Merge branch 'main' into feat/hitl-frontend

This commit is contained in:
twwu 2025-12-22 18:07:16 +08:00
commit 138922f3f4
1256 changed files with 86997 additions and 6378 deletions

View File

@ -1,5 +1,5 @@
---
name: Dify Frontend Testing
name: frontend-testing
description: Generate Jest + React Testing Library tests for Dify frontend components, hooks, and utilities. Triggers on testing, spec files, coverage, Jest, RTL, unit tests, integration tests, or write/review test requests.
---
@ -178,7 +178,7 @@ Process in this order for multi-file testing:
- **500+ lines**: Consider splitting before testing
- **Many dependencies**: Extract logic into hooks first
> 📖 See `guides/workflow.md` for complete workflow details and todo list format.
> 📖 See `references/workflow.md` for complete workflow details and todo list format.
## Testing Strategy
@ -289,17 +289,18 @@ For each test file generated, aim for:
- ✅ **>95%** branch coverage
- ✅ **>95%** line coverage
> **Note**: For multi-file directories, process one file at a time with full coverage each. See `guides/workflow.md`.
> **Note**: For multi-file directories, process one file at a time with full coverage each. See `references/workflow.md`.
## Detailed Guides
For more detailed information, refer to:
- `guides/workflow.md` - **Incremental testing workflow** (MUST READ for multi-file testing)
- `guides/mocking.md` - Mock patterns and best practices
- `guides/async-testing.md` - Async operations and API calls
- `guides/domain-components.md` - Workflow, Dataset, Configuration testing
- `guides/common-patterns.md` - Frequently used testing patterns
- `references/workflow.md` - **Incremental testing workflow** (MUST READ for multi-file testing)
- `references/mocking.md` - Mock patterns and best practices
- `references/async-testing.md` - Async operations and API calls
- `references/domain-components.md` - Workflow, Dataset, Configuration testing
- `references/common-patterns.md` - Frequently used testing patterns
- `references/checklist.md` - Test generation checklist and validation steps
## Authoritative References
@ -318,3 +319,4 @@ For more detailed information, refer to:
- `web/jest.config.ts` - Jest configuration
- `web/jest.setup.ts` - Test environment setup
- `web/testing/analyze-component.js` - Component analysis tool
- `web/__mocks__/react-i18next.ts` - Shared i18n mock (auto-loaded by Jest, no explicit mock needed; override locally only for custom translations)

View File

@ -26,13 +26,20 @@ import userEvent from '@testing-library/user-event'
// WHY: Mocks must be hoisted to top of file (Jest requirement).
// They run BEFORE imports, so keep them before component imports.
// i18n (always required in Dify)
// WHY: Returns key instead of translation so tests don't depend on i18n files
jest.mock('react-i18next', () => ({
useTranslation: () => ({
t: (key: string) => key,
}),
}))
// i18n (automatically mocked)
// WHY: Shared mock at web/__mocks__/react-i18next.ts is auto-loaded by Jest
// No explicit mock needed - it returns translation keys as-is
// Override only if custom translations are required:
// jest.mock('react-i18next', () => ({
// useTranslation: () => ({
// t: (key: string) => {
// const customTranslations: Record<string, string> = {
// 'my.custom.key': 'Custom Translation',
// }
// return customTranslations[key] || key
// },
// }),
// }))
// Router (if component uses useRouter, usePathname, useSearchParams)
// WHY: Isolates tests from Next.js routing, enables testing navigation behavior

View File

@ -76,7 +76,7 @@ Use this checklist when generating or reviewing tests for Dify frontend componen
- [ ] **DO NOT mock base components** (`@/app/components/base/*`)
- [ ] `jest.clearAllMocks()` in `beforeEach` (not `afterEach`)
- [ ] Shared mock state reset in `beforeEach`
- [ ] i18n mock returns keys (not empty strings)
- [ ] i18n uses shared mock (auto-loaded); only override locally for custom translations
- [ ] Router mocks match actual Next.js API
- [ ] Mocks reflect actual component conditional behavior
- [ ] Only mock: API services, complex context providers, third-party libs

View File

@ -46,12 +46,22 @@ Only mock these categories:
## Essential Mocks
### 1. i18n (Always Required)
### 1. i18n (Auto-loaded via Shared Mock)
A shared mock is available at `web/__mocks__/react-i18next.ts` and is auto-loaded by Jest.
**No explicit mock needed** for most tests - it returns translation keys as-is.
For tests requiring custom translations, override the mock:
```typescript
jest.mock('react-i18next', () => ({
useTranslation: () => ({
t: (key: string) => key,
t: (key: string) => {
const translations: Record<string, string> = {
'my.custom.key': 'Custom translation',
}
return translations[key] || key
},
}),
}))
```
@ -313,7 +323,7 @@ Need to use a component in test?
│ └─ YES → Mock it (next/navigation, external SDKs)
└─ Is it i18n?
└─ YES → Mock to return keys
└─ YES → Uses shared mock (auto-loaded). Override only for custom translations
```
## Factory Function Pattern

1
.codex/skills Symbolic link
View File

@ -0,0 +1 @@
../.claude/skills

5
.coveragerc Normal file
View File

@ -0,0 +1,5 @@
[run]
omit =
api/tests/*
api/migrations/*
api/core/rag/datasource/vdb/*

View File

@ -6,7 +6,7 @@ cd web && pnpm install
pipx install uv
echo "alias start-api=\"cd $WORKSPACE_ROOT/api && uv run python -m flask run --host 0.0.0.0 --port=5001 --debug\"" >> ~/.bashrc
echo "alias start-worker=\"cd $WORKSPACE_ROOT/api && uv run python -m celery -A app.celery worker -P threads -c 1 --loglevel INFO -Q dataset,priority_dataset,priority_pipeline,pipeline,mail,ops_trace,app_deletion,plugin,workflow_storage,conversation,workflow,schedule_poller,schedule_executor,triggered_workflow_dispatcher,trigger_refresh_executor\"" >> ~/.bashrc
echo "alias start-worker=\"cd $WORKSPACE_ROOT/api && uv run python -m celery -A app.celery worker -P threads -c 1 --loglevel INFO -Q dataset,priority_dataset,priority_pipeline,pipeline,mail,ops_trace,app_deletion,plugin,workflow_storage,conversation,workflow,schedule_poller,schedule_executor,triggered_workflow_dispatcher,trigger_refresh_executor,retention\"" >> ~/.bashrc
echo "alias start-web=\"cd $WORKSPACE_ROOT/web && pnpm dev\"" >> ~/.bashrc
echo "alias start-web-prod=\"cd $WORKSPACE_ROOT/web && pnpm build && pnpm start\"" >> ~/.bashrc
echo "alias start-containers=\"cd $WORKSPACE_ROOT/docker && docker-compose -f docker-compose.middleware.yaml -p dify --env-file middleware.env up -d\"" >> ~/.bashrc

18
.github/CODEOWNERS vendored
View File

@ -6,6 +6,12 @@
* @crazywoola @laipz8200 @Yeuoly
# CODEOWNERS file
.github/CODEOWNERS @laipz8200 @crazywoola
# Docs
docs/ @crazywoola
# Backend (default owner, more specific rules below will override)
api/ @QuantumGhost
@ -116,11 +122,17 @@ api/controllers/console/feature.py @GarfieldDai @GareArc
api/controllers/web/feature.py @GarfieldDai @GareArc
# Backend - Database Migrations
api/migrations/ @snakevash @laipz8200
api/migrations/ @snakevash @laipz8200 @MRZHUH
# Backend - Vector DB Middleware
api/configs/middleware/vdb/* @JohnJyong
# Frontend
web/ @iamjoel
# Frontend - Web Tests
.github/workflows/web-tests.yml @iamjoel
# Frontend - App - Orchestration
web/app/components/workflow/ @iamjoel @zxhlyh
web/app/components/workflow-app/ @iamjoel @zxhlyh
@ -192,6 +204,7 @@ web/app/components/plugins/marketplace/ @iamjoel @Yessenia-d
web/app/signin/ @douxc @iamjoel
web/app/signup/ @douxc @iamjoel
web/app/reset-password/ @douxc @iamjoel
web/app/install/ @douxc @iamjoel
web/app/init/ @douxc @iamjoel
web/app/forgot-password/ @douxc @iamjoel
@ -232,3 +245,6 @@ web/app/education-apply/ @iamjoel @zxhlyh
# Frontend - Workspace
web/app/components/header/account-dropdown/workplace-selector/ @iamjoel @zxhlyh
# Docker
docker/* @laipz8200

View File

@ -71,18 +71,18 @@ jobs:
run: |
cp api/tests/integration_tests/.env.example api/tests/integration_tests/.env
- name: Run Workflow
run: uv run --project api bash dev/pytest/pytest_workflow.sh
- name: Run Tool
run: uv run --project api bash dev/pytest/pytest_tools.sh
- name: Run TestContainers
run: uv run --project api bash dev/pytest/pytest_testcontainers.sh
- name: Run Unit tests
- name: Run API Tests
env:
STORAGE_TYPE: opendal
OPENDAL_SCHEME: fs
OPENDAL_FS_ROOT: /tmp/dify-storage
run: |
uv run --project api bash dev/pytest/pytest_unit_tests.sh
uv run --project api pytest \
--timeout "${PYTEST_TIMEOUT:-180}" \
api/tests/integration_tests/workflow \
api/tests/integration_tests/tools \
api/tests/test_containers_integration_tests \
api/tests/unit_tests
- name: Coverage Summary
run: |
@ -93,5 +93,12 @@ jobs:
# Create a detailed coverage summary
echo "### Test Coverage Summary :test_tube:" >> $GITHUB_STEP_SUMMARY
echo "Total Coverage: ${TOTAL_COVERAGE}%" >> $GITHUB_STEP_SUMMARY
uv run --project api coverage report --format=markdown >> $GITHUB_STEP_SUMMARY
{
echo ""
echo "<details><summary>File-level coverage (click to expand)</summary>"
echo ""
echo '```'
uv run --project api coverage report -m
echo '```'
echo "</details>"
} >> $GITHUB_STEP_SUMMARY

View File

@ -66,7 +66,7 @@ jobs:
# mdformat breaks YAML front matter in markdown files. Add --exclude for directories containing YAML front matter.
- name: mdformat
run: |
uvx --python 3.13 mdformat . --exclude ".claude/skills/**"
uvx --python 3.13 mdformat . --exclude ".claude/skills/**/SKILL.md"
- name: Install pnpm
uses: pnpm/action-setup@v4
@ -79,7 +79,7 @@ jobs:
with:
node-version: 22
cache: pnpm
cache-dependency-path: ./web/package.json
cache-dependency-path: ./web/pnpm-lock.yaml
- name: Web dependencies
working-directory: ./web

View File

@ -90,7 +90,7 @@ jobs:
with:
node-version: 22
cache: pnpm
cache-dependency-path: ./web/package.json
cache-dependency-path: ./web/pnpm-lock.yaml
- name: Web dependencies
if: steps.changed-files.outputs.any_changed == 'true'

View File

@ -55,7 +55,7 @@ jobs:
with:
node-version: 'lts/*'
cache: pnpm
cache-dependency-path: ./web/package.json
cache-dependency-path: ./web/pnpm-lock.yaml
- name: Install dependencies
if: env.FILES_CHANGED == 'true'

View File

@ -13,6 +13,7 @@ jobs:
runs-on: ubuntu-latest
defaults:
run:
shell: bash
working-directory: ./web
steps:
@ -21,14 +22,7 @@ jobs:
with:
persist-credentials: false
- name: Check changed files
id: changed-files
uses: tj-actions/changed-files@v46
with:
files: web/**
- name: Install pnpm
if: steps.changed-files.outputs.any_changed == 'true'
uses: pnpm/action-setup@v4
with:
package_json_file: web/package.json
@ -36,23 +30,355 @@ jobs:
- name: Setup Node.js
uses: actions/setup-node@v4
if: steps.changed-files.outputs.any_changed == 'true'
with:
node-version: 22
cache: pnpm
cache-dependency-path: ./web/package.json
cache-dependency-path: ./web/pnpm-lock.yaml
- name: Restore Jest cache
uses: actions/cache@v4
with:
path: web/.cache/jest
key: ${{ runner.os }}-jest-${{ hashFiles('web/pnpm-lock.yaml') }}
restore-keys: |
${{ runner.os }}-jest-
- name: Install dependencies
if: steps.changed-files.outputs.any_changed == 'true'
working-directory: ./web
run: pnpm install --frozen-lockfile
- name: Check i18n types synchronization
if: steps.changed-files.outputs.any_changed == 'true'
working-directory: ./web
run: pnpm run check:i18n-types
- name: Run tests
if: steps.changed-files.outputs.any_changed == 'true'
working-directory: ./web
run: pnpm test
run: |
pnpm exec jest \
--ci \
--maxWorkers=100% \
--coverage \
--passWithNoTests
- name: Coverage Summary
if: always()
id: coverage-summary
run: |
set -eo pipefail
COVERAGE_FILE="coverage/coverage-final.json"
COVERAGE_SUMMARY_FILE="coverage/coverage-summary.json"
if [ ! -f "$COVERAGE_FILE" ] && [ ! -f "$COVERAGE_SUMMARY_FILE" ]; then
echo "has_coverage=false" >> "$GITHUB_OUTPUT"
echo "### 🚨 Test Coverage Report :test_tube:" >> "$GITHUB_STEP_SUMMARY"
echo "Coverage data not found. Ensure Jest runs with coverage enabled." >> "$GITHUB_STEP_SUMMARY"
exit 0
fi
echo "has_coverage=true" >> "$GITHUB_OUTPUT"
node <<'NODE' >> "$GITHUB_STEP_SUMMARY"
const fs = require('fs');
const path = require('path');
let libCoverage = null;
try {
libCoverage = require('istanbul-lib-coverage');
} catch (error) {
libCoverage = null;
}
const summaryPath = path.join('coverage', 'coverage-summary.json');
const finalPath = path.join('coverage', 'coverage-final.json');
const hasSummary = fs.existsSync(summaryPath);
const hasFinal = fs.existsSync(finalPath);
if (!hasSummary && !hasFinal) {
console.log('### Test Coverage Summary :test_tube:');
console.log('');
console.log('No coverage data found.');
process.exit(0);
}
const summary = hasSummary
? JSON.parse(fs.readFileSync(summaryPath, 'utf8'))
: null;
const coverage = hasFinal
? JSON.parse(fs.readFileSync(finalPath, 'utf8'))
: null;
const getLineCoverageFromStatements = (statementMap, statementHits) => {
const lineHits = {};
if (!statementMap || !statementHits) {
return lineHits;
}
Object.entries(statementMap).forEach(([key, statement]) => {
const line = statement?.start?.line;
if (!line) {
return;
}
const hits = statementHits[key] ?? 0;
const previous = lineHits[line];
lineHits[line] = previous === undefined ? hits : Math.max(previous, hits);
});
return lineHits;
};
const getFileCoverage = (entry) => (
libCoverage ? libCoverage.createFileCoverage(entry) : null
);
const getLineHits = (entry, fileCoverage) => {
const lineHits = entry.l ?? {};
if (Object.keys(lineHits).length > 0) {
return lineHits;
}
if (fileCoverage) {
return fileCoverage.getLineCoverage();
}
return getLineCoverageFromStatements(entry.statementMap ?? {}, entry.s ?? {});
};
const getUncoveredLines = (entry, fileCoverage, lineHits) => {
if (lineHits && Object.keys(lineHits).length > 0) {
return Object.entries(lineHits)
.filter(([, count]) => count === 0)
.map(([line]) => Number(line))
.sort((a, b) => a - b);
}
if (fileCoverage) {
return fileCoverage.getUncoveredLines();
}
return [];
};
const totals = {
lines: { covered: 0, total: 0 },
statements: { covered: 0, total: 0 },
branches: { covered: 0, total: 0 },
functions: { covered: 0, total: 0 },
};
const fileSummaries = [];
if (summary) {
const totalEntry = summary.total ?? {};
['lines', 'statements', 'branches', 'functions'].forEach((key) => {
if (totalEntry[key]) {
totals[key].covered = totalEntry[key].covered ?? 0;
totals[key].total = totalEntry[key].total ?? 0;
}
});
Object.entries(summary)
.filter(([file]) => file !== 'total')
.forEach(([file, data]) => {
fileSummaries.push({
file,
pct: data.lines?.pct ?? data.statements?.pct ?? 0,
lines: {
covered: data.lines?.covered ?? 0,
total: data.lines?.total ?? 0,
},
});
});
} else if (coverage) {
Object.entries(coverage).forEach(([file, entry]) => {
const fileCoverage = getFileCoverage(entry);
const lineHits = getLineHits(entry, fileCoverage);
const statementHits = entry.s ?? {};
const branchHits = entry.b ?? {};
const functionHits = entry.f ?? {};
const lineTotal = Object.keys(lineHits).length;
const lineCovered = Object.values(lineHits).filter((n) => n > 0).length;
const statementTotal = Object.keys(statementHits).length;
const statementCovered = Object.values(statementHits).filter((n) => n > 0).length;
const branchTotal = Object.values(branchHits).reduce((acc, branches) => acc + branches.length, 0);
const branchCovered = Object.values(branchHits).reduce(
(acc, branches) => acc + branches.filter((n) => n > 0).length,
0,
);
const functionTotal = Object.keys(functionHits).length;
const functionCovered = Object.values(functionHits).filter((n) => n > 0).length;
totals.lines.total += lineTotal;
totals.lines.covered += lineCovered;
totals.statements.total += statementTotal;
totals.statements.covered += statementCovered;
totals.branches.total += branchTotal;
totals.branches.covered += branchCovered;
totals.functions.total += functionTotal;
totals.functions.covered += functionCovered;
const pct = (covered, tot) => (tot > 0 ? (covered / tot) * 100 : 0);
fileSummaries.push({
file,
pct: pct(lineCovered || statementCovered, lineTotal || statementTotal),
lines: {
covered: lineCovered || statementCovered,
total: lineTotal || statementTotal,
},
});
});
}
const pct = (covered, tot) => (tot > 0 ? ((covered / tot) * 100).toFixed(2) : '0.00');
console.log('### Test Coverage Summary :test_tube:');
console.log('');
console.log('| Metric | Coverage | Covered / Total |');
console.log('|--------|----------|-----------------|');
console.log(`| Lines | ${pct(totals.lines.covered, totals.lines.total)}% | ${totals.lines.covered} / ${totals.lines.total} |`);
console.log(`| Statements | ${pct(totals.statements.covered, totals.statements.total)}% | ${totals.statements.covered} / ${totals.statements.total} |`);
console.log(`| Branches | ${pct(totals.branches.covered, totals.branches.total)}% | ${totals.branches.covered} / ${totals.branches.total} |`);
console.log(`| Functions | ${pct(totals.functions.covered, totals.functions.total)}% | ${totals.functions.covered} / ${totals.functions.total} |`);
console.log('');
console.log('<details><summary>File coverage (lowest lines first)</summary>');
console.log('');
console.log('```');
fileSummaries
.sort((a, b) => (a.pct - b.pct) || (b.lines.total - a.lines.total))
.slice(0, 25)
.forEach(({ file, pct, lines }) => {
console.log(`${pct.toFixed(2)}%\t${lines.covered}/${lines.total}\t${file}`);
});
console.log('```');
console.log('</details>');
if (coverage) {
const pctValue = (covered, tot) => {
if (tot === 0) {
return '0';
}
return ((covered / tot) * 100)
.toFixed(2)
.replace(/\.?0+$/, '');
};
const formatLineRanges = (lines) => {
if (lines.length === 0) {
return '';
}
const ranges = [];
let start = lines[0];
let end = lines[0];
for (let i = 1; i < lines.length; i += 1) {
const current = lines[i];
if (current === end + 1) {
end = current;
continue;
}
ranges.push(start === end ? `${start}` : `${start}-${end}`);
start = current;
end = current;
}
ranges.push(start === end ? `${start}` : `${start}-${end}`);
return ranges.join(',');
};
const tableTotals = {
statements: { covered: 0, total: 0 },
branches: { covered: 0, total: 0 },
functions: { covered: 0, total: 0 },
lines: { covered: 0, total: 0 },
};
const tableRows = Object.entries(coverage)
.map(([file, entry]) => {
const fileCoverage = getFileCoverage(entry);
const lineHits = getLineHits(entry, fileCoverage);
const statementHits = entry.s ?? {};
const branchHits = entry.b ?? {};
const functionHits = entry.f ?? {};
const lineTotal = Object.keys(lineHits).length;
const lineCovered = Object.values(lineHits).filter((n) => n > 0).length;
const statementTotal = Object.keys(statementHits).length;
const statementCovered = Object.values(statementHits).filter((n) => n > 0).length;
const branchTotal = Object.values(branchHits).reduce((acc, branches) => acc + branches.length, 0);
const branchCovered = Object.values(branchHits).reduce(
(acc, branches) => acc + branches.filter((n) => n > 0).length,
0,
);
const functionTotal = Object.keys(functionHits).length;
const functionCovered = Object.values(functionHits).filter((n) => n > 0).length;
tableTotals.lines.total += lineTotal;
tableTotals.lines.covered += lineCovered;
tableTotals.statements.total += statementTotal;
tableTotals.statements.covered += statementCovered;
tableTotals.branches.total += branchTotal;
tableTotals.branches.covered += branchCovered;
tableTotals.functions.total += functionTotal;
tableTotals.functions.covered += functionCovered;
const uncoveredLines = getUncoveredLines(entry, fileCoverage, lineHits);
const filePath = entry.path ?? file;
const relativePath = path.isAbsolute(filePath)
? path.relative(process.cwd(), filePath)
: filePath;
return {
file: relativePath || file,
statements: pctValue(statementCovered, statementTotal),
branches: pctValue(branchCovered, branchTotal),
functions: pctValue(functionCovered, functionTotal),
lines: pctValue(lineCovered, lineTotal),
uncovered: formatLineRanges(uncoveredLines),
};
})
.sort((a, b) => a.file.localeCompare(b.file));
const columns = [
{ key: 'file', header: 'File', align: 'left' },
{ key: 'statements', header: '% Stmts', align: 'right' },
{ key: 'branches', header: '% Branch', align: 'right' },
{ key: 'functions', header: '% Funcs', align: 'right' },
{ key: 'lines', header: '% Lines', align: 'right' },
{ key: 'uncovered', header: 'Uncovered Line #s', align: 'left' },
];
const allFilesRow = {
file: 'All files',
statements: pctValue(tableTotals.statements.covered, tableTotals.statements.total),
branches: pctValue(tableTotals.branches.covered, tableTotals.branches.total),
functions: pctValue(tableTotals.functions.covered, tableTotals.functions.total),
lines: pctValue(tableTotals.lines.covered, tableTotals.lines.total),
uncovered: '',
};
const rowsForOutput = [allFilesRow, ...tableRows];
const formatRow = (row) => `| ${columns
.map(({ key }) => String(row[key] ?? ''))
.join(' | ')} |`;
const headerRow = `| ${columns.map(({ header }) => header).join(' | ')} |`;
const dividerRow = `| ${columns
.map(({ align }) => (align === 'right' ? '---:' : ':---'))
.join(' | ')} |`;
console.log('');
console.log('<details><summary>Jest coverage table</summary>');
console.log('');
console.log(headerRow);
console.log(dividerRow);
rowsForOutput.forEach((row) => console.log(formatRow(row)));
console.log('</details>');
}
NODE
- name: Upload Coverage Artifact
if: steps.coverage-summary.outputs.has_coverage == 'true'
uses: actions/upload-artifact@v4
with:
name: web-coverage-report
path: web/coverage
retention-days: 30
if-no-files-found: error

View File

@ -37,7 +37,7 @@
"-c",
"1",
"-Q",
"dataset,priority_dataset,priority_pipeline,pipeline,mail,ops_trace,app_deletion,plugin,workflow_storage,conversation,workflow,schedule_poller,schedule_executor,triggered_workflow_dispatcher,trigger_refresh_executor",
"dataset,priority_dataset,priority_pipeline,pipeline,mail,ops_trace,app_deletion,plugin,workflow_storage,conversation,workflow,schedule_poller,schedule_executor,triggered_workflow_dispatcher,trigger_refresh_executor,retention",
"--loglevel",
"INFO"
],

View File

@ -543,6 +543,25 @@ APP_MAX_EXECUTION_TIME=1200
APP_DEFAULT_ACTIVE_REQUESTS=0
APP_MAX_ACTIVE_REQUESTS=0
# Aliyun SLS Logstore Configuration
# Aliyun Access Key ID
ALIYUN_SLS_ACCESS_KEY_ID=
# Aliyun Access Key Secret
ALIYUN_SLS_ACCESS_KEY_SECRET=
# Aliyun SLS Endpoint (e.g., cn-hangzhou.log.aliyuncs.com)
ALIYUN_SLS_ENDPOINT=
# Aliyun SLS Region (e.g., cn-hangzhou)
ALIYUN_SLS_REGION=
# Aliyun SLS Project Name
ALIYUN_SLS_PROJECT_NAME=
# Number of days to retain workflow run logs (default: 365 days 3650 for permanent storage)
ALIYUN_SLS_LOGSTORE_TTL=365
# Enable dual-write to both SLS LogStore and SQL database (default: false)
LOGSTORE_DUAL_WRITE_ENABLED=false
# Enable dual-read fallback to SQL database when LogStore returns no results (default: true)
# Useful for migration scenarios where historical data exists only in SQL database
LOGSTORE_DUAL_READ_ENABLED=true
# Celery beat configuration
CELERY_BEAT_SCHEDULER_TIME=1
@ -660,3 +679,19 @@ SINGLE_CHUNK_ATTACHMENT_LIMIT=10
ATTACHMENT_IMAGE_FILE_SIZE_LIMIT=2
ATTACHMENT_IMAGE_DOWNLOAD_TIMEOUT=60
IMAGE_FILE_BATCH_LIMIT=10
# Maximum allowed CSV file size for annotation import in megabytes
ANNOTATION_IMPORT_FILE_SIZE_LIMIT=2
#Maximum number of annotation records allowed in a single import
ANNOTATION_IMPORT_MAX_RECORDS=10000
# Minimum number of annotation records required in a single import
ANNOTATION_IMPORT_MIN_RECORDS=1
ANNOTATION_IMPORT_RATE_LIMIT_PER_MINUTE=5
ANNOTATION_IMPORT_RATE_LIMIT_PER_HOUR=20
# Maximum number of concurrent annotation import tasks per tenant
ANNOTATION_IMPORT_MAX_CONCURRENT=5
# Sandbox expired records clean configuration
SANDBOX_EXPIRED_RECORDS_CLEAN_GRACEFUL_PERIOD=21
SANDBOX_EXPIRED_RECORDS_CLEAN_BATCH_SIZE=1000
SANDBOX_EXPIRED_RECORDS_RETENTION_DAYS=30

View File

@ -84,7 +84,7 @@
1. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.
