Merge branch 'plugins/beta' into dev/plugin-deploy

This commit is contained in:
Yeuoly 2025-02-06 18:30:49 +08:00
commit 1097bf314a
368 changed files with 5095 additions and 3430 deletions

View File

@ -8,7 +8,7 @@ inputs:
poetry-version:
description: Poetry version to set up
required: true
default: '1.8.4'
default: '2.0.1'
poetry-lockfile:
description: Path to the Poetry lockfile to restore cache from
required: true

View File

@ -43,19 +43,17 @@ jobs:
run: poetry install -C api --with dev
- name: Check dependencies in pyproject.toml
run: poetry run -C api bash dev/pytest/pytest_artifacts.sh
run: poetry run -P api bash dev/pytest/pytest_artifacts.sh
- name: Run Unit tests
run: poetry run -C api bash dev/pytest/pytest_unit_tests.sh
run: poetry run -P api bash dev/pytest/pytest_unit_tests.sh
- name: Run dify config tests
run: poetry run -C api python dev/pytest/pytest_config_tests.py
run: poetry run -P api python dev/pytest/pytest_config_tests.py
- name: Run mypy
run: |
pushd api
poetry run python -m mypy --install-types --non-interactive .
popd
poetry run -C api python -m mypy --install-types --non-interactive .
- name: Set up dotenvs
run: |
@ -75,4 +73,4 @@ jobs:
ssrf_proxy
- name: Run Workflow
run: poetry run -C api bash dev/pytest/pytest_workflow.sh
run: poetry run -P api bash dev/pytest/pytest_workflow.sh

View File

@ -39,12 +39,12 @@ jobs:
if: steps.changed-files.outputs.any_changed == 'true'
run: |
poetry run -C api ruff --version
poetry run -C api ruff check ./api
poetry run -C api ruff format --check ./api
poetry run -C api ruff check ./
poetry run -C api ruff format --check ./
- name: Dotenv check
if: steps.changed-files.outputs.any_changed == 'true'
run: poetry run -C api dotenv-linter ./api/.env.example ./web/.env.example
run: poetry run -P api dotenv-linter ./api/.env.example ./web/.env.example
- name: Lint hints
if: failure()
@ -87,7 +87,35 @@ jobs:
- name: Web style check
if: steps.changed-files.outputs.any_changed == 'true'
run: echo "${{ steps.changed-files.outputs.all_changed_files }}" | sed 's|web/||g' | xargs pnpm eslint # wait for next lint support eslint v9
run: yarn run lint
docker-compose-template:
name: Docker Compose Template
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Check changed files
id: changed-files
uses: tj-actions/changed-files@v45
with:
files: |
docker/generate_docker_compose
docker/.env.example
docker/docker-compose-template.yaml
docker/docker-compose.yaml
- name: Generate Docker Compose
if: steps.changed-files.outputs.any_changed == 'true'
run: |
cd docker
./generate_docker_compose
- name: Check for changes
if: steps.changed-files.outputs.any_changed == 'true'
run: git diff --exit-code
docker-compose-template:

View File

@ -70,4 +70,4 @@ jobs:
tidb
- name: Test Vector Stores
run: poetry run -C api bash dev/pytest/pytest_vdb.sh
run: poetry run -P api bash dev/pytest/pytest_vdb.sh

3
.gitignore vendored
View File

@ -197,3 +197,6 @@ api/.vscode
# pnpm
/.pnpm-store
# plugin migrate
plugins.jsonl

View File

@ -422,8 +422,7 @@ POSITION_PROVIDER_INCLUDES=
POSITION_PROVIDER_EXCLUDES=
# Plugin configuration
PLUGIN_API_KEY=lYkiYYT6owG+71oLerGzA7GXCgOT++6ovaezWAjpCjf+Sjc3ZtU+qUEi
PLUGIN_API_URL=http://127.0.0.1:5002
PLUGIN_DAEMON_KEY=lYkiYYT6owG+71oLerGzA7GXCgOT++6ovaezWAjpCjf+Sjc3ZtU+qUEi
PLUGIN_DAEMON_URL=http://127.0.0.1:5002
PLUGIN_REMOTE_INSTALL_PORT=5003
PLUGIN_REMOTE_INSTALL_HOST=localhost
@ -436,7 +435,7 @@ MARKETPLACE_ENABLED=true
MARKETPLACE_API_URL=https://marketplace.dify.ai
# Endpoint configuration
ENDPOINT_URL_TEMPLATE=http://localhost/e/{hook_id}
ENDPOINT_URL_TEMPLATE=http://localhost:5002/e/{hook_id}
# Reset password token expiry minutes
RESET_PASSWORD_TOKEN_EXPIRY_MINUTES=5

View File

@ -53,10 +53,12 @@ ignore = [
"FURB152", # math-constant
"UP007", # non-pep604-annotation
"UP032", # f-string
"UP045", # non-pep604-annotation-optional
"B005", # strip-with-multi-characters
"B006", # mutable-argument-default
"B007", # unused-loop-control-variable
"B026", # star-arg-unpacking-after-keyword-arg
"B903", # class-as-data-structure
"B904", # raise-without-from-inside-except
"B905", # zip-without-explicit-strict
"N806", # non-lowercase-variable-in-function

View File

@ -4,7 +4,7 @@ FROM python:3.12-slim-bookworm AS base
WORKDIR /app/api
# Install Poetry
ENV POETRY_VERSION=1.8.4
ENV POETRY_VERSION=2.0.1
# if you located in China, you can use aliyun mirror to speed up
# RUN pip install --no-cache-dir poetry==${POETRY_VERSION} -i https://mirrors.aliyun.com/pypi/simple/
@ -55,6 +55,7 @@ RUN apt-get update \
&& echo "deb http://deb.debian.org/debian testing main" > /etc/apt/sources.list \
&& apt-get update \
# For Security
# && apt-get install -y --no-install-recommends expat=2.6.4-1 libldap-2.5-0=2.5.19+dfsg-1 perl=5.40.0-8 libsqlite3-0=3.46.1-1 zlib1g=1:1.3.dfsg+really1.3.1-1+b1 \
# install a chinese font to support the use of tools like matplotlib
&& apt-get install -y fonts-noto-cjk \
&& apt-get autoremove -y \

View File

@ -79,5 +79,5 @@
2. Run the tests locally with mocked system environment variables in `tool.pytest_env` section in `pyproject.toml`
```bash
poetry run -C api bash dev/pytest/pytest_all_tests.sh
poetry run -P api bash dev/pytest/pytest_all_tests.sh
```

View File

@ -141,10 +141,10 @@ class PluginConfig(BaseSettings):
PLUGIN_DAEMON_URL: HttpUrl = Field(
description="Plugin API URL",
default="http://plugin:5002",
default="http://localhost:5002",
)
PLUGIN_API_KEY: str = Field(
PLUGIN_DAEMON_KEY: str = Field(
description="Plugin API key",
default="plugin-api-key",
)
@ -200,7 +200,7 @@ class EndpointConfig(BaseSettings):
)
CONSOLE_WEB_URL: str = Field(
description="Base URL for the console web interface," "used for frontend references and CORS configuration",
description="Base URL for the console web interface,used for frontend references and CORS configuration",
default="",
)

View File

@ -181,7 +181,7 @@ class HostedFetchAppTemplateConfig(BaseSettings):
"""
HOSTED_FETCH_APP_TEMPLATES_MODE: str = Field(
description="Mode for fetching app templates: remote, db, or builtin" " default to remote,",
description="Mode for fetching app templates: remote, db, or builtin default to remote,",
default="remote",
)

View File

@ -59,7 +59,7 @@ class InsertExploreAppListApi(Resource):
with Session(db.engine) as session:
app = session.execute(select(App).filter(App.id == args["app_id"])).scalar_one_or_none()
if not app:
raise NotFound(f'App \'{args["app_id"]}\' is not found')
raise NotFound(f"App '{args['app_id']}' is not found")
site = app.site
if not site:

View File

@ -22,7 +22,7 @@ from controllers.console.wraps import account_initialization_required, setup_req
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from libs.login import login_required
from models.model import AppMode
from models import App, AppMode
from services.audio_service import AudioService
from services.errors.audio import (
AudioTooLargeServiceError,
@ -79,7 +79,7 @@ class ChatMessageTextApi(Resource):
@login_required
@account_initialization_required
@get_app_model
def post(self, app_model):
def post(self, app_model: App):
from werkzeug.exceptions import InternalServerError
try:
@ -98,9 +98,13 @@ class ChatMessageTextApi(Resource):
and app_model.workflow.features_dict
):
text_to_speech = app_model.workflow.features_dict.get("text_to_speech")
if text_to_speech is None:
raise ValueError("TTS is not enabled")
voice = args.get("voice") or text_to_speech.get("voice")
else:
try:
if app_model.app_model_config is None:
raise ValueError("AppModelConfig not found")
voice = args.get("voice") or app_model.app_model_config.text_to_speech_dict.get("voice")
except Exception:
voice = None

View File

@ -135,7 +135,7 @@ class DataSourceNotionListApi(Resource):
data_source_info = json.loads(document.data_source_info)
exist_page_ids.append(data_source_info["notion_page_id"])
# get all authorized pages
data_source_bindings = session.execute(
data_source_bindings = session.scalars(
select(DataSourceOauthBinding).filter_by(
tenant_id=current_user.current_tenant_id, provider="notion", disabled=False
)

View File

@ -52,12 +52,12 @@ class DatasetListApi(Resource):
# provider = request.args.get("provider", default="vendor")
search = request.args.get("keyword", default=None, type=str)
tag_ids = request.args.getlist("tag_ids")
include_all = request.args.get("include_all", default="false").lower() == "true"
if ids:
datasets, total = DatasetService.get_datasets_by_ids(ids, current_user.current_tenant_id)
else:
datasets, total = DatasetService.get_datasets(
page, limit, current_user.current_tenant_id, current_user, search, tag_ids
page, limit, current_user.current_tenant_id, current_user, search, tag_ids, include_all
)
# check embedding setting
@ -457,7 +457,7 @@ class DatasetIndexingEstimateApi(Resource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider " "in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -619,8 +619,7 @@ class DatasetRetrievalSettingApi(Resource):
vector_type = dify_config.VECTOR_STORE
match vector_type:
case (
VectorType.MILVUS
| VectorType.RELYT
VectorType.RELYT
| VectorType.PGVECTOR
| VectorType.TIDB_VECTOR
| VectorType.CHROMA
@ -645,6 +644,7 @@ class DatasetRetrievalSettingApi(Resource):
| VectorType.TIDB_ON_QDRANT
| VectorType.LINDORM
| VectorType.COUCHBASE
| VectorType.MILVUS
):
return {
"retrieval_method": [

View File

@ -362,8 +362,7 @@ class DatasetInitApi(Resource):
)
except InvokeAuthorizationError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -540,8 +539,7 @@ class DocumentBatchIndexingEstimateApi(DocumentResource):
return response.model_dump(), 200
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)

View File

@ -168,8 +168,7 @@ class DatasetDocumentSegmentApi(Resource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -217,8 +216,7 @@ class DatasetDocumentSegmentAddApi(Resource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -267,8 +265,7 @@ class DatasetDocumentSegmentUpdateApi(Resource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -368,9 +365,9 @@ class DatasetDocumentSegmentBatchImportApi(Resource):
result = []
for index, row in df.iterrows():
if document.doc_form == "qa_model":
data = {"content": row[0], "answer": row[1]}
data = {"content": row.iloc[0], "answer": row.iloc[1]}
else:
data = {"content": row[0]}
data = {"content": row.iloc[0]}
result.append(data)
if len(result) == 0:
raise ValueError("The CSV file is empty.")
@ -437,8 +434,7 @@ class ChildChunkAddApi(Resource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)

View File

@ -32,7 +32,7 @@ class ConversationListApi(InstalledAppResource):
pinned = None
if "pinned" in args and args["pinned"] is not None:
pinned = True if args["pinned"] == "true" else False
pinned = args["pinned"] == "true"
try:
with Session(db.engine) as session:

View File

@ -65,7 +65,7 @@ def enterprise_inner_api_user_auth(view):
def plugin_inner_api_only(view):
@wraps(view)
def decorated(*args, **kwargs):
if not dify_config.PLUGIN_API_KEY:
if not dify_config.PLUGIN_DAEMON_KEY:
abort(404)
# get header 'X-Inner-Api-Key'

View File

@ -7,4 +7,4 @@ api = ExternalApi(bp)
from . import index
from .app import app, audio, completion, conversation, file, message, workflow
from .dataset import dataset, document, hit_testing, segment
from .dataset import dataset, document, hit_testing, segment, upload_file

View File

@ -31,8 +31,11 @@ class DatasetListApi(DatasetApiResource):
# provider = request.args.get("provider", default="vendor")
search = request.args.get("keyword", default=None, type=str)
tag_ids = request.args.getlist("tag_ids")
include_all = request.args.get("include_all", default="false").lower() == "true"
datasets, total = DatasetService.get_datasets(page, limit, tenant_id, current_user, search, tag_ids)
datasets, total = DatasetService.get_datasets(
page, limit, tenant_id, current_user, search, tag_ids, include_all
)
# check embedding setting
provider_manager = ProviderManager()
configurations = provider_manager.get_configurations(tenant_id=current_user.current_tenant_id)

View File

@ -53,8 +53,7 @@ class SegmentApi(DatasetApiResource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -95,8 +94,7 @@ class SegmentApi(DatasetApiResource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -175,8 +173,7 @@ class DatasetSegmentApi(DatasetApiResource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)

View File

@ -0,0 +1,54 @@
from werkzeug.exceptions import NotFound
from controllers.service_api import api
from controllers.service_api.wraps import (
DatasetApiResource,
)
from core.file import helpers as file_helpers
from extensions.ext_database import db
from models.dataset import Dataset
from models.model import UploadFile
from services.dataset_service import DocumentService
class UploadFileApi(DatasetApiResource):
def get(self, tenant_id, dataset_id, document_id):
"""Get upload file."""
# check dataset
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
if not dataset:
raise NotFound("Dataset not found.")
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset.id, document_id)
if not document:
raise NotFound("Document not found.")
# check upload file
if document.data_source_type != "upload_file":
raise ValueError(f"Document data source type ({document.data_source_type}) is not upload_file.")
data_source_info = document.data_source_info_dict
if data_source_info and "upload_file_id" in data_source_info:
file_id = data_source_info["upload_file_id"]
upload_file = db.session.query(UploadFile).filter(UploadFile.id == file_id).first()
if not upload_file:
raise NotFound("UploadFile not found.")
else:
raise ValueError("Upload file id not found in document data source info.")
url = file_helpers.get_signed_file_url(upload_file_id=upload_file.id)
return {
"id": upload_file.id,
"name": upload_file.name,
"size": upload_file.size,
"extension": upload_file.extension,
"url": url,
"download_url": f"{url}&as_attachment=true",
"mime_type": upload_file.mime_type,
"created_by": upload_file.created_by,
"created_at": upload_file.created_at.timestamp(),
}, 200
api.add_resource(UploadFileApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/upload-file")

View File

@ -195,7 +195,11 @@ def validate_and_get_api_token(scope: str | None = None):
with Session(db.engine, expire_on_commit=False) as session:
update_stmt = (
update(ApiToken)
.where(ApiToken.token == auth_token, ApiToken.last_used_at < cutoff_time, ApiToken.type == scope)
.where(
ApiToken.token == auth_token,
(ApiToken.last_used_at.is_(None) | (ApiToken.last_used_at < cutoff_time)),
ApiToken.type == scope,
)
.values(last_used_at=current_time)
.returning(ApiToken)
)
@ -236,7 +240,7 @@ def create_or_update_end_user_for_user_id(app_model: App, user_id: Optional[str]
tenant_id=app_model.tenant_id,
app_id=app_model.id,
type="service_api",
is_anonymous=True if user_id == "DEFAULT-USER" else False,
is_anonymous=user_id == "DEFAULT-USER",
session_id=user_id,
)
db.session.add(end_user)

