mirror of https://github.com/langgenius/dify.git
feat: enhance OceanBase vector database with SQL injection fixes, unified processing, and improved error handling (#28951)
This commit is contained in:
parent
861098714b
commit
0af8a7b958
|
|
@ -58,11 +58,39 @@ class OceanBaseVector(BaseVector):
|
|||
password=self._config.password,
|
||||
db_name=self._config.database,
|
||||
)
|
||||
self._fields: list[str] = [] # List of fields in the collection
|
||||
if self._client.check_table_exists(collection_name):
|
||||
self._load_collection_fields()
|
||||
self._hybrid_search_enabled = self._check_hybrid_search_support() # Check if hybrid search is supported
|
||||
|
||||
def get_type(self) -> str:
|
||||
return VectorType.OCEANBASE
|
||||
|
||||
def _load_collection_fields(self):
|
||||
"""
|
||||
Load collection fields from the database table.
|
||||
This method populates the _fields list with column names from the table.
|
||||
"""
|
||||
try:
|
||||
if self._collection_name in self._client.metadata_obj.tables:
|
||||
table = self._client.metadata_obj.tables[self._collection_name]
|
||||
# Store all column names except 'id' (primary key)
|
||||
self._fields = [column.name for column in table.columns if column.name != "id"]
|
||||
logger.debug("Loaded fields for collection '%s': %s", self._collection_name, self._fields)
|
||||
else:
|
||||
logger.warning("Collection '%s' not found in metadata", self._collection_name)
|
||||
except Exception as e:
|
||||
logger.warning("Failed to load collection fields for '%s': %s", self._collection_name, str(e))
|
||||
|
||||
def field_exists(self, field: str) -> bool:
|
||||
"""
|
||||
Check if a field exists in the collection.
|
||||
|
||||
:param field: Field name to check
|
||||
:return: True if field exists, False otherwise
|
||||
"""
|
||||
return field in self._fields
|
||||
|
||||
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
|
||||
self._vec_dim = len(embeddings[0])
|
||||
self._create_collection()
|
||||
|
|
@ -151,6 +179,7 @@ class OceanBaseVector(BaseVector):
|
|||
logger.debug("DEBUG: Hybrid search is NOT enabled for '%s'", self._collection_name)
|
||||
|
||||
self._client.refresh_metadata([self._collection_name])
|
||||
self._load_collection_fields()
|
||||
redis_client.set(collection_exist_cache_key, 1, ex=3600)
|
||||
|
||||
def _check_hybrid_search_support(self) -> bool:
|
||||
|
|
@ -177,42 +206,134 @@ class OceanBaseVector(BaseVector):
|
|||
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
|
||||
ids = self._get_uuids(documents)
|
||||
for id, doc, emb in zip(ids, documents, embeddings):
|
||||
self._client.insert(
|
||||
table_name=self._collection_name,
|
||||
data={
|
||||
"id": id,
|
||||
"vector": emb,
|
||||
"text": doc.page_content,
|
||||
"metadata": doc.metadata,
|
||||
},
|
||||
)
|
||||
try:
|
||||
self._client.insert(
|
||||
table_name=self._collection_name,
|
||||
data={
|
||||
"id": id,
|
||||
"vector": emb,
|
||||
"text": doc.page_content,
|
||||
"metadata": doc.metadata,
|
||||
},
|
||||
)
|
||||
except Exception as e:
|
||||
logger.exception(
|
||||
"Failed to insert document with id '%s' in collection '%s'",
|
||||
id,
|
||||
self._collection_name,
|
||||
)
|
||||
raise Exception(f"Failed to insert document with id '{id}'") from e
|
||||
|
||||
def text_exists(self, id: str) -> bool:
|
||||
cur = self._client.get(table_name=self._collection_name, ids=id)
|
||||
return bool(cur.rowcount != 0)
|
||||
try:
|
||||
cur = self._client.get(table_name=self._collection_name, ids=id)
|
||||
return bool(cur.rowcount != 0)
|
||||
except Exception as e:
|
||||
logger.exception(
|
||||
"Failed to check if text exists with id '%s' in collection '%s'",
|
||||
id,
|
||||
self._collection_name,
|
||||
)
|