```bash
uv run celery -A app.celery worker -P threads -c 2 --loglevel INFO -Q dataset,priority_dataset,priority_pipeline,pipeline,mail,ops_trace,app_deletion,plugin,workflow_storage,conversation,workflow,schedule_poller,schedule_executor,triggered_workflow_dispatcher,trigger_refresh_executor
uv run celery -A app.celery worker -P threads -c 2 --loglevel INFO -Q dataset,priority_dataset,priority_pipeline,pipeline,mail,ops_trace,app_deletion,plugin,workflow_storage,conversation,workflow,schedule_poller,schedule_executor,triggered_workflow_dispatcher,trigger_refresh_executor,retention
```
Additionally, if you want to debug the celery scheduled tasks, you can run the following command in another terminal to start the beat service:

View File

@ -75,6 +75,7 @@ def initialize_extensions(app: DifyApp):
ext_import_modules,
ext_logging,
ext_login,
ext_logstore,
ext_mail,
ext_migrate,
ext_orjson,
@ -83,6 +84,7 @@ def initialize_extensions(app: DifyApp):
ext_redis,
ext_request_logging,
ext_sentry,
ext_session_factory,
ext_set_secretkey,
ext_storage,
ext_timezone,
@ -104,6 +106,7 @@ def initialize_extensions(app: DifyApp):
ext_migrate,
ext_redis,
ext_storage,
ext_logstore, # Initialize logstore after storage, before celery
ext_celery,
ext_login,
ext_mail,
@ -114,6 +117,7 @@ def initialize_extensions(app: DifyApp):
ext_commands,
ext_otel,
ext_request_logging,
ext_session_factory,
]
for ext in extensions:
short_name = ext.__name__.split(".")[-1]

View File

@ -218,7 +218,7 @@ class PluginConfig(BaseSettings):
PLUGIN_DAEMON_TIMEOUT: PositiveFloat | None = Field(
description="Timeout in seconds for requests to the plugin daemon (set to None to disable)",
default=300.0,
default=600.0,
)
INNER_API_KEY_FOR_PLUGIN: str = Field(description="Inner api key for plugin", default="inner-api-key")
@ -380,6 +380,37 @@ class FileUploadConfig(BaseSettings):
default=60,
)
# Annotation Import Security Configurations
ANNOTATION_IMPORT_FILE_SIZE_LIMIT: NonNegativeInt = Field(
description="Maximum allowed CSV file size for annotation import in megabytes",
default=2,
)
ANNOTATION_IMPORT_MAX_RECORDS: PositiveInt = Field(
description="Maximum number of annotation records allowed in a single import",
default=10000,
)
ANNOTATION_IMPORT_MIN_RECORDS: PositiveInt = Field(
description="Minimum number of annotation records required in a single import",
default=1,
)
ANNOTATION_IMPORT_RATE_LIMIT_PER_MINUTE: PositiveInt = Field(
description="Maximum number of annotation import requests per minute per tenant",
default=5,
)
ANNOTATION_IMPORT_RATE_LIMIT_PER_HOUR: PositiveInt = Field(
description="Maximum number of annotation import requests per hour per tenant",
default=20,
)
ANNOTATION_IMPORT_MAX_CONCURRENT: PositiveInt = Field(
description="Maximum number of concurrent annotation import tasks per tenant",
default=2,
)
inner_UPLOAD_FILE_EXTENSION_BLACKLIST: str = Field(
description=(
"Comma-separated list of file extensions that are blocked from upload. "
@ -1239,6 +1270,21 @@ class TenantIsolatedTaskQueueConfig(BaseSettings):
)
class SandboxExpiredRecordsCleanConfig(BaseSettings):
SANDBOX_EXPIRED_RECORDS_CLEAN_GRACEFUL_PERIOD: NonNegativeInt = Field(
description="Graceful period in days for sandbox records clean after subscription expiration",
default=21,
)
SANDBOX_EXPIRED_RECORDS_CLEAN_BATCH_SIZE: PositiveInt = Field(
description="Maximum number of records to process in each batch",
default=1000,
)
SANDBOX_EXPIRED_RECORDS_RETENTION_DAYS: PositiveInt = Field(
description="Retention days for sandbox expired workflow_run records and message records",
default=30,
)
class FeatureConfig(
# place the configs in alphabet order
AppExecutionConfig,
@ -1264,6 +1310,7 @@ class FeatureConfig(
PositionConfig,
RagEtlConfig,
RepositoryConfig,
SandboxExpiredRecordsCleanConfig,
SecurityConfig,
TenantIsolatedTaskQueueConfig,
ToolConfig,

View File

@ -107,7 +107,7 @@ class KeywordStoreConfig(BaseSettings):
class DatabaseConfig(BaseSettings):
# Database type selector
DB_TYPE: Literal["postgresql", "mysql", "oceanbase"] = Field(
DB_TYPE: Literal["postgresql", "mysql", "oceanbase", "seekdb"] = Field(
description="Database type to use. OceanBase is MySQL-compatible.",
default="postgresql",
)

View File

@ -6,19 +6,20 @@ from flask import request
from flask_restx import Resource
from pydantic import BaseModel, Field, field_validator
from sqlalchemy import select
from sqlalchemy.orm import Session
from werkzeug.exceptions import NotFound, Unauthorized
P = ParamSpec("P")
R = TypeVar("R")
from configs import dify_config
from constants.languages import supported_language
from controllers.console import console_ns
from controllers.console.wraps import only_edition_cloud
from core.db.session_factory import session_factory
from extensions.ext_database import db
from libs.token import extract_access_token
from models.model import App, InstalledApp, RecommendedApp
P = ParamSpec("P")
R = TypeVar("R")
DEFAULT_REF_TEMPLATE_SWAGGER_2_0 = "#/definitions/{model}"
@ -90,7 +91,7 @@ class InsertExploreAppListApi(Resource):
privacy_policy = site.privacy_policy or payload.privacy_policy or ""
custom_disclaimer = site.custom_disclaimer or payload.custom_disclaimer or ""
with Session(db.engine) as session:
with session_factory.create_session() as session:
recommended_app = session.execute(
select(RecommendedApp).where(RecommendedApp.app_id == payload.app_id)
).scalar_one_or_none()
@ -138,7 +139,7 @@ class InsertExploreAppApi(Resource):
@only_edition_cloud
@admin_required
def delete(self, app_id):
with Session(db.engine) as session:
with session_factory.create_session() as session:
recommended_app = session.execute(
select(RecommendedApp).where(RecommendedApp.app_id == str(app_id))
).scalar_one_or_none()
@ -146,13 +147,13 @@ class InsertExploreAppApi(Resource):
if not recommended_app:
return {"result": "success"}, 204
with Session(db.engine) as session:
with session_factory.create_session() as session:
app = session.execute(select(App).where(App.id == recommended_app.app_id)).scalar_one_or_none()
if app:
app.is_public = False
with Session(db.engine) as session:
with session_factory.create_session() as session:
installed_apps = (
session.execute(
select(InstalledApp).where(

View File

@ -1,6 +1,6 @@
from typing import Any, Literal
from flask import request
from flask import abort, make_response, request
from flask_restx import Resource, fields, marshal, marshal_with
from pydantic import BaseModel, Field, field_validator
@ -8,6 +8,8 @@ from controllers.common.errors import NoFileUploadedError, TooManyFilesError
from controllers.console import console_ns
from controllers.console.wraps import (
account_initialization_required,
annotation_import_concurrency_limit,
annotation_import_rate_limit,
cloud_edition_billing_resource_check,
edit_permission_required,
setup_required,
@ -257,7 +259,7 @@ class AnnotationApi(Resource):
@console_ns.route("/apps/<uuid:app_id>/annotations/export")
class AnnotationExportApi(Resource):
@console_ns.doc("export_annotations")
@console_ns.doc(description="Export all annotations for an app")
@console_ns.doc(description="Export all annotations for an app with CSV injection protection")
@console_ns.doc(params={"app_id": "Application ID"})
@console_ns.response(
200,
@ -272,8 +274,14 @@ class AnnotationExportApi(Resource):
def get(self, app_id):
app_id = str(app_id)
annotation_list = AppAnnotationService.export_annotation_list_by_app_id(app_id)
response = {"data": marshal(annotation_list, annotation_fields)}
return response, 200
response_data = {"data": marshal(annotation_list, annotation_fields)}
# Create response with secure headers for CSV export
response = make_response(response_data, 200)
response.headers["Content-Type"] = "application/json; charset=utf-8"
response.headers["X-Content-Type-Options"] = "nosniff"
return response
@console_ns.route("/apps/<uuid:app_id>/annotations/<uuid:annotation_id>")
@ -314,18 +322,25 @@ class AnnotationUpdateDeleteApi(Resource):
@console_ns.route("/apps/<uuid:app_id>/annotations/batch-import")
class AnnotationBatchImportApi(Resource):
@console_ns.doc("batch_import_annotations")
@console_ns.doc(description="Batch import annotations from CSV file")
@console_ns.doc(description="Batch import annotations from CSV file with rate limiting and security checks")
@console_ns.doc(params={"app_id": "Application ID"})
@console_ns.response(200, "Batch import started successfully")
@console_ns.response(403, "Insufficient permissions")
@console_ns.response(400, "No file uploaded or too many files")
@console_ns.response(413, "File too large")
@console_ns.response(429, "Too many requests or concurrent imports")
@setup_required
@login_required
@account_initialization_required
@cloud_edition_billing_resource_check("annotation")
@annotation_import_rate_limit
@annotation_import_concurrency_limit
@edit_permission_required
def post(self, app_id):
from configs import dify_config
app_id = str(app_id)
# check file
if "file" not in request.files:
raise NoFileUploadedError()
@ -335,9 +350,27 @@ class AnnotationBatchImportApi(Resource):
# get file from request
file = request.files["file"]
# check file type
if not file.filename or not file.filename.lower().endswith(".csv"):
raise ValueError("Invalid file type. Only CSV files are allowed")
# Check file size before processing
file.seek(0, 2) # Seek to end of file
file_size = file.tell()
file.seek(0) # Reset to beginning
max_size_bytes = dify_config.ANNOTATION_IMPORT_FILE_SIZE_LIMIT * 1024 * 1024
if file_size > max_size_bytes:
abort(
413,
f"File size exceeds maximum limit of {dify_config.ANNOTATION_IMPORT_FILE_SIZE_LIMIT}MB. "
f"Please reduce the file size and try again.",
)
if file_size == 0:
raise ValueError("The uploaded file is empty")
return AppAnnotationService.batch_import_app_annotations(app_id, file)

View File

@ -22,7 +22,12 @@ from controllers.console.error import (
NotAllowedCreateWorkspace,
WorkspacesLimitExceeded,
)
from controllers.console.wraps import email_password_login_enabled, setup_required
from controllers.console.wraps import (
decrypt_code_field,
decrypt_password_field,
email_password_login_enabled,
setup_required,
)
from events.tenant_event import tenant_was_created
from libs.helper import EmailStr, extract_remote_ip
from libs.login import current_account_with_tenant
@ -79,6 +84,7 @@ class LoginApi(Resource):
@setup_required
@email_password_login_enabled
@console_ns.expect(console_ns.models[LoginPayload.__name__])
@decrypt_password_field
def post(self):
"""Authenticate user and login."""
args = LoginPayload.model_validate(console_ns.payload)
@ -218,6 +224,7 @@ class EmailCodeLoginSendEmailApi(Resource):
class EmailCodeLoginApi(Resource):
@setup_required
@console_ns.expect(console_ns.models[EmailCodeLoginPayload.__name__])
@decrypt_code_field
def post(self):
args = EmailCodeLoginPayload.model_validate(console_ns.payload)

View File

@ -140,6 +140,18 @@ class DataSourceNotionListApi(Resource):
credential_id = request.args.get("credential_id", default=None, type=str)
if not credential_id:
raise ValueError("Credential id is required.")
# Get datasource_parameters from query string (optional, for GitHub and other datasources)
datasource_parameters_str = request.args.get("datasource_parameters", default=None, type=str)
datasource_parameters = {}
if datasource_parameters_str:
try:
datasource_parameters = json.loads(datasource_parameters_str)
if not isinstance(datasource_parameters, dict):
raise ValueError("datasource_parameters must be a JSON object.")
except json.JSONDecodeError:
raise ValueError("Invalid datasource_parameters JSON format.")
datasource_provider_service = DatasourceProviderService()
credential = datasource_provider_service.get_datasource_credentials(
tenant_id=current_tenant_id,
@ -187,7 +199,7 @@ class DataSourceNotionListApi(Resource):
online_document_result: Generator[OnlineDocumentPagesMessage, None, None] = (
datasource_runtime.get_online_document_pages(
user_id=current_user.id,
datasource_parameters={},
datasource_parameters=datasource_parameters,
provider_type=datasource_runtime.datasource_provider_type(),
)
)
@ -218,14 +230,14 @@ class DataSourceNotionListApi(Resource):
@console_ns.route(
"/notion/workspaces/<uuid:workspace_id>/pages/<uuid:page_id>/<string:page_type>/preview",
"/notion/pages/<uuid:page_id>/<string:page_type>/preview",
"/datasets/notion-indexing-estimate",
)
class DataSourceNotionApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, workspace_id, page_id, page_type):
def get(self, page_id, page_type):
_, current_tenant_id = current_account_with_tenant()
credential_id = request.args.get("credential_id", default=None, type=str)
@ -239,11 +251,10 @@ class DataSourceNotionApi(Resource):
plugin_id="langgenius/notion_datasource",
)
workspace_id = str(workspace_id)
page_id = str(page_id)
extractor = NotionExtractor(
notion_workspace_id=workspace_id,
notion_workspace_id="",
notion_obj_id=page_id,
notion_page_type=page_type,
notion_access_token=credential.get("integration_secret"),

View File

@ -146,7 +146,7 @@ class DatasetUpdatePayload(BaseModel):
embedding_model: str | None = None
embedding_model_provider: str | None = None
retrieval_model: dict[str, Any] | None = None
partial_member_list: list[str] | None = None
partial_member_list: list[dict[str, str]] | None = None
external_retrieval_model: dict[str, Any] | None = None
external_knowledge_id: str | None = None
external_knowledge_api_id: str | None = None
@ -223,6 +223,7 @@ def _get_retrieval_methods_by_vector_type(vector_type: str | None, is_mock: bool
VectorType.COUCHBASE,
VectorType.OPENGAUSS,
VectorType.OCEANBASE,
VectorType.SEEKDB,
VectorType.TABLESTORE,
VectorType.HUAWEI_CLOUD,
VectorType.TENCENT,

View File

@ -4,7 +4,7 @@ from typing import Any, Literal, cast
from uuid import UUID
from flask import abort, request
from flask_restx import Resource, marshal_with # type: ignore
from flask_restx import Resource, marshal_with, reqparse # type: ignore
from pydantic import BaseModel, Field
from sqlalchemy.orm import Session
from werkzeug.exceptions import Forbidden, InternalServerError, NotFound
@ -975,6 +975,11 @@ class RagPipelineRecommendedPluginApi(Resource):
@login_required
@account_initialization_required
def get(self):
parser = reqparse.RequestParser()
parser.add_argument("type", type=str, location="args", required=False, default="all")
args = parser.parse_args()
type = args["type"]
rag_pipeline_service = RagPipelineService()
recommended_plugins = rag_pipeline_service.get_recommended_plugins()
recommended_plugins = rag_pipeline_service.get_recommended_plugins(type)
return recommended_plugins

View File

@ -40,7 +40,7 @@ from .. import console_ns
logger = logging.getLogger(__name__)
class CompletionMessagePayload(BaseModel):
class CompletionMessageExplorePayload(BaseModel):
inputs: dict[str, Any]
query: str = ""
files: list[dict[str, Any]] | None = None
@ -71,7 +71,7 @@ class ChatMessagePayload(BaseModel):
raise ValueError("must be a valid UUID") from exc
register_schema_models(console_ns, CompletionMessagePayload, ChatMessagePayload)
register_schema_models(console_ns, CompletionMessageExplorePayload, ChatMessagePayload)
# define completion api for user
@ -80,13 +80,13 @@ register_schema_models(console_ns, CompletionMessagePayload, ChatMessagePayload)
endpoint="installed_app_completion",
)
class CompletionApi(InstalledAppResource):
@console_ns.expect(console_ns.models[CompletionMessagePayload.__name__])
@console_ns.expect(console_ns.models[CompletionMessageExplorePayload.__name__])
def post(self, installed_app):
app_model = installed_app.app
if app_model.mode != AppMode.COMPLETION:
raise NotCompletionAppError()
payload = CompletionMessagePayload.model_validate(console_ns.payload or {})
payload = CompletionMessageExplorePayload.model_validate(console_ns.payload or {})
args = payload.model_dump(exclude_none=True)
streaming = payload.response_mode == "streaming"

View File

@ -1,5 +1,4 @@
from typing import Any
from uuid import UUID
from flask import request
from flask_restx import marshal_with
@ -13,6 +12,7 @@ from controllers.console.explore.wraps import InstalledAppResource
from core.app.entities.app_invoke_entities import InvokeFrom
from extensions.ext_database import db
from fields.conversation_fields import conversation_infinite_scroll_pagination_fields, simple_conversation_fields
from libs.helper import UUIDStrOrEmpty
from libs.login import current_user
from models import Account
from models.model import AppMode
@ -24,7 +24,7 @@ from .. import console_ns
class ConversationListQuery(BaseModel):
last_id: UUID | None = None
last_id: UUIDStrOrEmpty | None = None
limit: int = Field(default=20, ge=1, le=100)
pinned: bool | None = None

View File

@ -2,7 +2,8 @@ import logging
from typing import Any
from flask import request
from flask_restx import Resource, inputs, marshal_with, reqparse
from flask_restx import Resource, marshal_with
from pydantic import BaseModel
from sqlalchemy import and_, select
from werkzeug.exceptions import BadRequest, Forbidden, NotFound
@ -18,6 +19,15 @@ from services.account_service import TenantService
from services.enterprise.enterprise_service import EnterpriseService
from services.feature_service import FeatureService
class InstalledAppCreatePayload(BaseModel):
app_id: str
class InstalledAppUpdatePayload(BaseModel):
is_pinned: bool | None = None
logger = logging.getLogger(__name__)
@ -105,26 +115,25 @@ class InstalledAppsListApi(Resource):
@account_initialization_required
@cloud_edition_billing_resource_check("apps")
def post(self):
parser = reqparse.RequestParser().add_argument("app_id", type=str, required=True, help="Invalid app_id")
args = parser.parse_args()
payload = InstalledAppCreatePayload.model_validate(console_ns.payload or {})
recommended_app = db.session.query(RecommendedApp).where(RecommendedApp.app_id == args["app_id"]).first()
recommended_app = db.session.query(RecommendedApp).where(RecommendedApp.app_id == payload.app_id).first()
if recommended_app is None:
raise NotFound("App not found")
raise NotFound("Recommended app not found")
_, current_tenant_id = current_account_with_tenant()
app = db.session.query(App).where(App.id == args["app_id"]).first()
app = db.session.query(App).where(App.id == payload.app_id).first()
if app is None:
raise NotFound("App not found")
raise NotFound("App entity not found")
if not app.is_public:
raise Forbidden("You can't install a non-public app")
installed_app = (
db.session.query(InstalledApp)
.where(and_(InstalledApp.app_id == args["app_id"], InstalledApp.tenant_id == current_tenant_id))
.where(and_(InstalledApp.app_id == payload.app_id, InstalledApp.tenant_id == current_tenant_id))
.first()
)
@ -133,7 +142,7 @@ class InstalledAppsListApi(Resource):
recommended_app.install_count += 1
new_installed_app = InstalledApp(
app_id=args["app_id"],
app_id=payload.app_id,
tenant_id=current_tenant_id,
app_owner_tenant_id=app.tenant_id,
is_pinned=False,
@ -163,12 +172,11 @@ class InstalledAppApi(InstalledAppResource):
return {"result": "success", "message": "App uninstalled successfully"}, 204
def patch(self, installed_app):
parser = reqparse.RequestParser().add_argument("is_pinned", type=inputs.boolean)
args = parser.parse_args()
payload = InstalledAppUpdatePayload.model_validate(console_ns.payload or {})
commit_args = False
if "is_pinned" in args:
installed_app.is_pinned = args["is_pinned"]
if payload.is_pinned is not None:
installed_app.is_pinned = payload.is_pinned
commit_args = True
if commit_args:

View File

@ -1,31 +1,40 @@
from typing import Literal
from flask import request
from flask_restx import Resource, marshal_with, reqparse
from flask_restx import Resource, marshal_with
from pydantic import BaseModel, Field
from werkzeug.exceptions import Forbidden
from controllers.common.schema import register_schema_models
from controllers.console import console_ns
from controllers.console.wraps import account_initialization_required, edit_permission_required, setup_required
from fields.tag_fields import dataset_tag_fields
from libs.login import current_account_with_tenant, login_required
from models.model import Tag
from services.tag_service import TagService
def _validate_name(name):
if not name or len(name) < 1 or len(name) > 50:
raise ValueError("Name must be between 1 to 50 characters.")
return name
class TagBasePayload(BaseModel):
name: str = Field(description="Tag name", min_length=1, max_length=50)
type: Literal["knowledge", "app"] | None = Field(default=None, description="Tag type")
parser_tags = (
reqparse.RequestParser()
.add_argument(
"name",
nullable=False,
required=True,
help="Name must be between 1 to 50 characters.",
type=_validate_name,
)
.add_argument("type", type=str, location="json", choices=Tag.TAG_TYPE_LIST, nullable=True, help="Invalid tag type.")
class TagBindingPayload(BaseModel):
tag_ids: list[str] = Field(description="Tag IDs to bind")
target_id: str = Field(description="Target ID to bind tags to")
type: Literal["knowledge", "app"] | None = Field(default=None, description="Tag type")
class TagBindingRemovePayload(BaseModel):
tag_id: str = Field(description="Tag ID to remove")
target_id: str = Field(description="Target ID to unbind tag from")
type: Literal["knowledge", "app"] | None = Field(default=None, description="Tag type")
register_schema_models(
console_ns,
TagBasePayload,
TagBindingPayload,
TagBindingRemovePayload,
)
@ -43,7 +52,7 @@ class TagListApi(Resource):
return tags, 200
@console_ns.expect(parser_tags)
@console_ns.expect(console_ns.models[TagBasePayload.__name__])
@setup_required
@login_required
@account_initialization_required
@ -53,22 +62,17 @@ class TagListApi(Resource):
if not (current_user.has_edit_permission or current_user.is_dataset_editor):
raise Forbidden()
args = parser_tags.parse_args()
tag = TagService.save_tags(args)
payload = TagBasePayload.model_validate(console_ns.payload or {})
tag = TagService.save_tags(payload.model_dump())
response = {"id": tag.id, "name": tag.name, "type": tag.type, "binding_count": 0}
return response, 200
parser_tag_id = reqparse.RequestParser().add_argument(
"name", nullable=False, required=True, help="Name must be between 1 to 50 characters.", type=_validate_name
)
@console_ns.route("/tags/<uuid:tag_id>")
class TagUpdateDeleteApi(Resource):
@console_ns.expect(parser_tag_id)
@console_ns.expect(console_ns.models[TagBasePayload.__name__])
@setup_required
@login_required
@account_initialization_required
@ -79,8 +83,8 @@ class TagUpdateDeleteApi(Resource):
if not (current_user.has_edit_permission or current_user.is_dataset_editor):
raise Forbidden()
args = parser_tag_id.parse_args()
tag = TagService.update_tags(args, tag_id)
payload = TagBasePayload.model_validate(console_ns.payload or {})
tag = TagService.update_tags(payload.model_dump(), tag_id)
binding_count = TagService.get_tag_binding_count(tag_id)
@ -100,17 +104,9 @@ class TagUpdateDeleteApi(Resource):
return 204
parser_create = (
reqparse.RequestParser()
.add_argument("tag_ids", type=list, nullable=False, required=True, location="json", help="Tag IDs is required.")
.add_argument("target_id", type=str, nullable=False, required=True, location="json", help="Target ID is required.")
.add_argument("type", type=str, location="json", choices=Tag.TAG_TYPE_LIST, nullable=True, help="Invalid tag type.")
)
@console_ns.route("/tag-bindings/create")
class TagBindingCreateApi(Resource):
@console_ns.expect(parser_create)
@console_ns.expect(console_ns.models[TagBindingPayload.__name__])
@setup_required
@login_required
@account_initialization_required
@ -120,23 +116,15 @@ class TagBindingCreateApi(Resource):
if not (current_user.has_edit_permission or current_user.is_dataset_editor):
raise Forbidden()
args = parser_create.parse_args()
TagService.save_tag_binding(args)
payload = TagBindingPayload.model_validate(console_ns.payload or {})
TagService.save_tag_binding(payload.model_dump())
return {"result": "success"}, 200
parser_remove = (
reqparse.RequestParser()
.add_argument("tag_id", type=str, nullable=False, required=True, help="Tag ID is required.")
.add_argument("target_id", type=str, nullable=False, required=True, help="Target ID is required.")
.add_argument("type", type=str, location="json", choices=Tag.TAG_TYPE_LIST, nullable=True, help="Invalid tag type.")
)
@console_ns.route("/tag-bindings/remove")
class TagBindingDeleteApi(Resource):
@console_ns.expect(parser_remove)
@console_ns.expect(console_ns.models[TagBindingRemovePayload.__name__])
@setup_required
@login_required
@account_initialization_required
@ -146,7 +134,7 @@ class TagBindingDeleteApi(Resource):
if not (current_user.has_edit_permission or current_user.is_dataset_editor):
raise Forbidden()
args = parser_remove.parse_args()
TagService.delete_tag_binding(args)
payload = TagBindingRemovePayload.model_validate(console_ns.payload or {})
TagService.delete_tag_binding(payload.model_dump())
return {"result": "success"}, 200

View File

@ -18,6 +18,7 @@ from controllers.console.wraps import (
setup_required,
)
from core.entities.mcp_provider import MCPAuthentication, MCPConfiguration
from core.helper.tool_provider_cache import ToolProviderListCache
from core.mcp.auth.auth_flow import auth, handle_callback
from core.mcp.error import MCPAuthError, MCPError, MCPRefreshTokenError
from core.mcp.mcp_client import MCPClient
@ -944,7 +945,7 @@ class ToolProviderMCPApi(Resource):
configuration = MCPConfiguration.model_validate(args["configuration"])
authentication = MCPAuthentication.model_validate(args["authentication"]) if args["authentication"] else None
# Create provider
# Create provider in transaction
with Session(db.engine) as session, session.begin():
service = MCPToolManageService(session=session)
result = service.create_provider(
@ -960,7 +961,11 @@ class ToolProviderMCPApi(Resource):
configuration=configuration,
authentication=authentication,
)
return jsonable_encoder(result)
# Invalidate cache AFTER transaction commits to avoid holding locks during Redis operations
ToolProviderListCache.invalidate_cache(tenant_id)
return jsonable_encoder(result)
@console_ns.expect(parser_mcp_put)
@setup_required
@ -972,17 +977,23 @@ class ToolProviderMCPApi(Resource):
authentication = MCPAuthentication.model_validate(args["authentication"]) if args["authentication"] else None
_, current_tenant_id = current_account_with_tenant()
# Step 1: Validate server URL change if needed (includes URL format validation and network operation)
validation_result = None
# Step 1: Get provider data for URL validation (short-lived session, no network I/O)
validation_data = None
with Session(db.engine) as session:
service = MCPToolManageService(session=session)
validation_result = service.validate_server_url_change(
tenant_id=current_tenant_id, provider_id=args["provider_id"], new_server_url=args["server_url"]
validation_data = service.get_provider_for_url_validation(
tenant_id=current_tenant_id, provider_id=args["provider_id"]
)
# No need to check for errors here, exceptions will be raised directly
# Step 2: Perform URL validation with network I/O OUTSIDE of any database session
# This prevents holding database locks during potentially slow network operations
validation_result = MCPToolManageService.validate_server_url_standalone(
tenant_id=current_tenant_id,
new_server_url=args["server_url"],
validation_data=validation_data,
)
# Step 2: Perform database update in a transaction
# Step 3: Perform database update in a transaction
with Session(db.engine) as session, session.begin():
service = MCPToolManageService(session=session)
service.update_provider(
@ -999,7 +1010,11 @@ class ToolProviderMCPApi(Resource):
authentication=authentication,
validation_result=validation_result,
)
return {"result": "success"}
# Invalidate cache AFTER transaction commits to avoid holding locks during Redis operations
ToolProviderListCache.invalidate_cache(current_tenant_id)
return {"result": "success"}
@console_ns.expect(parser_mcp_delete)
@setup_required
@ -1012,7 +1027,11 @@ class ToolProviderMCPApi(Resource):
with Session(db.engine) as session, session.begin():
service = MCPToolManageService(session=session)
service.delete_provider(tenant_id=current_tenant_id, provider_id=args["provider_id"])
return {"result": "success"}
# Invalidate cache AFTER transaction commits to avoid holding locks during Redis operations
ToolProviderListCache.invalidate_cache(current_tenant_id)
return {"result": "success"}
parser_auth = (

View File

@ -9,10 +9,12 @@ from typing import ParamSpec, TypeVar
from flask import abort, request
from configs import dify_config
from controllers.console.auth.error import AuthenticationFailedError, EmailCodeError
from controllers.console.workspace.error import AccountNotInitializedError
from enums.cloud_plan import CloudPlan
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from libs.encryption import FieldEncryption
from libs.login import current_account_with_tenant
from models.account import AccountStatus
from models.dataset import RateLimitLog
@ -25,6 +27,14 @@ from .error import NotInitValidateError, NotSetupError, UnauthorizedAndForceLogo
P = ParamSpec("P")
R = TypeVar("R")
# Field names for decryption
FIELD_NAME_PASSWORD = "password"
FIELD_NAME_CODE = "code"
# Error messages for decryption failures
ERROR_MSG_INVALID_ENCRYPTED_DATA = "Invalid encrypted data"
ERROR_MSG_INVALID_ENCRYPTED_CODE = "Invalid encrypted code"
def account_initialization_required(view: Callable[P, R]):
@wraps(view)
@ -331,3 +341,163 @@ def is_admin_or_owner_required(f: Callable[P, R]):
return f(*args, **kwargs)
return decorated_function
def annotation_import_rate_limit(view: Callable[P, R]):
"""
Rate limiting decorator for annotation import operations.
