChecked ? 'bg-components-option-card-option-bg-hover shadow-xs' : '',
divClassName,
className)}
onClick={() => handleChange(value)}

View File

@ -5,7 +5,7 @@ import type {
} from '../declarations'
import { useLanguage } from '../hooks'
import { Group } from '@/app/components/base/icons/src/vender/other'
import { OpenaiBlue, OpenaiTale, OpenaiViolet, OpenaiYellow } from '@/app/components/base/icons/src/public/llm'
import { OpenaiBlue, OpenaiTeal, OpenaiViolet, OpenaiYellow } from '@/app/components/base/icons/src/public/llm'
import cn from '@/utils/classnames'
import { renderI18nObject } from '@/i18n'
@ -25,7 +25,7 @@ const ModelIcon: FC<ModelIconProps> = ({
if (provider?.provider && ['openai', 'langgenius/openai/openai'].includes(provider.provider) && modelName?.startsWith('o'))
return <div className='flex items-center justify-center'><OpenaiYellow className={cn('h-5 w-5', className)} /></div>
if (provider?.provider && ['openai', 'langgenius/openai/openai'].includes(provider.provider) && modelName?.includes('gpt-4.1'))
return <div className='flex items-center justify-center'><OpenaiTale className={cn('h-5 w-5', className)} /></div>
return <div className='flex items-center justify-center'><OpenaiTeal className={cn('h-5 w-5', className)} /></div>
if (provider?.provider && ['openai', 'langgenius/openai/openai'].includes(provider.provider) && modelName?.includes('gpt-4o'))
return <div className='flex items-center justify-center'><OpenaiBlue className={cn('h-5 w-5', className)} /></div>
if (provider?.provider && ['openai', 'langgenius/openai/openai'].includes(provider.provider) && modelName?.startsWith('gpt-4'))

View File

@ -83,7 +83,12 @@ const InstallByDSLList: FC<Props> = ({
useEffect(() => {
if (!isFetchingMarketplaceDataById && infoGetById?.data.plugins) {
const payloads = infoGetById?.data.plugins
const sortedList = allPlugins.filter(d => d.type === 'marketplace').map((d) => {
const p = d as GitHubItemAndMarketPlaceDependency
const id = p.value.marketplace_plugin_unique_identifier?.split(':')[0]
return infoGetById.data.plugins.find(item => item.plugin_id === id)!
})
const payloads = sortedList
const failedIndex: number[] = []
const nextPlugins = produce(pluginsRef.current, (draft) => {
marketPlaceInDSLIndex.forEach((index, i) => {

View File

@ -148,7 +148,7 @@ const CodeEditor: FC<Props> = ({
{isShowVarPicker && (
<div
ref={popupRef}
className='w-[228px] space-y-1 rounded-lg border border-gray-200 bg-white p-1 shadow-lg'
className='w-[228px] space-y-1 rounded-lg border border-components-panel-border bg-components-panel-bg p-1 shadow-lg'
style={{
position: 'fixed',
top: popupPosition.y,

View File

@ -43,7 +43,7 @@ const VarReferencePicker: FC<Props> = ({
offset={4}
>
<PortalToFollowElemTrigger onClick={() => setOpen(!open)} className='w-[120px] cursor-pointer'>
<div className='flex h-8 items-center justify-between rounded-lg border-0 bg-components-button-secondary-bg px-2.5 text-[13px] text-text-primary'>
<div className='flex h-8 items-center justify-between rounded-lg border-0 bg-components-input-bg-normal px-2.5 text-[13px] text-text-primary'>
<div className='w-0 grow truncate capitalize' title={value}>{value}</div>
<RiArrowDownSLine className='h-3.5 w-3.5 shrink-0 text-text-secondary' />
</div>

View File

@ -3,7 +3,7 @@ import { useTranslation } from 'react-i18next'
import ConditionValueMethod from './condition-value-method'
import type { ConditionValueMethodProps } from './condition-value-method'
import ConditionVariableSelector from './condition-variable-selector'
import ConditionCommonVariableSelector from './condition-common-variable-selector.tsx'
import ConditionCommonVariableSelector from './condition-common-variable-selector'
import type {
Node,
NodeOutPutVar,

View File

@ -3,7 +3,7 @@ import { useTranslation } from 'react-i18next'
import ConditionValueMethod from './condition-value-method'
import type { ConditionValueMethodProps } from './condition-value-method'
import ConditionVariableSelector from './condition-variable-selector'
import ConditionCommonVariableSelector from './condition-common-variable-selector.tsx'
import ConditionCommonVariableSelector from './condition-common-variable-selector'
import type {
Node,
NodeOutPutVar,