||||
raise Exception(f"Failed to check text existence for id '{id}'") from e
|
||||
|
||||
def delete_by_ids(self, ids: list[str]):
|
||||
if not ids:
|
||||
return
|
||||
self._client.delete(table_name=self._collection_name, ids=ids)
|
||||
try:
|
||||
self._client.delete(table_name=self._collection_name, ids=ids)
|
||||
logger.debug("Deleted %d documents from collection '%s'", len(ids), self._collection_name)
|
||||
except Exception as e:
|
||||
logger.exception(
|
||||
"Failed to delete %d documents from collection '%s'",
|
||||
len(ids),
|
||||
self._collection_name,
|
||||
)
|
||||
raise Exception(f"Failed to delete documents from collection '{self._collection_name}'") from e
|
||||
|
||||
def get_ids_by_metadata_field(self, key: str, value: str) -> list[str]:
|
||||
from sqlalchemy import text
|
||||
try:
|
||||
import re
|
||||
|
||||
cur = self._client.get(
|
||||
table_name=self._collection_name,
|
||||
ids=None,
|
||||
where_clause=[text(f"metadata->>'$.{key}' = '{value}'")],
|
||||
output_column_name=["id"],
|
||||
)
|
||||
return [row[0] for row in cur]
|
||||
from sqlalchemy import text
|
||||
|
||||
# Validate key to prevent injection in JSON path
|
||||
if not re.match(r"^[a-zA-Z0-9_.]+$", key):
|
||||
raise ValueError(f"Invalid characters in metadata key: {key}")
|
||||
|
||||
# Use parameterized query to prevent SQL injection
|
||||
sql = text(f"SELECT id FROM `{self._collection_name}` WHERE metadata->>'$.{key}' = :value")
|
||||
|
||||
with self._client.engine.connect() as conn:
|
||||
result = conn.execute(sql, {"value": value})
|
||||
ids = [row[0] for row in result]
|
||||
|
||||
logger.debug(
|
||||
"Found %d documents with metadata field '%s'='%s' in collection '%s'",
|
||||
len(ids),
|
||||
key,
|
||||
value,
|
||||
self._collection_name,
|
||||
)
|
||||
return ids
|
||||
except Exception as e:
|
||||
logger.exception(
|
||||
"Failed to get IDs by metadata field '%s'='%s' in collection '%s'",
|
||||
key,
|
||||
value,
|
||||
self._collection_name,
|
||||
)
|
||||
raise Exception(f"Failed to query documents by metadata field '{key}'") from e
|
||||
|
||||
def delete_by_metadata_field(self, key: str, value: str):
|
||||
ids = self.get_ids_by_metadata_field(key, value)
|
||||
self.delete_by_ids(ids)
|
||||
if ids:
|
||||
self.delete_by_ids(ids)
|
||||
else:
|
||||
logger.debug("No documents found to delete with metadata field '%s'='%s'", key, value)
|
||||
|
||||
def _process_search_results(
|
||||
self, results: list[tuple], score_threshold: float = 0.0, score_key: str = "score"
|
||||
) -> list[Document]:
|
||||
"""
|
||||
Common method to process search results
|
||||
|
||||
:param results: Search results as list of tuples (text, metadata, score)
|
||||
:param score_threshold: Score threshold for filtering
|
||||
:param score_key: Key name for score in metadata
|
||||
:return: List of documents
|
||||
"""
|
||||
docs = []
|
||||
for row in results:
|
||||
text, metadata_str, score = row[0], row[1], row[2]
|
||||
|
||||
# Parse metadata JSON
|
||||
try:
|
||||
metadata = json.loads(metadata_str) if isinstance(metadata_str, str) else metadata_str
|
||||
except json.JSONDecodeError:
|
||||
logger.warning("Invalid JSON metadata: %s", metadata_str)
|
||||
metadata = {}
|
||||
|
||||
# Add score to metadata
|
||||
metadata[score_key] = score
|
||||
|
||||
# Filter by score threshold
|
||||
if score >= score_threshold:
|
||||
docs.append(Document(page_content=text, metadata=metadata))
|
||||
|
||||
return docs
|
||||
|
||||
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
|
||||
if not self._hybrid_search_enabled:
|
||||
logger.warning(
|
||||
"Full-text search is disabled: set OCEANBASE_ENABLE_HYBRID_SEARCH=true (requires OceanBase >= 4.3.5.1)."