Implements sliding window rate limiting with two tiers:
- Short-term: Configurable requests per minute (default: 5)
- Long-term: Configurable requests per hour (default: 20)
Uses Redis ZSET for distributed rate limiting across multiple instances.
"""
@wraps(view)
def decorated(*args: P.args, **kwargs: P.kwargs):
_, current_tenant_id = current_account_with_tenant()
current_time = int(time.time() * 1000)
# Check per-minute rate limit
minute_key = f"annotation_import_rate_limit:{current_tenant_id}:1min"
redis_client.zadd(minute_key, {current_time: current_time})
redis_client.zremrangebyscore(minute_key, 0, current_time - 60000)
minute_count = redis_client.zcard(minute_key)
redis_client.expire(minute_key, 120) # 2 minutes TTL
if minute_count > dify_config.ANNOTATION_IMPORT_RATE_LIMIT_PER_MINUTE:
abort(
429,
f"Too many annotation import requests. Maximum {dify_config.ANNOTATION_IMPORT_RATE_LIMIT_PER_MINUTE} "
f"requests per minute allowed. Please try again later.",
)
# Check per-hour rate limit
hour_key = f"annotation_import_rate_limit:{current_tenant_id}:1hour"
redis_client.zadd(hour_key, {current_time: current_time})
redis_client.zremrangebyscore(hour_key, 0, current_time - 3600000)
hour_count = redis_client.zcard(hour_key)
redis_client.expire(hour_key, 7200) # 2 hours TTL
if hour_count > dify_config.ANNOTATION_IMPORT_RATE_LIMIT_PER_HOUR:
abort(
429,
f"Too many annotation import requests. Maximum {dify_config.ANNOTATION_IMPORT_RATE_LIMIT_PER_HOUR} "
f"requests per hour allowed. Please try again later.",
)
return view(*args, **kwargs)
return decorated
def annotation_import_concurrency_limit(view: Callable[P, R]):
"""
Concurrency control decorator for annotation import operations.
Limits the number of concurrent import tasks per tenant to prevent
resource exhaustion and ensure fair resource allocation.
Uses Redis ZSET to track active import jobs with automatic cleanup
of stale entries (jobs older than 2 minutes).
"""
@wraps(view)
def decorated(*args: P.args, **kwargs: P.kwargs):
_, current_tenant_id = current_account_with_tenant()
current_time = int(time.time() * 1000)
active_jobs_key = f"annotation_import_active:{current_tenant_id}"
# Clean up stale entries (jobs that should have completed or timed out)
stale_threshold = current_time - 120000 # 2 minutes ago
redis_client.zremrangebyscore(active_jobs_key, 0, stale_threshold)
# Check current active job count
active_count = redis_client.zcard(active_jobs_key)
if active_count >= dify_config.ANNOTATION_IMPORT_MAX_CONCURRENT:
abort(
429,
f"Too many concurrent import tasks. Maximum {dify_config.ANNOTATION_IMPORT_MAX_CONCURRENT} "
f"concurrent imports allowed per workspace. Please wait for existing imports to complete.",
)
# Allow the request to proceed
# The actual job registration will happen in the service layer
return view(*args, **kwargs)
return decorated
def _decrypt_field(field_name: str, error_class: type[Exception], error_message: str) -> None:
"""
Helper to decode a Base64 encoded field in the request payload.
Args:
field_name: Name of the field to decode
error_class: Exception class to raise on decoding failure
error_message: Error message to include in the exception
"""
if not request or not request.is_json:
return
# Get the payload dict - it's cached and mutable
payload = request.get_json()
if not payload or field_name not in payload:
return
encoded_value = payload[field_name]
decoded_value = FieldEncryption.decrypt_field(encoded_value)
# If decoding failed, raise error immediately
if decoded_value is None:
raise error_class(error_message)
# Update payload dict in-place with decoded value
# Since payload is a mutable dict and get_json() returns the cached reference,
# modifying it will affect all subsequent accesses including console_ns.payload
payload[field_name] = decoded_value
def decrypt_password_field(view: Callable[P, R]):
"""
Decorator to decrypt password field in request payload.
Automatically decrypts the 'password' field if encryption is enabled.
If decryption fails, raises AuthenticationFailedError.
Usage:
@decrypt_password_field
def post(self):
args = LoginPayload.model_validate(console_ns.payload)
# args.password is now decrypted
"""
@wraps(view)
def decorated(*args: P.args, **kwargs: P.kwargs):
_decrypt_field(FIELD_NAME_PASSWORD, AuthenticationFailedError, ERROR_MSG_INVALID_ENCRYPTED_DATA)
return view(*args, **kwargs)
return decorated
def decrypt_code_field(view: Callable[P, R]):
"""
Decorator to decrypt verification code field in request payload.
Automatically decrypts the 'code' field if encryption is enabled.
If decryption fails, raises EmailCodeError.
Usage:
@decrypt_code_field
def post(self):
args = EmailCodeLoginPayload.model_validate(console_ns.payload)
# args.code is now decrypted
"""
@wraps(view)
def decorated(*args: P.args, **kwargs: P.kwargs):
_decrypt_field(FIELD_NAME_CODE, EmailCodeError, ERROR_MSG_INVALID_ENCRYPTED_CODE)
return view(*args, **kwargs)
return decorated

View File

@ -61,6 +61,9 @@ class ChatRequestPayload(BaseModel):
@classmethod
def normalize_conversation_id(cls, value: str | UUID | None) -> str | None:
"""Allow missing or blank conversation IDs; enforce UUID format when provided."""
if isinstance(value, str):
value = value.strip()
if not value:
return None

View File

@ -49,7 +49,7 @@ class DatasetUpdatePayload(BaseModel):
embedding_model: str | None = None
embedding_model_provider: str | None = None
retrieval_model: RetrievalModel | None = None
partial_member_list: list[str] | None = None
partial_member_list: list[dict[str, str]] | None = None
external_retrieval_model: dict[str, Any] | None = None
external_knowledge_id: str | None = None
external_knowledge_api_id: str | None = None

View File

@ -1,7 +1,8 @@
import logging
from flask import request
from flask_restx import fields, marshal_with, reqparse
from flask_restx import fields, marshal_with
from pydantic import BaseModel, field_validator
from werkzeug.exceptions import InternalServerError
import services
@ -20,6 +21,7 @@ from controllers.web.error import (
from controllers.web.wraps import WebApiResource
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from libs.helper import uuid_value
from models.model import App
from services.audio_service import AudioService
from services.errors.audio import (
@ -29,6 +31,25 @@ from services.errors.audio import (
UnsupportedAudioTypeServiceError,
)
from ..common.schema import register_schema_models
class TextToAudioPayload(BaseModel):
message_id: str | None = None
voice: str | None = None
text: str | None = None
streaming: bool | None = None
@field_validator("message_id")
@classmethod
def validate_message_id(cls, value: str | None) -> str | None:
if value is None:
return value
return uuid_value(value)
register_schema_models(web_ns, TextToAudioPayload)
logger = logging.getLogger(__name__)
@ -88,6 +109,7 @@ class AudioApi(WebApiResource):
@web_ns.route("/text-to-audio")
class TextApi(WebApiResource):
@web_ns.expect(web_ns.models[TextToAudioPayload.__name__])
@web_ns.doc("Text to Audio")
@web_ns.doc(description="Convert text to audio using text-to-speech service.")
@web_ns.doc(
@ -102,18 +124,11 @@ class TextApi(WebApiResource):
def post(self, app_model: App, end_user):
"""Convert text to audio"""
try:
parser = (
reqparse.RequestParser()
.add_argument("message_id", type=str, required=False, location="json")
.add_argument("voice", type=str, location="json")
.add_argument("text", type=str, location="json")
.add_argument("streaming", type=bool, location="json")
)
args = parser.parse_args()
payload = TextToAudioPayload.model_validate(web_ns.payload or {})
message_id = args.get("message_id", None)
text = args.get("text", None)
voice = args.get("voice", None)
message_id = payload.message_id
text = payload.text
voice = payload.voice
response = AudioService.transcript_tts(
app_model=app_model, text=text, voice=voice, end_user=end_user.external_user_id, message_id=message_id
)

View File

@ -1,9 +1,11 @@
import logging
from typing import Any, Literal
from flask_restx import reqparse
from pydantic import BaseModel, Field, field_validator
from werkzeug.exceptions import InternalServerError, NotFound
import services
from controllers.common.schema import register_schema_models
from controllers.web import web_ns
from controllers.web.error import (
AppUnavailableError,
@ -34,25 +36,44 @@ from services.errors.llm import InvokeRateLimitError
logger = logging.getLogger(__name__)
class CompletionMessagePayload(BaseModel):
inputs: dict[str, Any] = Field(description="Input variables for the completion")
query: str = Field(default="", description="Query text for completion")
files: list[dict[str, Any]] | None = Field(default=None, description="Files to be processed")
response_mode: Literal["blocking", "streaming"] | None = Field(
default=None, description="Response mode: blocking or streaming"
)
retriever_from: str = Field(default="web_app", description="Source of retriever")
class ChatMessagePayload(BaseModel):
inputs: dict[str, Any] = Field(description="Input variables for the chat")
query: str = Field(description="User query/message")
files: list[dict[str, Any]] | None = Field(default=None, description="Files to be processed")
response_mode: Literal["blocking", "streaming"] | None = Field(
default=None, description="Response mode: blocking or streaming"
)
conversation_id: str | None = Field(default=None, description="Conversation ID")
parent_message_id: str | None = Field(default=None, description="Parent message ID")
retriever_from: str = Field(default="web_app", description="Source of retriever")
@field_validator("conversation_id", "parent_message_id")
@classmethod
def validate_uuid(cls, value: str | None) -> str | None:
if value is None:
return value
return uuid_value(value)
register_schema_models(web_ns, CompletionMessagePayload, ChatMessagePayload)
# define completion api for user
@web_ns.route("/completion-messages")
class CompletionApi(WebApiResource):
@web_ns.doc("Create Completion Message")
@web_ns.doc(description="Create a completion message for text generation applications.")
@web_ns.doc(
params={
"inputs": {"description": "Input variables for the completion", "type": "object", "required": True},
"query": {"description": "Query text for completion", "type": "string", "required": False},
"files": {"description": "Files to be processed", "type": "array", "required": False},
"response_mode": {
"description": "Response mode: blocking or streaming",
"type": "string",
"enum": ["blocking", "streaming"],
"required": False,
},
"retriever_from": {"description": "Source of retriever", "type": "string", "required": False},
}
)
@web_ns.expect(web_ns.models[CompletionMessagePayload.__name__])
@web_ns.doc(
responses={
200: "Success",
@ -67,18 +88,10 @@ class CompletionApi(WebApiResource):
if app_model.mode != AppMode.COMPLETION:
raise NotCompletionAppError()
parser = (
reqparse.RequestParser()
.add_argument("inputs", type=dict, required=True, location="json")
.add_argument("query", type=str, location="json", default="")
.add_argument("files", type=list, required=False, location="json")
.add_argument("response_mode", type=str, choices=["blocking", "streaming"], location="json")
.add_argument("retriever_from", type=str, required=False, default="web_app", location="json")
)
payload = CompletionMessagePayload.model_validate(web_ns.payload or {})
args = payload.model_dump(exclude_none=True)
args = parser.parse_args()
streaming = args["response_mode"] == "streaming"
streaming = payload.response_mode == "streaming"
args["auto_generate_name"] = False
try:
@ -142,22 +155,7 @@ class CompletionStopApi(WebApiResource):
class ChatApi(WebApiResource):
@web_ns.doc("Create Chat Message")
@web_ns.doc(description="Create a chat message for conversational applications.")
@web_ns.doc(
params={
"inputs": {"description": "Input variables for the chat", "type": "object", "required": True},
"query": {"description": "User query/message", "type": "string", "required": True},
"files": {"description": "Files to be processed", "type": "array", "required": False},
"response_mode": {
"description": "Response mode: blocking or streaming",
"type": "string",
"enum": ["blocking", "streaming"],
"required": False,
},
"conversation_id": {"description": "Conversation UUID", "type": "string", "required": False},
"parent_message_id": {"description": "Parent message UUID", "type": "string", "required": False},
"retriever_from": {"description": "Source of retriever", "type": "string", "required": False},
}
)
@web_ns.expect(web_ns.models[ChatMessagePayload.__name__])
@web_ns.doc(
responses={
200: "Success",
@ -173,20 +171,10 @@ class ChatApi(WebApiResource):
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
raise NotChatAppError()
parser = (
reqparse.RequestParser()
.add_argument("inputs", type=dict, required=True, location="json")
.add_argument("query", type=str, required=True, location="json")
.add_argument("files", type=list, required=False, location="json")
.add_argument("response_mode", type=str, choices=["blocking", "streaming"], location="json")
.add_argument("conversation_id", type=uuid_value, location="json")
.add_argument("parent_message_id", type=uuid_value, required=False, location="json")
.add_argument("retriever_from", type=str, required=False, default="web_app", location="json")
)
payload = ChatMessagePayload.model_validate(web_ns.payload or {})
args = payload.model_dump(exclude_none=True)
args = parser.parse_args()
streaming = args["response_mode"] == "streaming"
streaming = payload.response_mode == "streaming"
args["auto_generate_name"] = False
try:

View File

@ -1,3 +1,4 @@
import json
from collections.abc import Sequence
from enum import StrEnum, auto
from typing import Any, Literal
@ -120,7 +121,7 @@ class VariableEntity(BaseModel):
allowed_file_types: Sequence[FileType] | None = Field(default_factory=list)
allowed_file_extensions: Sequence[str] | None = Field(default_factory=list)
allowed_file_upload_methods: Sequence[FileTransferMethod] | None = Field(default_factory=list)
json_schema: dict[str, Any] | None = Field(default=None)
json_schema: str | None = Field(default=None)
@field_validator("description", mode="before")
@classmethod
@ -134,11 +135,17 @@ class VariableEntity(BaseModel):
@field_validator("json_schema")
@classmethod
def validate_json_schema(cls, schema: dict[str, Any] | None) -> dict[str, Any] | None:
def validate_json_schema(cls, schema: str | None) -> str | None:
if schema is None:
return None
try:
Draft7Validator.check_schema(schema)
json_schema = json.loads(schema)
except json.JSONDecodeError:
raise ValueError(f"invalid json_schema value {schema}")
try:
Draft7Validator.check_schema(json_schema)
except SchemaError as e:
raise ValueError(f"Invalid JSON schema: {e.message}")
return schema

View File

@ -1,3 +1,4 @@
import json
from collections.abc import Generator, Mapping, Sequence
from typing import TYPE_CHECKING, Any, Union, final
@ -175,6 +176,13 @@ class BaseAppGenerator:
value = True
elif value == 0:
value = False
case VariableEntityType.JSON_OBJECT:
if not isinstance(value, str):
raise ValueError(f"{variable_entity.variable} in input form must be a string")
try:
json.loads(value)
except json.JSONDecodeError:
raise ValueError(f"{variable_entity.variable} in input form must be a valid JSON object")
case _:
raise AssertionError("this statement should be unreachable.")

View File

@ -342,9 +342,11 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline):
self._task_state.llm_result.message.content = current_content
if isinstance(event, QueueLLMChunkEvent):
event_type = self._message_cycle_manager.get_message_event_type(message_id=self._message_id)
yield self._message_cycle_manager.message_to_stream_response(
answer=cast(str, delta_text),
message_id=self._message_id,
event_type=event_type,
)
else:
yield self._agent_message_to_stream_response(

View File

@ -5,7 +5,7 @@ from threading import Thread
from typing import Union
from flask import Flask, current_app
from sqlalchemy import select
from sqlalchemy import exists, select
from sqlalchemy.orm import Session
from configs import dify_config
@ -54,6 +54,20 @@ class MessageCycleManager:
):
self._application_generate_entity = application_generate_entity
self._task_state = task_state
self._message_has_file: set[str] = set()
def get_message_event_type(self, message_id: str) -> StreamEvent:
if message_id in self._message_has_file:
return StreamEvent.MESSAGE_FILE
with Session(db.engine, expire_on_commit=False) as session:
has_file = session.query(exists().where(MessageFile.message_id == message_id)).scalar()
if has_file:
self._message_has_file.add(message_id)
return StreamEvent.MESSAGE_FILE
return StreamEvent.MESSAGE
def generate_conversation_name(self, *, conversation_id: str, query: str) -> Thread | None:
"""
@ -214,7 +228,11 @@ class MessageCycleManager:
return None
def message_to_stream_response(
self, answer: str, message_id: str, from_variable_selector: list[str] | None = None
self,
answer: str,
message_id: str,
from_variable_selector: list[str] | None = None,
event_type: StreamEvent | None = None,
) -> MessageStreamResponse:
"""
Message to stream response.
@ -222,16 +240,12 @@ class MessageCycleManager:
:param message_id: message id
:return:
"""
with Session(db.engine, expire_on_commit=False) as session:
message_file = session.scalar(select(MessageFile).where(MessageFile.id == message_id))
event_type = StreamEvent.MESSAGE_FILE if message_file else StreamEvent.MESSAGE
return MessageStreamResponse(
task_id=self._application_generate_entity.task_id,
id=message_id,
answer=answer,
from_variable_selector=from_variable_selector,
event=event_type,
event=event_type or StreamEvent.MESSAGE,
)
def message_replace_to_stream_response(self, answer: str, reason: str = "") -> MessageReplaceStreamResponse:

0
api/core/db/__init__.py Normal file
View File

View File

@ -0,0 +1,38 @@
from sqlalchemy import Engine
from sqlalchemy.orm import Session, sessionmaker
_session_maker: sessionmaker | None = None
def configure_session_factory(engine: Engine, expire_on_commit: bool = False):
"""Configure the global session factory"""
global _session_maker
_session_maker = sessionmaker(bind=engine, expire_on_commit=expire_on_commit)
def get_session_maker() -> sessionmaker:
if _session_maker is None:
raise RuntimeError("Session factory not configured. Call configure_session_factory() first.")
return _session_maker
def create_session() -> Session:
return get_session_maker()()
# Class wrapper for convenience
class SessionFactory:
@staticmethod
def configure(engine: Engine, expire_on_commit: bool = False):
configure_session_factory(engine, expire_on_commit)
@staticmethod
def get_session_maker() -> sessionmaker:
return get_session_maker()
@staticmethod
def create_session() -> Session:
return create_session()
session_factory = SessionFactory()

View File

@ -1,4 +1,4 @@
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, field_validator
class PreviewDetail(BaseModel):
@ -20,9 +20,17 @@ class IndexingEstimate(BaseModel):
class PipelineDataset(BaseModel):
id: str
name: str
description: str | None = Field(default="", description="knowledge dataset description")
description: str = Field(default="", description="knowledge dataset description")
chunk_structure: str
@field_validator("description", mode="before")
@classmethod
def normalize_description(cls, value: str | None) -> str:
"""Coerce None to empty string so description is always a string."""
if value is None:
return ""
return value
class PipelineDocument(BaseModel):
id: str

View File

@ -0,0 +1,89 @@
"""CSV sanitization utilities to prevent formula injection attacks."""
from typing import Any
class CSVSanitizer:
"""
Sanitizer for CSV export to prevent formula injection attacks.
This class provides methods to sanitize data before CSV export by escaping
characters that could be interpreted as formulas by spreadsheet applications
(Excel, LibreOffice, Google Sheets).
Formula injection occurs when user-controlled data starting with special
characters (=, +, -, @, tab, carriage return) is exported to CSV and opened
in a spreadsheet application, potentially executing malicious commands.
"""
# Characters that can start a formula in Excel/LibreOffice/Google Sheets
FORMULA_CHARS = frozenset({"=", "+", "-", "@", "\t", "\r"})
@classmethod
def sanitize_value(cls, value: Any) -> str:
"""
Sanitize a value for safe CSV export.
Prefixes formula-initiating characters with a single quote to prevent
Excel/LibreOffice/Google Sheets from treating them as formulas.
Args:
value: The value to sanitize (will be converted to string)
Returns:
Sanitized string safe for CSV export
Examples:
>>> CSVSanitizer.sanitize_value("=1+1")
"'=1+1"
>>> CSVSanitizer.sanitize_value("Hello World")
"Hello World"
>>> CSVSanitizer.sanitize_value(None)
""
"""
if value is None:
return ""
# Convert to string
str_value = str(value)
# If empty, return as is
if not str_value:
return ""
# Check if first character is a formula initiator
if str_value[0] in cls.FORMULA_CHARS:
# Prefix with single quote to escape
return f"'{str_value}"
return str_value
@classmethod
def sanitize_dict(cls, data: dict[str, Any], fields_to_sanitize: list[str] | None = None) -> dict[str, Any]:
"""
Sanitize specified fields in a dictionary.
Args:
data: Dictionary containing data to sanitize
fields_to_sanitize: List of field names to sanitize.
If None, sanitizes all string fields.
Returns:
Dictionary with sanitized values (creates a shallow copy)
Examples:
>>> data = {"question": "=1+1", "answer": "+calc", "id": "123"}
>>> CSVSanitizer.sanitize_dict(data, ["question", "answer"])
{"question": "'=1+1", "answer": "'+calc", "id": "123"}
"""
sanitized = data.copy()
if fields_to_sanitize is None:
# Sanitize all string fields
fields_to_sanitize = [k for k, v in data.items() if isinstance(v, str)]
for field in fields_to_sanitize:
if field in sanitized:
sanitized[field] = cls.sanitize_value(sanitized[field])
return sanitized

View File

@ -9,6 +9,7 @@ import httpx
from configs import dify_config
from core.helper.http_client_pooling import get_pooled_http_client
from core.tools.errors import ToolSSRFError
logger = logging.getLogger(__name__)
@ -93,6 +94,18 @@ def make_request(method, url, max_retries=SSRF_DEFAULT_MAX_RETRIES, **kwargs):
while retries <= max_retries:
try:
response = client.request(method=method, url=url, **kwargs)
# Check for SSRF protection by Squid proxy
if response.status_code in (401, 403):
# Check if this is a Squid SSRF rejection
server_header = response.headers.get("server", "").lower()
via_header = response.headers.get("via", "").lower()
# Squid typically identifies itself in Server or Via headers
if "squid" in server_header or "squid" in via_header:
raise ToolSSRFError(
f"Access to '{url}' was blocked by SSRF protection. "
f"The URL may point to a private or local network address. "
)
if response.status_code not in STATUS_FORCELIST:
return response

View File

@ -72,15 +72,22 @@ class LLMGenerator:
prompt_messages=list(prompts), model_parameters={"max_tokens": 500, "temperature": 1}, stream=False
)
answer = cast(str, response.message.content)
cleaned_answer = re.sub(r"^.*(\{.*\}).*$", r"\1", answer, flags=re.DOTALL)
if cleaned_answer is None:
if answer is None:
return ""
try:
result_dict = json.loads(cleaned_answer)
answer = result_dict["Your Output"]
result_dict = json.loads(answer)
except json.JSONDecodeError:
logger.exception("Failed to generate name after answer, use query instead")
result_dict = json_repair.loads(answer)
if not isinstance(result_dict, dict):
answer = query
else:
output = result_dict.get("Your Output")
if isinstance(output, str) and output.strip():
answer = output.strip()
else:
answer = query
name = answer.strip()
if len(name) > 75:

View File

@ -47,7 +47,11 @@ def build_protected_resource_metadata_discovery_urls(
"""
Build a list of URLs to try for Protected Resource Metadata discovery.
Per SEP-985, supports fallback when discovery fails at one URL.
Per RFC 9728 Section 5.1, supports fallback when discovery fails at one URL.
Priority order:
1. URL from WWW-Authenticate header (if provided)
2. Well-known URI with path: https://example.com/.well-known/oauth-protected-resource/public/mcp
3. Well-known URI at root: https://example.com/.well-known/oauth-protected-resource
"""
urls = []
@ -58,9 +62,18 @@ def build_protected_resource_metadata_discovery_urls(
# Fallback: construct from server URL
parsed = urlparse(server_url)
base_url = f"{parsed.scheme}://{parsed.netloc}"
fallback_url = urljoin(base_url, "/.well-known/oauth-protected-resource")
if fallback_url not in urls:
urls.append(fallback_url)
path = parsed.path.rstrip("/")
# Priority 2: With path insertion (e.g., /.well-known/oauth-protected-resource/public/mcp)
if path:
path_url = f"{base_url}/.well-known/oauth-protected-resource{path}"
if path_url not in urls:
urls.append(path_url)
# Priority 3: At root (e.g., /.well-known/oauth-protected-resource)
root_url = f"{base_url}/.well-known/oauth-protected-resource"
if root_url not in urls:
urls.append(root_url)
return urls
@ -71,30 +84,34 @@ def build_oauth_authorization_server_metadata_discovery_urls(auth_server_url: st
Supports both OAuth 2.0 (RFC 8414) and OpenID Connect discovery.
Per RFC 8414 section 3:
- If issuer has no path: https://example.com/.well-known/oauth-authorization-server
- If issuer has path: https://example.com/.well-known/oauth-authorization-server{path}
Example:
- issuer: https://example.com/oauth
- metadata: https://example.com/.well-known/oauth-authorization-server/oauth
Per RFC 8414 section 3.1 and section 5, try all possible endpoints:
- OAuth 2.0 with path insertion: https://example.com/.well-known/oauth-authorization-server/tenant1
- OpenID Connect with path insertion: https://example.com/.well-known/openid-configuration/tenant1
- OpenID Connect path appending: https://example.com/tenant1/.well-known/openid-configuration
- OAuth 2.0 at root: https://example.com/.well-known/oauth-authorization-server
- OpenID Connect at root: https://example.com/.well-known/openid-configuration
"""
urls = []
base_url = auth_server_url or server_url
parsed = urlparse(base_url)
base = f"{parsed.scheme}://{parsed.netloc}"
path = parsed.path.rstrip("/") # Remove trailing slash
path = parsed.path.rstrip("/")
# OAuth 2.0 Authorization Server Metadata at root (MCP-03-26)
urls.append(f"{base}/.well-known/oauth-authorization-server")
# Try OpenID Connect discovery first (more common)
urls.append(urljoin(base + "/", ".well-known/openid-configuration"))
# OpenID Connect Discovery at root
urls.append(f"{base}/.well-known/openid-configuration")
# OAuth 2.0 Authorization Server Metadata (RFC 8414)
# Include the path component if present in the issuer URL
if path:
urls.append(urljoin(base, f".well-known/oauth-authorization-server{path}"))
else:
urls.append(urljoin(base, ".well-known/oauth-authorization-server"))
# OpenID Connect Discovery with path insertion
urls.append(f"{base}/.well-known/openid-configuration{path}")
# OpenID Connect Discovery path appending
urls.append(f"{base}{path}/.well-known/openid-configuration")
# OAuth 2.0 Authorization Server Metadata with path insertion
urls.append(f"{base}/.well-known/oauth-authorization-server{path}")
return urls

View File

@ -59,7 +59,7 @@ class MCPClient:
try:
logger.debug("Not supported method %s found in URL path, trying default 'mcp' method.", method_name)
self.connect_server(sse_client, "sse")
except MCPConnectionError:
except (MCPConnectionError, ValueError):
logger.debug("MCP connection failed with 'sse', falling back to 'mcp' method.")
self.connect_server(streamablehttp_client, "mcp")

View File

@ -18,34 +18,20 @@ This module provides the interface for invoking and authenticating various model
- Model provider display
![image-20231210143654461](./docs/en_US/images/index/image-20231210143654461.png)
Displays a list of all supported providers, including provider names, icons, supported model types list, predefined model list, configuration method, and credentials form rules, etc. For detailed rule design, see: [Schema](./docs/en_US/schema.md).
Displays a list of all supported providers, including provider names, icons, supported model types list, predefined model list, configuration method, and credentials form rules, etc.
- Selectable model list display
![image-20231210144229650](./docs/en_US/images/index/image-20231210144229650.png)
After configuring provider/model credentials, the dropdown (application orchestration interface/default model) allows viewing of the available LLM list. Greyed out items represent predefined model lists from providers without configured credentials, facilitating user review of supported models.
In addition, this list also returns configurable parameter information and rules for LLM, as shown below:
![image-20231210144814617](./docs/en_US/images/index/image-20231210144814617.png)
These parameters are all defined in the backend, allowing different settings for various parameters supported by different models, as detailed in: [Schema](./docs/en_US/schema.md#ParameterRule).
In addition, this list also returns configurable parameter information and rules for LLM. These parameters are all defined in the backend, allowing different settings for various parameters supported by different models.