View File

@ -39,7 +39,7 @@ class ConversationListApi(WebApiResource):
pinned = None
if "pinned" in args and args["pinned"] is not None:
pinned = True if args["pinned"] == "true" else False
pinned = args["pinned"] == "true"
try:
with Session(db.engine) as session:

View File

@ -168,7 +168,7 @@ class CotAgentRunner(BaseAgentRunner, ABC):
self.save_agent_thought(
agent_thought=agent_thought,
tool_name=scratchpad.action.action_name if scratchpad.action else "",
tool_name=(scratchpad.action.action_name if scratchpad.action and not scratchpad.is_final() else ""),
tool_input={scratchpad.action.action_name: scratchpad.action.action_input} if scratchpad.action else {},
tool_invoke_meta={},
thought=scratchpad.thought or "",

View File

@ -167,8 +167,7 @@ class AppQueueManager:
else:
if isinstance(data, DeclarativeMeta) or hasattr(data, "_sa_instance_state"):
raise TypeError(
"Critical Error: Passing SQLAlchemy Model instances "
"that cause thread safety issues is not allowed."
"Critical Error: Passing SQLAlchemy Model instances that cause thread safety issues is not allowed."
)

View File

@ -89,6 +89,7 @@ class MessageBasedAppGenerator(BaseAppGenerator):
Conversation.id == conversation_id,
Conversation.app_id == app_model.id,
Conversation.status == "normal",
Conversation.is_deleted.is_(False),
]
if isinstance(user, Account):

View File

@ -145,7 +145,7 @@ class MessageCycleManage:
# get extension
if "." in message_file.url:
extension = f'.{message_file.url.split(".")[-1]}'
extension = f".{message_file.url.split('.')[-1]}"
if len(extension) > 10:
extension = ".bin"
else:

View File

@ -62,8 +62,9 @@ class ApiExternalDataTool(ExternalDataTool):
if not api_based_extension:
raise ValueError(
"[External data tool] API query failed, variable: {}, "
"error: api_based_extension_id is invalid".format(self.variable)
"[External data tool] API query failed, variable: {}, error: api_based_extension_id is invalid".format(
self.variable
)
)
# decrypt api_key

View File

@ -33,7 +33,7 @@ def get_signed_file_url_for_plugin(filename: str, mimetype: str, tenant_id: str,
sign = hmac.new(key, msg.encode(), hashlib.sha256).digest()
encoded_sign = base64.urlsafe_b64encode(sign).decode()
return f"{url}?timestamp={timestamp}&nonce={nonce}&sign={encoded_sign}&user_id={user_id}"
return f"{url}?timestamp={timestamp}&nonce={nonce}&sign={encoded_sign}&user_id={user_id}&tenant_id={tenant_id}"
def verify_plugin_file_signature(

View File

@ -90,7 +90,7 @@ class File(BaseModel):
def markdown(self) -> str:
url = self.generate_url()
if self.type == FileType.IMAGE:
text = f'![{self.filename or ""}]({url})'
text = f"![{self.filename or ''}]({url})"
else:
text = f"[{self.filename or url}]({url})"

View File

@ -530,7 +530,6 @@ class IndexingRunner:
# chunk nodes by chunk size
indexing_start_at = time.perf_counter()
tokens = 0
chunk_size = 10
if dataset_document.doc_form != IndexType.PARENT_CHILD_INDEX:
# create keyword index
create_keyword_thread = threading.Thread(
@ -539,11 +538,22 @@ class IndexingRunner:
)
create_keyword_thread.start()
max_workers = 10
if dataset.indexing_technique == "high_quality":
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = []
for i in range(0, len(documents), chunk_size):
chunk_documents = documents[i : i + chunk_size]
# Distribute documents into multiple groups based on the hash values of page_content
# This is done to prevent multiple threads from processing the same document,
# Thereby avoiding potential database insertion deadlocks
document_groups: list[list[Document]] = [[] for _ in range(max_workers)]
for document in documents:
hash = helper.generate_text_hash(document.page_content)
group_index = int(hash, 16) % max_workers
document_groups[group_index].append(document)
for chunk_documents in document_groups:
if len(chunk_documents) == 0:
continue
futures.append(
executor.submit(
self._process_chunk,

View File

@ -131,7 +131,7 @@ JAVASCRIPT_CODE_GENERATOR_PROMPT_TEMPLATE = (
SUGGESTED_QUESTIONS_AFTER_ANSWER_INSTRUCTION_PROMPT = (
"Please help me predict the three most likely questions that human would ask, "
"and keeping each question under 20 characters.\n"
"MAKE SURE your output is the SAME language as the Assistant's latest response"
"MAKE SURE your output is the SAME language as the Assistant's latest response. "
"The output must be an array in JSON format following the specified schema:\n"
'["question1","question2","question3"]\n'
)

View File

@ -1,6 +1,9 @@
import logging
from threading import Lock
from typing import Any
logger = logging.getLogger(__name__)
_tokenizer: Any = None
_lock = Lock()
@ -43,5 +46,6 @@ class GPT2Tokenizer:
base_path = abspath(__file__)
gpt2_tokenizer_path = join(dirname(base_path), "gpt2")
_tokenizer = TransformerGPT2Tokenizer.from_pretrained(gpt2_tokenizer_path)
logger.info("Fallback to Transformers' GPT-2 tokenizer from tiktoken")
return _tokenizer

View File

@ -1,42 +0,0 @@
model: ernie-lite-pro-128k
label:
en_US: Ernie-Lite-Pro-128K
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 128000
parameter_rules:
- name: temperature
use_template: temperature
min: 0.1
max: 1.0
default: 0.8
- name: top_p
use_template: top_p
- name: min_output_tokens
label:
en_US: "Min Output Tokens"
zh_Hans: "最小输出Token数"
use_template: max_tokens
min: 2
max: 2048
help:
zh_Hans: 指定模型最小输出token数
en_US: Specifies the lower limit on the length of generated results.
- name: max_output_tokens
label:
en_US: "Max Output Tokens"
zh_Hans: "最大输出Token数"
use_template: max_tokens
min: 2
max: 2048
default: 2048
help:
zh_Hans: 指定模型最大输出token数
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty
use_template: frequency_penalty

View File

@ -87,6 +87,6 @@ class CommonValidator:
if value.lower() not in {"true", "false"}:
raise ValueError(f"Variable {credential_form_schema.variable} should be true or false")
value = True if value.lower() == "true" else False
value = value.lower() == "true"
return value

View File

@ -6,6 +6,7 @@ from pydantic import BaseModel, ValidationInfo, field_validator
class TracingProviderEnum(Enum):
LANGFUSE = "langfuse"
LANGSMITH = "langsmith"
OPIK = "opik"
class BaseTracingConfig(BaseModel):
@ -56,5 +57,36 @@ class LangSmithConfig(BaseTracingConfig):
return v
class OpikConfig(BaseTracingConfig):
"""
Model class for Opik tracing config.
"""
api_key: str | None = None
project: str | None = None
workspace: str | None = None
url: str = "https://www.comet.com/opik/api/"
@field_validator("project")
@classmethod
def project_validator(cls, v, info: ValidationInfo):
if v is None or v == "":
v = "Default Project"
return v
@field_validator("url")
@classmethod
def url_validator(cls, v, info: ValidationInfo):
if v is None or v == "":
v = "https://www.comet.com/opik/api/"
if not v.startswith(("https://", "http://")):
raise ValueError("url must start with https:// or http://")
if not v.endswith("/api/"):
raise ValueError("url should ends with /api/")
return v
OPS_FILE_PATH = "ops_trace/"
OPS_TRACE_FAILED_KEY = "FAILED_OPS_TRACE"

View File

@ -0,0 +1,469 @@
import json
import logging
import os
import uuid
from datetime import datetime, timedelta
from typing import Optional, cast
from opik import Opik, Trace
from opik.id_helpers import uuid4_to_uuid7
from core.ops.base_trace_instance import BaseTraceInstance
from core.ops.entities.config_entity import OpikConfig
from core.ops.entities.trace_entity import (
BaseTraceInfo,
DatasetRetrievalTraceInfo,
GenerateNameTraceInfo,
MessageTraceInfo,
ModerationTraceInfo,
SuggestedQuestionTraceInfo,
ToolTraceInfo,
TraceTaskName,
WorkflowTraceInfo,
)
from extensions.ext_database import db
from models.model import EndUser, MessageFile
from models.workflow import WorkflowNodeExecution
logger = logging.getLogger(__name__)
def wrap_dict(key_name, data):
"""Make sure that the input data is a dict"""
if not isinstance(data, dict):
return {key_name: data}
return data
def wrap_metadata(metadata, **kwargs):
"""Add common metatada to all Traces and Spans"""
metadata["created_from"] = "dify"
metadata.update(kwargs)
return metadata
def prepare_opik_uuid(user_datetime: Optional[datetime], user_uuid: Optional[str]):
"""Opik needs UUIDv7 while Dify uses UUIDv4 for identifier of most
messages and objects. The type-hints of BaseTraceInfo indicates that
objects start_time and message_id could be null which means we cannot map
it to a UUIDv7. Given that we have no way to identify that object
uniquely, generate a new random one UUIDv7 in that case.
"""
if user_datetime is None:
user_datetime = datetime.now()
if user_uuid is None:
user_uuid = str(uuid.uuid4())
return uuid4_to_uuid7(user_datetime, user_uuid)
class OpikDataTrace(BaseTraceInstance):
def __init__(
self,
opik_config: OpikConfig,
):
super().__init__(opik_config)
self.opik_client = Opik(
project_name=opik_config.project,
workspace=opik_config.workspace,
host=opik_config.url,
api_key=opik_config.api_key,
)
self.project = opik_config.project
self.file_base_url = os.getenv("FILES_URL", "http://127.0.0.1:5001")
def trace(self, trace_info: BaseTraceInfo):
if isinstance(trace_info, WorkflowTraceInfo):
self.workflow_trace(trace_info)
if isinstance(trace_info, MessageTraceInfo):
self.message_trace(trace_info)
if isinstance(trace_info, ModerationTraceInfo):
self.moderation_trace(trace_info)
if isinstance(trace_info, SuggestedQuestionTraceInfo):
self.suggested_question_trace(trace_info)
if isinstance(trace_info, DatasetRetrievalTraceInfo):
self.dataset_retrieval_trace(trace_info)
if isinstance(trace_info, ToolTraceInfo):
self.tool_trace(trace_info)
if isinstance(trace_info, GenerateNameTraceInfo):
self.generate_name_trace(trace_info)
def workflow_trace(self, trace_info: WorkflowTraceInfo):
dify_trace_id = trace_info.workflow_run_id
opik_trace_id = prepare_opik_uuid(trace_info.start_time, dify_trace_id)
workflow_metadata = wrap_metadata(
trace_info.metadata, message_id=trace_info.message_id, workflow_app_log_id=trace_info.workflow_app_log_id
)
root_span_id = None
if trace_info.message_id:
dify_trace_id = trace_info.message_id
opik_trace_id = prepare_opik_uuid(trace_info.start_time, dify_trace_id)
trace_data = {
"id": opik_trace_id,
"name": TraceTaskName.MESSAGE_TRACE.value,
"start_time": trace_info.start_time,
"end_time": trace_info.end_time,
"metadata": workflow_metadata,
"input": wrap_dict("input", trace_info.workflow_run_inputs),
"output": wrap_dict("output", trace_info.workflow_run_outputs),
"tags": ["message", "workflow"],
"project_name": self.project,
}
self.add_trace(trace_data)
root_span_id = prepare_opik_uuid(trace_info.start_time, trace_info.workflow_run_id)
span_data = {
"id": root_span_id,
"parent_span_id": None,
"trace_id": opik_trace_id,
"name": TraceTaskName.WORKFLOW_TRACE.value,
"input": wrap_dict("input", trace_info.workflow_run_inputs),
"output": wrap_dict("output", trace_info.workflow_run_outputs),
"start_time": trace_info.start_time,
"end_time": trace_info.end_time,
"metadata": workflow_metadata,
"tags": ["workflow"],
"project_name": self.project,
}
self.add_span(span_data)
else:
trace_data = {
"id": opik_trace_id,
"name": TraceTaskName.MESSAGE_TRACE.value,
"start_time": trace_info.start_time,
"end_time": trace_info.end_time,
"metadata": workflow_metadata,
"input": wrap_dict("input", trace_info.workflow_run_inputs),
"output": wrap_dict("output", trace_info.workflow_run_outputs),
"tags": ["workflow"],
"project_name": self.project,
}
self.add_trace(trace_data)
# through workflow_run_id get all_nodes_execution
workflow_nodes_execution_id_records = (
db.session.query(WorkflowNodeExecution.id)
.filter(WorkflowNodeExecution.workflow_run_id == trace_info.workflow_run_id)
.all()
)
for node_execution_id_record in workflow_nodes_execution_id_records:
node_execution = (
db.session.query(
WorkflowNodeExecution.id,
WorkflowNodeExecution.tenant_id,
WorkflowNodeExecution.app_id,
WorkflowNodeExecution.title,
WorkflowNodeExecution.node_type,
WorkflowNodeExecution.status,
WorkflowNodeExecution.inputs,
WorkflowNodeExecution.outputs,
WorkflowNodeExecution.created_at,
WorkflowNodeExecution.elapsed_time,
WorkflowNodeExecution.process_data,
WorkflowNodeExecution.execution_metadata,
)
.filter(WorkflowNodeExecution.id == node_execution_id_record.id)
.first()
)
if not node_execution:
continue
node_execution_id = node_execution.id
tenant_id = node_execution.tenant_id
app_id = node_execution.app_id
node_name = node_execution.title
node_type = node_execution.node_type
status = node_execution.status
if node_type == "llm":
inputs = (
json.loads(node_execution.process_data).get("prompts", {}) if node_execution.process_data else {}
)
else:
inputs = json.loads(node_execution.inputs) if node_execution.inputs else {}
outputs = json.loads(node_execution.outputs) if node_execution.outputs else {}
created_at = node_execution.created_at or datetime.now()
elapsed_time = node_execution.elapsed_time
finished_at = created_at + timedelta(seconds=elapsed_time)
execution_metadata = (
json.loads(node_execution.execution_metadata) if node_execution.execution_metadata else {}
)
metadata = execution_metadata.copy()
metadata.update(
{
"workflow_run_id": trace_info.workflow_run_id,
"node_execution_id": node_execution_id,
"tenant_id": tenant_id,
"app_id": app_id,
"app_name": node_name,
"node_type": node_type,
"status": status,
}
)
process_data = json.loads(node_execution.process_data) if node_execution.process_data else {}
provider = None
model = None
total_tokens = 0
completion_tokens = 0
prompt_tokens = 0
if process_data and process_data.get("model_mode") == "chat":
run_type = "llm"
provider = process_data.get("model_provider", None)
model = process_data.get("model_name", "")
metadata.update(
{
"ls_provider": provider,
"ls_model_name": model,
}
)
try:
if outputs.get("usage"):
total_tokens = outputs["usage"].get("total_tokens", 0)
prompt_tokens = outputs["usage"].get("prompt_tokens", 0)
completion_tokens = outputs["usage"].get("completion_tokens", 0)
except Exception:
logger.error("Failed to extract usage", exc_info=True)
else:
run_type = "tool"
parent_span_id = trace_info.workflow_app_log_id or trace_info.workflow_run_id
if not total_tokens:
total_tokens = execution_metadata.get("total_tokens", 0)
span_data = {
"trace_id": opik_trace_id,
"id": prepare_opik_uuid(created_at, node_execution_id),
"parent_span_id": prepare_opik_uuid(trace_info.start_time, parent_span_id),
"name": node_type,
"type": run_type,
"start_time": created_at,
"end_time": finished_at,
"metadata": wrap_metadata(metadata),
"input": wrap_dict("input", inputs),
"output": wrap_dict("output", outputs),
"tags": ["node_execution"],
"project_name": self.project,
"usage": {
"total_tokens": total_tokens,
"completion_tokens": completion_tokens,
"prompt_tokens": prompt_tokens,
},
"model": model,
"provider": provider,
}
self.add_span(span_data)
def message_trace(self, trace_info: MessageTraceInfo):
# get message file data
file_list = cast(list[str], trace_info.file_list) or []
message_file_data: Optional[MessageFile] = trace_info.message_file_data
if message_file_data is not None:
file_url = f"{self.file_base_url}/{message_file_data.url}" if message_file_data else ""
file_list.append(file_url)
message_data = trace_info.message_data
if message_data is None:
return
metadata = trace_info.metadata
message_id = trace_info.message_id
user_id = message_data.from_account_id
metadata["user_id"] = user_id
metadata["file_list"] = file_list
if message_data.from_end_user_id:
end_user_data: Optional[EndUser] = (
db.session.query(EndUser).filter(EndUser.id == message_data.from_end_user_id).first()
)
if end_user_data is not None:
end_user_id = end_user_data.session_id
metadata["end_user_id"] = end_user_id
trace_data = {
"id": prepare_opik_uuid(trace_info.start_time, message_id),
"name": TraceTaskName.MESSAGE_TRACE.value,
"start_time": trace_info.start_time,
"end_time": trace_info.end_time,
"metadata": wrap_metadata(metadata),
"input": trace_info.inputs,
"output": message_data.answer,
"tags": ["message", str(trace_info.conversation_mode)],
"project_name": self.project,
}
trace = self.add_trace(trace_data)
span_data = {
"trace_id": trace.id,
"name": "llm",
"type": "llm",
"start_time": trace_info.start_time,
"end_time": trace_info.end_time,
"metadata": wrap_metadata(metadata),
"input": {"input": trace_info.inputs},
"output": {"output": message_data.answer},
"tags": ["llm", str(trace_info.conversation_mode)],
"usage": {
"completion_tokens": trace_info.answer_tokens,
"prompt_tokens": trace_info.message_tokens,
"total_tokens": trace_info.total_tokens,
},
"project_name": self.project,
}
self.add_span(span_data)
def moderation_trace(self, trace_info: ModerationTraceInfo):
if trace_info.message_data is None:
return
start_time = trace_info.start_time or trace_info.message_data.created_at
span_data = {
"trace_id": prepare_opik_uuid(start_time, trace_info.message_id),
"name": TraceTaskName.MODERATION_TRACE.value,
"type": "tool",
"start_time": start_time,
"end_time": trace_info.end_time or trace_info.message_data.updated_at,
"metadata": wrap_metadata(trace_info.metadata),
"input": wrap_dict("input", trace_info.inputs),
"output": {
"action": trace_info.action,
"flagged": trace_info.flagged,
"preset_response": trace_info.preset_response,
"inputs": trace_info.inputs,
},
"tags": ["moderation"],
}
self.add_span(span_data)
def suggested_question_trace(self, trace_info: SuggestedQuestionTraceInfo):
message_data = trace_info.message_data
if message_data is None:
return
start_time = trace_info.start_time or message_data.created_at
span_data = {
"trace_id": prepare_opik_uuid(start_time, trace_info.message_id),
"name": TraceTaskName.SUGGESTED_QUESTION_TRACE.value,
"type": "tool",
"start_time": start_time,
"end_time": trace_info.end_time or message_data.updated_at,
"metadata": wrap_metadata(trace_info.metadata),
"input": wrap_dict("input", trace_info.inputs),
"output": wrap_dict("output", trace_info.suggested_question),
"tags": ["suggested_question"],
}
self.add_span(span_data)
def dataset_retrieval_trace(self, trace_info: DatasetRetrievalTraceInfo):
if trace_info.message_data is None:
return
start_time = trace_info.start_time or trace_info.message_data.created_at
span_data = {
"trace_id": prepare_opik_uuid(start_time, trace_info.message_id),
"name": TraceTaskName.DATASET_RETRIEVAL_TRACE.value,
"type": "tool",
"start_time": start_time,
"end_time": trace_info.end_time or trace_info.message_data.updated_at,
"metadata": wrap_metadata(trace_info.metadata),
"input": wrap_dict("input", trace_info.inputs),
"output": {"documents": trace_info.documents},
"tags": ["dataset_retrieval"],
}
self.add_span(span_data)
def tool_trace(self, trace_info: ToolTraceInfo):
span_data = {
"trace_id": prepare_opik_uuid(trace_info.start_time, trace_info.message_id),
"name": trace_info.tool_name,
"type": "tool",
"start_time": trace_info.start_time,
"end_time": trace_info.end_time,
"metadata": wrap_metadata(trace_info.metadata),
"input": wrap_dict("input", trace_info.tool_inputs),
"output": wrap_dict("output", trace_info.tool_outputs),
"tags": ["tool", trace_info.tool_name],
}
self.add_span(span_data)
def generate_name_trace(self, trace_info: GenerateNameTraceInfo):
trace_data = {
"id": prepare_opik_uuid(trace_info.start_time, trace_info.message_id),
"name": TraceTaskName.GENERATE_NAME_TRACE.value,
"start_time": trace_info.start_time,
"end_time": trace_info.end_time,
"metadata": wrap_metadata(trace_info.metadata),
"input": trace_info.inputs,
"output": trace_info.outputs,
"tags": ["generate_name"],
"project_name": self.project,
}
trace = self.add_trace(trace_data)
span_data = {
"trace_id": trace.id,
"name": TraceTaskName.GENERATE_NAME_TRACE.value,
"start_time": trace_info.start_time,
"end_time": trace_info.end_time,
"metadata": wrap_metadata(trace_info.metadata),
"input": wrap_dict("input", trace_info.inputs),
"output": wrap_dict("output", trace_info.outputs),
"tags": ["generate_name"],
}
self.add_span(span_data)
def add_trace(self, opik_trace_data: dict) -> Trace:
try:
trace = self.opik_client.trace(**opik_trace_data)
logger.debug("Opik Trace created successfully")
return trace
except Exception as e:
raise ValueError(f"Opik Failed to create trace: {str(e)}")
def add_span(self, opik_span_data: dict):
try:
self.opik_client.span(**opik_span_data)
logger.debug("Opik Span created successfully")
except Exception as e:
raise ValueError(f"Opik Failed to create span: {str(e)}")
def api_check(self):
try:
self.opik_client.auth_check()
return True
except Exception as e:
logger.info(f"Opik API check failed: {str(e)}", exc_info=True)
raise ValueError(f"Opik API check failed: {str(e)}")
def get_project_url(self):
try:
return self.opik_client.get_project_url(project_name=self.project)
except Exception as e:
logger.info(f"Opik get run url failed: {str(e)}", exc_info=True)
raise ValueError(f"Opik get run url failed: {str(e)}")