|
||||
)
|
||||
return []
|
||||
if not self.field_exists("text"):
|
||||
logger.warning(
|
||||
"Full-text search unavailable: collection '%s' missing 'text' field; "
|
||||
"recreate the collection after enabling OCEANBASE_ENABLE_HYBRID_SEARCH to add fulltext index.",
|
||||
self._collection_name,
|
||||
)
|
||||
return []
|
||||
|
||||
try:
|
||||
|
|
@ -220,13 +341,24 @@ class OceanBaseVector(BaseVector):
|
|||
if not isinstance(top_k, int) or top_k <= 0:
|
||||
raise ValueError("top_k must be a positive integer")
|
||||
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
where_clause = ""
|
||||
if document_ids_filter:
|
||||
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
where_clause = f" AND metadata->>'$.document_id' IN ({document_ids})"
|
||||
score_threshold = float(kwargs.get("score_threshold") or 0.0)
|
||||
|
||||
full_sql = f"""SELECT metadata, text, MATCH (text) AGAINST (:query) AS score
|
||||
# Build parameterized query to prevent SQL injection
|
||||
from sqlalchemy import text
|
||||
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
params = {"query": query}
|
||||
where_clause = ""
|
||||
|
||||
if document_ids_filter:
|
||||
# Create parameterized placeholders for document IDs
|
||||
placeholders = ", ".join(f":doc_id_{i}" for i in range(len(document_ids_filter)))
|
||||
where_clause = f" AND metadata->>'$.document_id' IN ({placeholders})"
|
||||
# Add document IDs to parameters
|
||||
for i, doc_id in enumerate(document_ids_filter):
|
||||
params[f"doc_id_{i}"] = doc_id
|
||||
|
||||
full_sql = f"""SELECT text, metadata, MATCH (text) AGAINST (:query) AS score
|
||||
FROM {self._collection_name}
|
||||
WHERE MATCH (text) AGAINST (:query) > 0
|
||||
{where_clause}
|
||||
|
|
@ -235,35 +367,35 @@ class OceanBaseVector(BaseVector):
|
|||
|
||||
with self._client.engine.connect() as conn:
|
||||
with conn.begin():
|
||||
from sqlalchemy import text
|
||||
|
||||
result = conn.execute(text(full_sql), {"query": query})
|
||||
result = conn.execute(text(full_sql), params)
|
||||
rows = result.fetchall()
|
||||
|
||||
docs = []
|
||||
for row in rows:
|
||||
metadata_str, _text, score = row
|
||||
try:
|
||||
metadata = json.loads(metadata_str)
|
||||
except json.JSONDecodeError:
|
||||
logger.warning("Invalid JSON metadata: %s", metadata_str)
|
||||
metadata = {}
|
||||
metadata["score"] = score
|
||||
docs.append(Document(page_content=_text, metadata=metadata))
|
||||
|
||||
return docs
|
||||
return self._process_search_results(rows, score_threshold=score_threshold)
|
||||
except Exception as e:
|
||||
logger.warning("Failed to fulltext search: %s.", str(e))
|
||||
return []
|
||||
logger.exception(
|
||||
"Failed to perform full-text search on collection '%s' with query '%s'",
|
||||
self._collection_name,
|
||||
query,
|
||||
)
|
||||
raise Exception(f"Full-text search failed for collection '{self._collection_name}'") from e
|
||||
|
||||
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
|
||||
from sqlalchemy import text
|
||||
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
_where_clause = None
|
||||
if document_ids_filter:
|
||||
# Validate document IDs to prevent SQL injection
|
||||
# Document IDs should be alphanumeric with hyphens and underscores
|
||||
import re
|
||||
|
||||
for doc_id in document_ids_filter:
|
||||
if not isinstance(doc_id, str) or not re.match(r"^[a-zA-Z0-9_-]+$", doc_id):
|
||||
raise ValueError(f"Invalid document ID format: {doc_id}")
|
||||
|
||||
# Safe to use in query after validation
|
||||
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
where_clause = f"metadata->>'$.document_id' in ({document_ids})"
|
||||
from sqlalchemy import text
|
||||
|
||||
_where_clause = [text(where_clause)]
|
||||
ef_search = kwargs.get("ef_search", self._hnsw_ef_search)
|
||||
if ef_search != self._hnsw_ef_search:
|
||||
|
|
@ -286,27 +418,27 @@ class OceanBaseVector(BaseVector):
|
|||
where_clause=_where_clause,
|
||||
)
|
||||
except Exception as e:
|
||||
raise Exception("Failed to search by vector. ", e)
|
||||
docs = []
|
||||
for _text, metadata, distance in cur:
|
||||
logger.exception(
|
||||
"Failed to perform vector search on collection '%s'",
|
||||
self._collection_name,
|
||||
)
|
||||
raise Exception(f"Vector search failed for collection '{self._collection_name}'") from e
|
||||
|
||||
# Convert distance to score and prepare results for processing
|
||||
results = []
|
||||
for _text, metadata_str, distance in cur:
|
||||
score = 1 - distance / math.sqrt(2)
|
||||
if score >= score_threshold:
|
||||
try:
|
||||
metadata = json.loads(metadata)
|
||||
except json.JSONDecodeError:
|
||||
logger.warning("Invalid JSON metadata: %s", metadata)
|
||||
metadata = {}
|
||||
metadata["score"] = score
|
||||
docs.append(
|
||||
Document(
|
||||
page_content=_text,
|
||||
metadata=metadata,
|
||||
)
|
||||
)
|
||||
return docs
|
||||
results.append((_text, metadata_str, score))
|
||||
|
||||
return self._process_search_results(results, score_threshold=score_threshold)
|
||||
|
||||
def delete(self):
|
||||
self._client.drop_table_if_exist(self._collection_name)
|
||||
try:
|
||||
self._client.drop_table_if_exist(self._collection_name)
|
||||
logger.debug("Dropped collection '%s'", self._collection_name)
|
||||
except Exception as e:
|
||||
logger.exception("Failed to delete collection '%s'", self._collection_name)
|
||||
raise Exception(f"Failed to delete collection '{self._collection_name}'") from e
|
||||
|
||||
|
||||
class OceanBaseVectorFactory(AbstractVectorFactory):
|
||||
|
|
|
|||
Loading…
Reference in New Issue