- Provider/model credential authentication
![image-20231210151548521](./docs/en_US/images/index/image-20231210151548521.png)
![image-20231210151628992](./docs/en_US/images/index/image-20231210151628992.png)
The provider list returns configuration information for the credentials form, which can be authenticated through Runtime's interface. The first image above is a provider credential DEMO, and the second is a model credential DEMO.
The provider list returns configuration information for the credentials form, which can be authenticated through Runtime's interface.
## Structure
![](./docs/en_US/images/index/image-20231210165243632.png)
Model Runtime is divided into three layers:
- The outermost layer is the factory method
@ -60,9 +46,6 @@ Model Runtime is divided into three layers:
It offers direct invocation of various model types, predefined model configuration information, getting predefined/remote model lists, model credential authentication methods. Different models provide additional special methods, like LLM's pre-computed tokens method, cost information obtaining method, etc., **allowing horizontal expansion** for different models under the same provider (within supported model types).
## Next Steps
## Documentation
- Add new provider configuration: [Link](./docs/en_US/provider_scale_out.md)
- Add new models for existing providers: [Link](./docs/en_US/provider_scale_out.md#AddModel)
- View YAML configuration rules: [Link](./docs/en_US/schema.md)
- Implement interface methods: [Link](./docs/en_US/interfaces.md)
For detailed documentation on how to add new providers or models, please refer to the [Dify documentation](https://docs.dify.ai/).

View File

@ -18,34 +18,20 @@
- 模型供应商展示
![image-20231210143654461](./docs/zh_Hans/images/index/image-20231210143654461.png)
展示所有已支持的供应商列表,除了返回供应商名称、图标之外,还提供了支持的模型类型列表,预定义模型列表、配置方式以及配置凭据的表单规则等等,规则设计详见:[Schema](./docs/zh_Hans/schema.md)。
展示所有已支持的供应商列表,除了返回供应商名称、图标之外,还提供了支持的模型类型列表,预定义模型列表、配置方式以及配置凭据的表单规则等等。
- 可选择的模型列表展示
![image-20231210144229650](./docs/zh_Hans/images/index/image-20231210144229650.png)
配置供应商/模型凭据后,可在此下拉(应用编排界面/默认模型)查看可用的 LLM 列表,其中灰色的为未配置凭据供应商的预定义模型列表,方便用户查看已支持的模型。
配置供应商/模型凭据后,可在此下拉(应用编排界面/默认模型)查看可用的 LLM 列表,其中灰色的为未配置凭据供应商的预定义模型列表,方便用户查看已支持的模型。
除此之外,该列表还返回了 LLM 可配置的参数信息和规则,如下图:
![image-20231210144814617](./docs/zh_Hans/images/index/image-20231210144814617.png)
这里的参数均为后端定义,相比之前只有 5 种固定参数,这里可为不同模型设置所支持的各种参数,详见:[Schema](./docs/zh_Hans/schema.md#ParameterRule)。
除此之外,该列表还返回了 LLM 可配置的参数信息和规则。这里的参数均为后端定义,相比之前只有 5 种固定参数,这里可为不同模型设置所支持的各种参数。
- 供应商/模型凭据鉴权
![image-20231210151548521](./docs/zh_Hans/images/index/image-20231210151548521.png)
![image-20231210151628992](./docs/zh_Hans/images/index/image-20231210151628992.png)
供应商列表返回了凭据表单的配置信息,可通过 Runtime 提供的接口对凭据进行鉴权,上图 1 为供应商凭据 DEMO上图 2 为模型凭据 DEMO。
供应商列表返回了凭据表单的配置信息,可通过 Runtime 提供的接口对凭据进行鉴权。
## 结构
![](./docs/zh_Hans/images/index/image-20231210165243632.png)
Model Runtime 分三层:
- 最外层为工厂方法
@ -59,8 +45,7 @@ Model Runtime 分三层:
对于供应商/模型凭据,有两种情况
- 如 OpenAI 这类中心化供应商,需要定义如**api_key**这类的鉴权凭据
- 如[**Xinference**](https://github.com/xorbitsai/inference)这类本地部署的供应商,需要定义如**server_url**这类的地址凭据,有时候还需要定义**model_uid**之类的模型类型凭据,就像下面这样,当在供应商层定义了这些凭据后,就可以在前端页面上直接展示,无需修改前端逻辑。
![Alt text](docs/zh_Hans/images/index/image.png)
- 如[**Xinference**](https://github.com/xorbitsai/inference)这类本地部署的供应商,需要定义如**server_url**这类的地址凭据,有时候还需要定义**model_uid**之类的模型类型凭据。当在供应商层定义了这些凭据后,就可以在前端页面上直接展示,无需修改前端逻辑。
当配置好凭据后,就可以通过 DifyRuntime 的外部接口直接获取到对应供应商所需要的**Schema**(凭据表单规则),从而在可以在不修改前端逻辑的情况下,提供新的供应商/模型的支持。
@ -74,20 +59,6 @@ Model Runtime 分三层:
- 模型凭据 (**在供应商层定义**):这是一类不经常变动,一般在配置好后就不会再变动的参数,如 **api_key**、**server_url** 等。在 DifyRuntime 中,他们的参数名一般为**credentials: dict[str, any]**Provider 层的 credentials 会直接被传递到这一层,不需要再单独定义。
## 下一步
## 文档
### [增加新的供应商配置 👈🏻](./docs/zh_Hans/provider_scale_out.md)
当添加后,这里将会出现一个新的供应商
![Alt text](docs/zh_Hans/images/index/image-1.png)
### [为已存在的供应商新增模型 👈🏻](./docs/zh_Hans/provider_scale_out.md#%E5%A2%9E%E5%8A%A0%E6%A8%A1%E5%9E%8B)
当添加后,对应供应商的模型列表中将会出现一个新的预定义模型供用户选择,如 GPT-3.5 GPT-4 ChatGLM3-6b 等,而对于支持自定义模型的供应商,则不需要新增模型。
![Alt text](docs/zh_Hans/images/index/image-2.png)
### [接口的具体实现 👈🏻](./docs/zh_Hans/interfaces.md)
你可以在这里找到你想要查看的接口的具体实现,以及接口的参数和返回值的具体含义。
有关如何添加新供应商或模型的详细文档,请参阅 [Dify 文档](https://docs.dify.ai/)。

View File

@ -6,7 +6,13 @@ from datetime import datetime, timedelta
from typing import Any, Union, cast
from urllib.parse import urlparse
from openinference.semconv.trace import OpenInferenceMimeTypeValues, OpenInferenceSpanKindValues, SpanAttributes
from openinference.semconv.trace import (
MessageAttributes,
OpenInferenceMimeTypeValues,
OpenInferenceSpanKindValues,
SpanAttributes,
ToolCallAttributes,
)
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter as GrpcOTLPSpanExporter
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter as HttpOTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
@ -95,14 +101,14 @@ def setup_tracer(arize_phoenix_config: ArizeConfig | PhoenixConfig) -> tuple[tra
def datetime_to_nanos(dt: datetime | None) -> int:
"""Convert datetime to nanoseconds since epoch. If None, use current time."""
"""Convert datetime to nanoseconds since epoch for Arize/Phoenix."""
if dt is None:
dt = datetime.now()
return int(dt.timestamp() * 1_000_000_000)
def error_to_string(error: Exception | str | None) -> str:
"""Convert an error to a string with traceback information."""
"""Convert an error to a string with traceback information for Arize/Phoenix."""
error_message = "Empty Stack Trace"
if error:
if isinstance(error, Exception):
@ -114,7 +120,7 @@ def error_to_string(error: Exception | str | None) -> str:
def set_span_status(current_span: Span, error: Exception | str | None = None):
"""Set the status of the current span based on the presence of an error."""
"""Set the status of the current span based on the presence of an error for Arize/Phoenix."""
if error:
error_string = error_to_string(error)
current_span.set_status(Status(StatusCode.ERROR, error_string))
@ -138,10 +144,17 @@ def set_span_status(current_span: Span, error: Exception | str | None = None):
def safe_json_dumps(obj: Any) -> str:
"""A convenience wrapper around `json.dumps` that ensures that any object can be safely encoded."""
"""A convenience wrapper to ensure that any object can be safely encoded for Arize/Phoenix."""
return json.dumps(obj, default=str, ensure_ascii=False)
def wrap_span_metadata(metadata, **kwargs):
"""Add common metatada to all trace entity types for Arize/Phoenix."""
metadata["created_from"] = "Dify"
metadata.update(kwargs)
return metadata
class ArizePhoenixDataTrace(BaseTraceInstance):
def __init__(
self,
@ -183,16 +196,27 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
raise
def workflow_trace(self, trace_info: WorkflowTraceInfo):
workflow_metadata = {
"workflow_run_id": trace_info.workflow_run_id or "",
"message_id": trace_info.message_id or "",
"workflow_app_log_id": trace_info.workflow_app_log_id or "",
"status": trace_info.workflow_run_status or "",
"status_message": trace_info.error or "",
"level": "ERROR" if trace_info.error else "DEFAULT",
"total_tokens": trace_info.total_tokens or 0,
}
workflow_metadata.update(trace_info.metadata)
file_list = trace_info.file_list if isinstance(trace_info.file_list, list) else []
metadata = wrap_span_metadata(
trace_info.metadata,
trace_id=trace_info.trace_id or "",
message_id=trace_info.message_id or "",
status=trace_info.workflow_run_status or "",
status_message=trace_info.error or "",
level="ERROR" if trace_info.error else "DEFAULT",
trace_entity_type="workflow",
conversation_id=trace_info.conversation_id or "",
workflow_app_log_id=trace_info.workflow_app_log_id or "",
workflow_id=trace_info.workflow_id or "",
tenant_id=trace_info.tenant_id or "",
workflow_run_id=trace_info.workflow_run_id or "",
workflow_run_elapsed_time=trace_info.workflow_run_elapsed_time or 0,
workflow_run_version=trace_info.workflow_run_version or "",
total_tokens=trace_info.total_tokens or 0,
file_list=safe_json_dumps(file_list),
query=trace_info.query or "",
)
dify_trace_id = trace_info.trace_id or trace_info.message_id or trace_info.workflow_run_id
self.ensure_root_span(dify_trace_id)
@ -201,10 +225,12 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
workflow_span = self.tracer.start_span(
name=TraceTaskName.WORKFLOW_TRACE.value,
attributes={
SpanAttributes.INPUT_VALUE: json.dumps(trace_info.workflow_run_inputs, ensure_ascii=False),
SpanAttributes.OUTPUT_VALUE: json.dumps(trace_info.workflow_run_outputs, ensure_ascii=False),
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.CHAIN.value,
SpanAttributes.METADATA: json.dumps(workflow_metadata, ensure_ascii=False),
SpanAttributes.INPUT_VALUE: safe_json_dumps(trace_info.workflow_run_inputs),
SpanAttributes.INPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
SpanAttributes.OUTPUT_VALUE: safe_json_dumps(trace_info.workflow_run_outputs),
SpanAttributes.OUTPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
SpanAttributes.METADATA: safe_json_dumps(metadata),
SpanAttributes.SESSION_ID: trace_info.conversation_id or "",
},
start_time=datetime_to_nanos(trace_info.start_time),
@ -257,6 +283,7 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
"app_id": app_id,
"app_name": node_execution.title,
"status": node_execution.status,
"status_message": node_execution.error or "",
"level": "ERROR" if node_execution.status == "failed" else "DEFAULT",
}
)
@ -290,11 +317,11 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
node_span = self.tracer.start_span(
name=node_execution.node_type,
attributes={
SpanAttributes.OPENINFERENCE_SPAN_KIND: span_kind.value,
SpanAttributes.INPUT_VALUE: safe_json_dumps(inputs_value),
SpanAttributes.INPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
SpanAttributes.OUTPUT_VALUE: safe_json_dumps(outputs_value),
SpanAttributes.OUTPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
SpanAttributes.OPENINFERENCE_SPAN_KIND: span_kind.value,
SpanAttributes.METADATA: safe_json_dumps(node_metadata),
SpanAttributes.SESSION_ID: trace_info.conversation_id or "",
},
@ -339,30 +366,37 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
def message_trace(self, trace_info: MessageTraceInfo):
if trace_info.message_data is None:
logger.warning("[Arize/Phoenix] Message data is None, skipping message trace.")
return
file_list = cast(list[str], trace_info.file_list) or []
file_list = trace_info.file_list if isinstance(trace_info.file_list, list) else []
message_file_data: MessageFile | None = trace_info.message_file_data
if message_file_data is not None:
file_url = f"{self.file_base_url}/{message_file_data.url}" if message_file_data else ""
file_list.append(file_url)
message_metadata = {
"message_id": trace_info.message_id or "",
"conversation_mode": str(trace_info.conversation_mode or ""),
"user_id": trace_info.message_data.from_account_id or "",
"file_list": json.dumps(file_list),
"status": trace_info.message_data.status or "",
"status_message": trace_info.error or "",
"level": "ERROR" if trace_info.error else "DEFAULT",
"total_tokens": trace_info.total_tokens or 0,
"prompt_tokens": trace_info.message_tokens or 0,
"completion_tokens": trace_info.answer_tokens or 0,
"ls_provider": trace_info.message_data.model_provider or "",
"ls_model_name": trace_info.message_data.model_id or "",
}
message_metadata.update(trace_info.metadata)
metadata = wrap_span_metadata(
trace_info.metadata,
trace_id=trace_info.trace_id or "",
message_id=trace_info.message_id or "",
status=trace_info.message_data.status or "",
status_message=trace_info.error or "",
level="ERROR" if trace_info.error else "DEFAULT",
trace_entity_type="message",
conversation_model=trace_info.conversation_model or "",
message_tokens=trace_info.message_tokens or 0,
answer_tokens=trace_info.answer_tokens or 0,
total_tokens=trace_info.total_tokens or 0,
conversation_mode=trace_info.conversation_mode or "",
gen_ai_server_time_to_first_token=trace_info.gen_ai_server_time_to_first_token or 0,
llm_streaming_time_to_generate=trace_info.llm_streaming_time_to_generate or 0,
is_streaming_request=trace_info.is_streaming_request or False,
user_id=trace_info.message_data.from_account_id or "",
file_list=safe_json_dumps(file_list),
model_provider=trace_info.message_data.model_provider or "",
model_id=trace_info.message_data.model_id or "",
)
# Add end user data if available
if trace_info.message_data.from_end_user_id:
@ -370,14 +404,16 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
db.session.query(EndUser).where(EndUser.id == trace_info.message_data.from_end_user_id).first()
)
if end_user_data is not None:
message_metadata["end_user_id"] = end_user_data.session_id
metadata["end_user_id"] = end_user_data.session_id
attributes = {
SpanAttributes.INPUT_VALUE: trace_info.message_data.query,
SpanAttributes.OUTPUT_VALUE: trace_info.message_data.answer,
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.CHAIN.value,
SpanAttributes.METADATA: json.dumps(message_metadata, ensure_ascii=False),
SpanAttributes.SESSION_ID: trace_info.message_data.conversation_id,
SpanAttributes.INPUT_VALUE: trace_info.message_data.query,
SpanAttributes.INPUT_MIME_TYPE: OpenInferenceMimeTypeValues.TEXT.value,
SpanAttributes.OUTPUT_VALUE: trace_info.message_data.answer,
SpanAttributes.OUTPUT_MIME_TYPE: OpenInferenceMimeTypeValues.TEXT.value,
SpanAttributes.METADATA: safe_json_dumps(metadata),
SpanAttributes.SESSION_ID: trace_info.message_data.conversation_id or "",
}
dify_trace_id = trace_info.trace_id or trace_info.message_id
@ -393,8 +429,10 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
try:
# Convert outputs to string based on type
outputs_mime_type = OpenInferenceMimeTypeValues.TEXT.value
if isinstance(trace_info.outputs, dict | list):
outputs_str = json.dumps(trace_info.outputs, ensure_ascii=False)
outputs_str = safe_json_dumps(trace_info.outputs)
outputs_mime_type = OpenInferenceMimeTypeValues.JSON.value
elif isinstance(trace_info.outputs, str):
outputs_str = trace_info.outputs
else:
@ -402,10 +440,12 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
llm_attributes = {
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.LLM.value,
SpanAttributes.INPUT_VALUE: json.dumps(trace_info.inputs, ensure_ascii=False),
SpanAttributes.INPUT_VALUE: safe_json_dumps(trace_info.inputs),
SpanAttributes.INPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
SpanAttributes.OUTPUT_VALUE: outputs_str,
SpanAttributes.METADATA: json.dumps(message_metadata, ensure_ascii=False),
SpanAttributes.SESSION_ID: trace_info.message_data.conversation_id,
SpanAttributes.OUTPUT_MIME_TYPE: outputs_mime_type,
SpanAttributes.METADATA: safe_json_dumps(metadata),
SpanAttributes.SESSION_ID: trace_info.message_data.conversation_id or "",
}
llm_attributes.update(self._construct_llm_attributes(trace_info.inputs))
if trace_info.total_tokens is not None and trace_info.total_tokens > 0:
@ -449,16 +489,20 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
def moderation_trace(self, trace_info: ModerationTraceInfo):
if trace_info.message_data is None:
logger.warning("[Arize/Phoenix] Message data is None, skipping moderation trace.")
return
metadata = {
"message_id": trace_info.message_id,
"tool_name": "moderation",
"status": trace_info.message_data.status,
"status_message": trace_info.message_data.error or "",
"level": "ERROR" if trace_info.message_data.error else "DEFAULT",
}
metadata.update(trace_info.metadata)
metadata = wrap_span_metadata(
trace_info.metadata,
trace_id=trace_info.trace_id or "",
message_id=trace_info.message_id or "",
status=trace_info.message_data.status or "",
status_message=trace_info.message_data.error or "",
level="ERROR" if trace_info.message_data.error else "DEFAULT",
trace_entity_type="moderation",
model_provider=trace_info.message_data.model_provider or "",
model_id=trace_info.message_data.model_id or "",
)
dify_trace_id = trace_info.trace_id or trace_info.message_id
self.ensure_root_span(dify_trace_id)
@ -467,18 +511,19 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
span = self.tracer.start_span(
name=TraceTaskName.MODERATION_TRACE.value,
attributes={
SpanAttributes.INPUT_VALUE: json.dumps(trace_info.inputs, ensure_ascii=False),
SpanAttributes.OUTPUT_VALUE: json.dumps(
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.TOOL.value,
SpanAttributes.INPUT_VALUE: safe_json_dumps(trace_info.inputs),
SpanAttributes.INPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
SpanAttributes.OUTPUT_VALUE: safe_json_dumps(
{
"action": trace_info.action,
"flagged": trace_info.flagged,
"action": trace_info.action,
"preset_response": trace_info.preset_response,
"inputs": trace_info.inputs,
},
ensure_ascii=False,
"query": trace_info.query,
}
),
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.CHAIN.value,
SpanAttributes.METADATA: json.dumps(metadata, ensure_ascii=False),
SpanAttributes.OUTPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
SpanAttributes.METADATA: safe_json_dumps(metadata),
},
start_time=datetime_to_nanos(trace_info.start_time),
context=root_span_context,
@ -494,22 +539,28 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
def suggested_question_trace(self, trace_info: SuggestedQuestionTraceInfo):
if trace_info.message_data is None:
logger.warning("[Arize/Phoenix] Message data is None, skipping suggested question trace.")
return
start_time = trace_info.start_time or trace_info.message_data.created_at
end_time = trace_info.end_time or trace_info.message_data.updated_at
metadata = {
"message_id": trace_info.message_id,
"tool_name": "suggested_question",
"status": trace_info.status,
"status_message": trace_info.error or "",
"level": "ERROR" if trace_info.error else "DEFAULT",
"total_tokens": trace_info.total_tokens,
"ls_provider": trace_info.model_provider or "",
"ls_model_name": trace_info.model_id or "",
}
metadata.update(trace_info.metadata)
metadata = wrap_span_metadata(
trace_info.metadata,
trace_id=trace_info.trace_id or "",
message_id=trace_info.message_id or "",
status=trace_info.status or "",
status_message=trace_info.status_message or "",
level=trace_info.level or "",
trace_entity_type="suggested_question",
total_tokens=trace_info.total_tokens or 0,
from_account_id=trace_info.from_account_id or "",
agent_based=trace_info.agent_based or False,
from_source=trace_info.from_source or "",
model_provider=trace_info.model_provider or "",
model_id=trace_info.model_id or "",
workflow_run_id=trace_info.workflow_run_id or "",
)
dify_trace_id = trace_info.trace_id or trace_info.message_id
self.ensure_root_span(dify_trace_id)
@ -518,10 +569,12 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
span = self.tracer.start_span(
name=TraceTaskName.SUGGESTED_QUESTION_TRACE.value,
attributes={
SpanAttributes.INPUT_VALUE: json.dumps(trace_info.inputs, ensure_ascii=False),
SpanAttributes.OUTPUT_VALUE: json.dumps(trace_info.suggested_question, ensure_ascii=False),
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.CHAIN.value,
SpanAttributes.METADATA: json.dumps(metadata, ensure_ascii=False),
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.TOOL.value,
SpanAttributes.INPUT_VALUE: safe_json_dumps(trace_info.inputs),
SpanAttributes.INPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
SpanAttributes.OUTPUT_VALUE: safe_json_dumps(trace_info.suggested_question),
SpanAttributes.OUTPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
SpanAttributes.METADATA: safe_json_dumps(metadata),
},
start_time=datetime_to_nanos(start_time),
context=root_span_context,
@ -537,21 +590,23 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
def dataset_retrieval_trace(self, trace_info: DatasetRetrievalTraceInfo):
if trace_info.message_data is None:
logger.warning("[Arize/Phoenix] Message data is None, skipping dataset retrieval trace.")
return
start_time = trace_info.start_time or trace_info.message_data.created_at
end_time = trace_info.end_time or trace_info.message_data.updated_at
metadata = {
"message_id": trace_info.message_id,
"tool_name": "dataset_retrieval",
"status": trace_info.message_data.status,
"status_message": trace_info.message_data.error or "",
"level": "ERROR" if trace_info.message_data.error else "DEFAULT",
"ls_provider": trace_info.message_data.model_provider or "",
"ls_model_name": trace_info.message_data.model_id or "",
}
metadata.update(trace_info.metadata)
metadata = wrap_span_metadata(
trace_info.metadata,
trace_id=trace_info.trace_id or "",
message_id=trace_info.message_id or "",
status=trace_info.message_data.status or "",
status_message=trace_info.error or "",
level="ERROR" if trace_info.error else "DEFAULT",
trace_entity_type="dataset_retrieval",
model_provider=trace_info.message_data.model_provider or "",
model_id=trace_info.message_data.model_id or "",
)
dify_trace_id = trace_info.trace_id or trace_info.message_id
self.ensure_root_span(dify_trace_id)
@ -560,20 +615,20 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
span = self.tracer.start_span(
name=TraceTaskName.DATASET_RETRIEVAL_TRACE.value,
attributes={
SpanAttributes.INPUT_VALUE: json.dumps(trace_info.inputs, ensure_ascii=False),
SpanAttributes.OUTPUT_VALUE: json.dumps({"documents": trace_info.documents}, ensure_ascii=False),
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.RETRIEVER.value,
SpanAttributes.METADATA: json.dumps(metadata, ensure_ascii=False),
"start_time": start_time.isoformat() if start_time else "",
"end_time": end_time.isoformat() if end_time else "",
SpanAttributes.INPUT_VALUE: safe_json_dumps(trace_info.inputs),
SpanAttributes.INPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
SpanAttributes.OUTPUT_VALUE: safe_json_dumps({"documents": trace_info.documents}),
SpanAttributes.OUTPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
SpanAttributes.METADATA: safe_json_dumps(metadata),
},
start_time=datetime_to_nanos(start_time),
context=root_span_context,
)
try:
if trace_info.message_data.error:
set_span_status(span, trace_info.message_data.error)
if trace_info.error:
set_span_status(span, trace_info.error)
else:
set_span_status(span)
finally:
@ -584,30 +639,34 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
logger.warning("[Arize/Phoenix] Message data is None, skipping tool trace.")
return
metadata = {
"message_id": trace_info.message_id,
"tool_config": json.dumps(trace_info.tool_config, ensure_ascii=False),
}
metadata = wrap_span_metadata(
trace_info.metadata,
trace_id=trace_info.trace_id or "",
message_id=trace_info.message_id or "",
status=trace_info.message_data.status or "",
status_message=trace_info.error or "",
level="ERROR" if trace_info.error else "DEFAULT",
trace_entity_type="tool",
tool_config=safe_json_dumps(trace_info.tool_config),
time_cost=trace_info.time_cost or 0,
file_url=trace_info.file_url or "",
)
dify_trace_id = trace_info.trace_id or trace_info.message_id
self.ensure_root_span(dify_trace_id)
root_span_context = self.propagator.extract(carrier=self.carrier)
tool_params_str = (
json.dumps(trace_info.tool_parameters, ensure_ascii=False)
if isinstance(trace_info.tool_parameters, dict)
else str(trace_info.tool_parameters)
)
span = self.tracer.start_span(
name=trace_info.tool_name,
attributes={
SpanAttributes.INPUT_VALUE: json.dumps(trace_info.tool_inputs, ensure_ascii=False),
SpanAttributes.OUTPUT_VALUE: trace_info.tool_outputs,
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.TOOL.value,
SpanAttributes.METADATA: json.dumps(metadata, ensure_ascii=False),
SpanAttributes.INPUT_VALUE: safe_json_dumps(trace_info.tool_inputs),
SpanAttributes.INPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
SpanAttributes.OUTPUT_VALUE: trace_info.tool_outputs,
SpanAttributes.OUTPUT_MIME_TYPE: OpenInferenceMimeTypeValues.TEXT.value,
SpanAttributes.METADATA: safe_json_dumps(metadata),
SpanAttributes.TOOL_NAME: trace_info.tool_name,
SpanAttributes.TOOL_PARAMETERS: tool_params_str,
SpanAttributes.TOOL_PARAMETERS: safe_json_dumps(trace_info.tool_parameters),
},
start_time=datetime_to_nanos(trace_info.start_time),
context=root_span_context,
@ -623,16 +682,22 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
def generate_name_trace(self, trace_info: GenerateNameTraceInfo):
if trace_info.message_data is None:
logger.warning("[Arize/Phoenix] Message data is None, skipping generate name trace.")
return
metadata = {
"project_name": self.project,
"message_id": trace_info.message_id,
"status": trace_info.message_data.status,
"status_message": trace_info.message_data.error or "",
"level": "ERROR" if trace_info.message_data.error else "DEFAULT",
}
metadata.update(trace_info.metadata)
metadata = wrap_span_metadata(
trace_info.metadata,
trace_id=trace_info.trace_id or "",
message_id=trace_info.message_id or "",
status=trace_info.message_data.status or "",
status_message=trace_info.message_data.error or "",
level="ERROR" if trace_info.message_data.error else "DEFAULT",
trace_entity_type="generate_name",
model_provider=trace_info.message_data.model_provider or "",
model_id=trace_info.message_data.model_id or "",
conversation_id=trace_info.conversation_id or "",
tenant_id=trace_info.tenant_id,
)
dify_trace_id = trace_info.trace_id or trace_info.message_id or trace_info.conversation_id
self.ensure_root_span(dify_trace_id)
@ -641,13 +706,13 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
span = self.tracer.start_span(
name=TraceTaskName.GENERATE_NAME_TRACE.value,
attributes={
SpanAttributes.INPUT_VALUE: json.dumps(trace_info.inputs, ensure_ascii=False),
SpanAttributes.OUTPUT_VALUE: json.dumps(trace_info.outputs, ensure_ascii=False),
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.CHAIN.value,
SpanAttributes.METADATA: json.dumps(metadata, ensure_ascii=False),
SpanAttributes.SESSION_ID: trace_info.message_data.conversation_id,
"start_time": trace_info.start_time.isoformat() if trace_info.start_time else "",
"end_time": trace_info.end_time.isoformat() if trace_info.end_time else "",
SpanAttributes.INPUT_VALUE: safe_json_dumps(trace_info.inputs),
SpanAttributes.INPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
SpanAttributes.OUTPUT_VALUE: safe_json_dumps(trace_info.outputs),
SpanAttributes.OUTPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
SpanAttributes.METADATA: safe_json_dumps(metadata),
SpanAttributes.SESSION_ID: trace_info.conversation_id or "",
},
start_time=datetime_to_nanos(trace_info.start_time),
context=root_span_context,
@ -688,32 +753,85 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
raise ValueError(f"[Arize/Phoenix] API check failed: {str(e)}")
def get_project_url(self):
"""Build a redirect URL that forwards the user to the correct project for Arize/Phoenix."""