View File

@ -17,6 +17,7 @@ from core.ops.entities.config_entity import (
OPS_FILE_PATH,
LangfuseConfig,
LangSmithConfig,
OpikConfig,
TracingProviderEnum,
)
from core.ops.entities.trace_entity import (
@ -32,6 +33,7 @@ from core.ops.entities.trace_entity import (
)
from core.ops.langfuse_trace.langfuse_trace import LangFuseDataTrace
from core.ops.langsmith_trace.langsmith_trace import LangSmithDataTrace
from core.ops.opik_trace.opik_trace import OpikDataTrace
from core.ops.utils import get_message_data
from extensions.ext_database import db
from extensions.ext_storage import storage
@ -52,6 +54,12 @@ provider_config_map: dict[str, dict[str, Any]] = {
"other_keys": ["project", "endpoint"],
"trace_instance": LangSmithDataTrace,
},
TracingProviderEnum.OPIK.value: {
"config_class": OpikConfig,
"secret_keys": ["api_key"],
"other_keys": ["project", "url", "workspace"],
"trace_instance": OpikDataTrace,
},
}

View File

@ -30,7 +30,7 @@ from core.plugin.manager.exc import (
)
plugin_daemon_inner_api_baseurl = dify_config.PLUGIN_DAEMON_URL
plugin_daemon_inner_api_key = dify_config.PLUGIN_API_KEY
plugin_daemon_inner_api_key = dify_config.PLUGIN_DAEMON_KEY
T = TypeVar("T", bound=(BaseModel | dict | list | bool | str))

View File

@ -48,8 +48,10 @@ class PluginToolManager(BasePluginManager):
tool_provider_id = GenericProviderID(provider)
def transformer(json_response: dict[str, Any]) -> dict:
for tool in json_response.get("data", {}).get("declaration", {}).get("tools", []):
tool["identity"]["provider"] = tool_provider_id.provider_name
data = json_response.get("data")
if data:
for tool in data.get("declaration", {}).get("tools", []):
tool["identity"]["provider"] = tool_provider_id.provider_name
return json_response

View File

@ -23,7 +23,12 @@ from core.helper import encrypter
from core.helper.model_provider_cache import ProviderCredentialsCache, ProviderCredentialsCacheType
from core.helper.position_helper import is_filtered
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.entities.provider_entities import CredentialFormSchema, FormType, ProviderEntity
from core.model_runtime.entities.provider_entities import (
ConfigurateMethod,
CredentialFormSchema,
FormType,
ProviderEntity,
)
from core.model_runtime.model_providers.model_provider_factory import ModelProviderFactory
from extensions import ext_hosting_provider
from extensions.ext_database import db
@ -839,11 +844,18 @@ class ProviderManager:
:return:
"""
# Get provider model credential secret variables
model_credential_secret_variables = self._extract_secret_variables(
provider_entity.model_credential_schema.credential_form_schemas
if provider_entity.model_credential_schema
else []
)
if ConfigurateMethod.PREDEFINED_MODEL in provider_entity.configurate_methods:
model_credential_secret_variables = self._extract_secret_variables(
provider_entity.provider_credential_schema.credential_form_schemas
if provider_entity.provider_credential_schema
else []
)
else:
model_credential_secret_variables = self._extract_secret_variables(
provider_entity.model_credential_schema.credential_form_schemas
if provider_entity.model_credential_schema
else []
)
model_settings: list[ModelSettings] = []
if not provider_model_settings:

View File

@ -258,7 +258,7 @@ class LindormVectorStore(BaseVector):
hnsw_ef_construction = kwargs.pop("hnsw_ef_construction", 500)
ivfpq_m = kwargs.pop("ivfpq_m", dimension)
nlist = kwargs.pop("nlist", 1000)
centroids_use_hnsw = kwargs.pop("centroids_use_hnsw", True if nlist >= 5000 else False)
centroids_use_hnsw = kwargs.pop("centroids_use_hnsw", nlist >= 5000)
centroids_hnsw_m = kwargs.pop("centroids_hnsw_m", 24)
centroids_hnsw_ef_construct = kwargs.pop("centroids_hnsw_ef_construct", 500)
centroids_hnsw_ef_search = kwargs.pop("centroids_hnsw_ef_search", 100)
@ -305,7 +305,7 @@ def default_text_mapping(dimension: int, method_name: str, **kwargs: Any) -> dic
if method_name == "ivfpq":
ivfpq_m = kwargs["ivfpq_m"]
nlist = kwargs["nlist"]
centroids_use_hnsw = True if nlist > 10000 else False
centroids_use_hnsw = nlist > 10000
centroids_hnsw_m = 24
centroids_hnsw_ef_construct = 500
centroids_hnsw_ef_search = 100

View File

@ -57,6 +57,11 @@ CREATE TABLE IF NOT EXISTS {table_name} (
) using heap;
"""
SQL_CREATE_INDEX = """
CREATE INDEX IF NOT EXISTS embedding_cosine_v1_idx ON {table_name}
USING hnsw (embedding vector_cosine_ops) WITH (m = 16, ef_construction = 64);
"""
class PGVector(BaseVector):
def __init__(self, collection_name: str, config: PGVectorConfig):
@ -205,7 +210,10 @@ class PGVector(BaseVector):
with self._get_cursor() as cur:
cur.execute("CREATE EXTENSION IF NOT EXISTS vector")
cur.execute(SQL_CREATE_TABLE.format(table_name=self.table_name, dimension=dimension))
# TODO: create index https://github.com/pgvector/pgvector?tab=readme-ov-file#indexing
# PG hnsw index only support 2000 dimension or less
# ref: https://github.com/pgvector/pgvector?tab=readme-ov-file#indexing
if dimension <= 2000:
cur.execute(SQL_CREATE_INDEX.format(table_name=self.table_name))
redis_client.set(collection_exist_cache_key, 1, ex=3600)

View File

@ -74,7 +74,7 @@ class CacheEmbedding(Embeddings):
embedding_queue_embeddings.append(normalized_embedding)
except IntegrityError:
db.session.rollback()
except Exception as e:
except Exception:
logging.exception("Failed transform embedding")
cache_embeddings = []
try:

View File

@ -31,7 +31,7 @@ class FirecrawlApp:
"markdown": data.get("markdown"),
}
else:
raise Exception(f'Failed to scrape URL. Error: {response_data["error"]}')
raise Exception(f"Failed to scrape URL. Error: {response_data['error']}")
elif response.status_code in {402, 409, 500}:
error_message = response.json().get("error", "Unknown error occurred")

View File

@ -358,8 +358,7 @@ class NotionExtractor(BaseExtractor):
if not data_source_binding:
raise Exception(
f"No notion data source binding found for tenant {tenant_id} "
f"and notion workspace {notion_workspace_id}"
f"No notion data source binding found for tenant {tenant_id} and notion workspace {notion_workspace_id}"
)
return cast(str, data_source_binding.access_token)

View File

@ -112,7 +112,7 @@ class QAIndexProcessor(BaseIndexProcessor):
df = pd.read_csv(file)
text_docs = []
for index, row in df.iterrows():
data = Document(page_content=row[0], metadata={"answer": row[1]})
data = Document(page_content=row.iloc[0], metadata={"answer": row.iloc[1]})
text_docs.append(data)
if len(text_docs) == 0:
raise ValueError("The CSV file is empty.")