try:
if self.arize_phoenix_config.endpoint == "https://otlp.arize.com":
return "https://app.arize.com/"
else:
return f"{self.arize_phoenix_config.endpoint}/projects/"
project_name = self.arize_phoenix_config.project
endpoint = self.arize_phoenix_config.endpoint.rstrip("/")
# Arize
if isinstance(self.arize_phoenix_config, ArizeConfig):
return f"https://app.arize.com/?redirect_project_name={project_name}"
# Phoenix
return f"{endpoint}/projects/?redirect_project_name={project_name}"
except Exception as e:
logger.info("[Arize/Phoenix] Get run url failed: %s", str(e), exc_info=True)
raise ValueError(f"[Arize/Phoenix] Get run url failed: {str(e)}")
logger.info("[Arize/Phoenix] Failed to construct project URL: %s", str(e), exc_info=True)
raise ValueError(f"[Arize/Phoenix] Failed to construct project URL: {str(e)}")
def _construct_llm_attributes(self, prompts: dict | list | str | None) -> dict[str, str]:
"""Helper method to construct LLM attributes with passed prompts."""
attributes = {}
"""Construct LLM attributes with passed prompts for Arize/Phoenix."""
attributes: dict[str, str] = {}
def set_attribute(path: str, value: object) -> None:
"""Store an attribute safely as a string."""
if value is None:
return
try:
if isinstance(value, (dict, list)):
value = safe_json_dumps(value)
attributes[path] = str(value)
except Exception:
attributes[path] = str(value)
def set_message_attribute(message_index: int, key: str, value: object) -> None:
path = f"{SpanAttributes.LLM_INPUT_MESSAGES}.{message_index}.{key}"
set_attribute(path, value)
def set_tool_call_attributes(message_index: int, tool_index: int, tool_call: dict | object | None) -> None:
"""Extract and assign tool call details safely."""
if not tool_call:
return
def safe_get(obj, key, default=None):
if isinstance(obj, dict):
return obj.get(key, default)
return getattr(obj, key, default)
function_obj = safe_get(tool_call, "function", {})
function_name = safe_get(function_obj, "name", "")
function_args = safe_get(function_obj, "arguments", {})
call_id = safe_get(tool_call, "id", "")
base_path = (
f"{SpanAttributes.LLM_INPUT_MESSAGES}."
f"{message_index}.{MessageAttributes.MESSAGE_TOOL_CALLS}.{tool_index}"
)
set_attribute(f"{base_path}.{ToolCallAttributes.TOOL_CALL_FUNCTION_NAME}", function_name)
set_attribute(f"{base_path}.{ToolCallAttributes.TOOL_CALL_FUNCTION_ARGUMENTS_JSON}", function_args)
set_attribute(f"{base_path}.{ToolCallAttributes.TOOL_CALL_ID}", call_id)
# Handle list of messages
if isinstance(prompts, list):
for i, msg in enumerate(prompts):
if isinstance(msg, dict):
attributes[f"{SpanAttributes.LLM_INPUT_MESSAGES}.{i}.message.content"] = msg.get("text", "")
attributes[f"{SpanAttributes.LLM_INPUT_MESSAGES}.{i}.message.role"] = msg.get("role", "user")
# todo: handle assistant and tool role messages, as they don't always
# have a text field, but may have a tool_calls field instead
# e.g. 'tool_calls': [{'id': '98af3a29-b066-45a5-b4b1-46c74ddafc58',
# 'type': 'function', 'function': {'name': 'current_time', 'arguments': '{}'}}]}
elif isinstance(prompts, dict):
attributes[f"{SpanAttributes.LLM_INPUT_MESSAGES}.0.message.content"] = json.dumps(prompts)
attributes[f"{SpanAttributes.LLM_INPUT_MESSAGES}.0.message.role"] = "user"
elif isinstance(prompts, str):
attributes[f"{SpanAttributes.LLM_INPUT_MESSAGES}.0.message.content"] = prompts
attributes[f"{SpanAttributes.LLM_INPUT_MESSAGES}.0.message.role"] = "user"
for message_index, message in enumerate(prompts):
if not isinstance(message, dict):
continue
role = message.get("role", "user")
content = message.get("text") or message.get("content") or ""
set_message_attribute(message_index, MessageAttributes.MESSAGE_ROLE, role)
set_message_attribute(message_index, MessageAttributes.MESSAGE_CONTENT, content)
tool_calls = message.get("tool_calls") or []
if isinstance(tool_calls, list):
for tool_index, tool_call in enumerate(tool_calls):
set_tool_call_attributes(message_index, tool_index, tool_call)
# Handle single dict or plain string prompt
elif isinstance(prompts, (dict, str)):
set_message_attribute(0, MessageAttributes.MESSAGE_CONTENT, prompts)
set_message_attribute(0, MessageAttributes.MESSAGE_ROLE, "user")
return attributes

View File

@ -39,7 +39,7 @@ from core.trigger.errors import (
plugin_daemon_inner_api_baseurl = URL(str(dify_config.PLUGIN_DAEMON_URL))
_plugin_daemon_timeout_config = cast(
float | httpx.Timeout | None,
getattr(dify_config, "PLUGIN_DAEMON_TIMEOUT", 300.0),
getattr(dify_config, "PLUGIN_DAEMON_TIMEOUT", 600.0),
)
plugin_daemon_request_timeout: httpx.Timeout | None
if _plugin_daemon_timeout_config is None:

View File

@ -163,7 +163,7 @@ class Vector:
from core.rag.datasource.vdb.lindorm.lindorm_vector import LindormVectorStoreFactory
return LindormVectorStoreFactory
case VectorType.OCEANBASE:
case VectorType.OCEANBASE | VectorType.SEEKDB:
from core.rag.datasource.vdb.oceanbase.oceanbase_vector import OceanBaseVectorFactory
return OceanBaseVectorFactory

View File

@ -27,6 +27,7 @@ class VectorType(StrEnum):
UPSTASH = "upstash"
TIDB_ON_QDRANT = "tidb_on_qdrant"
OCEANBASE = "oceanbase"
SEEKDB = "seekdb"
OPENGAUSS = "opengauss"
TABLESTORE = "tablestore"
HUAWEI_CLOUD = "huawei_cloud"

View File

@ -10,7 +10,7 @@ class NotionInfo(BaseModel):
"""
credential_id: str | None = None
notion_workspace_id: str
notion_workspace_id: str | None = ""
notion_obj_id: str
notion_page_type: str
document: Document | None = None

View File

@ -166,7 +166,7 @@ class ExtractProcessor:
elif extract_setting.datasource_type == DatasourceType.NOTION:
assert extract_setting.notion_info is not None, "notion_info is required"
extractor = NotionExtractor(
notion_workspace_id=extract_setting.notion_info.notion_workspace_id,
notion_workspace_id=extract_setting.notion_info.notion_workspace_id or "",
notion_obj_id=extract_setting.notion_info.notion_obj_id,
notion_page_type=extract_setting.notion_info.notion_page_type,
document_model=extract_setting.notion_info.document,

View File

@ -45,6 +45,6 @@ def detect_file_encodings(file_path: str, timeout: int = 5, sample_size: int = 1
except concurrent.futures.TimeoutError:
raise TimeoutError(f"Timeout reached while detecting encoding for {file_path}")
if all(encoding["encoding"] is None for encoding in encodings):
if all(encoding.encoding is None for encoding in encodings):
raise RuntimeError(f"Could not detect encoding for {file_path}")
return [FileEncoding(**enc) for enc in encodings if enc["encoding"] is not None]
return [enc for enc in encodings if enc.encoding is not None]

View File

@ -83,8 +83,9 @@ class WordExtractor(BaseExtractor):
def _extract_images_from_docx(self, doc):
image_count = 0
image_map = {}
base_url = dify_config.INTERNAL_FILES_URL or dify_config.FILES_URL
for rId, rel in doc.part.rels.items():
for r_id, rel in doc.part.rels.items():
if "image" in rel.target_ref:
image_count += 1
if rel.is_external:
@ -121,9 +122,7 @@ class WordExtractor(BaseExtractor):
used_at=naive_utc_now(),
)
db.session.add(upload_file)
db.session.commit()
# Use rId as key for external images since target_part is undefined
image_map[rId] = f"![image]({dify_config.FILES_URL}/files/{upload_file.id}/file-preview)"
image_map[r_id] = f"![image]({base_url}/files/{upload_file.id}/file-preview)"
else:
image_ext = rel.target_ref.split(".")[-1]
if image_ext is None:
@ -151,12 +150,8 @@ class WordExtractor(BaseExtractor):
used_at=naive_utc_now(),
)
db.session.add(upload_file)
db.session.commit()
# Use target_part as key for internal images
image_map[rel.target_part] = (
f"![image]({dify_config.FILES_URL}/files/{upload_file.id}/file-preview)"
)
image_map[rel.target_part] = f"![image]({base_url}/files/{upload_file.id}/file-preview)"
db.session.commit()
return image_map
def _table_to_markdown(self, table, image_map):

View File

@ -15,3 +15,4 @@ class MetadataDataSource(StrEnum):
notion_import = "notion"
local_file = "file_upload"
online_document = "online_document"
online_drive = "online_drive"

View File

@ -2,6 +2,7 @@
from __future__ import annotations
import codecs
import re
from typing import Any
@ -52,7 +53,7 @@ class FixedRecursiveCharacterTextSplitter(EnhanceRecursiveCharacterTextSplitter)
def __init__(self, fixed_separator: str = "\n\n", separators: list[str] | None = None, **kwargs: Any):
"""Create a new TextSplitter."""
super().__init__(**kwargs)
self._fixed_separator = fixed_separator
self._fixed_separator = codecs.decode(fixed_separator, "unicode_escape")
self._separators = separators or ["\n\n", "\n", "", ". ", " ", ""]
def split_text(self, text: str) -> list[str]:
@ -94,7 +95,8 @@ class FixedRecursiveCharacterTextSplitter(EnhanceRecursiveCharacterTextSplitter)
splits = re.split(r" +", text)
else:
splits = text.split(separator)
splits = [item + separator if i < len(splits) else item for i, item in enumerate(splits)]
if self._keep_separator:
splits = [s + separator for s in splits[:-1]] + splits[-1:]
else:
splits = list(text)
if separator == "\n":
@ -103,7 +105,7 @@ class FixedRecursiveCharacterTextSplitter(EnhanceRecursiveCharacterTextSplitter)
splits = [s for s in splits if (s not in {"", "\n"})]
_good_splits = []
_good_splits_lengths = [] # cache the lengths of the splits
_separator = separator if self._keep_separator else ""
_separator = "" if self._keep_separator else separator
s_lens = self._length_function(splits)
if separator != "":
for s, s_len in zip(splits, s_lens):

View File

@ -29,6 +29,10 @@ class ToolApiSchemaError(ValueError):
pass
class ToolSSRFError(ValueError):
pass
class ToolCredentialPolicyViolationError(ValueError):
pass

View File

@ -425,7 +425,7 @@ class ApiBasedToolSchemaParser:
except ToolApiSchemaError as e:
openapi_error = e
# openai parse error, fallback to swagger
# openapi parse error, fallback to swagger
try:
converted_swagger = ApiBasedToolSchemaParser.parse_swagger_to_openapi(
loaded_content, extra_info=extra_info, warning=warning
@ -436,7 +436,6 @@ class ApiBasedToolSchemaParser:
), schema_type
except ToolApiSchemaError as e:
swagger_error = e
# swagger parse error, fallback to openai plugin
try:
openapi_plugin = ApiBasedToolSchemaParser.parse_openai_plugin_json_to_tool_bundle(

View File

@ -140,6 +140,10 @@ class GraphEngine:
pause_handler = PauseCommandHandler()
self._command_processor.register_handler(PauseCommand, pause_handler)
# === Extensibility ===
# Layers allow plugins to extend engine functionality
self._layers: list[GraphEngineLayer] = []
# === Worker Pool Setup ===
# Capture Flask app context for worker threads
flask_app: Flask | None = None
@ -158,6 +162,7 @@ class GraphEngine:
ready_queue=self._ready_queue,
event_queue=self._event_queue,
graph=self._graph,
layers=self._layers,
flask_app=flask_app,
context_vars=context_vars,
min_workers=self._min_workers,
@ -196,10 +201,6 @@ class GraphEngine:
event_emitter=self._event_manager,
)
# === Extensibility ===
# Layers allow plugins to extend engine functionality
self._layers: list[GraphEngineLayer] = []
# === Validation ===
# Ensure all nodes share the same GraphRuntimeState instance
self._validate_graph_state_consistency()

View File

@ -8,9 +8,11 @@ with middleware-like components that can observe events and interact with execut
from .base import GraphEngineLayer
from .debug_logging import DebugLoggingLayer
from .execution_limits import ExecutionLimitsLayer
from .observability import ObservabilityLayer
__all__ = [
"DebugLoggingLayer",
"ExecutionLimitsLayer",
"GraphEngineLayer",
"ObservabilityLayer",
]

View File

@ -9,6 +9,7 @@ from abc import ABC, abstractmethod
from core.workflow.graph_engine.protocols.command_channel import CommandChannel
from core.workflow.graph_events import GraphEngineEvent
from core.workflow.nodes.base.node import Node
from core.workflow.runtime import ReadOnlyGraphRuntimeState
@ -83,3 +84,29 @@ class GraphEngineLayer(ABC):
error: The exception that caused execution to fail, or None if successful
"""
pass
def on_node_run_start(self, node: Node) -> None: # noqa: B027
"""
Called immediately before a node begins execution.
Layers can override to inject behavior (e.g., start spans) prior to node execution.
The node's execution ID is available via `node._node_execution_id` and will be
consistent with all events emitted by this node execution.
Args:
node: The node instance about to be executed
"""
pass
def on_node_run_end(self, node: Node, error: Exception | None) -> None: # noqa: B027
"""
Called after a node finishes execution.
The node's execution ID is available via `node._node_execution_id` and matches
the `id` field in all events emitted by this node execution.
Args:
node: The node instance that just finished execution
error: Exception instance if the node failed, otherwise None
"""
pass

View File

@ -0,0 +1,61 @@
"""
Node-level OpenTelemetry parser interfaces and defaults.
"""
import json
from typing import Protocol
from opentelemetry.trace import Span
from opentelemetry.trace.status import Status, StatusCode
from core.workflow.nodes.base.node import Node
from core.workflow.nodes.tool.entities import ToolNodeData
class NodeOTelParser(Protocol):
"""Parser interface for node-specific OpenTelemetry enrichment."""
def parse(self, *, node: Node, span: "Span", error: Exception | None) -> None: ...
class DefaultNodeOTelParser:
"""Fallback parser used when no node-specific parser is registered."""
def parse(self, *, node: Node, span: "Span", error: Exception | None) -> None:
span.set_attribute("node.id", node.id)
if node.execution_id:
span.set_attribute("node.execution_id", node.execution_id)
if hasattr(node, "node_type") and node.node_type:
span.set_attribute("node.type", node.node_type.value)
if error:
span.record_exception(error)
span.set_status(Status(StatusCode.ERROR, str(error)))
else:
span.set_status(Status(StatusCode.OK))
class ToolNodeOTelParser:
"""Parser for tool nodes that captures tool-specific metadata."""
def __init__(self) -> None:
self._delegate = DefaultNodeOTelParser()
def parse(self, *, node: Node, span: "Span", error: Exception | None) -> None:
self._delegate.parse(node=node, span=span, error=error)
tool_data = getattr(node, "_node_data", None)
if not isinstance(tool_data, ToolNodeData):
return
span.set_attribute("tool.provider.id", tool_data.provider_id)
span.set_attribute("tool.provider.type", tool_data.provider_type.value)
span.set_attribute("tool.provider.name", tool_data.provider_name)
span.set_attribute("tool.name", tool_data.tool_name)
span.set_attribute("tool.label", tool_data.tool_label)
if tool_data.plugin_unique_identifier:
span.set_attribute("tool.plugin.id", tool_data.plugin_unique_identifier)
if tool_data.credential_id:
span.set_attribute("tool.credential.id", tool_data.credential_id)
if tool_data.tool_configurations:
span.set_attribute("tool.config", json.dumps(tool_data.tool_configurations, ensure_ascii=False))

View File

@ -0,0 +1,169 @@
"""
Observability layer for GraphEngine.
This layer creates OpenTelemetry spans for node execution, enabling distributed
tracing of workflow execution. It establishes OTel context during node execution
so that automatic instrumentation (HTTP requests, DB queries, etc.) automatically
associates with the node span.
"""
import logging
from dataclasses import dataclass
from typing import cast, final
from opentelemetry import context as context_api
from opentelemetry.trace import Span, SpanKind, Tracer, get_tracer, set_span_in_context
from typing_extensions import override
from configs import dify_config
from core.workflow.enums import NodeType
from core.workflow.graph_engine.layers.base import GraphEngineLayer
from core.workflow.graph_engine.layers.node_parsers import (
DefaultNodeOTelParser,
NodeOTelParser,
ToolNodeOTelParser,
)
from core.workflow.nodes.base.node import Node
from extensions.otel.runtime import is_instrument_flag_enabled
logger = logging.getLogger(__name__)
@dataclass(slots=True)
class _NodeSpanContext:
span: "Span"
token: object
@final
class ObservabilityLayer(GraphEngineLayer):
"""
Layer that creates OpenTelemetry spans for node execution.
This layer:
- Creates a span when a node starts execution
- Establishes OTel context so automatic instrumentation associates with the span
- Sets complete attributes and status when node execution ends
"""
def __init__(self) -> None:
super().__init__()
self._node_contexts: dict[str, _NodeSpanContext] = {}
self._parsers: dict[NodeType, NodeOTelParser] = {}
self._default_parser: NodeOTelParser = cast(NodeOTelParser, DefaultNodeOTelParser())
self._is_disabled: bool = False
self._tracer: Tracer | None = None
self._build_parser_registry()
self._init_tracer()
def _init_tracer(self) -> None:
"""Initialize OpenTelemetry tracer in constructor."""
if not (dify_config.ENABLE_OTEL or is_instrument_flag_enabled()):
self._is_disabled = True
return
try:
self._tracer = get_tracer(__name__)
except Exception as e:
logger.warning("Failed to get OpenTelemetry tracer: %s", e)
self._is_disabled = True
def _build_parser_registry(self) -> None:
"""Initialize parser registry for node types."""
self._parsers = {
NodeType.TOOL: ToolNodeOTelParser(),
}
def _get_parser(self, node: Node) -> NodeOTelParser:
node_type = getattr(node, "node_type", None)
if isinstance(node_type, NodeType):
return self._parsers.get(node_type, self._default_parser)
return self._default_parser
@override
def on_graph_start(self) -> None:
"""Called when graph execution starts."""
self._node_contexts.clear()
@override
def on_node_run_start(self, node: Node) -> None:
"""
Called when a node starts execution.
Creates a span and establishes OTel context for automatic instrumentation.
"""
if self._is_disabled:
return
try:
if not self._tracer:
return
execution_id = node.execution_id
if not execution_id:
return
parent_context = context_api.get_current()
span = self._tracer.start_span(
f"{node.title}",
kind=SpanKind.INTERNAL,
context=parent_context,
)
new_context = set_span_in_context(span)
token = context_api.attach(new_context)
self._node_contexts[execution_id] = _NodeSpanContext(span=span, token=token)
except Exception as e:
logger.warning("Failed to create OpenTelemetry span for node %s: %s", node.id, e)
@override
def on_node_run_end(self, node: Node, error: Exception | None) -> None:
"""
Called when a node finishes execution.
Sets complete attributes, records exceptions, and ends the span.
"""
if self._is_disabled:
return
try:
execution_id = node.execution_id
if not execution_id:
return
node_context = self._node_contexts.get(execution_id)
if not node_context:
return
span = node_context.span
parser = self._get_parser(node)
try:
parser.parse(node=node, span=span, error=error)
span.end()
finally:
token = node_context.token
if token is not None:
try:
context_api.detach(token)
except Exception:
logger.warning("Failed to detach OpenTelemetry token: %s", token)
self._node_contexts.pop(execution_id, None)
except Exception as e:
logger.warning("Failed to end OpenTelemetry span for node %s: %s", node.id, e)
@override
def on_event(self, event) -> None:
"""Not used in this layer."""
pass
@override
def on_graph_end(self, error: Exception | None) -> None:
"""Called when graph execution ends."""
if self._node_contexts:
logger.warning(
"ObservabilityLayer: %d node spans were not properly ended",
len(self._node_contexts),
)
self._node_contexts.clear()

View File

@ -9,6 +9,7 @@ import contextvars
import queue
import threading
import time
from collections.abc import Sequence
from datetime import datetime
from typing import final
from uuid import uuid4
@ -17,6 +18,7 @@ from flask import Flask
from typing_extensions import override
from core.workflow.graph import Graph
from core.workflow.graph_engine.layers.base import GraphEngineLayer
from core.workflow.graph_events import GraphNodeEventBase, NodeRunFailedEvent
from core.workflow.nodes.base.node import Node
from libs.flask_utils import preserve_flask_contexts
@ -39,6 +41,7 @@ class Worker(threading.Thread):
ready_queue: ReadyQueue,
event_queue: queue.Queue[GraphNodeEventBase],
graph: Graph,
layers: Sequence[GraphEngineLayer],
worker_id: int = 0,
flask_app: Flask | None = None,
context_vars: contextvars.Context | None = None,
@ -50,6 +53,7 @@ class Worker(threading.Thread):
ready_queue: Ready queue containing node IDs ready for execution
event_queue: Queue for pushing execution events
graph: Graph containing nodes to execute
layers: Graph engine layers for node execution hooks
worker_id: Unique identifier for this worker
flask_app: Optional Flask application for context preservation
context_vars: Optional context variables to preserve in worker thread
@ -63,6 +67,7 @@ class Worker(threading.Thread):
self._context_vars = context_vars
self._stop_event = threading.Event()
self._last_task_time = time.time()
self._layers = layers if layers is not None else []
def stop(self) -> None:
"""Signal the worker to stop processing."""
@ -122,20 +127,51 @@ class Worker(threading.Thread):
Args:
node: The node instance to execute
"""
# Execute the node with preserved context if Flask app is provided
node.ensure_execution_id()
error: Exception | None = None
if self._flask_app and self._context_vars:
with preserve_flask_contexts(
flask_app=self._flask_app,
context_vars=self._context_vars,
):
# Execute the node
self._invoke_node_run_start_hooks(node)
try:
node_events = node.run()
for event in node_events:
self._event_queue.put(event)
except Exception as exc:
error = exc
raise
finally:
self._invoke_node_run_end_hooks(node, error)
else:
self._invoke_node_run_start_hooks(node)
try:
node_events = node.run()
for event in node_events:
# Forward event to dispatcher immediately for streaming
self._event_queue.put(event)
else:
# Execute without context preservation
node_events = node.run()
for event in node_events:
# Forward event to dispatcher immediately for streaming
self._event_queue.put(event)
except Exception as exc:
error = exc
raise
finally:
self._invoke_node_run_end_hooks(node, error)
def _invoke_node_run_start_hooks(self, node: Node) -> None:
"""Invoke on_node_run_start hooks for all layers."""
for layer in self._layers:
try:
layer.on_node_run_start(node)
except Exception:
# Silently ignore layer errors to prevent disrupting node execution
continue
def _invoke_node_run_end_hooks(self, node: Node, error: Exception | None) -> None:
"""Invoke on_node_run_end hooks for all layers."""
for layer in self._layers:
try:
layer.on_node_run_end(node, error)
except Exception:
# Silently ignore layer errors to prevent disrupting node execution
continue

View File

@ -14,6 +14,7 @@ from configs import dify_config
from core.workflow.graph import Graph
from core.workflow.graph_events import GraphNodeEventBase
from ..layers.base import GraphEngineLayer
from ..ready_queue import ReadyQueue
from ..worker import Worker
@ -39,6 +40,7 @@ class WorkerPool:
ready_queue: ReadyQueue,
event_queue: queue.Queue[GraphNodeEventBase],
graph: Graph,
layers: list[GraphEngineLayer],
flask_app: "Flask | None" = None,
context_vars: "Context | None" = None,
min_workers: int | None = None,
@ -53,6 +55,7 @@ class WorkerPool:
ready_queue: Ready queue for nodes ready for execution
event_queue: Queue for worker events
graph: The workflow graph
layers: Graph engine layers for node execution hooks
flask_app: Optional Flask app for context preservation
context_vars: Optional context variables
min_workers: Minimum number of workers
@ -65,6 +68,7 @@ class WorkerPool:
self._graph = graph
self._flask_app = flask_app
self._context_vars = context_vars
self._layers = layers
# Scaling parameters with defaults
self._min_workers = min_workers or dify_config.GRAPH_ENGINE_MIN_WORKERS
@ -144,6 +148,7 @@ class WorkerPool:
ready_queue=self._ready_queue,
event_queue=self._event_queue,
graph=self._graph,
layers=self._layers,
worker_id=worker_id,
flask_app=self._flask_app,
context_vars=self._context_vars,

View File

@ -244,6 +244,15 @@ class Node(Generic[NodeDataT]):
def graph_init_params(self) -> "GraphInitParams":
return self._graph_init_params
@property
def execution_id(self) -> str:
return self._node_execution_id
def ensure_execution_id(self) -> str:
if not self._node_execution_id:
self._node_execution_id = str(uuid4())
return self._node_execution_id
def _hydrate_node_data(self, data: Mapping[str, Any]) -> NodeDataT:
return cast(NodeDataT, self._node_data_type.model_validate(data))
@ -256,14 +265,12 @@ class Node(Generic[NodeDataT]):
raise NotImplementedError
def run(self) -> Generator[GraphNodeEventBase, None, None]:
# Generate a single node execution ID to use for all events
if not self._node_execution_id:
self._node_execution_id = str(uuid4())
execution_id = self.ensure_execution_id()
self._start_at = naive_utc_now()
# Create and push start event with required fields
start_event = NodeRunStartedEvent(
id=self._node_execution_id,
id=execution_id,
node_id=self._node_id,
node_type=self.node_type,
node_title=self.title,
@ -321,7 +328,7 @@ class Node(Generic[NodeDataT]):
if isinstance(event, NodeEventBase): # pyright: ignore[reportUnnecessaryIsInstance]
yield self._dispatch(event)
elif isinstance(event, GraphNodeEventBase) and not event.in_iteration_id and not event.in_loop_id: # pyright: ignore[reportUnnecessaryIsInstance]
event.id = self._node_execution_id
event.id = self.execution_id
yield event
else:
yield event
@ -333,7 +340,7 @@ class Node(Generic[NodeDataT]):
error_type="WorkflowNodeError",
)
yield NodeRunFailedEvent(
id=self._node_execution_id,
id=self.execution_id,
node_id=self._node_id,
node_type=self.node_type,
start_at=self._start_at,
@ -512,7 +519,7 @@ class Node(Generic[NodeDataT]):
match result.status:
case WorkflowNodeExecutionStatus.FAILED:
return NodeRunFailedEvent(
id=self._node_execution_id,
id=self.execution_id,
node_id=self.id,
node_type=self.node_type,
start_at=self._start_at,
@ -521,7 +528,7 @@ class Node(Generic[NodeDataT]):
)
case WorkflowNodeExecutionStatus.SUCCEEDED:
return NodeRunSucceededEvent(
id=self._node_execution_id,
id=self.execution_id,
node_id=self.id,
node_type=self.node_type,
start_at=self._start_at,
@ -537,7 +544,7 @@ class Node(Generic[NodeDataT]):
@_dispatch.register
def _(self, event: StreamChunkEvent) -> NodeRunStreamChunkEvent:
return NodeRunStreamChunkEvent(
id=self._node_execution_id,
id=self.execution_id,
node_id=self._node_id,
node_type=self.node_type,
selector=event.selector,
@ -550,7 +557,7 @@ class Node(Generic[NodeDataT]):
match event.node_run_result.status:
case WorkflowNodeExecutionStatus.SUCCEEDED:
return NodeRunSucceededEvent(
id=self._node_execution_id,
id=self.execution_id,
node_id=self._node_id,
node_type=self.node_type,
start_at=self._start_at,
@ -558,7 +565,7 @@ class Node(Generic[NodeDataT]):
)
case WorkflowNodeExecutionStatus.FAILED:
return NodeRunFailedEvent(
id=self._node_execution_id,
id=self.execution_id,
node_id=self._node_id,
node_type=self.node_type,
start_at=self._start_at,
@ -573,7 +580,7 @@ class Node(Generic[NodeDataT]):
@_dispatch.register
def _(self, event: PauseRequestedEvent) -> NodeRunPauseRequestedEvent:
return NodeRunPauseRequestedEvent(
id=self._node_execution_id,
id=self.execution_id,
node_id=self._node_id,
node_type=self.node_type,
node_run_result=NodeRunResult(status=WorkflowNodeExecutionStatus.PAUSED),
@ -583,7 +590,7 @@ class Node(Generic[NodeDataT]):
@_dispatch.register
def _(self, event: AgentLogEvent) -> NodeRunAgentLogEvent:
return NodeRunAgentLogEvent(
id=self._node_execution_id,
id=self.execution_id,
node_id=self._node_id,
node_type=self.node_type,
message_id=event.message_id,
@ -599,7 +606,7 @@ class Node(Generic[NodeDataT]):
@_dispatch.register
def _(self, event: LoopStartedEvent) -> NodeRunLoopStartedEvent:
return NodeRunLoopStartedEvent(
id=self._node_execution_id,
id=self.execution_id,
node_id=self._node_id,
node_type=self.node_type,
node_title=self.node_data.title,
@ -612,7 +619,7 @@ class Node(Generic[NodeDataT]):
@_dispatch.register
def _(self, event: LoopNextEvent) -> NodeRunLoopNextEvent:
return NodeRunLoopNextEvent(
id=self._node_execution_id,
id=self.execution_id,
node_id=self._node_id,
node_type=self.node_type,
node_title=self.node_data.title,
@ -623,7 +630,7 @@ class Node(Generic[NodeDataT]):
@_dispatch.register
def _(self, event: LoopSucceededEvent) -> NodeRunLoopSucceededEvent:
return NodeRunLoopSucceededEvent(
id=self._node_execution_id,
id=self.execution_id,
node_id=self._node_id,
node_type=self.node_type,
node_title=self.node_data.title,
@ -637,7 +644,7 @@ class Node(Generic[NodeDataT]):
@_dispatch.register
def _(self, event: LoopFailedEvent) -> NodeRunLoopFailedEvent:
return NodeRunLoopFailedEvent(
id=self._node_execution_id,
id=self.execution_id,
node_id=self._node_id,
node_type=self.node_type,
node_title=self.node_data.title,
@ -652,7 +659,7 @@ class Node(Generic[NodeDataT]):
@_dispatch.register
def _(self, event: IterationStartedEvent) -> NodeRunIterationStartedEvent:
return NodeRunIterationStartedEvent(
id=self._node_execution_id,
id=self.execution_id,
node_id=self._node_id,
node_type=self.node_type,
node_title=self.node_data.title,
@ -665,7 +672,7 @@ class Node(Generic[NodeDataT]):
@_dispatch.register
def _(self, event: IterationNextEvent) -> NodeRunIterationNextEvent:
return NodeRunIterationNextEvent(
id=self._node_execution_id,
id=self.execution_id,
node_id=self._node_id,
node_type=self.node_type,
node_title=self.node_data.title,
@ -676,7 +683,7 @@ class Node(Generic[NodeDataT]):
@_dispatch.register
def _(self, event: IterationSucceededEvent) -> NodeRunIterationSucceededEvent:
return NodeRunIterationSucceededEvent(
id=self._node_execution_id,
id=self.execution_id,
node_id=self._node_id,
node_type=self.node_type,
node_title=self.node_data.title,
@ -690,7 +697,7 @@ class Node(Generic[NodeDataT]):
@_dispatch.register
def _(self, event: IterationFailedEvent) -> NodeRunIterationFailedEvent:
return NodeRunIterationFailedEvent(
id=self._node_execution_id,
id=self.execution_id,
node_id=self._node_id,
node_type=self.node_type,
node_title=self.node_data.title,
@ -705,7 +712,7 @@ class Node(Generic[NodeDataT]):
@_dispatch.register
def _(self, event: RunRetrieverResourceEvent) -> NodeRunRetrieverResourceEvent:
return NodeRunRetrieverResourceEvent(
id=self._node_execution_id,
id=self.execution_id,
node_id=self._node_id,
node_type=self.node_type,
retriever_resources=event.retriever_resources,

View File

@ -86,6 +86,11 @@ class Executor:
node_data.authorization.config.api_key = variable_pool.convert_template(
node_data.authorization.config.api_key
).text
# Validate that API key is not empty after template conversion
if not node_data.authorization.config.api_key or not node_data.authorization.config.api_key.strip():
raise AuthorizationConfigError(
"API key is required for authorization but was empty. Please provide a valid API key."
)
self.url = node_data.url
self.method = node_data.method

View File

@ -1,3 +1,4 @@
import json
from typing import Any
from jsonschema import Draft7Validator, ValidationError
@ -42,15 +43,25 @@ class StartNode(Node[StartNodeData]):
if value is None and variable.required:
raise ValueError(f"{key} is required in input form")
if not isinstance(value, dict):
raise ValueError(f"{key} must be a JSON object")
schema = variable.json_schema
if not schema:
continue
if not value:
continue
try:
Draft7Validator(schema).validate(value)
json_schema = json.loads(schema)
except json.JSONDecodeError as e:
raise ValueError(f"{schema} must be a valid JSON object")
try:
json_value = json.loads(value)
except json.JSONDecodeError as e:
raise ValueError(f"{value} must be a valid JSON object")
try:
Draft7Validator(json_schema).validate(json_value)
except ValidationError as e:
raise ValueError(f"JSON object for '{key}' does not match schema: {e.message}")
node_inputs[key] = value
node_inputs[key] = json_value

View File

@ -1,14 +1,22 @@
import logging
from collections.abc import Mapping
from typing import Any
from core.file import FileTransferMethod
from core.variables.types import SegmentType
from core.variables.variables import FileVariable
from core.workflow.constants import SYSTEM_VARIABLE_NODE_ID
from core.workflow.entities.workflow_node_execution import WorkflowNodeExecutionStatus
from core.workflow.enums import NodeExecutionType, NodeType
from core.workflow.node_events import NodeRunResult
from core.workflow.nodes.base.node import Node
from factories import file_factory
from factories.variable_factory import build_segment_with_type
from .entities import ContentType, WebhookData
logger = logging.getLogger(__name__)
class TriggerWebhookNode(Node[WebhookData]):
node_type = NodeType.TRIGGER_WEBHOOK
@ -60,6 +68,34 @@ class TriggerWebhookNode(Node[WebhookData]):
outputs=outputs,
)
def generate_file_var(self, param_name: str, file: dict):
related_id = file.get("related_id")
transfer_method_value = file.get("transfer_method")
if transfer_method_value:
transfer_method = FileTransferMethod.value_of(transfer_method_value)
match transfer_method:
case FileTransferMethod.LOCAL_FILE | FileTransferMethod.REMOTE_URL:
file["upload_file_id"] = related_id
case FileTransferMethod.TOOL_FILE:
file["tool_file_id"] = related_id
case FileTransferMethod.DATASOURCE_FILE:
file["datasource_file_id"] = related_id
try:
file_obj = file_factory.build_from_mapping(
mapping=file,
tenant_id=self.tenant_id,
)
file_segment = build_segment_with_type(SegmentType.FILE, file_obj)
return FileVariable(name=param_name, value=file_segment.value, selector=[self.id, param_name])
except ValueError:
logger.error(
"Failed to build FileVariable for webhook file parameter %s",
param_name,
exc_info=True,
)
return None
def _extract_configured_outputs(self, webhook_inputs: dict[str, Any]) -> dict[str, Any]:
"""Extract outputs based on node configuration from webhook inputs."""
outputs = {}
@ -107,18 +143,33 @@ class TriggerWebhookNode(Node[WebhookData]):
outputs[param_name] = str(webhook_data.get("body", {}).get("raw", ""))
continue
elif self.node_data.content_type == ContentType.BINARY:
outputs[param_name] = webhook_data.get("body", {}).get("raw", b"")
raw_data: dict = webhook_data.get("body", {}).get("raw", {})
file_var = self.generate_file_var(param_name, raw_data)
if file_var:
outputs[param_name] = file_var
else:
outputs[param_name] = raw_data
continue
if param_type == "file":
# Get File object (already processed by webhook controller)
file_obj = webhook_data.get("files", {}).get(param_name)
outputs[param_name] = file_obj
files = webhook_data.get("files", {})
if files and isinstance(files, dict):
file = files.get(param_name)
if file and isinstance(file, dict):
file_var = self.generate_file_var(param_name, file)
if file_var:
outputs[param_name] = file_var
else:
outputs[param_name] = files
else:
outputs[param_name] = files
else:
outputs[param_name] = files
else:
# Get regular body parameter
outputs[param_name] = webhook_data.get("body", {}).get(param_name)
# Include raw webhook data for debugging/advanced use
outputs["_webhook_raw"] = webhook_data
return outputs

View File

@ -14,7 +14,7 @@ from core.workflow.errors import WorkflowNodeRunFailedError
from core.workflow.graph import Graph
from core.workflow.graph_engine import GraphEngine
from core.workflow.graph_engine.command_channels import InMemoryChannel
from core.workflow.graph_engine.layers import DebugLoggingLayer, ExecutionLimitsLayer
from core.workflow.graph_engine.layers import DebugLoggingLayer, ExecutionLimitsLayer, ObservabilityLayer
from core.workflow.graph_engine.protocols.command_channel import CommandChannel
from core.workflow.graph_events import GraphEngineEvent, GraphNodeEventBase, GraphRunFailedEvent
from core.workflow.nodes import NodeType
@ -23,6 +23,7 @@ from core.workflow.nodes.node_mapping import NODE_TYPE_CLASSES_MAPPING
from core.workflow.runtime import GraphRuntimeState, VariablePool
from core.workflow.system_variable import SystemVariable
from core.workflow.variable_loader import DUMMY_VARIABLE_LOADER, VariableLoader, load_into_variable_pool
from extensions.otel.runtime import is_instrument_flag_enabled
from factories import file_factory
from models.enums import UserFrom
from models.workflow import Workflow
@ -98,6 +99,10 @@ class WorkflowEntry:
)
self.graph_engine.layer(limits_layer)
# Add observability layer when OTel is enabled
if dify_config.ENABLE_OTEL or is_instrument_flag_enabled():
self.graph_engine.layer(ObservabilityLayer())
def run(self) -> Generator[GraphEngineEvent, None, None]:
graph_engine = self.graph_engine

View File

@ -34,10 +34,10 @@ if [[ "${MODE}" == "worker" ]]; then
if [[ -z "${CELERY_QUEUES}" ]]; then
if [[ "${EDITION}" == "CLOUD" ]]; then
# Cloud edition: separate queues for dataset and trigger tasks
DEFAULT_QUEUES="dataset,priority_dataset,priority_pipeline,pipeline,mail,ops_trace,app_deletion,plugin,workflow_storage,conversation,workflow_professional,workflow_team,workflow_sandbox,schedule_poller,schedule_executor,triggered_workflow_dispatcher,trigger_refresh_executor"
DEFAULT_QUEUES="dataset,priority_dataset,priority_pipeline,pipeline,mail,ops_trace,app_deletion,plugin,workflow_storage,conversation,workflow_professional,workflow_team,workflow_sandbox,schedule_poller,schedule_executor,triggered_workflow_dispatcher,trigger_refresh_executor,retention"
else
# Community edition (SELF_HOSTED): dataset, pipeline and workflow have separate queues
DEFAULT_QUEUES="dataset,priority_dataset,priority_pipeline,pipeline,mail,ops_trace,app_deletion,plugin,workflow_storage,conversation,workflow,schedule_poller,schedule_executor,triggered_workflow_dispatcher,trigger_refresh_executor"
DEFAULT_QUEUES="dataset,priority_dataset,priority_pipeline,pipeline,mail,ops_trace,app_deletion,plugin,workflow_storage,conversation,workflow,schedule_poller,schedule_executor,triggered_workflow_dispatcher,trigger_refresh_executor,retention"
fi
else
DEFAULT_QUEUES="${CELERY_QUEUES}"
@ -69,6 +69,53 @@ if [[ "${MODE}" == "worker" ]]; then
elif [[ "${MODE}" == "beat" ]]; then
exec celery -A app.celery beat --loglevel ${LOG_LEVEL:-INFO}
elif [[ "${MODE}" == "job" ]]; then
# Job mode: Run a one-time Flask command and exit
# Pass Flask command and arguments via container args
# Example K8s usage:
# args:
# - create-tenant
# - --email
# - admin@example.com
#
# Example Docker usage:
# docker run -e MODE=job dify-api:latest create-tenant --email admin@example.com
if [[ $# -eq 0 ]]; then
echo "Error: No command specified for job mode."
echo ""
echo "Usage examples:"
echo " Kubernetes:"
echo " args: [create-tenant, --email, admin@example.com]"
echo ""
echo " Docker:"
echo " docker run -e MODE=job dify-api create-tenant --email admin@example.com"
echo ""
echo "Available commands:"
echo " create-tenant, reset-password, reset-email, upgrade-db,"
echo " vdb-migrate, install-plugins, and more..."
echo ""
echo "Run 'flask --help' to see all available commands."
exit 1
fi
echo "Running Flask job command: flask $*"
# Temporarily disable exit on error to capture exit code
set +e
flask "$@"
JOB_EXIT_CODE=$?
set -e
if [[ ${JOB_EXIT_CODE} -eq 0 ]]; then
echo "Job completed successfully."
else
echo "Job failed with exit code ${JOB_EXIT_CODE}."
fi
exit ${JOB_EXIT_CODE}
else
if [[ "${DEBUG}" == "true" ]]; then
exec flask run --host=${DIFY_BIND_ADDRESS:-0.0.0.0} --port=${DIFY_PORT:-5001} --debug

View File

@ -15,4 +15,5 @@ def handle(sender: Dataset, **kwargs):
dataset.index_struct,
dataset.collection_binding_id,
dataset.doc_form,
dataset.pipeline_id,
)

View File

@ -9,11 +9,21 @@ FILES_HEADERS: tuple[str, ...] = (*BASE_CORS_HEADERS, HEADER_NAME_CSRF_TOKEN)
EXPOSED_HEADERS: tuple[str, ...] = ("X-Version", "X-Env", "X-Trace-Id")
def init_app(app: DifyApp):
# register blueprint routers
def _apply_cors_once(bp, /, **cors_kwargs):
"""Make CORS idempotent so blueprints can be reused across multiple app instances."""
if getattr(bp, "_dify_cors_applied", False):
return
from flask_cors import CORS
CORS(bp, **cors_kwargs)
bp._dify_cors_applied = True
def init_app(app: DifyApp):
# register blueprint routers
from controllers.console import bp as console_app_bp
from controllers.files import bp as files_bp
from controllers.inner_api import bp as inner_api_bp
@ -22,7 +32,7 @@ def init_app(app: DifyApp):
from controllers.trigger import bp as trigger_bp
from controllers.web import bp as web_bp
CORS(
_apply_cors_once(
service_api_bp,
allow_headers=list(SERVICE_API_HEADERS),
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],
@ -30,7 +40,7 @@ def init_app(app: DifyApp):
)
app.register_blueprint(service_api_bp)
CORS(
_apply_cors_once(
web_bp,
resources={r"/*": {"origins": dify_config.WEB_API_CORS_ALLOW_ORIGINS}},
supports_credentials=True,
@ -40,7 +50,7 @@ def init_app(app: DifyApp):
)
app.register_blueprint(web_bp)
CORS(
_apply_cors_once(
console_app_bp,
resources={r"/*": {"origins": dify_config.CONSOLE_CORS_ALLOW_ORIGINS}},
supports_credentials=True,
@ -50,7 +60,7 @@ def init_app(app: DifyApp):
)
app.register_blueprint(console_app_bp)
CORS(
_apply_cors_once(
files_bp,
allow_headers=list(FILES_HEADERS),
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],
@ -62,7 +72,7 @@ def init_app(app: DifyApp):
app.register_blueprint(mcp_bp)
# Register trigger blueprint with CORS for webhook calls
CORS(
_apply_cors_once(
trigger_bp,
allow_headers=["Content-Type", "Authorization", "X-App-Code"],
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH", "HEAD"],

View File

@ -0,0 +1,74 @@
"""
Logstore extension for Dify application.
This extension initializes the logstore (Aliyun SLS) on application startup,
creating necessary projects, logstores, and indexes if they don't exist.
"""
import logging
import os
from dotenv import load_dotenv
from dify_app import DifyApp
logger = logging.getLogger(__name__)
def is_enabled() -> bool:
"""
Check if logstore extension is enabled.
Returns:
True if all required Aliyun SLS environment variables are set, False otherwise
"""
# Load environment variables from .env file
load_dotenv()
required_vars = [
"ALIYUN_SLS_ACCESS_KEY_ID",
"ALIYUN_SLS_ACCESS_KEY_SECRET",
"ALIYUN_SLS_ENDPOINT",
"ALIYUN_SLS_REGION",
"ALIYUN_SLS_PROJECT_NAME",
]
all_set = all(os.environ.get(var) for var in required_vars)
if not all_set:
logger.info("Logstore extension disabled: required Aliyun SLS environment variables not set")
return all_set
def init_app(app: DifyApp):
"""
Initialize logstore on application startup.
This function:
1. Creates Aliyun SLS project if it doesn't exist
2. Creates logstores (workflow_execution, workflow_node_execution) if they don't exist
3. Creates indexes with field configurations based on PostgreSQL table structures
This operation is idempotent and only executes once during application startup.
Args:
app: The Dify application instance
"""
try:
from extensions.logstore.aliyun_logstore import AliyunLogStore
logger.info("Initializing logstore...")
# Create logstore client and initialize project/logstores/indexes
logstore_client = AliyunLogStore()
logstore_client.init_project_logstore()
# Attach to app for potential later use
app.extensions["logstore"] = logstore_client
logger.info("Logstore initialized successfully")
except Exception:
logger.exception("Failed to initialize logstore")
# Don't raise - allow application to continue even if logstore init fails
# This ensures that the application can still run if logstore is misconfigured

View File

@ -0,0 +1,7 @@
from core.db.session_factory import configure_session_factory
from extensions.ext_database import db
def init_app(app):
with app.app_context():
configure_session_factory(db.engine)

View File

View File

@ -0,0 +1,890 @@
import logging
import os
import threading
import time
from collections.abc import Sequence
from typing import Any
import sqlalchemy as sa
from aliyun.log import ( # type: ignore[import-untyped]
GetLogsRequest,
IndexConfig,
IndexKeyConfig,
IndexLineConfig,
LogClient,
LogItem,
PutLogsRequest,
)
from aliyun.log.auth import AUTH_VERSION_4 # type: ignore[import-untyped]
from aliyun.log.logexception import LogException # type: ignore[import-untyped]
from dotenv import load_dotenv
from sqlalchemy.orm import DeclarativeBase
from configs import dify_config
from extensions.logstore.aliyun_logstore_pg import AliyunLogStorePG
logger = logging.getLogger(__name__)
class AliyunLogStore:
"""
Singleton class for Aliyun SLS LogStore operations.
Ensures only one instance exists to prevent multiple PG connection pools.
"""
_instance: "AliyunLogStore | None" = None
_initialized: bool = False
# Track delayed PG connection for newly created projects
_pg_connection_timer: threading.Timer | None = None
_pg_connection_delay: int = 90 # delay seconds
# Default tokenizer for text/json fields and full-text index
# Common delimiters: comma, space, quotes, punctuation, operators, brackets, special chars
DEFAULT_TOKEN_LIST = [
",",
" ",
'"',
'"',
";",
"=",
"(",
")",
"[",
"]",
"{",
"}",
"?",
"@",
"&",
"<",
">",
"/",
":",
"\n",
"\t",
]
def __new__(cls) -> "AliyunLogStore":
"""Implement singleton pattern."""
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
project_des = "dify"
workflow_execution_logstore = "workflow_execution"
workflow_node_execution_logstore = "workflow_node_execution"
@staticmethod
def _sqlalchemy_type_to_logstore_type(column: Any) -> str:
"""
Map SQLAlchemy column type to Aliyun LogStore index type.
Args:
column: SQLAlchemy column object
Returns:
LogStore index type: 'text', 'long', 'double', or 'json'
"""
column_type = column.type
# Integer types -> long
if isinstance(column_type, (sa.Integer, sa.BigInteger, sa.SmallInteger)):
return "long"
# Float types -> double
if isinstance(column_type, (sa.Float, sa.Numeric)):
return "double"
# String and Text types -> text
if isinstance(column_type, (sa.String, sa.Text)):
return "text"
# DateTime -> text (stored as ISO format string in logstore)
if isinstance(column_type, sa.DateTime):
return "text"
# Boolean -> long (stored as 0/1)
if isinstance(column_type, sa.Boolean):
return "long"
# JSON -> json
if isinstance(column_type, sa.JSON):
return "json"
# Default to text for unknown types
return "text"
@staticmethod
def _generate_index_keys_from_model(model_class: type[DeclarativeBase]) -> dict[str, IndexKeyConfig]:
"""
Automatically generate LogStore field index configuration from SQLAlchemy model.
This method introspects the SQLAlchemy model's column definitions and creates
corresponding LogStore index configurations. When the PG schema is updated via
Flask-Migrate, this method will automatically pick up the new fields on next startup.
Args:
model_class: SQLAlchemy model class (e.g., WorkflowRun, WorkflowNodeExecutionModel)
Returns:
Dictionary mapping field names to IndexKeyConfig objects
"""
index_keys = {}
# Iterate over all mapped columns in the model
if hasattr(model_class, "__mapper__"):
for column_name, column_property in model_class.__mapper__.columns.items():
# Skip relationship properties and other non-column attributes
if not hasattr(column_property, "type"):
continue
# Map SQLAlchemy type to LogStore type
logstore_type = AliyunLogStore._sqlalchemy_type_to_logstore_type(column_property)
# Create index configuration
# - text fields: case_insensitive for better search, with tokenizer and Chinese support
# - all fields: doc_value=True for analytics
if logstore_type == "text":
index_keys[column_name] = IndexKeyConfig(
index_type="text",
case_sensitive=False,
doc_value=True,
token_list=AliyunLogStore.DEFAULT_TOKEN_LIST,
chinese=True,
)
else:
index_keys[column_name] = IndexKeyConfig(index_type=logstore_type, doc_value=True)
# Add log_version field (not in PG model, but used in logstore for versioning)
index_keys["log_version"] = IndexKeyConfig(index_type="long", doc_value=True)
return index_keys
def __init__(self) -> None:
# Skip initialization if already initialized (singleton pattern)
if self.__class__._initialized:
return
load_dotenv()
self.access_key_id: str = os.environ.get("ALIYUN_SLS_ACCESS_KEY_ID", "")
self.access_key_secret: str = os.environ.get("ALIYUN_SLS_ACCESS_KEY_SECRET", "")
self.endpoint: str = os.environ.get("ALIYUN_SLS_ENDPOINT", "")
self.region: str = os.environ.get("ALIYUN_SLS_REGION", "")
self.project_name: str = os.environ.get("ALIYUN_SLS_PROJECT_NAME", "")
self.logstore_ttl: int = int(os.environ.get("ALIYUN_SLS_LOGSTORE_TTL", 365))
self.log_enabled: bool = os.environ.get("SQLALCHEMY_ECHO", "false").lower() == "true"
self.pg_mode_enabled: bool = os.environ.get("LOGSTORE_PG_MODE_ENABLED", "true").lower() == "true"
# Initialize SDK client
self.client = LogClient(
self.endpoint, self.access_key_id, self.access_key_secret, auth_version=AUTH_VERSION_4, region=self.region
)
# Append Dify identification to the existing user agent
original_user_agent = self.client._user_agent # pyright: ignore[reportPrivateUsage]
dify_version = dify_config.project.version
enhanced_user_agent = f"Dify,Dify-{dify_version},{original_user_agent}"
self.client.set_user_agent(enhanced_user_agent)
# PG client will be initialized in init_project_logstore
self._pg_client: AliyunLogStorePG | None = None
self._use_pg_protocol: bool = False
self.__class__._initialized = True
@property
def supports_pg_protocol(self) -> bool:
"""Check if PG protocol is supported and enabled."""
return self._use_pg_protocol
def _attempt_pg_connection_init(self) -> bool:
"""
Attempt to initialize PG connection.
This method tries to establish PG connection and performs necessary checks.
It's used both for immediate connection (existing projects) and delayed connection (new projects).
Returns:
True if PG connection was successfully established, False otherwise.
"""
if not self.pg_mode_enabled or not self._pg_client:
return False
try:
self._use_pg_protocol = self._pg_client.init_connection()
if self._use_pg_protocol:
logger.info("Successfully connected to project %s using PG protocol", self.project_name)
# Check if scan_index is enabled for all logstores
self._check_and_disable_pg_if_scan_index_disabled()
return True
else:
logger.info("PG connection failed for project %s. Will use SDK mode.", self.project_name)
return False
except Exception as e:
logger.warning(
"Failed to establish PG connection for project %s: %s. Will use SDK mode.",
self.project_name,
str(e),
)
self._use_pg_protocol = False
return False
def _delayed_pg_connection_init(self) -> None:
"""
Delayed initialization of PG connection for newly created projects.
This method is called by a background timer 3 minutes after project creation.
"""
# Double check conditions in case state changed
if self._use_pg_protocol:
return
logger.info(
"Attempting delayed PG connection for newly created project %s ...",
self.project_name,
)
self._attempt_pg_connection_init()
self.__class__._pg_connection_timer = None
def init_project_logstore(self):
"""
Initialize project, logstore, index, and PG connection.
This method should be called once during application startup to ensure
all required resources exist and connections are established.
"""
# Step 1: Ensure project and logstore exist
project_is_new = False
if not self.is_project_exist():
self.create_project()
project_is_new = True
self.create_logstore_if_not_exist()
# Step 2: Initialize PG client and connection (if enabled)
if not self.pg_mode_enabled:
logger.info("PG mode is disabled. Will use SDK mode.")
return
# Create PG client if not already created
if self._pg_client is None:
logger.info("Initializing PG client for project %s...", self.project_name)
self._pg_client = AliyunLogStorePG(
self.access_key_id, self.access_key_secret, self.endpoint, self.project_name
)
# Step 3: Establish PG connection based on project status
if project_is_new:
# For newly created projects, schedule delayed PG connection
self._use_pg_protocol = False
logger.info(
"Project %s is newly created. Will use SDK mode and schedule PG connection attempt in %d seconds.",
self.project_name,
self.__class__._pg_connection_delay,
)
if self.__class__._pg_connection_timer is not None:
self.__class__._pg_connection_timer.cancel()
self.__class__._pg_connection_timer = threading.Timer(
self.__class__._pg_connection_delay,
self._delayed_pg_connection_init,
)
self.__class__._pg_connection_timer.daemon = True # Don't block app shutdown
self.__class__._pg_connection_timer.start()
else:
# For existing projects, attempt PG connection immediately
logger.info("Project %s already exists. Attempting PG connection...", self.project_name)
self._attempt_pg_connection_init()
def _check_and_disable_pg_if_scan_index_disabled(self) -> None:
"""
Check if scan_index is enabled for all logstores.
If any logstore has scan_index=false, disable PG protocol.
This is necessary because PG protocol requires scan_index to be enabled.
"""
logstore_name_list = [
AliyunLogStore.workflow_execution_logstore,
AliyunLogStore.workflow_node_execution_logstore,
]
for logstore_name in logstore_name_list:
existing_config = self.get_existing_index_config(logstore_name)
if existing_config and not existing_config.scan_index:
logger.info(
"Logstore %s has scan_index=false, USE SDK mode for read/write operations. "
"PG protocol requires scan_index to be enabled.",
logstore_name,
)
self._use_pg_protocol = False
# Close PG connection if it was initialized
if self._pg_client:
self._pg_client.close()
self._pg_client = None
return
def is_project_exist(self) -> bool:
try:
self.client.get_project(self.project_name)
return True
except Exception as e:
if e.args[0] == "ProjectNotExist":
return False
else:
raise e
def create_project(self):
try:
self.client.create_project(self.project_name, AliyunLogStore.project_des)
logger.info("Project %s created successfully", self.project_name)
except LogException as e:
logger.exception(
"Failed to create project %s: errorCode=%s, errorMessage=%s, requestId=%s",
self.project_name,
e.get_error_code(),
e.get_error_message(),
e.get_request_id(),
)
raise
def is_logstore_exist(self, logstore_name: str) -> bool:
try:
_ = self.client.get_logstore(self.project_name, logstore_name)
return True
except Exception as e:
if e.args[0] == "LogStoreNotExist":
return False
else:
raise e
def create_logstore_if_not_exist(self) -> None:
logstore_name_list = [
AliyunLogStore.workflow_execution_logstore,
AliyunLogStore.workflow_node_execution_logstore,
]
for logstore_name in logstore_name_list:
if not self.is_logstore_exist(logstore_name):
try:
self.client.create_logstore(
project_name=self.project_name, logstore_name=logstore_name, ttl=self.logstore_ttl
)
logger.info("logstore %s created successfully", logstore_name)
except LogException as e:
logger.exception(
"Failed to create logstore %s: errorCode=%s, errorMessage=%s, requestId=%s",
logstore_name,
e.get_error_code(),
e.get_error_message(),
e.get_request_id(),
)
raise
# Ensure index contains all Dify-required fields
# This intelligently merges with existing config, preserving custom indexes
self.ensure_index_config(logstore_name)
def is_index_exist(self, logstore_name: str) -> bool:
try:
_ = self.client.get_index_config(self.project_name, logstore_name)
return True
except Exception as e:
if e.args[0] == "IndexConfigNotExist":
return False
else:
raise e
def get_existing_index_config(self, logstore_name: str) -> IndexConfig | None:
"""
Get existing index configuration from logstore.