View File

@ -94,9 +94,9 @@ class ApiTool(Tool):
if "api_key_header_prefix" in credentials:
api_key_header_prefix = credentials["api_key_header_prefix"]
if api_key_header_prefix == "basic" and credentials["api_key_value"]:
credentials["api_key_value"] = f'Basic {credentials["api_key_value"]}'
credentials["api_key_value"] = f"Basic {credentials['api_key_value']}"
elif api_key_header_prefix == "bearer" and credentials["api_key_value"]:
credentials["api_key_value"] = f'Bearer {credentials["api_key_value"]}'
credentials["api_key_value"] = f"Bearer {credentials['api_key_value']}"
elif api_key_header_prefix == "custom":
pass

View File

@ -48,7 +48,9 @@ class PluginToolProviderController(BuiltinToolProviderController):
"""
return tool with given name
"""
tool_entity = next(tool_entity for tool_entity in self.entity.tools if tool_entity.identity.name == tool_name)
tool_entity = next(
(tool_entity for tool_entity in self.entity.tools if tool_entity.identity.name == tool_name), None
)
if not tool_entity:
raise ValueError(f"Tool with name {tool_name} not found")

View File

@ -39,7 +39,7 @@ class ToolFileMessageTransformer:
conversation_id=conversation_id,
)
url = f'/files/tools/{file.id}{guess_extension(file.mimetype) or ".png"}'
url = f"/files/tools/{file.id}{guess_extension(file.mimetype) or '.png'}"
yield ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.IMAGE_LINK,
@ -115,4 +115,4 @@ class ToolFileMessageTransformer:
@classmethod
def get_tool_file_url(cls, tool_file_id: str, extension: Optional[str]) -> str:
return f'/files/tools/{tool_file_id}{extension or ".bin"}'
return f"/files/tools/{tool_file_id}{extension or '.bin'}"

View File

@ -5,6 +5,7 @@ from json import loads as json_loads
from json.decoder import JSONDecodeError
from typing import Optional
from flask import request
from requests import get
from yaml import YAMLError, safe_load # type: ignore
@ -29,6 +30,10 @@ class ApiBasedToolSchemaParser:
raise ToolProviderNotFoundError("No server found in the openapi yaml.")
server_url = openapi["servers"][0]["url"]
request_env = request.headers.get("X-Request-Env")
if request_env:
matched_servers = [server["url"] for server in openapi["servers"] if server["env"] == request_env]
server_url = matched_servers[0] if matched_servers else server_url
# list all interfaces
interfaces = []
@ -112,7 +117,7 @@ class ApiBasedToolSchemaParser:
llm_description=property.get("description", ""),
default=property.get("default", None),
placeholder=I18nObject(
en_US=parameter.get("description", ""), zh_Hans=parameter.get("description", "")
en_US=property.get("description", ""), zh_Hans=property.get("description", "")
),
)
@ -144,7 +149,7 @@ class ApiBasedToolSchemaParser:
if not path:
path = str(uuid.uuid4())
interface["operation"]["operationId"] = f'{path}_{interface["method"]}'
interface["operation"]["operationId"] = f"{path}_{interface['method']}"
bundles.append(
ApiToolBundle(

View File

@ -134,6 +134,10 @@ class ArrayStringSegment(ArraySegment):
value_type: SegmentType = SegmentType.ARRAY_STRING
value: Sequence[str]
@property
def text(self) -> str:
return json.dumps(self.value)
class ArrayNumberSegment(ArraySegment):
value_type: SegmentType = SegmentType.ARRAY_NUMBER

View File

@ -1,6 +1,7 @@
import logging
from abc import ABC, abstractmethod
from collections.abc import Generator
from typing import Optional
from core.workflow.entities.variable_pool import VariablePool
from core.workflow.graph_engine.entities.event import GraphEngineEvent, NodeRunExceptionEvent, NodeRunSucceededEvent
@ -48,25 +49,35 @@ class StreamProcessor(ABC):
# we remove the node maybe shortcut the answer node, so comment this code for now
# there is not effect on the answer node and the workflow, when we have a better solution
# we can open this code. Issues: #11542 #9560 #10638 #10564
ids = self._fetch_node_ids_in_reachable_branch(edge.target_node_id)
if "answer" in ids:
continue
else:
reachable_node_ids.extend(ids)
# ids = self._fetch_node_ids_in_reachable_branch(edge.target_node_id)
# if "answer" in ids:
# continue
# else:
# reachable_node_ids.extend(ids)
# The branch_identify parameter is added to ensure that
# only nodes in the correct logical branch are included.
ids = self._fetch_node_ids_in_reachable_branch(edge.target_node_id, run_result.edge_source_handle)
reachable_node_ids.extend(ids)
else:
unreachable_first_node_ids.append(edge.target_node_id)
for node_id in unreachable_first_node_ids:
self._remove_node_ids_in_unreachable_branch(node_id, reachable_node_ids)
def _fetch_node_ids_in_reachable_branch(self, node_id: str) -> list[str]:
def _fetch_node_ids_in_reachable_branch(self, node_id: str, branch_identify: Optional[str] = None) -> list[str]:
node_ids = []
for edge in self.graph.edge_mapping.get(node_id, []):
if edge.target_node_id == self.graph.root_node_id:
continue
# Only follow edges that match the branch_identify or have no run_condition
if edge.run_condition and edge.run_condition.branch_identify:
if not branch_identify or edge.run_condition.branch_identify != branch_identify:
continue
node_ids.append(edge.target_node_id)
node_ids.extend(self._fetch_node_ids_in_reachable_branch(edge.target_node_id))
node_ids.extend(self._fetch_node_ids_in_reachable_branch(edge.target_node_id, branch_identify))
return node_ids
def _remove_node_ids_in_unreachable_branch(self, node_id: str, reachable_node_ids: list[str]) -> None:

View File

@ -253,9 +253,9 @@ class Executor:
)
if executor_response.size > threshold_size:
raise ResponseSizeError(
f'{"File" if executor_response.is_file else "Text"} size is too large,'
f' max size is {threshold_size / 1024 / 1024:.2f} MB,'
f' but current size is {executor_response.readable_size}.'
f"{'File' if executor_response.is_file else 'Text'} size is too large,"
f" max size is {threshold_size / 1024 / 1024:.2f} MB,"
f" but current size is {executor_response.readable_size}."
)
return executor_response
@ -338,7 +338,7 @@ class Executor:
if self.auth.config and self.auth.config.header:
authorization_header = self.auth.config.header
if k.lower() == authorization_header.lower():
raw += f'{k}: {"*" * len(v)}\r\n'
raw += f"{k}: {'*' * len(v)}\r\n"
continue
raw += f"{k}: {v}\r\n"

View File

@ -1,4 +1,5 @@
import json
from collections.abc import Sequence
from typing import Any, cast
from core.variables import SegmentType, Variable
@ -31,7 +32,7 @@ class VariableAssignerNode(BaseNode[VariableAssignerNodeData]):
inputs = self.node_data.model_dump()
process_data: dict[str, Any] = {}
# NOTE: This node has no outputs
updated_variables: list[Variable] = []
updated_variable_selectors: list[Sequence[str]] = []
try:
for item in self.node_data.items:
@ -98,7 +99,8 @@ class VariableAssignerNode(BaseNode[VariableAssignerNodeData]):
value=item.value,
)
variable = variable.model_copy(update={"value": updated_value})
updated_variables.append(variable)
self.graph_runtime_state.variable_pool.add(variable.selector, variable)
updated_variable_selectors.append(variable.selector)
except VariableOperatorNodeError as e:
return NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
@ -107,9 +109,15 @@ class VariableAssignerNode(BaseNode[VariableAssignerNodeData]):
error=str(e),
)
# The `updated_variable_selectors` is a list contains list[str] which not hashable,
# remove the duplicated items first.
updated_variable_selectors = list(set(map(tuple, updated_variable_selectors)))
# Update variables
for variable in updated_variables:
self.graph_runtime_state.variable_pool.add(variable.selector, variable)
for selector in updated_variable_selectors:
variable = self.graph_runtime_state.variable_pool.get(selector)
if not isinstance(variable, Variable):
raise VariableNotFoundError(variable_selector=selector)
process_data[variable.name] = variable.value
if variable.selector[0] == CONVERSATION_VARIABLE_NODE_ID:

View File

@ -26,7 +26,7 @@ def handle(sender, **kwargs):
tool_runtime=tool_runtime,
provider_name=tool_entity.provider_name,
provider_type=tool_entity.provider_type,
identity_id=f'WORKFLOW.{app.id}.{node_data.get("id")}',
identity_id=f"WORKFLOW.{app.id}.{node_data.get('id')}",
)
manager.delete_tool_parameters_cache()
except:

View File

@ -34,7 +34,7 @@ class OpenDALStorage(BaseStorage):
root = kwargs.get("root", "storage")
Path(root).mkdir(parents=True, exist_ok=True)
self.op = opendal.Operator(scheme=scheme, **kwargs)
self.op = opendal.Operator(scheme=scheme, **kwargs) # type: ignore
logger.debug(f"opendal operator created with scheme {scheme}")
retry_layer = opendal.layers.RetryLayer(max_times=3, factor=2.0, jitter=True)
self.op = self.op.layer(retry_layer)

View File

@ -1,6 +1,6 @@
from flask_restful import fields # type: ignore
from libs.helper import TimestampField
from libs.helper import AvatarUrlField, TimestampField
simple_account_fields = {"id": fields.String, "name": fields.String, "email": fields.String}
@ -8,6 +8,7 @@ account_fields = {
"id": fields.String,
"name": fields.String,
"avatar": fields.String,
"avatar_url": AvatarUrlField,
"email": fields.String,
"is_password_set": fields.Boolean,
"interface_language": fields.String,
@ -22,6 +23,7 @@ account_with_role_fields = {
"id": fields.String,
"name": fields.String,
"avatar": fields.String,
"avatar_url": AvatarUrlField,
"email": fields.String,
"last_login_at": TimestampField,
"last_active_at": TimestampField,

View File

@ -43,6 +43,18 @@ class AppIconUrlField(fields.Raw):
return None
class AvatarUrlField(fields.Raw):
def output(self, key, obj):
if obj is None:
return None
from models.account import Account
if isinstance(obj, Account) and obj.avatar is not None:
return file_helpers.get_signed_file_url(obj.avatar)
return None
class TimestampField(fields.Raw):
def format(self, value) -> int:
return int(value.timestamp())

View File

@ -13,6 +13,7 @@ from typing import Any, cast
from sqlalchemy import func
from sqlalchemy.dialects.postgresql import JSONB
from sqlalchemy.orm import Mapped
from configs import dify_config
from core.rag.retrieval.retrieval_methods import RetrievalMethod
@ -515,7 +516,7 @@ class DocumentSegment(db.Model): # type: ignore[name-defined]
tenant_id = db.Column(StringUUID, nullable=False)
dataset_id = db.Column(StringUUID, nullable=False)
document_id = db.Column(StringUUID, nullable=False)
position = db.Column(db.Integer, nullable=False)
position: Mapped[int]
content = db.Column(db.Text, nullable=False)
answer = db.Column(db.Text, nullable=True)
word_count = db.Column(db.Integer, nullable=False)
@ -582,7 +583,7 @@ class DocumentSegment(db.Model): # type: ignore[name-defined]
return []
else:
return []
@property
def sign_content(self):
return self.get_sign_content()
@ -747,7 +748,7 @@ class DatasetKeywordTable(db.Model): # type: ignore[name-defined]
if keyword_table_text:
return json.loads(keyword_table_text.decode("utf-8"), cls=SetDecoder)
return None
except Exception as e:
except Exception:
logging.exception(f"Failed to load keyword table from file: {file_key}")
return None

View File

@ -1486,9 +1486,8 @@ class ApiToken(Base):
def generate_api_key(prefix, n):
while True:
result = prefix + generate_string(n)
while db.session.query(ApiToken).filter(ApiToken.token == result).count() > 0:
result = prefix + generate_string(n)
if db.session.query(ApiToken).filter(ApiToken.token == result).count() > 0:
continue
return result

1714
api/poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -1,9 +1,10 @@
[project]
name = "dify-api"
requires-python = ">=3.11,<3.13"
dynamic = [ "dependencies" ]
[build-system]
requires = ["poetry-core"]
requires = ["poetry-core>=2.0.0"]
build-backend = "poetry.core.masonry.api"
[tool.poetry]
@ -48,6 +49,7 @@ numpy = "~1.26.4"
oci = "~2.135.1"
openai = "~1.52.0"
openpyxl = "~3.1.5"
opik = "~1.3.4"
pandas = { version = "~2.2.2", extras = ["performance", "excel"] }
pandas-stubs = "~2.2.3.241009"
psycogreen = "~1.0.2"
@ -157,4 +159,4 @@ pytest-mock = "~3.14.0"
optional = true
[tool.poetry.group.lint.dependencies]
dotenv-linter = "~0.5.0"
ruff = "~0.8.1"
ruff = "~0.9.2"

View File

@ -7,7 +7,7 @@ env =
CODE_EXECUTION_API_KEY = dify-sandbox
CODE_EXECUTION_ENDPOINT = http://127.0.0.1:8194
CODE_MAX_STRING_LENGTH = 80000
PLUGIN_API_KEY=lYkiYYT6owG+71oLerGzA7GXCgOT++6ovaezWAjpCjf+Sjc3ZtU+qUEi
PLUGIN_DAEMON_KEY=lYkiYYT6owG+71oLerGzA7GXCgOT++6ovaezWAjpCjf+Sjc3ZtU+qUEi
PLUGIN_DAEMON_URL=http://127.0.0.1:5002
PLUGIN_MAX_PACKAGE_SIZE=15728640
INNER_API_KEY_FOR_PLUGIN=QaHbTe77CtuXmsfyhR7+vRjI/+XbV1AaFy691iy+kGDv2Jvy0/eAh8Y1

View File

@ -286,7 +286,7 @@ class AppAnnotationService:
df = pd.read_csv(file)
result = []
for index, row in df.iterrows():
content = {"question": row[0], "answer": row[1]}
content = {"question": row.iloc[0], "answer": row.iloc[1]}
result.append(content)
if len(result) == 0:
raise ValueError("The CSV file is empty.")

View File

@ -1,7 +1,7 @@
import logging
import uuid
from enum import StrEnum
from typing import Optional, cast
from typing import Optional
from urllib.parse import urlparse
from uuid import uuid4
@ -159,15 +159,6 @@ class AppDslService:
status=ImportStatus.FAILED,
error="Empty content from url",
)
try:
content = cast(bytes, content).decode("utf-8")
except UnicodeDecodeError as e:
return Import(
id=import_id,
status=ImportStatus.FAILED,
error=f"Error decoding content: {e}",
)
except Exception as e:
return Import(
id=import_id,

View File

@ -82,7 +82,7 @@ class AudioService:
from app import app
from extensions.ext_database import db
def invoke_tts(text_content: str, app_model, voice: Optional[str] = None):
def invoke_tts(text_content: str, app_model: App, voice: Optional[str] = None):
with app.app_context():
if app_model.mode in {AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value}:
workflow = app_model.workflow
@ -95,6 +95,8 @@ class AudioService:
voice = features_dict["text_to_speech"].get("voice") if voice is None else voice
else:
if app_model.app_model_config is None:
raise ValueError("AppModelConfig not found")
text_to_speech_dict = app_model.app_model_config.text_to_speech_dict
if not text_to_speech_dict.get("enabled"):