Args:
logstore_name: Name of the logstore
Returns:
IndexConfig object if index exists, None otherwise
"""
try:
response = self.client.get_index_config(self.project_name, logstore_name)
return response.get_index_config()
except Exception as e:
if e.args[0] == "IndexConfigNotExist":
return None
else:
logger.exception("Failed to get index config for logstore %s", logstore_name)
raise e
def _get_workflow_execution_index_keys(self) -> dict[str, IndexKeyConfig]:
"""
Get field index configuration for workflow_execution logstore.
This method automatically generates index configuration from the WorkflowRun SQLAlchemy model.
When the PG schema is updated via Flask-Migrate, the index configuration will be automatically
updated on next application startup.
"""
from models.workflow import WorkflowRun
index_keys = self._generate_index_keys_from_model(WorkflowRun)
# Add custom fields that are in logstore but not in PG model
# These fields are added by the repository layer
index_keys["error_message"] = IndexKeyConfig(
index_type="text",
case_sensitive=False,
doc_value=True,
token_list=self.DEFAULT_TOKEN_LIST,
chinese=True,
) # Maps to 'error' in PG
index_keys["started_at"] = IndexKeyConfig(
index_type="text",
case_sensitive=False,
doc_value=True,
token_list=self.DEFAULT_TOKEN_LIST,
chinese=True,
) # Maps to 'created_at' in PG
logger.info("Generated %d index keys for workflow_execution from WorkflowRun model", len(index_keys))
return index_keys
def _get_workflow_node_execution_index_keys(self) -> dict[str, IndexKeyConfig]:
"""
Get field index configuration for workflow_node_execution logstore.
This method automatically generates index configuration from the WorkflowNodeExecutionModel.
When the PG schema is updated via Flask-Migrate, the index configuration will be automatically
updated on next application startup.
"""
from models.workflow import WorkflowNodeExecutionModel
index_keys = self._generate_index_keys_from_model(WorkflowNodeExecutionModel)
logger.debug(
"Generated %d index keys for workflow_node_execution from WorkflowNodeExecutionModel", len(index_keys)
)
return index_keys
def _get_index_config(self, logstore_name: str) -> IndexConfig:
"""
Get index configuration for the specified logstore.
Args:
logstore_name: Name of the logstore
Returns:
IndexConfig object with line and field indexes
"""
# Create full-text index (line config) with tokenizer
line_config = IndexLineConfig(token_list=self.DEFAULT_TOKEN_LIST, case_sensitive=False, chinese=True)
# Get field index configuration based on logstore name
field_keys = {}
if logstore_name == AliyunLogStore.workflow_execution_logstore:
field_keys = self._get_workflow_execution_index_keys()
elif logstore_name == AliyunLogStore.workflow_node_execution_logstore:
field_keys = self._get_workflow_node_execution_index_keys()
# key_config_list should be a dict, not a list
# Create index config with both line and field indexes
return IndexConfig(line_config=line_config, key_config_list=field_keys, scan_index=True)
def create_index(self, logstore_name: str) -> None:
"""
Create index for the specified logstore with both full-text and field indexes.
Field indexes are automatically generated from the corresponding SQLAlchemy model.
"""
index_config = self._get_index_config(logstore_name)
try:
self.client.create_index(self.project_name, logstore_name, index_config)
logger.info(
"index for %s created successfully with %d field indexes",
logstore_name,
len(index_config.key_config_list or {}),
)
except LogException as e:
logger.exception(
"Failed to create index for logstore %s: errorCode=%s, errorMessage=%s, requestId=%s",
logstore_name,
e.get_error_code(),
e.get_error_message(),
e.get_request_id(),
)
raise
def _merge_index_configs(
self, existing_config: IndexConfig, required_keys: dict[str, IndexKeyConfig], logstore_name: str
) -> tuple[IndexConfig, bool]:
"""
Intelligently merge existing index config with Dify's required field indexes.
This method:
1. Preserves all existing field indexes in logstore (including custom fields)
2. Adds missing Dify-required fields
3. Updates fields where type doesn't match (with json/text compatibility)
4. Corrects case mismatches (e.g., if Dify needs 'status' but logstore has 'Status')
Type compatibility rules:
- json and text types are considered compatible (users can manually choose either)
- All other type mismatches will be corrected to match Dify requirements
Note: Logstore is case-sensitive and doesn't allow duplicate fields with different cases.
Case mismatch means: existing field name differs from required name only in case.
Args:
existing_config: Current index configuration from logstore
required_keys: Dify's required field index configurations
logstore_name: Name of the logstore (for logging)
Returns:
Tuple of (merged_config, needs_update)
"""
# key_config_list is already a dict in the SDK
# Make a copy to avoid modifying the original
existing_keys = dict(existing_config.key_config_list) if existing_config.key_config_list else {}
# Track changes
needs_update = False
case_corrections = [] # Fields that need case correction (e.g., 'Status' -> 'status')
missing_fields = []
type_mismatches = []
# First pass: Check for and resolve case mismatches with required fields
# Note: Logstore itself doesn't allow duplicate fields with different cases,
# so we only need to check if the existing case matches the required case
for required_name in required_keys:
lower_name = required_name.lower()
# Find key that matches case-insensitively but not exactly
wrong_case_key = None
for existing_key in existing_keys:
if existing_key.lower() == lower_name and existing_key != required_name:
wrong_case_key = existing_key
break
if wrong_case_key:
# Field exists but with wrong case (e.g., 'Status' when we need 'status')
# Remove the wrong-case key, will be added back with correct case later
case_corrections.append((wrong_case_key, required_name))
del existing_keys[wrong_case_key]
needs_update = True
# Second pass: Check each required field
for required_name, required_config in required_keys.items():
# Check for exact match (case-sensitive)
if required_name in existing_keys:
existing_type = existing_keys[required_name].index_type
required_type = required_config.index_type
# Check if type matches
# Special case: json and text are interchangeable for JSON content fields
# Allow users to manually configure text instead of json (or vice versa) without forcing updates
is_compatible = existing_type == required_type or ({existing_type, required_type} == {"json", "text"})
if not is_compatible:
type_mismatches.append((required_name, existing_type, required_type))
# Update with correct type
existing_keys[required_name] = required_config
needs_update = True
# else: field exists with compatible type, no action needed
else:
# Field doesn't exist (may have been removed in first pass due to case conflict)
missing_fields.append(required_name)
existing_keys[required_name] = required_config
needs_update = True
# Log changes
if missing_fields:
logger.info(
"Logstore %s: Adding %d missing Dify-required fields: %s",
logstore_name,
len(missing_fields),
", ".join(missing_fields[:10]) + ("..." if len(missing_fields) > 10 else ""),
)
if type_mismatches:
logger.info(
"Logstore %s: Fixing %d type mismatches: %s",
logstore_name,
len(type_mismatches),
", ".join([f"{name}({old}->{new})" for name, old, new in type_mismatches[:5]])
+ ("..." if len(type_mismatches) > 5 else ""),
)
if case_corrections:
logger.info(
"Logstore %s: Correcting %d field name cases: %s",
logstore_name,
len(case_corrections),
", ".join([f"'{old}' -> '{new}'" for old, new in case_corrections[:5]])
+ ("..." if len(case_corrections) > 5 else ""),
)
# Create merged config
# key_config_list should be a dict, not a list
# Preserve the original scan_index value - don't force it to True
merged_config = IndexConfig(
line_config=existing_config.line_config
or IndexLineConfig(token_list=self.DEFAULT_TOKEN_LIST, case_sensitive=False, chinese=True),
key_config_list=existing_keys,
scan_index=existing_config.scan_index,
)
return merged_config, needs_update
def ensure_index_config(self, logstore_name: str) -> None:
"""
Ensure index configuration includes all Dify-required fields.
This method intelligently manages index configuration:
1. If index doesn't exist, create it with Dify's required fields
2. If index exists:
- Check if all Dify-required fields are present
- Check if field types match requirements
- Only update if fields are missing or types are incorrect
- Preserve any additional custom index configurations
This approach allows users to add their own custom indexes without being overwritten.
"""
# Get Dify's required field indexes
required_keys = {}
if logstore_name == AliyunLogStore.workflow_execution_logstore:
required_keys = self._get_workflow_execution_index_keys()
elif logstore_name == AliyunLogStore.workflow_node_execution_logstore:
required_keys = self._get_workflow_node_execution_index_keys()
# Check if index exists
existing_config = self.get_existing_index_config(logstore_name)
if existing_config is None:
# Index doesn't exist, create it
logger.info(
"Logstore %s: Index doesn't exist, creating with %d required fields",
logstore_name,
len(required_keys),
)
self.create_index(logstore_name)
else:
merged_config, needs_update = self._merge_index_configs(existing_config, required_keys, logstore_name)
if needs_update:
logger.info("Logstore %s: Updating index to include Dify-required fields", logstore_name)
try:
self.client.update_index(self.project_name, logstore_name, merged_config)
logger.info(
"Logstore %s: Index updated successfully, now has %d total field indexes",
logstore_name,
len(merged_config.key_config_list or {}),
)
except LogException as e:
logger.exception(
"Failed to update index for logstore %s: errorCode=%s, errorMessage=%s, requestId=%s",
logstore_name,
e.get_error_code(),
e.get_error_message(),
e.get_request_id(),
)
raise
else:
logger.info(
"Logstore %s: Index already contains all %d Dify-required fields with correct types, "
"no update needed",
logstore_name,
len(required_keys),
)
def put_log(self, logstore: str, contents: Sequence[tuple[str, str]]) -> None:
# Route to PG or SDK based on protocol availability
if self._use_pg_protocol and self._pg_client:
self._pg_client.put_log(logstore, contents, self.log_enabled)
else:
log_item = LogItem(contents=contents)
request = PutLogsRequest(project=self.project_name, logstore=logstore, logitems=[log_item])
if self.log_enabled:
logger.info(
"[LogStore-SDK] PUT_LOG | logstore=%s | project=%s | items_count=%d",
logstore,
self.project_name,
len(contents),
)
try:
self.client.put_logs(request)
except LogException as e:
logger.exception(
"Failed to put logs to logstore %s: errorCode=%s, errorMessage=%s, requestId=%s",
logstore,
e.get_error_code(),
e.get_error_message(),
e.get_request_id(),
)
raise
def get_logs(
self,
logstore: str,
from_time: int,
to_time: int,
topic: str = "",
query: str = "",
line: int = 100,
offset: int = 0,
reverse: bool = True,
) -> list[dict]:
request = GetLogsRequest(
project=self.project_name,
logstore=logstore,
fromTime=from_time,
toTime=to_time,
topic=topic,
query=query,
line=line,
offset=offset,
reverse=reverse,
)
# Log query info if SQLALCHEMY_ECHO is enabled
if self.log_enabled:
logger.info(
"[LogStore] GET_LOGS | logstore=%s | project=%s | query=%s | "
"from_time=%d | to_time=%d | line=%d | offset=%d | reverse=%s",
logstore,
self.project_name,
query,
from_time,
to_time,
line,
offset,
reverse,
)
try:
response = self.client.get_logs(request)
result = []
logs = response.get_logs() if response else []
for log in logs:
result.append(log.get_contents())
# Log result count if SQLALCHEMY_ECHO is enabled
if self.log_enabled:
logger.info(
"[LogStore] GET_LOGS RESULT | logstore=%s | returned_count=%d",
logstore,
len(result),
)
return result
except LogException as e:
logger.exception(
"Failed to get logs from logstore %s with query '%s': errorCode=%s, errorMessage=%s, requestId=%s",
logstore,
query,
e.get_error_code(),
e.get_error_message(),
e.get_request_id(),
)
raise
def execute_sql(
self,
sql: str,
logstore: str | None = None,
query: str = "*",
from_time: int | None = None,
to_time: int | None = None,
power_sql: bool = False,
) -> list[dict]:
"""
Execute SQL query for aggregation and analysis.
Args:
sql: SQL query string (SELECT statement)
logstore: Name of the logstore (required)
query: Search/filter query for SDK mode (default: "*" for all logs).
Only used in SDK mode. PG mode ignores this parameter.
from_time: Start time (Unix timestamp) - only used in SDK mode
to_time: End time (Unix timestamp) - only used in SDK mode
power_sql: Whether to use enhanced SQL mode (default: False)
Returns:
List of result rows as dictionaries
Note:
- PG mode: Only executes the SQL directly
- SDK mode: Combines query and sql as "query | sql"
"""
# Logstore is required
if not logstore:
raise ValueError("logstore parameter is required for execute_sql")
# Route to PG or SDK based on protocol availability
if self._use_pg_protocol and self._pg_client:
# PG mode: execute SQL directly (ignore query parameter)
return self._pg_client.execute_sql(sql, logstore, self.log_enabled)
else:
# SDK mode: combine query and sql as "query | sql"
full_query = f"{query} | {sql}"
# Provide default time range if not specified
if from_time is None:
from_time = 0
if to_time is None:
to_time = int(time.time()) # now
request = GetLogsRequest(
project=self.project_name,
logstore=logstore,
fromTime=from_time,
toTime=to_time,
query=full_query,
)
# Log query info if SQLALCHEMY_ECHO is enabled
if self.log_enabled:
logger.info(
"[LogStore-SDK] EXECUTE_SQL | logstore=%s | project=%s | from_time=%d | to_time=%d | full_query=%s",
logstore,
self.project_name,
from_time,
to_time,
query,
sql,
)
try:
response = self.client.get_logs(request)
result = []
logs = response.get_logs() if response else []
for log in logs:
result.append(log.get_contents())
# Log result count if SQLALCHEMY_ECHO is enabled
if self.log_enabled:
logger.info(
"[LogStore-SDK] EXECUTE_SQL RESULT | logstore=%s | returned_count=%d",
logstore,
len(result),
)
return result
except LogException as e:
logger.exception(
"Failed to execute SQL, logstore %s: errorCode=%s, errorMessage=%s, requestId=%s, full_query=%s",
logstore,
e.get_error_code(),
e.get_error_message(),
e.get_request_id(),
full_query,
)
raise
if __name__ == "__main__":
aliyun_logstore = AliyunLogStore()
# aliyun_logstore.init_project_logstore()
aliyun_logstore.put_log(AliyunLogStore.workflow_execution_logstore, [("key1", "value1")])

View File

@ -0,0 +1,407 @@
import logging
import os
import socket
import time
from collections.abc import Sequence
from contextlib import contextmanager
from typing import Any
import psycopg2
import psycopg2.pool
from psycopg2 import InterfaceError, OperationalError
from configs import dify_config
logger = logging.getLogger(__name__)
class AliyunLogStorePG:
"""
PostgreSQL protocol support for Aliyun SLS LogStore.
Handles PG connection pooling and operations for regions that support PG protocol.
"""
def __init__(self, access_key_id: str, access_key_secret: str, endpoint: str, project_name: str):
"""
Initialize PG connection for SLS.
Args:
access_key_id: Aliyun access key ID
access_key_secret: Aliyun access key secret
endpoint: SLS endpoint
project_name: SLS project name
"""
self._access_key_id = access_key_id
self._access_key_secret = access_key_secret
self._endpoint = endpoint
self.project_name = project_name
self._pg_pool: psycopg2.pool.SimpleConnectionPool | None = None
self._use_pg_protocol = False
def _check_port_connectivity(self, host: str, port: int, timeout: float = 2.0) -> bool:
"""
Check if a TCP port is reachable using socket connection.
This provides a fast check before attempting full database connection,
preventing long waits when connecting to unsupported regions.
Args:
host: Hostname or IP address
port: Port number
timeout: Connection timeout in seconds (default: 2.0)
Returns:
True if port is reachable, False otherwise
"""
try:
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.settimeout(timeout)
result = sock.connect_ex((host, port))
sock.close()
return result == 0
except Exception as e:
logger.debug("Port connectivity check failed for %s:%d: %s", host, port, str(e))
return False
def init_connection(self) -> bool:
"""
Initialize PostgreSQL connection pool for SLS PG protocol support.
Attempts to connect to SLS using PostgreSQL protocol. If successful, sets
_use_pg_protocol to True and creates a connection pool. If connection fails
(region doesn't support PG protocol or other errors), returns False.
Returns:
True if PG protocol is supported and initialized, False otherwise
"""
try:
# Extract hostname from endpoint (remove protocol if present)
pg_host = self._endpoint.replace("http://", "").replace("https://", "")
# Get pool configuration
pg_max_connections = int(os.environ.get("ALIYUN_SLS_PG_MAX_CONNECTIONS", 10))
logger.debug(
"Check PG protocol connection to SLS: host=%s, project=%s",
pg_host,
self.project_name,
)
# Fast port connectivity check before attempting full connection
# This prevents long waits when connecting to unsupported regions
if not self._check_port_connectivity(pg_host, 5432, timeout=1.0):
logger.info(
"USE SDK mode for read/write operations, host=%s",
pg_host,
)
return False
# Create connection pool
self._pg_pool = psycopg2.pool.SimpleConnectionPool(
minconn=1,
maxconn=pg_max_connections,
host=pg_host,
port=5432,
database=self.project_name,
user=self._access_key_id,
password=self._access_key_secret,
sslmode="require",
connect_timeout=5,
application_name=f"Dify-{dify_config.project.version}",
)
# Note: Skip test query because SLS PG protocol only supports SELECT/INSERT on actual tables
# Connection pool creation success already indicates connectivity
self._use_pg_protocol = True
logger.info(
"PG protocol initialized successfully for SLS project=%s. Will use PG for read/write operations.",
self.project_name,
)
return True
except Exception as e:
# PG connection failed - fallback to SDK mode
self._use_pg_protocol = False
if self._pg_pool:
try:
self._pg_pool.closeall()
except Exception:
logger.debug("Failed to close PG connection pool during cleanup, ignoring")
self._pg_pool = None
logger.info(
"PG protocol connection failed (region may not support PG protocol): %s. "
"Falling back to SDK mode for read/write operations.",
str(e),
)
return False
def _is_connection_valid(self, conn: Any) -> bool:
"""
Check if a connection is still valid.
Args:
conn: psycopg2 connection object
Returns:
True if connection is valid, False otherwise
"""
try:
# Check if connection is closed
if conn.closed:
return False
# Quick ping test - execute a lightweight query
# For SLS PG protocol, we can't use SELECT 1 without FROM,
# so we just check the connection status
with conn.cursor() as cursor:
cursor.execute("SELECT 1")
cursor.fetchone()
return True
except Exception:
return False
@contextmanager
def _get_connection(self):
"""
Context manager to get a PostgreSQL connection from the pool.
Automatically validates and refreshes stale connections.
Note: Aliyun SLS PG protocol does not support transactions, so we always
use autocommit mode.
Yields:
psycopg2 connection object
Raises:
RuntimeError: If PG pool is not initialized
"""
if not self._pg_pool:
raise RuntimeError("PG connection pool is not initialized")
conn = self._pg_pool.getconn()
try:
# Validate connection and get a fresh one if needed
if not self._is_connection_valid(conn):
logger.debug("Connection is stale, marking as bad and getting a new one")
# Mark connection as bad and get a new one
self._pg_pool.putconn(conn, close=True)
conn = self._pg_pool.getconn()
# Aliyun SLS PG protocol does not support transactions, always use autocommit
conn.autocommit = True
yield conn
finally:
# Return connection to pool (or close if it's bad)
if self._is_connection_valid(conn):
self._pg_pool.putconn(conn)
else:
self._pg_pool.putconn(conn, close=True)
def close(self) -> None:
"""Close the PostgreSQL connection pool."""
if self._pg_pool:
try:
self._pg_pool.closeall()
logger.info("PG connection pool closed")
except Exception:
logger.exception("Failed to close PG connection pool")
def _is_retriable_error(self, error: Exception) -> bool:
"""
Check if an error is retriable (connection-related issues).
Args:
error: Exception to check
Returns:
True if the error is retriable, False otherwise
"""
# Retry on connection-related errors
if isinstance(error, (OperationalError, InterfaceError)):
return True
# Check error message for specific connection issues
error_msg = str(error).lower()
retriable_patterns = [
"connection",
"timeout",
"closed",
"broken pipe",
"reset by peer",
"no route to host",
"network",
]
return any(pattern in error_msg for pattern in retriable_patterns)
def put_log(self, logstore: str, contents: Sequence[tuple[str, str]], log_enabled: bool = False) -> None:
"""
Write log to SLS using PostgreSQL protocol with automatic retry.
Note: SLS PG protocol only supports INSERT (not UPDATE). This uses append-only
writes with log_version field for versioning, same as SDK implementation.
Args:
logstore: Name of the logstore table
contents: List of (field_name, value) tuples
log_enabled: Whether to enable logging
Raises:
psycopg2.Error: If database operation fails after all retries
"""
if not contents:
return
# Extract field names and values from contents
fields = [field_name for field_name, _ in contents]
values = [value for _, value in contents]
# Build INSERT statement with literal values
# Note: Aliyun SLS PG protocol doesn't support parameterized queries,
# so we need to use mogrify to safely create literal values
field_list = ", ".join([f'"{field}"' for field in fields])
if log_enabled:
logger.info(
"[LogStore-PG] PUT_LOG | logstore=%s | project=%s | items_count=%d",
logstore,
self.project_name,
len(contents),
)
# Retry configuration
max_retries = 3
retry_delay = 0.1 # Start with 100ms
for attempt in range(max_retries):
try:
with self._get_connection() as conn:
with conn.cursor() as cursor:
# Use mogrify to safely convert values to SQL literals
placeholders = ", ".join(["%s"] * len(fields))
values_literal = cursor.mogrify(f"({placeholders})", values).decode("utf-8")
insert_sql = f'INSERT INTO "{logstore}" ({field_list}) VALUES {values_literal}'
cursor.execute(insert_sql)
# Success - exit retry loop
return
except psycopg2.Error as e:
# Check if error is retriable
if not self._is_retriable_error(e):
# Not a retriable error (e.g., data validation error), fail immediately
logger.exception(
"Failed to put logs to logstore %s via PG protocol (non-retriable error)",
logstore,
)
raise
# Retriable error - log and retry if we have attempts left
if attempt < max_retries - 1:
logger.warning(
"Failed to put logs to logstore %s via PG protocol (attempt %d/%d): %s. Retrying...",
logstore,
attempt + 1,
max_retries,
str(e),
)
time.sleep(retry_delay)
retry_delay *= 2 # Exponential backoff
else:
# Last attempt failed
logger.exception(
"Failed to put logs to logstore %s via PG protocol after %d attempts",
logstore,
max_retries,
)
raise
def execute_sql(self, sql: str, logstore: str, log_enabled: bool = False) -> list[dict[str, Any]]:
"""
Execute SQL query using PostgreSQL protocol with automatic retry.
Args:
sql: SQL query string
logstore: Name of the logstore (for logging purposes)
log_enabled: Whether to enable logging
Returns:
List of result rows as dictionaries
Raises:
psycopg2.Error: If database operation fails after all retries
"""
if log_enabled:
logger.info(
"[LogStore-PG] EXECUTE_SQL | logstore=%s | project=%s | sql=%s",
logstore,
self.project_name,
sql,
)
# Retry configuration
max_retries = 3
retry_delay = 0.1 # Start with 100ms
for attempt in range(max_retries):
try:
with self._get_connection() as conn:
with conn.cursor() as cursor:
cursor.execute(sql)
# Get column names from cursor description
columns = [desc[0] for desc in cursor.description]
# Fetch all results and convert to list of dicts
result = []
for row in cursor.fetchall():
row_dict = {}
for col, val in zip(columns, row):
row_dict[col] = "" if val is None else str(val)
result.append(row_dict)
if log_enabled:
logger.info(
"[LogStore-PG] EXECUTE_SQL RESULT | logstore=%s | returned_count=%d",
logstore,
len(result),
)
return result
except psycopg2.Error as e:
# Check if error is retriable
if not self._is_retriable_error(e):
# Not a retriable error (e.g., SQL syntax error), fail immediately
logger.exception(
"Failed to execute SQL query on logstore %s via PG protocol (non-retriable error): sql=%s",
logstore,
sql,
)
raise
# Retriable error - log and retry if we have attempts left
if attempt < max_retries - 1:
logger.warning(
"Failed to execute SQL query on logstore %s via PG protocol (attempt %d/%d): %s. Retrying...",
logstore,
attempt + 1,
max_retries,
str(e),
)
time.sleep(retry_delay)
retry_delay *= 2 # Exponential backoff
else:
# Last attempt failed
logger.exception(
"Failed to execute SQL query on logstore %s via PG protocol after %d attempts: sql=%s",
logstore,
max_retries,
sql,
)
raise
# This line should never be reached due to raise above, but makes type checker happy
return []

View File

@ -0,0 +1,365 @@
"""
LogStore implementation of DifyAPIWorkflowNodeExecutionRepository.
This module provides the LogStore-based implementation for service-layer
WorkflowNodeExecutionModel operations using Aliyun SLS LogStore.
"""
import logging
import time
from collections.abc import Sequence
from datetime import datetime
from typing import Any
from sqlalchemy.orm import sessionmaker
from extensions.logstore.aliyun_logstore import AliyunLogStore
from models.workflow import WorkflowNodeExecutionModel
from repositories.api_workflow_node_execution_repository import DifyAPIWorkflowNodeExecutionRepository
logger = logging.getLogger(__name__)
def _dict_to_workflow_node_execution_model(data: dict[str, Any]) -> WorkflowNodeExecutionModel:
"""
Convert LogStore result dictionary to WorkflowNodeExecutionModel instance.
Args:
data: Dictionary from LogStore query result
Returns:
WorkflowNodeExecutionModel instance (detached from session)
Note:
The returned model is not attached to any SQLAlchemy session.
Relationship fields (like offload_data) are not loaded from LogStore.
"""
logger.debug("_dict_to_workflow_node_execution_model: data keys=%s", list(data.keys())[:5])
# Create model instance without session
model = WorkflowNodeExecutionModel()
# Map all required fields with validation
# Critical fields - must not be None
model.id = data.get("id") or ""
model.tenant_id = data.get("tenant_id") or ""
model.app_id = data.get("app_id") or ""
model.workflow_id = data.get("workflow_id") or ""
model.triggered_from = data.get("triggered_from") or ""
model.node_id = data.get("node_id") or ""
model.node_type = data.get("node_type") or ""
model.status = data.get("status") or "running" # Default status if missing
model.title = data.get("title") or ""
model.created_by_role = data.get("created_by_role") or ""
model.created_by = data.get("created_by") or ""
# Numeric fields with defaults
model.index = int(data.get("index", 0))
model.elapsed_time = float(data.get("elapsed_time", 0))
# Optional fields
model.workflow_run_id = data.get("workflow_run_id")
model.predecessor_node_id = data.get("predecessor_node_id")
model.node_execution_id = data.get("node_execution_id")
model.inputs = data.get("inputs")
model.process_data = data.get("process_data")
model.outputs = data.get("outputs")
model.error = data.get("error")
model.execution_metadata = data.get("execution_metadata")
# Handle datetime fields
created_at = data.get("created_at")
if created_at:
if isinstance(created_at, str):
model.created_at = datetime.fromisoformat(created_at)
elif isinstance(created_at, (int, float)):
model.created_at = datetime.fromtimestamp(created_at)
else:
model.created_at = created_at
else:
# Provide default created_at if missing
model.created_at = datetime.now()
finished_at = data.get("finished_at")
if finished_at:
if isinstance(finished_at, str):
model.finished_at = datetime.fromisoformat(finished_at)
elif isinstance(finished_at, (int, float)):
model.finished_at = datetime.fromtimestamp(finished_at)
else:
model.finished_at = finished_at
return model
class LogstoreAPIWorkflowNodeExecutionRepository(DifyAPIWorkflowNodeExecutionRepository):
"""
LogStore implementation of DifyAPIWorkflowNodeExecutionRepository.
Provides service-layer database operations for WorkflowNodeExecutionModel
using LogStore SQL queries with optimized deduplication strategies.
"""
def __init__(self, session_maker: sessionmaker | None = None):
"""
Initialize the repository with LogStore client.