View File

@ -4,13 +4,16 @@ import logging
import random
import time
import uuid
from collections import Counter
from typing import Any, Optional
from flask_login import current_user # type: ignore
from sqlalchemy import func
from sqlalchemy.orm import Session
from werkzeug.exceptions import NotFound
from configs import dify_config
from core.entities import DEFAULT_PLUGIN_ID
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
@ -71,7 +74,7 @@ from tasks.sync_website_document_indexing_task import sync_website_document_inde
class DatasetService:
@staticmethod
def get_datasets(page, per_page, tenant_id=None, user=None, search=None, tag_ids=None):
def get_datasets(page, per_page, tenant_id=None, user=None, search=None, tag_ids=None, include_all=False):
query = Dataset.query.filter(Dataset.tenant_id == tenant_id).order_by(Dataset.created_at.desc())
if user:
@ -86,7 +89,7 @@ class DatasetService:
else:
return [], 0
else:
if user.current_role != TenantAccountRole.OWNER:
if user.current_role != TenantAccountRole.OWNER or not include_all:
# show all datasets that the user has permission to access
if permitted_dataset_ids:
query = query.filter(
@ -221,8 +224,7 @@ class DatasetService:
)
except LLMBadRequestError:
raise ValueError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ValueError(f"The dataset in unavailable, due to: {ex.description}")
@ -267,7 +269,15 @@ class DatasetService:
external_knowledge_api_id = data.get("external_knowledge_api_id", None)
if not external_knowledge_api_id:
raise ValueError("External knowledge api id is required.")
external_knowledge_binding = ExternalKnowledgeBindings.query.filter_by(dataset_id=dataset_id).first()
with Session(db.engine) as session:
external_knowledge_binding = (
session.query(ExternalKnowledgeBindings).filter_by(dataset_id=dataset_id).first()
)
if not external_knowledge_binding:
raise ValueError("External knowledge binding not found.")
if (
external_knowledge_binding.external_knowledge_id != external_knowledge_id
or external_knowledge_binding.external_knowledge_api_id != external_knowledge_api_id
@ -315,8 +325,19 @@ class DatasetService:
except ProviderTokenNotInitError as ex:
raise ValueError(ex.description)
else:
# add default plugin id to both setting sets, to make sure the plugin model provider is consistent
plugin_model_provider = dataset.embedding_model_provider
if "/" not in plugin_model_provider:
plugin_model_provider = f"{DEFAULT_PLUGIN_ID}/{plugin_model_provider}/{plugin_model_provider}"
new_plugin_model_provider = data["embedding_model_provider"]
if "/" not in new_plugin_model_provider:
new_plugin_model_provider = (
f"{DEFAULT_PLUGIN_ID}/{new_plugin_model_provider}/{new_plugin_model_provider}"
)
if (
data["embedding_model_provider"] != dataset.embedding_model_provider
new_plugin_model_provider != plugin_model_provider
or data["embedding_model"] != dataset.embedding_model
):
action = "update"
@ -859,7 +880,7 @@ class DocumentService:
position = DocumentService.get_documents_position(dataset.id)
document_ids = []
duplicate_document_ids = []
if knowledge_config.data_source.info_list.data_source_type == "upload_file":
if knowledge_config.data_source.info_list.data_source_type == "upload_file": # type: ignore
upload_file_list = knowledge_config.data_source.info_list.file_info_list.file_ids # type: ignore
for file_id in upload_file_list:
file = (
@ -901,7 +922,7 @@ class DocumentService:
document = DocumentService.build_document(
dataset,
dataset_process_rule.id, # type: ignore
knowledge_config.data_source.info_list.data_source_type,
knowledge_config.data_source.info_list.data_source_type, # type: ignore
knowledge_config.doc_form,
knowledge_config.doc_language,
data_source_info,
@ -916,8 +937,8 @@ class DocumentService:
document_ids.append(document.id)
documents.append(document)
position += 1
elif knowledge_config.data_source.info_list.data_source_type == "notion_import":
notion_info_list = knowledge_config.data_source.info_list.notion_info_list
elif knowledge_config.data_source.info_list.data_source_type == "notion_import": # type: ignore
notion_info_list = knowledge_config.data_source.info_list.notion_info_list # type: ignore
if not notion_info_list:
raise ValueError("No notion info list found.")
exist_page_ids = []
@ -956,7 +977,7 @@ class DocumentService:
document = DocumentService.build_document(
dataset,
dataset_process_rule.id, # type: ignore
knowledge_config.data_source.info_list.data_source_type,
knowledge_config.data_source.info_list.data_source_type, # type: ignore
knowledge_config.doc_form,
knowledge_config.doc_language,
data_source_info,
@ -976,8 +997,8 @@ class DocumentService:
# delete not selected documents
if len(exist_document) > 0:
clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
elif knowledge_config.data_source.info_list.data_source_type == "website_crawl":
website_info = knowledge_config.data_source.info_list.website_info_list
elif knowledge_config.data_source.info_list.data_source_type == "website_crawl": # type: ignore
website_info = knowledge_config.data_source.info_list.website_info_list # type: ignore
if not website_info:
raise ValueError("No website info list found.")
urls = website_info.urls
@ -996,7 +1017,7 @@ class DocumentService:
document = DocumentService.build_document(
dataset,
dataset_process_rule.id, # type: ignore
knowledge_config.data_source.info_list.data_source_type,
knowledge_config.data_source.info_list.data_source_type, # type: ignore
knowledge_config.doc_form,
knowledge_config.doc_language,
data_source_info,
@ -1195,20 +1216,20 @@ class DocumentService:
if features.billing.enabled:
count = 0
if knowledge_config.data_source.info_list.data_source_type == "upload_file":
if knowledge_config.data_source.info_list.data_source_type == "upload_file": # type: ignore
upload_file_list = (
knowledge_config.data_source.info_list.file_info_list.file_ids
if knowledge_config.data_source.info_list.file_info_list
knowledge_config.data_source.info_list.file_info_list.file_ids # type: ignore
if knowledge_config.data_source.info_list.file_info_list # type: ignore
else []
)
count = len(upload_file_list)
elif knowledge_config.data_source.info_list.data_source_type == "notion_import":
notion_info_list = knowledge_config.data_source.info_list.notion_info_list
elif knowledge_config.data_source.info_list.data_source_type == "notion_import": # type: ignore
notion_info_list = knowledge_config.data_source.info_list.notion_info_list # type: ignore
if notion_info_list:
for notion_info in notion_info_list:
count = count + len(notion_info.pages)
elif knowledge_config.data_source.info_list.data_source_type == "website_crawl":
website_info = knowledge_config.data_source.info_list.website_info_list
elif knowledge_config.data_source.info_list.data_source_type == "website_crawl": # type: ignore
website_info = knowledge_config.data_source.info_list.website_info_list # type: ignore
if website_info:
count = len(website_info.urls)
batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
@ -1239,7 +1260,7 @@ class DocumentService:
dataset = Dataset(
tenant_id=tenant_id,
name="",
data_source_type=knowledge_config.data_source.info_list.data_source_type,
data_source_type=knowledge_config.data_source.info_list.data_source_type, # type: ignore
indexing_technique=knowledge_config.indexing_technique,
created_by=account.id,
embedding_model=knowledge_config.embedding_model,
@ -1614,8 +1635,11 @@ class SegmentService:
segment.answer = args.answer
segment.word_count += len(args.answer) if args.answer else 0
word_count_change = segment.word_count - word_count_change
keyword_changed = False
if args.keywords:
segment.keywords = args.keywords
if Counter(segment.keywords) != Counter(args.keywords):
segment.keywords = args.keywords
keyword_changed = True
segment.enabled = True
segment.disabled_at = None
segment.disabled_by = None
@ -1626,13 +1650,6 @@ class SegmentService:
document.word_count = max(0, document.word_count + word_count_change)
db.session.add(document)
# update segment index task
if args.enabled:
VectorService.create_segments_vector(
[args.keywords] if args.keywords else None,
[segment],
dataset,
document.doc_form,
)
if document.doc_form == IndexType.PARENT_CHILD_INDEX and args.regenerate_child_chunks:
# regenerate child chunks
# get embedding model instance
@ -1665,6 +1682,14 @@ class SegmentService:
VectorService.generate_child_chunks(
segment, document, dataset, embedding_model_instance, processing_rule, True
)
elif document.doc_form in (IndexType.PARAGRAPH_INDEX, IndexType.QA_INDEX):
if args.enabled or keyword_changed:
VectorService.create_segments_vector(
[args.keywords] if args.keywords else None,
[segment],
dataset,
document.doc_form,
)
else:
segment_hash = helper.generate_text_hash(content)
tokens = 0

View File

@ -97,7 +97,7 @@ class KnowledgeConfig(BaseModel):
original_document_id: Optional[str] = None
duplicate: bool = True
indexing_technique: Literal["high_quality", "economy"]
data_source: DataSource
data_source: Optional[DataSource] = None
process_rule: Optional[ProcessRule] = None
retrieval_model: Optional[RetrievalModel] = None
doc_form: str = "text_model"

View File

@ -155,7 +155,7 @@ class ExternalDatasetService:
if custom_parameters:
for parameter in custom_parameters:
if parameter.get("required", False) and not process_parameter.get(parameter.get("name")):
raise ValueError(f'{parameter.get("name")} is required')
raise ValueError(f"{parameter.get('name')} is required")
@staticmethod
def process_external_api(

View File

@ -59,6 +59,15 @@ class OpsService:
except Exception:
new_decrypt_tracing_config.update({"project_url": "https://smith.langchain.com/"})
if tracing_provider == "opik" and (
"project_url" not in decrypt_tracing_config or not decrypt_tracing_config.get("project_url")
):
try:
project_url = OpsTraceManager.get_trace_config_project_url(decrypt_tracing_config, tracing_provider)
new_decrypt_tracing_config.update({"project_url": project_url})
except Exception:
new_decrypt_tracing_config.update({"project_url": "https://www.comet.com/opik/"})
trace_config_data.tracing_config = new_decrypt_tracing_config
return trace_config_data.to_dict()
@ -92,7 +101,7 @@ class OpsService:
if tracing_provider == "langfuse":
project_key = OpsTraceManager.get_trace_config_project_key(tracing_config, tracing_provider)
project_url = "{host}/project/{key}".format(host=tracing_config.get("host"), key=project_key)
elif tracing_provider == "langsmith":
elif tracing_provider in ("langsmith", "opik"):
project_url = OpsTraceManager.get_trace_config_project_url(tracing_config, tracing_provider)
else:
project_url = None

View File

@ -5,7 +5,8 @@ import uuid
import click
from celery import shared_task # type: ignore
from sqlalchemy import func
from sqlalchemy import func, select
from sqlalchemy.orm import Session
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
@ -18,7 +19,12 @@ from services.vector_service import VectorService
@shared_task(queue="dataset")
def batch_create_segment_to_index_task(
job_id: str, content: list, dataset_id: str, document_id: str, tenant_id: str, user_id: str
job_id: str,
content: list,
dataset_id: str,
document_id: str,
tenant_id: str,
user_id: str,
):
"""
Async batch create segment to index
@ -37,25 +43,35 @@ def batch_create_segment_to_index_task(
indexing_cache_key = "segment_batch_import_{}".format(job_id)
try:
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
if not dataset:
raise ValueError("Dataset not exist.")
with Session(db.engine) as session:
dataset = session.get(Dataset, dataset_id)
if not dataset:
raise ValueError("Dataset not exist.")
dataset_document = db.session.query(Document).filter(Document.id == document_id).first()
if not dataset_document:
raise ValueError("Document not exist.")
dataset_document = session.get(Document, document_id)
if not dataset_document:
raise ValueError("Document not exist.")
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != "completed":
raise ValueError("Document is not available.")
document_segments = []
embedding_model = None
if dataset.indexing_technique == "high_quality":
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model,
if (
not dataset_document.enabled
or dataset_document.archived
or dataset_document.indexing_status != "completed"
):
raise ValueError("Document is not available.")
document_segments = []
embedding_model = None
if dataset.indexing_technique == "high_quality":
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model,
)
word_count_change = 0
segments_to_insert: list[str] = []
max_position_stmt = select(func.max(DocumentSegment.position)).where(
DocumentSegment.document_id == dataset_document.id
)
word_count_change = 0
if embedding_model:
@ -103,7 +119,10 @@ def batch_create_segment_to_index_task(
redis_client.setex(indexing_cache_key, 600, "completed")
end_at = time.perf_counter()
logging.info(
click.style("Segment batch created job: {} latency: {}".format(job_id, end_at - start_at), fg="green")
click.style(
"Segment batch created job: {} latency: {}".format(job_id, end_at - start_at),
fg="green",
)
)
except Exception:
logging.exception("Segments batch created index failed")

View File

@ -44,6 +44,6 @@ def test_duplicated_dependency_crossing_groups() -> None:
dependency_names = list(dependencies.keys())
all_dependency_names.extend(dependency_names)
expected_all_dependency_names = set(all_dependency_names)
assert sorted(expected_all_dependency_names) == sorted(
all_dependency_names
), "Duplicated dependencies crossing groups are found"
assert sorted(expected_all_dependency_names) == sorted(all_dependency_names), (
"Duplicated dependencies crossing groups are found"
)

View File

@ -85,7 +85,7 @@ VOLC_EMBEDDING_ENDPOINT_ID=
ZHINAO_API_KEY=
# Plugin configuration
PLUGIN_API_KEY=
PLUGIN_DAEMON_KEY=
PLUGIN_DAEMON_URL=
INNER_API_KEY=

View File

@ -4,7 +4,6 @@ from app_fixture import mock_user # type: ignore
def test_post_requires_login(app):
with app.test_client() as client:
with patch("flask_login.utils._get_user", mock_user):
response = client.get("/console/api/data-source/integrates")
assert response.status_code == 200
with app.test_client() as client, patch("flask_login.utils._get_user", mock_user):
response = client.get("/console/api/data-source/integrates")
assert response.status_code == 200

View File

@ -89,9 +89,9 @@ class TestOpenSearchVector:
print("Actual document ID:", hits_by_vector[0].metadata["document_id"] if hits_by_vector else "No hits")
assert len(hits_by_vector) > 0, f"Expected at least one hit, got {len(hits_by_vector)}"
assert (
hits_by_vector[0].metadata["document_id"] == self.example_doc_id
), f"Expected document ID {self.example_doc_id}, got {hits_by_vector[0].metadata['document_id']}"
assert hits_by_vector[0].metadata["document_id"] == self.example_doc_id, (
f"Expected document ID {self.example_doc_id}, got {hits_by_vector[0].metadata['document_id']}"
)
def test_get_ids_by_metadata_field(self):
mock_response = {"hits": {"total": {"value": 1}, "hits": [{"_id": "mock_id"}]}}

View File

@ -434,11 +434,11 @@ def test_fetch_files_with_non_existent_variable(llm_node):
# jinja2_variables=[],
# )
# # Verify the result
# assert len(prompt_messages) == len(scenario.expected_messages), f"Scenario failed: {scenario.description}"
# assert (
# prompt_messages == scenario.expected_messages
# ), f"Message content mismatch in scenario: {scenario.description}"
# # Verify the result
# assert len(prompt_messages) == len(scenario.expected_messages), f"Scenario failed: {scenario.description}"
# assert prompt_messages == scenario.expected_messages, (
# f"Message content mismatch in scenario: {scenario.description}"
# )
def test_handle_list_messages_basic(llm_node):

View File

@ -401,8 +401,7 @@ def test__convert_to_llm_node_for_workflow_advanced_completion_model(default_var
prompt_template = PromptTemplateEntity(
prompt_type=PromptTemplateEntity.PromptType.ADVANCED,
advanced_completion_prompt_template=AdvancedCompletionPromptTemplateEntity(
prompt="You are a helpful assistant named {{name}}.\n\nContext:\n{{#context#}}\n\n"
"Human: hi\nAssistant: ",
prompt="You are a helpful assistant named {{name}}.\n\nContext:\n{{#context#}}\n\nHuman: hi\nAssistant: ",
role_prefix=AdvancedCompletionPromptTemplateEntity.RolePrefixEntity(user="Human", assistant="Assistant"),
),
)

View File

@ -20,8 +20,8 @@ BASE_API_AND_DOCKER_CONFIG_SET_DIFF = {
"OCI_ENDPOINT",
"OCI_REGION",
"OCI_SECRET_KEY",
"PLUGIN_API_KEY",
"PLUGIN_API_URL",
"PLUGIN_DAEMON_KEY",
"PLUGIN_DAEMON_URL",
"PLUGIN_REMOTE_INSTALL_HOST",
"PLUGIN_REMOTE_INSTALL_PORT",
"REDIS_DB",
@ -66,8 +66,8 @@ BASE_API_AND_DOCKER_COMPOSE_CONFIG_SET_DIFF = {
"PGVECTO_RS_PASSWORD",
"PGVECTO_RS_PORT",
"PGVECTO_RS_USER",
"PLUGIN_API_KEY",
"PLUGIN_API_URL",
"PLUGIN_DAEMON_KEY",
"PLUGIN_DAEMON_URL",
"PLUGIN_REMOTE_INSTALL_HOST",
"PLUGIN_REMOTE_INSTALL_PORT",
"RESPECT_XFORWARD_HEADERS_ENABLED",

View File

@ -9,10 +9,10 @@ if ! command -v ruff &> /dev/null || ! command -v dotenv-linter &> /dev/null; th
fi
# run ruff linter
poetry run -C api ruff check --fix ./api
poetry run -C api ruff check --fix ./
# run ruff formatter
poetry run -C api ruff format ./api
poetry run -C api ruff format ./
# run dotenv-linter linter
poetry run -C api dotenv-linter ./api/.env.example ./web/.env.example
poetry run -P api dotenv-linter ./api/.env.example ./web/.env.example

View File

@ -12,7 +12,7 @@ if [ $? -ne 0 ]; then
# update poetry.lock
# refreshing lockfile only without updating locked versions
echo "poetry.lock is outdated, refreshing without updating locked versions ..."
poetry lock -C api --no-update
poetry lock -C api
else
echo "poetry.lock is ready."
fi

View File

@ -1,13 +0,0 @@
services:
# Chroma vector store.
chroma:
image: ghcr.io/chroma-core/chroma:0.5.20
restart: always
volumes:
- ./volumes/chroma:/chroma/chroma
environment:
CHROMA_SERVER_AUTHN_CREDENTIALS: difyai123456
CHROMA_SERVER_AUTHN_PROVIDER: chromadb.auth.token_authn.TokenAuthenticationServerProvider
IS_PERSISTENT: TRUE
ports:
- "8000:8000"

View File

@ -1,109 +0,0 @@
version: '3'
services:
# The postgres database.
db:
image: postgres:15-alpine
restart: always
environment:
# The password for the default postgres user.
POSTGRES_PASSWORD: difyai123456
# The name of the default postgres database.
POSTGRES_DB: dify
# postgres data directory
PGDATA: /var/lib/postgresql/data/pgdata
volumes:
- ./volumes/db/data:/var/lib/postgresql/data
ports:
- "5432:5432"
# The redis cache.
redis:
image: redis:6-alpine
restart: always
volumes:
# Mount the redis data directory to the container.
- ./volumes/redis/data:/data
# Set the redis password when startup redis server.
command: redis-server --requirepass difyai123456
ports:
- "6379:6379"
# The Weaviate vector store.
weaviate:
image: semitechnologies/weaviate:1.19.0
restart: always
volumes:
# Mount the Weaviate data directory to the container.
- ./volumes/weaviate:/var/lib/weaviate
environment:
# The Weaviate configurations
# You can refer to the [Weaviate](https://weaviate.io/developers/weaviate/config-refs/env-vars) documentation for more information.
QUERY_DEFAULTS_LIMIT: 25
AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED: 'false'
PERSISTENCE_DATA_PATH: '/var/lib/weaviate'
DEFAULT_VECTORIZER_MODULE: 'none'
CLUSTER_HOSTNAME: 'node1'
AUTHENTICATION_APIKEY_ENABLED: 'true'
AUTHENTICATION_APIKEY_ALLOWED_KEYS: 'WVF5YThaHlkYwhGUSmCRgsX3tD5ngdN8pkih'
AUTHENTICATION_APIKEY_USERS: 'hello@dify.ai'
AUTHORIZATION_ADMINLIST_ENABLED: 'true'
AUTHORIZATION_ADMINLIST_USERS: 'hello@dify.ai'
ports:
- "8080:8080"
# The DifySandbox
sandbox:
image: langgenius/dify-sandbox:0.2.1
restart: always
environment:
# The DifySandbox configurations
# Make sure you are changing this key for your deployment with a strong key.
# You can generate a strong key using `openssl rand -base64 42`.
API_KEY: dify-sandbox
GIN_MODE: 'release'
WORKER_TIMEOUT: 15
ENABLE_NETWORK: 'true'
HTTP_PROXY: 'http://ssrf_proxy:3128'
HTTPS_PROXY: 'http://ssrf_proxy:3128'
SANDBOX_PORT: 8194
volumes:
- ./volumes/sandbox/dependencies:/dependencies
networks:
- ssrf_proxy_network
# ssrf_proxy server
# for more information, please refer to
# https://docs.dify.ai/learn-more/faq/install-faq#id-18.-why-is-ssrf_proxy-needed
ssrf_proxy:
image: ubuntu/squid:latest
restart: always
ports:
- "3128:3128"
- "8194:8194"
volumes:
# pls clearly modify the squid.conf file to fit your network environment.
- ./volumes/ssrf_proxy/squid.conf:/etc/squid/squid.conf
networks:
- ssrf_proxy_network
- default
# Qdrant vector store.
# uncomment to use qdrant as vector store.
# (if uncommented, you need to comment out the weaviate service above,
# and set VECTOR_STORE to qdrant in the api & worker service.)
# qdrant:
# image: qdrant/qdrant:1.7.3
# restart: always
# volumes:
# - ./volumes/qdrant:/qdrant/storage
# environment:
# QDRANT_API_KEY: 'difyai123456'
# ports:
# - "6333:6333"
# - "6334:6334"
networks:
# create a network between sandbox, api and ssrf_proxy, and can not access outside.
ssrf_proxy_network:
driver: bridge
internal: true

View File

@ -1,64 +0,0 @@
version: '3.5'
services:
etcd:
container_name: milvus-etcd
image: quay.io/coreos/etcd:v3.5.5
environment:
- ETCD_AUTO_COMPACTION_MODE=revision
- ETCD_AUTO_COMPACTION_RETENTION=1000
- ETCD_QUOTA_BACKEND_BYTES=4294967296
- ETCD_SNAPSHOT_COUNT=50000
volumes:
- ${DOCKER_VOLUME_DIRECTORY:-.}/volumes/etcd:/etcd
command: etcd -advertise-client-urls=http://127.0.0.1:2379 -listen-client-urls http://0.0.0.0:2379 --data-dir /etcd
healthcheck:
test: ["CMD", "etcdctl", "endpoint", "health"]
interval: 30s
timeout: 20s
retries: 3
minio:
container_name: milvus-minio
image: minio/minio:RELEASE.2023-03-20T20-16-18Z
environment:
MINIO_ACCESS_KEY: minioadmin
MINIO_SECRET_KEY: minioadmin
ports:
- "9001:9001"
- "9000:9000"
volumes:
- ${DOCKER_VOLUME_DIRECTORY:-.}/volumes/minio:/minio_data
command: minio server /minio_data --console-address ":9001"
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:9000/minio/health/live"]
interval: 30s
timeout: 20s
retries: 3
milvus-standalone:
container_name: milvus-standalone
image: milvusdb/milvus:v2.4.6
command: ["milvus", "run", "standalone"]
environment:
ETCD_ENDPOINTS: etcd:2379
MINIO_ADDRESS: minio:9000
common.security.authorizationEnabled: true
volumes:
- ${DOCKER_VOLUME_DIRECTORY:-.}/volumes/milvus:/var/lib/milvus
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:9091/healthz"]
interval: 30s
start_period: 90s
timeout: 20s
retries: 3
ports:
- "19530:19530"
- "9091:9091"
depends_on:
- "etcd"
- "minio"
networks:
default:
name: milvus

View File

@ -1,40 +0,0 @@
services:
opensearch: # This is also the hostname of the container within the Docker network (i.e. https://opensearch/)
image: opensearchproject/opensearch:latest # Specifying the latest available image - modify if you want a specific version
container_name: opensearch
environment:
- discovery.type=single-node
- bootstrap.memory_lock=true # Disable JVM heap memory swapping
- "OPENSEARCH_JAVA_OPTS=-Xms512m -Xmx1024m" # Set min and max JVM heap sizes to at least 50% of system RAM
- OPENSEARCH_INITIAL_ADMIN_PASSWORD=Qazwsxedc!@#123 # Sets the demo admin user password when using demo configuration, required for OpenSearch 2.12 and later
ulimits:
memlock:
soft: -1 # Set memlock to unlimited (no soft or hard limit)
hard: -1
nofile:
soft: 65536 # Maximum number of open files for the opensearch user - set to at least 65536
hard: 65536
volumes:
- ./volumes/opensearch/data:/usr/share/opensearch/data # Creates volume called opensearch-data1 and mounts it to the container
ports:
- 9200:9200 # REST API
- 9600:9600 # Performance Analyzer
networks:
- opensearch-net # All of the containers will join the same Docker bridge network
opensearch-dashboards:
image: opensearchproject/opensearch-dashboards:latest # Make sure the version of opensearch-dashboards matches the version of opensearch installed on other nodes
container_name: opensearch-dashboards
ports:
- 5601:5601 # Map host port 5601 to container port 5601
expose:
- "5601" # Expose port 5601 for web access to OpenSearch Dashboards
environment:
OPENSEARCH_HOSTS: '["https://opensearch:9200"]' # Define the OpenSearch nodes that OpenSearch Dashboards will query
volumes:
- ./volumes/opensearch/opensearch_dashboards.yml:/usr/share/opensearch-dashboards/config/opensearch_dashboards.yml
networks:
- opensearch-net
networks:
opensearch-net:
driver: bridge

View File

@ -1,17 +0,0 @@
services:
# oracle 23 ai vector store.
oracle:
image: container-registry.oracle.com/database/free:latest
restart: always
ports:
- 1521:1521
volumes:
- type: volume
source: oradata_vector
target: /opt/oracle/oradata
- ./startupscripts:/opt/oracle/scripts/startup
environment:
- ORACLE_PWD=Dify123456
- ORACLE_CHARACTERSET=AL32UTF8
volumes:
oradata_vector:

View File

@ -1,23 +0,0 @@
services:
# The pgvecto—rs database.
pgvecto-rs:
image: tensorchord/pgvecto-rs:pg16-v0.2.0
restart: always
environment:
PGUSER: postgres
# The password for the default postgres user.
POSTGRES_PASSWORD: difyai123456
# The name of the default postgres database.
POSTGRES_DB: dify
# postgres data directory
PGDATA: /var/lib/postgresql/data/pgdata
volumes:
- ./volumes/pgvectors/data:/var/lib/postgresql/data
# uncomment to expose db(postgresql) port to host
ports:
- "5431:5432"
healthcheck:
test: [ "CMD", "pg_isready" ]
interval: 1s
timeout: 3s
retries: 30

View File

@ -1,23 +0,0 @@
services:
# Qdrant vector store.
pgvector:
image: pgvector/pgvector:pg16
restart: always
environment:
PGUSER: postgres
# The password for the default postgres user.
POSTGRES_PASSWORD: difyai123456
# The name of the default postgres database.
POSTGRES_DB: dify
# postgres data directory
PGDATA: /var/lib/postgresql/data/pgdata
volumes:
- ./volumes/pgvector/data:/var/lib/postgresql/data
# uncomment to expose db(postgresql) port to host
ports:
- "5433:5432"
healthcheck:
test: [ "CMD", "pg_isready" ]
interval: 1s
timeout: 3s
retries: 30

Binary file not shown.

Before

Width:  |  Height:  |  Size: 62 KiB

View File

@ -1,12 +0,0 @@
services:
# Qdrant vector store.
qdrant:
image: langgenius/qdrant:v1.7.3
restart: always
volumes:
- ./volumes/qdrant:/qdrant/storage
environment:
QDRANT_API_KEY: 'difyai123456'
ports:
- "6333:6333"
- "6334:6334"

View File

@ -1,597 +0,0 @@
version: '3'
services:
# API service
api:
image: langgenius/dify-api:1.0.0-beta.1
restart: always
environment:
# Startup mode, 'api' starts the API server.
MODE: api
# The log level for the application. Supported values are `DEBUG`, `INFO`, `WARNING`, `ERROR`, `CRITICAL`
LOG_LEVEL: INFO
# enable DEBUG mode to output more logs
# DEBUG : true
# A secret key that is used for securely signing the session cookie and encrypting sensitive information on the database. You can generate a strong key using `openssl rand -base64 42`.
SECRET_KEY: sk-9f73s3ljTXVcMT3Blb3ljTqtsKiGHXVcMT3BlbkFJLK7U
# The base URL of console application web frontend, refers to the Console base URL of WEB service if console domain is
# different from api or web app domain.
# example: http://cloud.dify.ai
CONSOLE_WEB_URL: ''
# Password for admin user initialization.
# If left unset, admin user will not be prompted for a password when creating the initial admin account.
INIT_PASSWORD: ''
# The base URL of console application api server, refers to the Console base URL of WEB service if console domain is
# different from api or web app domain.
# example: http://cloud.dify.ai
CONSOLE_API_URL: ''
# The URL prefix for Service API endpoints, refers to the base URL of the current API service if api domain is
# different from console domain.
# example: http://api.dify.ai
SERVICE_API_URL: ''
# The URL prefix for Web APP frontend, refers to the Web App base URL of WEB service if web app domain is different from
# console or api domain.
# example: http://udify.app
APP_WEB_URL: ''
# File preview or download Url prefix.
# used to display File preview or download Url to the front-end or as Multi-model inputs;
# Url is signed and has expiration time.
FILES_URL: ''
# File Access Time specifies a time interval in seconds for the file to be accessed.
# The default value is 300 seconds.
FILES_ACCESS_TIMEOUT: 300
# The maximum number of active requests for the application, where 0 means unlimited, should be a non-negative integer.
APP_MAX_ACTIVE_REQUESTS: 0
# When enabled, migrations will be executed prior to application startup and the application will start after the migrations have completed.
MIGRATION_ENABLED: 'true'
# The configurations of postgres database connection.
# It is consistent with the configuration in the 'db' service below.
DB_USERNAME: postgres
DB_PASSWORD: difyai123456
DB_HOST: db
DB_PORT: 5432
DB_DATABASE: dify
# The configurations of redis connection.
# It is consistent with the configuration in the 'redis' service below.
REDIS_HOST: redis
REDIS_PORT: 6379
REDIS_USERNAME: ''
REDIS_PASSWORD: difyai123456
REDIS_USE_SSL: 'false'
# use redis db 0 for redis cache
REDIS_DB: 0
# The configurations of celery broker.
# Use redis as the broker, and redis db 1 for celery broker.
CELERY_BROKER_URL: redis://:difyai123456@redis:6379/1
# Specifies the allowed origins for cross-origin requests to the Web API, e.g. https://dify.app or * for all origins.
WEB_API_CORS_ALLOW_ORIGINS: '*'
# Specifies the allowed origins for cross-origin requests to the console API, e.g. https://cloud.dify.ai or * for all origins.
CONSOLE_CORS_ALLOW_ORIGINS: '*'
# CSRF Cookie settings
# Controls whether a cookie is sent with cross-site requests,
# providing some protection against cross-site request forgery attacks
#
# Default: `SameSite=Lax, Secure=false, HttpOnly=true`
# This default configuration supports same-origin requests using either HTTP or HTTPS,
# but does not support cross-origin requests. It is suitable for local debugging purposes.
#
# If you want to enable cross-origin support,
# you must use the HTTPS protocol and set the configuration to `SameSite=None, Secure=true, HttpOnly=true`.
#
# The type of storage to use for storing user files. Supported values are `local` and `s3` and `azure-blob` and `google-storage`, Default: `local`
STORAGE_TYPE: local
# The path to the local storage directory, the directory relative the root path of API service codes or absolute path. Default: `storage` or `/home/john/storage`.
# only available when STORAGE_TYPE is `local`.
STORAGE_LOCAL_PATH: storage
# The S3 storage configurations, only available when STORAGE_TYPE is `s3`.
S3_USE_AWS_MANAGED_IAM: 'false'
S3_ENDPOINT: 'https://xxx.r2.cloudflarestorage.com'
S3_BUCKET_NAME: 'difyai'
S3_ACCESS_KEY: 'ak-difyai'
S3_SECRET_KEY: 'sk-difyai'
S3_REGION: 'us-east-1'
# The Azure Blob storage configurations, only available when STORAGE_TYPE is `azure-blob`.
AZURE_BLOB_ACCOUNT_NAME: 'difyai'
AZURE_BLOB_ACCOUNT_KEY: 'difyai'
AZURE_BLOB_CONTAINER_NAME: 'difyai-container'
AZURE_BLOB_ACCOUNT_URL: 'https://<your_account_name>.blob.core.windows.net'
# The Google storage configurations, only available when STORAGE_TYPE is `google-storage`.
GOOGLE_STORAGE_BUCKET_NAME: 'yout-bucket-name'
# if you want to use Application Default Credentials, you can leave GOOGLE_STORAGE_SERVICE_ACCOUNT_JSON_BASE64 empty.
GOOGLE_STORAGE_SERVICE_ACCOUNT_JSON_BASE64: 'your-google-service-account-json-base64-string'
# The Alibaba Cloud OSS configurations, only available when STORAGE_TYPE is `aliyun-oss`
ALIYUN_OSS_BUCKET_NAME: 'your-bucket-name'
ALIYUN_OSS_ACCESS_KEY: 'your-access-key'
ALIYUN_OSS_SECRET_KEY: 'your-secret-key'
ALIYUN_OSS_ENDPOINT: 'https://oss-ap-southeast-1-internal.aliyuncs.com'
ALIYUN_OSS_REGION: 'ap-southeast-1'
ALIYUN_OSS_AUTH_VERSION: 'v4'
# The Tencent COS storage configurations, only available when STORAGE_TYPE is `tencent-cos`.
TENCENT_COS_BUCKET_NAME: 'your-bucket-name'
TENCENT_COS_SECRET_KEY: 'your-secret-key'
TENCENT_COS_SECRET_ID: 'your-secret-id'
TENCENT_COS_REGION: 'your-region'
TENCENT_COS_SCHEME: 'your-scheme'
# The type of vector store to use. Supported values are `weaviate`, `qdrant`, `milvus`, `relyt`,`pgvector`, `chroma`, 'opensearch', 'tidb_vector'.
VECTOR_STORE: weaviate
# The Weaviate endpoint URL. Only available when VECTOR_STORE is `weaviate`.
WEAVIATE_ENDPOINT: http://weaviate:8080
# The Weaviate API key.
WEAVIATE_API_KEY: WVF5YThaHlkYwhGUSmCRgsX3tD5ngdN8pkih
# The Qdrant endpoint URL. Only available when VECTOR_STORE is `qdrant`.
QDRANT_URL: http://qdrant:6333
# The Qdrant API key.
QDRANT_API_KEY: difyai123456
# The Qdrant client timeout setting.
QDRANT_CLIENT_TIMEOUT: 20
# The Qdrant client enable gRPC mode.
QDRANT_GRPC_ENABLED: 'false'
# The Qdrant server gRPC mode PORT.
QDRANT_GRPC_PORT: 6334
# Milvus configuration Only available when VECTOR_STORE is `milvus`.
# The milvus uri.
MILVUS_URI: http://127.0.0.1:19530
# The milvus token.
MILVUS_TOKEN: ''
# The milvus username.
MILVUS_USER: root
# The milvus password.
MILVUS_PASSWORD: Milvus
# relyt configurations
RELYT_HOST: db
RELYT_PORT: 5432
RELYT_USER: postgres
RELYT_PASSWORD: difyai123456
RELYT_DATABASE: postgres
# pgvector configurations
PGVECTOR_HOST: pgvector
PGVECTOR_PORT: 5432
PGVECTOR_USER: postgres
PGVECTOR_PASSWORD: difyai123456
PGVECTOR_DATABASE: dify
# tidb vector configurations
TIDB_VECTOR_HOST: tidb
TIDB_VECTOR_PORT: 4000
TIDB_VECTOR_USER: xxx.root
TIDB_VECTOR_PASSWORD: xxxxxx
TIDB_VECTOR_DATABASE: dify
# oracle configurations
ORACLE_HOST: oracle
ORACLE_PORT: 1521
ORACLE_USER: dify
ORACLE_PASSWORD: dify
ORACLE_DATABASE: FREEPDB1
# Chroma configuration
CHROMA_HOST: 127.0.0.1
CHROMA_PORT: 8000
CHROMA_TENANT: default_tenant
CHROMA_DATABASE: default_database
CHROMA_AUTH_PROVIDER: chromadb.auth.token_authn.TokenAuthClientProvider
CHROMA_AUTH_CREDENTIALS: xxxxxx
# ElasticSearch Config
ELASTICSEARCH_HOST: 127.0.0.1
ELASTICSEARCH_PORT: 9200
ELASTICSEARCH_USERNAME: elastic
ELASTICSEARCH_PASSWORD: elastic
# Mail configuration, support: resend, smtp
MAIL_TYPE: ''
# default send from email address, if not specified
MAIL_DEFAULT_SEND_FROM: 'YOUR EMAIL FROM (eg: no-reply <no-reply@dify.ai>)'
SMTP_SERVER: ''
SMTP_PORT: 465
SMTP_USERNAME: ''
SMTP_PASSWORD: ''
SMTP_USE_TLS: 'true'
SMTP_OPPORTUNISTIC_TLS: 'false'
# the api-key for resend (https://resend.com)
RESEND_API_KEY: ''
RESEND_API_URL: https://api.resend.com
# The DSN for Sentry error reporting. If not set, Sentry error reporting will be disabled.
SENTRY_DSN: ''
# The sample rate for Sentry events. Default: `1.0`
SENTRY_TRACES_SAMPLE_RATE: 1.0
# The sample rate for Sentry profiles. Default: `1.0`
SENTRY_PROFILES_SAMPLE_RATE: 1.0
# Notion import configuration, support public and internal
NOTION_INTEGRATION_TYPE: public
NOTION_CLIENT_SECRET: you-client-secret
NOTION_CLIENT_ID: you-client-id
NOTION_INTERNAL_SECRET: you-internal-secret
# The sandbox service endpoint.
CODE_EXECUTION_ENDPOINT: "http://sandbox:8194"
CODE_EXECUTION_API_KEY: dify-sandbox
CODE_MAX_NUMBER: 9223372036854775807
CODE_MIN_NUMBER: -9223372036854775808
CODE_MAX_STRING_LENGTH: 80000
TEMPLATE_TRANSFORM_MAX_LENGTH: 80000
CODE_MAX_STRING_ARRAY_LENGTH: 30
CODE_MAX_OBJECT_ARRAY_LENGTH: 30
CODE_MAX_NUMBER_ARRAY_LENGTH: 1000
# SSRF Proxy server
SSRF_PROXY_HTTP_URL: 'http://ssrf_proxy:3128'
SSRF_PROXY_HTTPS_URL: 'http://ssrf_proxy:3128'
# Indexing configuration
INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH: 4000
depends_on:
- db
- redis
volumes:
# Mount the storage directory to the container, for storing user files.
- ./volumes/app/storage:/app/api/storage
# uncomment to expose dify-api port to host
# ports:
# - "5001:5001"
networks:
- ssrf_proxy_network
- default
# worker service
# The Celery worker for processing the queue.
worker:
image: langgenius/dify-api:1.0.0-beta.1
restart: always
environment:
CONSOLE_WEB_URL: ''
# Startup mode, 'worker' starts the Celery worker for processing the queue.
MODE: worker
# --- All the configurations below are the same as those in the 'api' service. ---
# The log level for the application. Supported values are `DEBUG`, `INFO`, `WARNING`, `ERROR`, `CRITICAL`
LOG_LEVEL: INFO
# A secret key that is used for securely signing the session cookie and encrypting sensitive information on the database. You can generate a strong key using `openssl rand -base64 42`.
# same as the API service
SECRET_KEY: sk-9f73s3ljTXVcMT3Blb3ljTqtsKiGHXVcMT3BlbkFJLK7U
# The configurations of postgres database connection.
# It is consistent with the configuration in the 'db' service below.
DB_USERNAME: postgres
DB_PASSWORD: difyai123456
DB_HOST: db
DB_PORT: 5432
DB_DATABASE: dify
# The configurations of redis cache connection.
REDIS_HOST: redis
REDIS_PORT: 6379
REDIS_USERNAME: ''
REDIS_PASSWORD: difyai123456
REDIS_DB: 0
REDIS_USE_SSL: 'false'
# The configurations of celery broker.
CELERY_BROKER_URL: redis://:difyai123456@redis:6379/1
# The type of storage to use for storing user files. Supported values are `local` and `s3` and `azure-blob` and `google-storage`, Default: `local`
STORAGE_TYPE: local
STORAGE_LOCAL_PATH: storage
# The S3 storage configurations, only available when STORAGE_TYPE is `s3`.
S3_USE_AWS_MANAGED_IAM: 'false'
S3_ENDPOINT: 'https://xxx.r2.cloudflarestorage.com'
S3_BUCKET_NAME: 'difyai'
S3_ACCESS_KEY: 'ak-difyai'
S3_SECRET_KEY: 'sk-difyai'
S3_REGION: 'us-east-1'
# The Azure Blob storage configurations, only available when STORAGE_TYPE is `azure-blob`.
AZURE_BLOB_ACCOUNT_NAME: 'difyai'
AZURE_BLOB_ACCOUNT_KEY: 'difyai'
AZURE_BLOB_CONTAINER_NAME: 'difyai-container'
AZURE_BLOB_ACCOUNT_URL: 'https://<your_account_name>.blob.core.windows.net'
# The Google storage configurations, only available when STORAGE_TYPE is `google-storage`.
GOOGLE_STORAGE_BUCKET_NAME: 'yout-bucket-name'
# if you want to use Application Default Credentials, you can leave GOOGLE_STORAGE_SERVICE_ACCOUNT_JSON_BASE64 empty.
GOOGLE_STORAGE_SERVICE_ACCOUNT_JSON_BASE64: 'your-google-service-account-json-base64-string'
# The Alibaba Cloud OSS configurations, only available when STORAGE_TYPE is `aliyun-oss`
ALIYUN_OSS_BUCKET_NAME: 'your-bucket-name'
ALIYUN_OSS_ACCESS_KEY: 'your-access-key'
ALIYUN_OSS_SECRET_KEY: 'your-secret-key'
ALIYUN_OSS_ENDPOINT: 'https://oss-ap-southeast-1-internal.aliyuncs.com'
ALIYUN_OSS_REGION: 'ap-southeast-1'
ALIYUN_OSS_AUTH_VERSION: 'v4'
# The Tencent COS storage configurations, only available when STORAGE_TYPE is `tencent-cos`.
TENCENT_COS_BUCKET_NAME: 'your-bucket-name'
TENCENT_COS_SECRET_KEY: 'your-secret-key'
TENCENT_COS_SECRET_ID: 'your-secret-id'
TENCENT_COS_REGION: 'your-region'
TENCENT_COS_SCHEME: 'your-scheme'
# The type of vector store to use. Supported values are `weaviate`, `qdrant`, `milvus`, `relyt`, `pgvector`, `chroma`, 'opensearch', 'tidb_vector'.
VECTOR_STORE: weaviate
# The Weaviate endpoint URL. Only available when VECTOR_STORE is `weaviate`.
WEAVIATE_ENDPOINT: http://weaviate:8080
# The Weaviate API key.
WEAVIATE_API_KEY: WVF5YThaHlkYwhGUSmCRgsX3tD5ngdN8pkih
# The Qdrant endpoint URL. Only available when VECTOR_STORE is `qdrant`.
QDRANT_URL: http://qdrant:6333
# The Qdrant API key.
QDRANT_API_KEY: difyai123456
# The Qdrant client timeout setting.
QDRANT_CLIENT_TIMEOUT: 20
# The Qdrant client enable gRPC mode.
QDRANT_GRPC_ENABLED: 'false'
# The Qdrant server gRPC mode PORT.
QDRANT_GRPC_PORT: 6334
# Milvus configuration Only available when VECTOR_STORE is `milvus`.
# The milvus uri.
MILVUS_URI: http://127.0.0.1:19530
# The milvus token.
MILVUS_PORT: ''
# The milvus username.
MILVUS_USER: root
# The milvus password.
MILVUS_PASSWORD: Milvus
# Mail configuration, support: resend
MAIL_TYPE: ''
# default send from email address, if not specified
MAIL_DEFAULT_SEND_FROM: 'YOUR EMAIL FROM (eg: no-reply <no-reply@dify.ai>)'
SMTP_SERVER: ''
SMTP_PORT: 465
SMTP_USERNAME: ''
SMTP_PASSWORD: ''
SMTP_USE_TLS: 'true'
SMTP_OPPORTUNISTIC_TLS: 'false'
# the api-key for resend (https://resend.com)
RESEND_API_KEY: ''
RESEND_API_URL: https://api.resend.com
# relyt configurations
RELYT_HOST: db
RELYT_PORT: 5432
RELYT_USER: postgres
RELYT_PASSWORD: difyai123456
RELYT_DATABASE: postgres
# tencent configurations
TENCENT_VECTOR_DB_URL: http://127.0.0.1
TENCENT_VECTOR_DB_API_KEY: dify
TENCENT_VECTOR_DB_TIMEOUT: 30
TENCENT_VECTOR_DB_USERNAME: dify
TENCENT_VECTOR_DB_DATABASE: dify
TENCENT_VECTOR_DB_SHARD: 1
TENCENT_VECTOR_DB_REPLICAS: 2
# OpenSearch configuration
OPENSEARCH_HOST: 127.0.0.1
OPENSEARCH_PORT: 9200
OPENSEARCH_USER: admin
OPENSEARCH_PASSWORD: admin
OPENSEARCH_SECURE: 'true'
# pgvector configurations
PGVECTOR_HOST: pgvector
PGVECTOR_PORT: 5432
PGVECTOR_USER: postgres
PGVECTOR_PASSWORD: difyai123456
PGVECTOR_DATABASE: dify
# tidb vector configurations
TIDB_VECTOR_HOST: tidb
TIDB_VECTOR_PORT: 4000
TIDB_VECTOR_USER: xxx.root
TIDB_VECTOR_PASSWORD: xxxxxx
TIDB_VECTOR_DATABASE: dify
# oracle configurations
ORACLE_HOST: oracle
ORACLE_PORT: 1521
ORACLE_USER: dify
ORACLE_PASSWORD: dify
ORACLE_DATABASE: FREEPDB1
# Chroma configuration
CHROMA_HOST: 127.0.0.1
CHROMA_PORT: 8000
CHROMA_TENANT: default_tenant
CHROMA_DATABASE: default_database
CHROMA_AUTH_PROVIDER: chromadb.auth.token_authn.TokenAuthClientProvider
CHROMA_AUTH_CREDENTIALS: xxxxxx
# ElasticSearch Config
ELASTICSEARCH_HOST: 127.0.0.1
ELASTICSEARCH_PORT: 9200
ELASTICSEARCH_USERNAME: elastic
ELASTICSEARCH_PASSWORD: elastic
# Notion import configuration, support public and internal
NOTION_INTEGRATION_TYPE: public
NOTION_CLIENT_SECRET: you-client-secret
NOTION_CLIENT_ID: you-client-id
NOTION_INTERNAL_SECRET: you-internal-secret
# Indexing configuration
INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH: 1000
CREATE_TIDB_SERVICE_JOB_ENABLED: false
depends_on:
- db
- redis
volumes:
# Mount the storage directory to the container, for storing user files.
- ./volumes/app/storage:/app/api/storage
networks:
- ssrf_proxy_network
- default
# Frontend web application.
web:
image: langgenius/dify-web:1.0.0-beta.1
restart: always
environment:
# The base URL of console application api server, refers to the Console base URL of WEB service if console domain is
# different from api or web app domain.
# example: http://cloud.dify.ai
CONSOLE_API_URL: ''
# The URL for Web APP api server, refers to the Web App base URL of WEB service if web app domain is different from
# console or api domain.
# example: http://udify.app
APP_API_URL: ''
# The DSN for Sentry error reporting. If not set, Sentry error reporting will be disabled.
SENTRY_DSN: ''
# uncomment to expose dify-web port to host
# ports:
# - "3000:3000"
# The postgres database.
db:
image: postgres:15-alpine
restart: always
environment:
PGUSER: postgres
# The password for the default postgres user.
POSTGRES_PASSWORD: difyai123456
# The name of the default postgres database.
POSTGRES_DB: dify
# postgres data directory
PGDATA: /var/lib/postgresql/data/pgdata
volumes:
- ./volumes/db/data:/var/lib/postgresql/data
# notice!: if you use windows-wsl2, postgres may not work properly due to the ntfs issue.you can use volumes to mount the data directory to the host.
# if you use the following config, you need to uncomment the volumes configuration below at the end of the file.
# - postgres:/var/lib/postgresql/data
# uncomment to expose db(postgresql) port to host
# ports:
# - "5432:5432"
healthcheck:
test: [ "CMD", "pg_isready" ]
interval: 1s
timeout: 3s
retries: 30
# The redis cache.
redis:
image: redis:6-alpine
restart: always
volumes:
# Mount the redis data directory to the container.
- ./volumes/redis/data:/data
# Set the redis password when startup redis server.
command: redis-server --requirepass difyai123456
healthcheck:
test: [ "CMD", "redis-cli", "ping" ]
# uncomment to expose redis port to host
# ports:
# - "6379:6379"
# The Weaviate vector store.
weaviate:
image: semitechnologies/weaviate:1.19.0
restart: always
volumes:
# Mount the Weaviate data directory to the container.
- ./volumes/weaviate:/var/lib/weaviate
environment:
# The Weaviate configurations
# You can refer to the [Weaviate](https://weaviate.io/developers/weaviate/config-refs/env-vars) documentation for more information.
QUERY_DEFAULTS_LIMIT: 25
AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED: 'false'
PERSISTENCE_DATA_PATH: '/var/lib/weaviate'
DEFAULT_VECTORIZER_MODULE: 'none'
CLUSTER_HOSTNAME: 'node1'
AUTHENTICATION_APIKEY_ENABLED: 'true'
AUTHENTICATION_APIKEY_ALLOWED_KEYS: 'WVF5YThaHlkYwhGUSmCRgsX3tD5ngdN8pkih'
AUTHENTICATION_APIKEY_USERS: 'hello@dify.ai'
AUTHORIZATION_ADMINLIST_ENABLED: 'true'
AUTHORIZATION_ADMINLIST_USERS: 'hello@dify.ai'
# uncomment to expose weaviate port to host
# ports:
# - "8080:8080"
# The DifySandbox
sandbox:
image: langgenius/dify-sandbox:0.2.1
restart: always
environment:
# The DifySandbox configurations
# Make sure you are changing this key for your deployment with a strong key.
# You can generate a strong key using `openssl rand -base64 42`.
API_KEY: dify-sandbox
GIN_MODE: 'release'
WORKER_TIMEOUT: 15
ENABLE_NETWORK: 'true'
HTTP_PROXY: 'http://ssrf_proxy:3128'
HTTPS_PROXY: 'http://ssrf_proxy:3128'
SANDBOX_PORT: 8194
volumes:
- ./volumes/sandbox/dependencies:/dependencies
networks:
- ssrf_proxy_network
# ssrf_proxy server
# for more information, please refer to
# https://docs.dify.ai/learn-more/faq/install-faq#id-18.-why-is-ssrf_proxy-needed
ssrf_proxy:
image: ubuntu/squid:latest
restart: always
volumes:
# pls clearly modify the squid.conf file to fit your network environment.
- ./volumes/ssrf_proxy/squid.conf:/etc/squid/squid.conf
networks:
- ssrf_proxy_network
- default
# Qdrant vector store.
# uncomment to use qdrant as vector store.
# (if uncommented, you need to comment out the weaviate service above,
# and set VECTOR_STORE to qdrant in the api & worker service.)
# qdrant:
# image: langgenius/qdrant:v1.7.3
# restart: always
# volumes:
# - ./volumes/qdrant:/qdrant/storage
# environment:
# QDRANT_API_KEY: 'difyai123456'
# # uncomment to expose qdrant port to host
# # ports:
# # - "6333:6333"
# # - "6334:6334"
# The pgvector vector database.
# Uncomment to use qdrant as vector store.
# pgvector:
# image: pgvector/pgvector:pg16
# restart: always
# environment:
# PGUSER: postgres
# # The password for the default postgres user.
# POSTGRES_PASSWORD: difyai123456
# # The name of the default postgres database.
# POSTGRES_DB: dify
# # postgres data directory
# PGDATA: /var/lib/postgresql/data/pgdata
# volumes:
# - ./volumes/pgvector/data:/var/lib/postgresql/data
# # uncomment to expose db(postgresql) port to host
# # ports:
# # - "5433:5432"
# healthcheck:
# test: [ "CMD", "pg_isready" ]
# interval: 1s
# timeout: 3s
# retries: 30
# The oracle vector database.
# Uncomment to use oracle23ai as vector store. Also need to Uncomment volumes block
# oracle:
# image: container-registry.oracle.com/database/free:latest
# restart: always
# ports:
# - 1521:1521
# volumes:
# - type: volume
# source: oradata
# target: /opt/oracle/oradata
# - ./startupscripts:/opt/oracle/scripts/startup
# environment:
# - ORACLE_PWD=Dify123456
# - ORACLE_CHARACTERSET=AL32UTF8
# The nginx reverse proxy.
# used for reverse proxying the API service and Web service.
nginx:
image: nginx:latest
restart: always
volumes:
- ./nginx/nginx.conf:/etc/nginx/nginx.conf
- ./nginx/proxy.conf:/etc/nginx/proxy.conf
- ./nginx/conf.d:/etc/nginx/conf.d
#- ./nginx/ssl:/etc/ssl
depends_on:
- api
- web
ports:
- "80:80"
#- "443:443"
# notice: if you use windows-wsl2, postgres may not work properly due to the ntfs issue.you can use volumes to mount the data directory to the host.
# volumes:
#   postgres:
networks:
# create a network between sandbox, api and ssrf_proxy, and can not access outside.
ssrf_proxy_network:
driver: bridge
internal: true
#volumes:
# oradata:

View File

@ -1,38 +0,0 @@
server {
listen 80;
server_name _;
location /console/api {
proxy_pass http://api:5001;
include proxy.conf;
}
location /api {
proxy_pass http://api:5001;
include proxy.conf;
}
location /v1 {
proxy_pass http://api:5001;
include proxy.conf;
}
location /files {
proxy_pass http://api:5001;
include proxy.conf;
}
location / {
proxy_pass http://web:3000;
include proxy.conf;
}
# If you want to support HTTPS, please uncomment the code snippet below
#listen 443 ssl;
#ssl_certificate ./../ssl/your_cert_file.cer;
#ssl_certificate_key ./../ssl/your_cert_key.key;
#ssl_protocols TLSv1.1 TLSv1.2 TLSv1.3;
#ssl_prefer_server_ciphers on;
#ssl_session_cache shared:SSL:10m;
#ssl_session_timeout 10m;
}

View File

@ -1,32 +0,0 @@
user nginx;
worker_processes auto;
error_log /var/log/nginx/error.log notice;
pid /var/run/nginx.pid;
events {
worker_connections 1024;
}
http {
include /etc/nginx/mime.types;
default_type application/octet-stream;
log_format main '$remote_addr - $remote_user [$time_local] "$request" '
'$status $body_bytes_sent "$http_referer" '
'"$http_user_agent" "$http_x_forwarded_for"';
access_log /var/log/nginx/access.log main;
sendfile on;
#tcp_nopush on;
keepalive_timeout 65;
#gzip on;
client_max_body_size 15M;
include /etc/nginx/conf.d/*.conf;
}

View File

@ -1,8 +0,0 @@
proxy_set_header Host $host;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
proxy_http_version 1.1;
proxy_set_header Connection "";
proxy_buffering off;
proxy_read_timeout 3600s;
proxy_send_timeout 3600s;

View File

@ -1 +0,0 @@

View File

@ -1,5 +0,0 @@
show pdbs;
ALTER SYSTEM SET PROCESSES=500 SCOPE=SPFILE;
alter session set container= freepdb1;
create user dify identified by dify DEFAULT TABLESPACE users quota unlimited on users;
grant DB_DEVELOPER_ROLE to dify;

View File

@ -1,222 +0,0 @@
---
# Copyright OpenSearch Contributors
# SPDX-License-Identifier: Apache-2.0
# Description:
# Default configuration for OpenSearch Dashboards
# OpenSearch Dashboards is served by a back end server. This setting specifies the port to use.
# server.port: 5601
# Specifies the address to which the OpenSearch Dashboards server will bind. IP addresses and host names are both valid values.
# The default is 'localhost', which usually means remote machines will not be able to connect.
# To allow connections from remote users, set this parameter to a non-loopback address.
# server.host: "localhost"
# Enables you to specify a path to mount OpenSearch Dashboards at if you are running behind a proxy.
# Use the `server.rewriteBasePath` setting to tell OpenSearch Dashboards if it should remove the basePath
# from requests it receives, and to prevent a deprecation warning at startup.
# This setting cannot end in a slash.
# server.basePath: ""
# Specifies whether OpenSearch Dashboards should rewrite requests that are prefixed with
# `server.basePath` or require that they are rewritten by your reverse proxy.
# server.rewriteBasePath: false
# The maximum payload size in bytes for incoming server requests.
# server.maxPayloadBytes: 1048576
# The OpenSearch Dashboards server's name. This is used for display purposes.
# server.name: "your-hostname"
# The URLs of the OpenSearch instances to use for all your queries.
# opensearch.hosts: ["http://localhost:9200"]
# OpenSearch Dashboards uses an index in OpenSearch to store saved searches, visualizations and
# dashboards. OpenSearch Dashboards creates a new index if the index doesn't already exist.
# opensearchDashboards.index: ".opensearch_dashboards"
# The default application to load.
# opensearchDashboards.defaultAppId: "home"
# Setting for an optimized healthcheck that only uses the local OpenSearch node to do Dashboards healthcheck.
# This settings should be used for large clusters or for clusters with ingest heavy nodes.
# It allows Dashboards to only healthcheck using the local OpenSearch node rather than fan out requests across all nodes.
#
# It requires the user to create an OpenSearch node attribute with the same name as the value used in the setting
# This node attribute should assign all nodes of the same cluster an integer value that increments with each new cluster that is spun up
# e.g. in opensearch.yml file you would set the value to a setting using node.attr.cluster_id:
# Should only be enabled if there is a corresponding node attribute created in your OpenSearch config that matches the value here
# opensearch.optimizedHealthcheckId: "cluster_id"
# If your OpenSearch is protected with basic authentication, these settings provide
# the username and password that the OpenSearch Dashboards server uses to perform maintenance on the OpenSearch Dashboards
# index at startup. Your OpenSearch Dashboards users still need to authenticate with OpenSearch, which
# is proxied through the OpenSearch Dashboards server.
# opensearch.username: "opensearch_dashboards_system"
# opensearch.password: "pass"
# Enables SSL and paths to the PEM-format SSL certificate and SSL key files, respectively.
# These settings enable SSL for outgoing requests from the OpenSearch Dashboards server to the browser.
# server.ssl.enabled: false
# server.ssl.certificate: /path/to/your/server.crt
# server.ssl.key: /path/to/your/server.key
# Optional settings that provide the paths to the PEM-format SSL certificate and key files.
# These files are used to verify the identity of OpenSearch Dashboards to OpenSearch and are required when
# xpack.security.http.ssl.client_authentication in OpenSearch is set to required.
# opensearch.ssl.certificate: /path/to/your/client.crt
# opensearch.ssl.key: /path/to/your/client.key
# Optional setting that enables you to specify a path to the PEM file for the certificate
# authority for your OpenSearch instance.
# opensearch.ssl.certificateAuthorities: [ "/path/to/your/CA.pem" ]
# To disregard the validity of SSL certificates, change this setting's value to 'none'.
# opensearch.ssl.verificationMode: full
# Time in milliseconds to wait for OpenSearch to respond to pings. Defaults to the value of
# the opensearch.requestTimeout setting.
# opensearch.pingTimeout: 1500
# Time in milliseconds to wait for responses from the back end or OpenSearch. This value
# must be a positive integer.
# opensearch.requestTimeout: 30000
# List of OpenSearch Dashboards client-side headers to send to OpenSearch. To send *no* client-side
# headers, set this value to [] (an empty list).
# opensearch.requestHeadersWhitelist: [ authorization ]
# Header names and values that are sent to OpenSearch. Any custom headers cannot be overwritten
# by client-side headers, regardless of the opensearch.requestHeadersWhitelist configuration.
# opensearch.customHeaders: {}
# Time in milliseconds for OpenSearch to wait for responses from shards. Set to 0 to disable.
# opensearch.shardTimeout: 30000
# Logs queries sent to OpenSearch. Requires logging.verbose set to true.
# opensearch.logQueries: false
# Specifies the path where OpenSearch Dashboards creates the process ID file.
# pid.file: /var/run/opensearchDashboards.pid
# Enables you to specify a file where OpenSearch Dashboards stores log output.
# logging.dest: stdout
# Set the value of this setting to true to suppress all logging output.
# logging.silent: false
# Set the value of this setting to true to suppress all logging output other than error messages.
# logging.quiet: false
# Set the value of this setting to true to log all events, including system usage information
# and all requests.
# logging.verbose: false
# Set the interval in milliseconds to sample system and process performance
# metrics. Minimum is 100ms. Defaults to 5000.
# ops.interval: 5000
# Specifies locale to be used for all localizable strings, dates and number formats.
# Supported languages are the following: English - en , by default , Chinese - zh-CN .
# i18n.locale: "en"
# Set the allowlist to check input graphite Url. Allowlist is the default check list.
# vis_type_timeline.graphiteAllowedUrls: ['https://www.hostedgraphite.com/UID/ACCESS_KEY/graphite']
# Set the blocklist to check input graphite Url. Blocklist is an IP list.
# Below is an example for reference
# vis_type_timeline.graphiteBlockedIPs: [
# //Loopback
# '127.0.0.0/8',
# '::1/128',
# //Link-local Address for IPv6
# 'fe80::/10',
# //Private IP address for IPv4
# '10.0.0.0/8',
# '172.16.0.0/12',
# '192.168.0.0/16',
# //Unique local address (ULA)
# 'fc00::/7',
# //Reserved IP address
# '0.0.0.0/8',
# '100.64.0.0/10',
# '192.0.0.0/24',
# '192.0.2.0/24',
# '198.18.0.0/15',
# '192.88.99.0/24',
# '198.51.100.0/24',
# '203.0.113.0/24',
# '224.0.0.0/4',
# '240.0.0.0/4',
# '255.255.255.255/32',
# '::/128',
# '2001:db8::/32',
# 'ff00::/8',
# ]
# vis_type_timeline.graphiteBlockedIPs: []
# opensearchDashboards.branding:
# logo:
# defaultUrl: ""
# darkModeUrl: ""
# mark:
# defaultUrl: ""
# darkModeUrl: ""
# loadingLogo:
# defaultUrl: ""
# darkModeUrl: ""
# faviconUrl: ""
# applicationTitle: ""
# Set the value of this setting to true to capture region blocked warnings and errors
# for your map rendering services.
# map.showRegionBlockedWarning: false%
# Set the value of this setting to false to suppress search usage telemetry
# for reducing the load of OpenSearch cluster.
# data.search.usageTelemetry.enabled: false
# 2.4 renames 'wizard.enabled: false' to 'vis_builder.enabled: false'
# Set the value of this setting to false to disable VisBuilder
# functionality in Visualization.
# vis_builder.enabled: false
# 2.4 New Experimental Feature
# Set the value of this setting to true to enable the experimental multiple data source
# support feature. Use with caution.
# data_source.enabled: false
# Set the value of these settings to customize crypto materials to encryption saved credentials
# in data sources.
# data_source.encryption.wrappingKeyName: 'changeme'
# data_source.encryption.wrappingKeyNamespace: 'changeme'
# data_source.encryption.wrappingKey: [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
# 2.6 New ML Commons Dashboards Feature
# Set the value of this setting to true to enable the ml commons dashboards
# ml_commons_dashboards.enabled: false
# 2.12 New experimental Assistant Dashboards Feature
# Set the value of this setting to true to enable the assistant dashboards
# assistant.chat.enabled: false
# 2.13 New Query Assistant Feature
# Set the value of this setting to false to disable the query assistant
# observability.query_assist.enabled: false
# 2.14 Enable Ui Metric Collectors in Usage Collector
# Set the value of this setting to true to enable UI Metric collections
# usageCollection.uiMetric.enabled: false
opensearch.hosts: [https://localhost:9200]
opensearch.ssl.verificationMode: none
opensearch.username: admin
opensearch.password: 'Qazwsxedc!@#123'
opensearch.requestHeadersWhitelist: [authorization, securitytenant]
opensearch_security.multitenancy.enabled: true
opensearch_security.multitenancy.tenants.preferred: [Private, Global]
opensearch_security.readonly_mode.roles: [kibana_read_only]
# Use this setting if you are running opensearch-dashboards without https
opensearch_security.cookie.secure: false
server.host: '0.0.0.0'

Some files were not shown because too many files have changed in this diff Show More