Args:
session_maker: SQLAlchemy sessionmaker (unused, for compatibility with factory pattern)
"""
logger.debug("LogstoreAPIWorkflowNodeExecutionRepository.__init__: initializing")
self.logstore_client = AliyunLogStore()
def get_node_last_execution(
self,
tenant_id: str,
app_id: str,
workflow_id: str,
node_id: str,
) -> WorkflowNodeExecutionModel | None:
"""
Get the most recent execution for a specific node.
Uses query syntax to get raw logs and selects the one with max log_version.
Returns the most recent execution ordered by created_at.
"""
logger.debug(
"get_node_last_execution: tenant_id=%s, app_id=%s, workflow_id=%s, node_id=%s",
tenant_id,
app_id,
workflow_id,
node_id,
)
try:
# Check if PG protocol is supported
if self.logstore_client.supports_pg_protocol:
# Use PG protocol with SQL query (get latest version of each record)
sql_query = f"""
SELECT * FROM (
SELECT *,
ROW_NUMBER() OVER (PARTITION BY id ORDER BY log_version DESC) as rn
FROM "{AliyunLogStore.workflow_node_execution_logstore}"
WHERE tenant_id = '{tenant_id}'
AND app_id = '{app_id}'
AND workflow_id = '{workflow_id}'
AND node_id = '{node_id}'
AND __time__ > 0
) AS subquery WHERE rn = 1
LIMIT 100
"""
results = self.logstore_client.execute_sql(
sql=sql_query,
logstore=AliyunLogStore.workflow_node_execution_logstore,
)
else:
# Use SDK with LogStore query syntax
query = (
f"tenant_id: {tenant_id} and app_id: {app_id} and workflow_id: {workflow_id} and node_id: {node_id}"
)
from_time = 0
to_time = int(time.time()) # now
results = self.logstore_client.get_logs(
logstore=AliyunLogStore.workflow_node_execution_logstore,
from_time=from_time,
to_time=to_time,
query=query,
line=100,
reverse=False,
)
if not results:
return None
# For SDK mode, group by id and select the one with max log_version for each group
# For PG mode, this is already done by the SQL query
if not self.logstore_client.supports_pg_protocol:
id_to_results: dict[str, list[dict[str, Any]]] = {}
for row in results:
row_id = row.get("id")
if row_id:
if row_id not in id_to_results:
id_to_results[row_id] = []
id_to_results[row_id].append(row)
# For each id, select the row with max log_version
deduplicated_results = []
for rows in id_to_results.values():
if len(rows) > 1:
max_row = max(rows, key=lambda x: int(x.get("log_version", 0)))
else:
max_row = rows[0]
deduplicated_results.append(max_row)
else:
# For PG mode, results are already deduplicated by the SQL query
deduplicated_results = results
# Sort by created_at DESC and return the most recent one
deduplicated_results.sort(
key=lambda x: x.get("created_at", 0) if isinstance(x.get("created_at"), (int, float)) else 0,
reverse=True,
)
if deduplicated_results:
return _dict_to_workflow_node_execution_model(deduplicated_results[0])
return None
except Exception:
logger.exception("Failed to get node last execution from LogStore")
raise
def get_executions_by_workflow_run(
self,
tenant_id: str,
app_id: str,
workflow_run_id: str,
) -> Sequence[WorkflowNodeExecutionModel]:
"""
Get all node executions for a specific workflow run.
Uses query syntax to get raw logs and selects the one with max log_version for each node execution.
Ordered by index DESC for trace visualization.
"""
logger.debug(
"[LogStore] get_executions_by_workflow_run: tenant_id=%s, app_id=%s, workflow_run_id=%s",
tenant_id,
app_id,
workflow_run_id,
)
try:
# Check if PG protocol is supported
if self.logstore_client.supports_pg_protocol:
# Use PG protocol with SQL query (get latest version of each record)
sql_query = f"""
SELECT * FROM (
SELECT *,
ROW_NUMBER() OVER (PARTITION BY id ORDER BY log_version DESC) as rn
FROM "{AliyunLogStore.workflow_node_execution_logstore}"
WHERE tenant_id = '{tenant_id}'
AND app_id = '{app_id}'
AND workflow_run_id = '{workflow_run_id}'
AND __time__ > 0
) AS subquery WHERE rn = 1
LIMIT 1000
"""
results = self.logstore_client.execute_sql(
sql=sql_query,
logstore=AliyunLogStore.workflow_node_execution_logstore,
)
else:
# Use SDK with LogStore query syntax
query = f"tenant_id: {tenant_id} and app_id: {app_id} and workflow_run_id: {workflow_run_id}"
from_time = 0
to_time = int(time.time()) # now
results = self.logstore_client.get_logs(
logstore=AliyunLogStore.workflow_node_execution_logstore,
from_time=from_time,
to_time=to_time,
query=query,
line=1000, # Get more results for node executions
reverse=False,
)
if not results:
return []
# For SDK mode, group by id and select the one with max log_version for each group
# For PG mode, this is already done by the SQL query
models = []
if not self.logstore_client.supports_pg_protocol:
id_to_results: dict[str, list[dict[str, Any]]] = {}
for row in results:
row_id = row.get("id")
if row_id:
if row_id not in id_to_results:
id_to_results[row_id] = []
id_to_results[row_id].append(row)
# For each id, select the row with max log_version
for rows in id_to_results.values():
if len(rows) > 1:
max_row = max(rows, key=lambda x: int(x.get("log_version", 0)))
else:
max_row = rows[0]
model = _dict_to_workflow_node_execution_model(max_row)
if model and model.id: # Ensure model is valid
models.append(model)
else:
# For PG mode, results are already deduplicated by the SQL query
for row in results:
model = _dict_to_workflow_node_execution_model(row)
if model and model.id: # Ensure model is valid
models.append(model)
# Sort by index DESC for trace visualization
models.sort(key=lambda x: x.index, reverse=True)
return models
except Exception:
logger.exception("Failed to get executions by workflow run from LogStore")
raise
def get_execution_by_id(
self,
execution_id: str,
tenant_id: str | None = None,
) -> WorkflowNodeExecutionModel | None:
"""
Get a workflow node execution by its ID.
Uses query syntax to get raw logs and selects the one with max log_version.
"""
logger.debug("get_execution_by_id: execution_id=%s, tenant_id=%s", execution_id, tenant_id)
try:
# Check if PG protocol is supported
if self.logstore_client.supports_pg_protocol:
# Use PG protocol with SQL query (get latest version of record)
tenant_filter = f"AND tenant_id = '{tenant_id}'" if tenant_id else ""
sql_query = f"""
SELECT * FROM (
SELECT *,
ROW_NUMBER() OVER (PARTITION BY id ORDER BY log_version DESC) as rn
FROM "{AliyunLogStore.workflow_node_execution_logstore}"
WHERE id = '{execution_id}' {tenant_filter} AND __time__ > 0
) AS subquery WHERE rn = 1
LIMIT 1
"""
results = self.logstore_client.execute_sql(
sql=sql_query,
logstore=AliyunLogStore.workflow_node_execution_logstore,
)
else:
# Use SDK with LogStore query syntax
if tenant_id:
query = f"id: {execution_id} and tenant_id: {tenant_id}"
else:
query = f"id: {execution_id}"
from_time = 0
to_time = int(time.time()) # now
results = self.logstore_client.get_logs(
logstore=AliyunLogStore.workflow_node_execution_logstore,
from_time=from_time,
to_time=to_time,
query=query,
line=100,
reverse=False,
)
if not results:
return None
# For PG mode, result is already the latest version
# For SDK mode, if multiple results, select the one with max log_version
if self.logstore_client.supports_pg_protocol or len(results) == 1:
return _dict_to_workflow_node_execution_model(results[0])
else:
max_result = max(results, key=lambda x: int(x.get("log_version", 0)))
return _dict_to_workflow_node_execution_model(max_result)
except Exception:
logger.exception("Failed to get execution by ID from LogStore: execution_id=%s", execution_id)
raise

View File

@ -0,0 +1,757 @@
"""
LogStore API WorkflowRun Repository Implementation
This module provides the LogStore-based implementation of the APIWorkflowRunRepository
protocol. It handles service-layer WorkflowRun database operations using Aliyun SLS LogStore
with optimized queries for statistics and pagination.
Key Features:
- LogStore SQL queries for aggregation and statistics
- Optimized deduplication using finished_at IS NOT NULL filter
- Window functions only when necessary (running status queries)
- Multi-tenant data isolation and security
"""
import logging
import os
import time
from collections.abc import Sequence
from datetime import datetime
from typing import Any, cast
from sqlalchemy.orm import sessionmaker
from extensions.logstore.aliyun_logstore import AliyunLogStore
from libs.infinite_scroll_pagination import InfiniteScrollPagination
from models.enums import WorkflowRunTriggeredFrom
from models.workflow import WorkflowRun
from repositories.api_workflow_run_repository import APIWorkflowRunRepository
from repositories.types import (
AverageInteractionStats,
DailyRunsStats,
DailyTerminalsStats,
DailyTokenCostStats,
)
logger = logging.getLogger(__name__)
def _dict_to_workflow_run(data: dict[str, Any]) -> WorkflowRun:
"""
Convert LogStore result dictionary to WorkflowRun instance.
Args:
data: Dictionary from LogStore query result
Returns:
WorkflowRun instance
"""
logger.debug("_dict_to_workflow_run: data keys=%s", list(data.keys())[:5])
# Create model instance without session
model = WorkflowRun()
# Map all required fields with validation
# Critical fields - must not be None
model.id = data.get("id") or ""
model.tenant_id = data.get("tenant_id") or ""
model.app_id = data.get("app_id") or ""
model.workflow_id = data.get("workflow_id") or ""
model.type = data.get("type") or ""
model.triggered_from = data.get("triggered_from") or ""
model.version = data.get("version") or ""
model.status = data.get("status") or "running" # Default status if missing
model.created_by_role = data.get("created_by_role") or ""
model.created_by = data.get("created_by") or ""
# Numeric fields with defaults
model.total_tokens = int(data.get("total_tokens", 0))
model.total_steps = int(data.get("total_steps", 0))
model.exceptions_count = int(data.get("exceptions_count", 0))
# Optional fields
model.graph = data.get("graph")
model.inputs = data.get("inputs")
model.outputs = data.get("outputs")
model.error = data.get("error_message") or data.get("error")
# Handle datetime fields
started_at = data.get("started_at") or data.get("created_at")
if started_at:
if isinstance(started_at, str):
model.created_at = datetime.fromisoformat(started_at)
elif isinstance(started_at, (int, float)):
model.created_at = datetime.fromtimestamp(started_at)
else:
model.created_at = started_at
else:
# Provide default created_at if missing
model.created_at = datetime.now()
finished_at = data.get("finished_at")
if finished_at:
if isinstance(finished_at, str):
model.finished_at = datetime.fromisoformat(finished_at)
elif isinstance(finished_at, (int, float)):
model.finished_at = datetime.fromtimestamp(finished_at)
else:
model.finished_at = finished_at
# Compute elapsed_time from started_at and finished_at
# LogStore doesn't store elapsed_time, it's computed in WorkflowExecution domain entity
if model.finished_at and model.created_at:
model.elapsed_time = (model.finished_at - model.created_at).total_seconds()
else:
model.elapsed_time = float(data.get("elapsed_time", 0))
return model
class LogstoreAPIWorkflowRunRepository(APIWorkflowRunRepository):
"""
LogStore implementation of APIWorkflowRunRepository.
Provides service-layer WorkflowRun database operations using LogStore SQL
with optimized query strategies:
- Use finished_at IS NOT NULL for deduplication (10-100x faster)
- Use window functions only when running status is required
- Proper time range filtering for LogStore queries
"""
def __init__(self, session_maker: sessionmaker | None = None):
"""
Initialize the repository with LogStore client.
Args:
session_maker: SQLAlchemy sessionmaker (unused, for compatibility with factory pattern)
"""
logger.debug("LogstoreAPIWorkflowRunRepository.__init__: initializing")
self.logstore_client = AliyunLogStore()
# Control flag for dual-read (fallback to PostgreSQL when LogStore returns no results)
# Set to True to enable fallback for safe migration from PostgreSQL to LogStore
# Set to False for new deployments without legacy data in PostgreSQL
self._enable_dual_read = os.environ.get("LOGSTORE_DUAL_READ_ENABLED", "true").lower() == "true"
def get_paginated_workflow_runs(
self,
tenant_id: str,
app_id: str,
triggered_from: WorkflowRunTriggeredFrom | Sequence[WorkflowRunTriggeredFrom],
limit: int = 20,
last_id: str | None = None,
status: str | None = None,
) -> InfiniteScrollPagination:
"""
Get paginated workflow runs with filtering.
Uses window function for deduplication to support both running and finished states.
Args:
tenant_id: Tenant identifier for multi-tenant isolation
app_id: Application identifier
triggered_from: Filter by trigger source(s)
limit: Maximum number of records to return (default: 20)
last_id: Cursor for pagination - ID of the last record from previous page
status: Optional filter by status
Returns:
InfiniteScrollPagination object
"""
logger.debug(
"get_paginated_workflow_runs: tenant_id=%s, app_id=%s, limit=%d, status=%s",
tenant_id,
app_id,
limit,
status,
)
# Convert triggered_from to list if needed
if isinstance(triggered_from, WorkflowRunTriggeredFrom):
triggered_from_list = [triggered_from]
else:
triggered_from_list = list(triggered_from)
# Build triggered_from filter
triggered_from_filter = " OR ".join([f"triggered_from='{tf.value}'" for tf in triggered_from_list])
# Build status filter
status_filter = f"AND status='{status}'" if status else ""
# Build last_id filter for pagination
# Note: This is simplified. In production, you'd need to track created_at from last record
last_id_filter = ""
if last_id:
# TODO: Implement proper cursor-based pagination with created_at
logger.warning("last_id pagination not fully implemented for LogStore")
# Use window function to get latest log_version of each workflow run
sql = f"""
SELECT * FROM (
SELECT *, ROW_NUMBER() OVER (PARTITION BY id ORDER BY log_version DESC) AS rn
FROM {AliyunLogStore.workflow_execution_logstore}
WHERE tenant_id='{tenant_id}'
AND app_id='{app_id}'
AND ({triggered_from_filter})
{status_filter}
{last_id_filter}
) t
WHERE rn = 1
ORDER BY created_at DESC
LIMIT {limit + 1}
"""
try:
results = self.logstore_client.execute_sql(
sql=sql, query="*", logstore=AliyunLogStore.workflow_execution_logstore, from_time=None, to_time=None
)
# Check if there are more records
has_more = len(results) > limit
if has_more:
results = results[:limit]
# Convert results to WorkflowRun models
workflow_runs = [_dict_to_workflow_run(row) for row in results]
return InfiniteScrollPagination(data=workflow_runs, limit=limit, has_more=has_more)
except Exception:
logger.exception("Failed to get paginated workflow runs from LogStore")
raise
def get_workflow_run_by_id(
self,
tenant_id: str,
app_id: str,
run_id: str,
) -> WorkflowRun | None:
"""
Get a specific workflow run by ID with tenant and app isolation.
Uses query syntax to get raw logs and selects the one with max log_version in code.
Falls back to PostgreSQL if not found in LogStore (for data consistency during migration).
"""
logger.debug("get_workflow_run_by_id: tenant_id=%s, app_id=%s, run_id=%s", tenant_id, app_id, run_id)
try:
# Check if PG protocol is supported
if self.logstore_client.supports_pg_protocol:
# Use PG protocol with SQL query (get latest version of record)
sql_query = f"""
SELECT * FROM (
SELECT *,
ROW_NUMBER() OVER (PARTITION BY id ORDER BY log_version DESC) as rn
FROM "{AliyunLogStore.workflow_execution_logstore}"
WHERE id = '{run_id}' AND tenant_id = '{tenant_id}' AND app_id = '{app_id}' AND __time__ > 0
) AS subquery WHERE rn = 1
LIMIT 100
"""
results = self.logstore_client.execute_sql(
sql=sql_query,
logstore=AliyunLogStore.workflow_execution_logstore,
)
else:
# Use SDK with LogStore query syntax
query = f"id: {run_id} and tenant_id: {tenant_id} and app_id: {app_id}"
from_time = 0
to_time = int(time.time()) # now
results = self.logstore_client.get_logs(
logstore=AliyunLogStore.workflow_execution_logstore,
from_time=from_time,
to_time=to_time,
query=query,
line=100,
reverse=False,
)
if not results:
# Fallback to PostgreSQL for records created before LogStore migration
if self._enable_dual_read:
logger.debug(
"WorkflowRun not found in LogStore, falling back to PostgreSQL: "
"run_id=%s, tenant_id=%s, app_id=%s",
run_id,
tenant_id,
app_id,
)
return self._fallback_get_workflow_run_by_id_with_tenant(run_id, tenant_id, app_id)
return None
# For PG mode, results are already deduplicated by the SQL query
# For SDK mode, if multiple results, select the one with max log_version
if self.logstore_client.supports_pg_protocol or len(results) == 1:
return _dict_to_workflow_run(results[0])
else:
max_result = max(results, key=lambda x: int(x.get("log_version", 0)))
return _dict_to_workflow_run(max_result)
except Exception:
logger.exception("Failed to get workflow run by ID from LogStore: run_id=%s", run_id)
# Try PostgreSQL fallback on any error (only if dual-read is enabled)
if self._enable_dual_read:
try:
return self._fallback_get_workflow_run_by_id_with_tenant(run_id, tenant_id, app_id)
except Exception:
logger.exception(
"PostgreSQL fallback also failed: run_id=%s, tenant_id=%s, app_id=%s", run_id, tenant_id, app_id
)
raise
def _fallback_get_workflow_run_by_id_with_tenant(
self, run_id: str, tenant_id: str, app_id: str
) -> WorkflowRun | None:
"""Fallback to PostgreSQL query for records not in LogStore (with tenant isolation)."""
from sqlalchemy import select
from sqlalchemy.orm import Session
from extensions.ext_database import db
with Session(db.engine) as session:
stmt = select(WorkflowRun).where(
WorkflowRun.id == run_id, WorkflowRun.tenant_id == tenant_id, WorkflowRun.app_id == app_id
)
return session.scalar(stmt)
def get_workflow_run_by_id_without_tenant(
self,
run_id: str,
) -> WorkflowRun | None:
"""
Get a specific workflow run by ID without tenant/app context.
Uses query syntax to get raw logs and selects the one with max log_version.
Falls back to PostgreSQL if not found in LogStore (controlled by LOGSTORE_DUAL_READ_ENABLED).
"""
logger.debug("get_workflow_run_by_id_without_tenant: run_id=%s", run_id)
try:
# Check if PG protocol is supported
if self.logstore_client.supports_pg_protocol:
# Use PG protocol with SQL query (get latest version of record)
sql_query = f"""
SELECT * FROM (
SELECT *,
ROW_NUMBER() OVER (PARTITION BY id ORDER BY log_version DESC) as rn
FROM "{AliyunLogStore.workflow_execution_logstore}"
WHERE id = '{run_id}' AND __time__ > 0
) AS subquery WHERE rn = 1
LIMIT 100
"""
results = self.logstore_client.execute_sql(
sql=sql_query,
logstore=AliyunLogStore.workflow_execution_logstore,
)
else:
# Use SDK with LogStore query syntax
query = f"id: {run_id}"
from_time = 0
to_time = int(time.time()) # now
results = self.logstore_client.get_logs(
logstore=AliyunLogStore.workflow_execution_logstore,
from_time=from_time,
to_time=to_time,
query=query,
line=100,
reverse=False,
)
if not results:
# Fallback to PostgreSQL for records created before LogStore migration
if self._enable_dual_read:
logger.debug("WorkflowRun not found in LogStore, falling back to PostgreSQL: run_id=%s", run_id)
return self._fallback_get_workflow_run_by_id(run_id)
return None
# For PG mode, results are already deduplicated by the SQL query
# For SDK mode, if multiple results, select the one with max log_version
if self.logstore_client.supports_pg_protocol or len(results) == 1:
return _dict_to_workflow_run(results[0])
else:
max_result = max(results, key=lambda x: int(x.get("log_version", 0)))
return _dict_to_workflow_run(max_result)
except Exception:
logger.exception("Failed to get workflow run without tenant: run_id=%s", run_id)
# Try PostgreSQL fallback on any error (only if dual-read is enabled)
if self._enable_dual_read:
try:
return self._fallback_get_workflow_run_by_id(run_id)
except Exception:
logger.exception("PostgreSQL fallback also failed: run_id=%s", run_id)
raise
def _fallback_get_workflow_run_by_id(self, run_id: str) -> WorkflowRun | None:
"""Fallback to PostgreSQL query for records not in LogStore."""
from sqlalchemy import select
from sqlalchemy.orm import Session
from extensions.ext_database import db
with Session(db.engine) as session:
stmt = select(WorkflowRun).where(WorkflowRun.id == run_id)
return session.scalar(stmt)
def get_workflow_runs_count(
self,
tenant_id: str,
app_id: str,
triggered_from: str,
status: str | None = None,
time_range: str | None = None,
) -> dict[str, int]:
"""
Get workflow runs count statistics grouped by status.
Optimization: Use finished_at IS NOT NULL for completed runs (10-50x faster)
"""
logger.debug(
"get_workflow_runs_count: tenant_id=%s, app_id=%s, triggered_from=%s, status=%s",
tenant_id,
app_id,
triggered_from,
status,
)
# Build time range filter
time_filter = ""
if time_range:
# TODO: Parse time_range and convert to from_time/to_time
logger.warning("time_range filter not implemented")
# If status is provided, simple count
if status:
if status == "running":
# Running status requires window function
sql = f"""
SELECT COUNT(*) as count
FROM (
SELECT *, ROW_NUMBER() OVER (PARTITION BY id ORDER BY log_version DESC) AS rn
FROM {AliyunLogStore.workflow_execution_logstore}
WHERE tenant_id='{tenant_id}'
AND app_id='{app_id}'
AND triggered_from='{triggered_from}'
AND status='running'
{time_filter}
) t
WHERE rn = 1
"""
else:
# Finished status uses optimized filter
sql = f"""
SELECT COUNT(DISTINCT id) as count
FROM {AliyunLogStore.workflow_execution_logstore}
WHERE tenant_id='{tenant_id}'
AND app_id='{app_id}'
AND triggered_from='{triggered_from}'
AND status='{status}'
AND finished_at IS NOT NULL
{time_filter}
"""
try:
results = self.logstore_client.execute_sql(
sql=sql, query="*", logstore=AliyunLogStore.workflow_execution_logstore
)
count = results[0]["count"] if results and len(results) > 0 else 0
return {
"total": count,
"running": count if status == "running" else 0,
"succeeded": count if status == "succeeded" else 0,
"failed": count if status == "failed" else 0,
"stopped": count if status == "stopped" else 0,
"partial-succeeded": count if status == "partial-succeeded" else 0,
}
except Exception:
logger.exception("Failed to get workflow runs count")
raise
# No status filter - get counts grouped by status
# Use optimized query for finished runs, separate query for running
try:
# Count finished runs grouped by status
finished_sql = f"""
SELECT status, COUNT(DISTINCT id) as count
FROM {AliyunLogStore.workflow_execution_logstore}
WHERE tenant_id='{tenant_id}'
AND app_id='{app_id}'
AND triggered_from='{triggered_from}'
AND finished_at IS NOT NULL
{time_filter}
GROUP BY status
"""
# Count running runs
running_sql = f"""
SELECT COUNT(*) as count
FROM (
SELECT *, ROW_NUMBER() OVER (PARTITION BY id ORDER BY log_version DESC) AS rn
FROM {AliyunLogStore.workflow_execution_logstore}
WHERE tenant_id='{tenant_id}'
AND app_id='{app_id}'
AND triggered_from='{triggered_from}'
AND status='running'
{time_filter}
) t
WHERE rn = 1
"""
finished_results = self.logstore_client.execute_sql(
sql=finished_sql, query="*", logstore=AliyunLogStore.workflow_execution_logstore
)
running_results = self.logstore_client.execute_sql(
sql=running_sql, query="*", logstore=AliyunLogStore.workflow_execution_logstore
)
# Build response
status_counts = {
"running": 0,
"succeeded": 0,
"failed": 0,
"stopped": 0,
"partial-succeeded": 0,
}
total = 0
for result in finished_results:
status_val = result.get("status")
count = result.get("count", 0)
if status_val in status_counts:
status_counts[status_val] = count
total += count
# Add running count
running_count = running_results[0]["count"] if running_results and len(running_results) > 0 else 0
status_counts["running"] = running_count
total += running_count
return {"total": total} | status_counts
except Exception:
logger.exception("Failed to get workflow runs count")
raise
def get_daily_runs_statistics(
self,
tenant_id: str,
app_id: str,
triggered_from: str,
start_date: datetime | None = None,
end_date: datetime | None = None,
timezone: str = "UTC",
) -> list[DailyRunsStats]:
"""
Get daily runs statistics using optimized query.
Optimization: Use finished_at IS NOT NULL + COUNT(DISTINCT id) (20-100x faster)
"""
logger.debug(
"get_daily_runs_statistics: tenant_id=%s, app_id=%s, triggered_from=%s", tenant_id, app_id, triggered_from
)
# Build time range filter
time_filter = ""
if start_date:
time_filter += f" AND __time__ >= to_unixtime(from_iso8601_timestamp('{start_date.isoformat()}'))"
if end_date:
time_filter += f" AND __time__ < to_unixtime(from_iso8601_timestamp('{end_date.isoformat()}'))"
# Optimized query: Use finished_at filter to avoid window function
sql = f"""
SELECT DATE(from_unixtime(__time__)) as date, COUNT(DISTINCT id) as runs
FROM {AliyunLogStore.workflow_execution_logstore}
WHERE tenant_id='{tenant_id}'
AND app_id='{app_id}'
AND triggered_from='{triggered_from}'
AND finished_at IS NOT NULL
{time_filter}
GROUP BY date
ORDER BY date
"""
try:
results = self.logstore_client.execute_sql(
sql=sql, query="*", logstore=AliyunLogStore.workflow_execution_logstore
)
response_data = []
for row in results:
response_data.append({"date": str(row.get("date", "")), "runs": row.get("runs", 0)})
return cast(list[DailyRunsStats], response_data)
except Exception:
logger.exception("Failed to get daily runs statistics")
raise
def get_daily_terminals_statistics(
self,
tenant_id: str,
app_id: str,
triggered_from: str,
start_date: datetime | None = None,
end_date: datetime | None = None,
timezone: str = "UTC",
) -> list[DailyTerminalsStats]:
"""
Get daily terminals statistics using optimized query.
Optimization: Use finished_at IS NOT NULL + COUNT(DISTINCT created_by) (20-100x faster)
"""
logger.debug(
"get_daily_terminals_statistics: tenant_id=%s, app_id=%s, triggered_from=%s",
tenant_id,
app_id,
triggered_from,
)
# Build time range filter
time_filter = ""
if start_date:
time_filter += f" AND __time__ >= to_unixtime(from_iso8601_timestamp('{start_date.isoformat()}'))"
if end_date:
time_filter += f" AND __time__ < to_unixtime(from_iso8601_timestamp('{end_date.isoformat()}'))"
sql = f"""
SELECT DATE(from_unixtime(__time__)) as date, COUNT(DISTINCT created_by) as terminal_count
FROM {AliyunLogStore.workflow_execution_logstore}
WHERE tenant_id='{tenant_id}'
AND app_id='{app_id}'
AND triggered_from='{triggered_from}'
AND finished_at IS NOT NULL
{time_filter}
GROUP BY date
ORDER BY date
"""
try:
results = self.logstore_client.execute_sql(
sql=sql, query="*", logstore=AliyunLogStore.workflow_execution_logstore
)
response_data = []
for row in results:
response_data.append({"date": str(row.get("date", "")), "terminal_count": row.get("terminal_count", 0)})
return cast(list[DailyTerminalsStats], response_data)
except Exception:
logger.exception("Failed to get daily terminals statistics")
raise
def get_daily_token_cost_statistics(
self,
tenant_id: str,
app_id: str,
triggered_from: str,
start_date: datetime | None = None,
end_date: datetime | None = None,
timezone: str = "UTC",
) -> list[DailyTokenCostStats]:
"""
Get daily token cost statistics using optimized query.
Optimization: Use finished_at IS NOT NULL + SUM(total_tokens) (20-100x faster)
"""
logger.debug(
"get_daily_token_cost_statistics: tenant_id=%s, app_id=%s, triggered_from=%s",
tenant_id,
app_id,
triggered_from,
)
# Build time range filter
time_filter = ""
if start_date:
time_filter += f" AND __time__ >= to_unixtime(from_iso8601_timestamp('{start_date.isoformat()}'))"
if end_date:
time_filter += f" AND __time__ < to_unixtime(from_iso8601_timestamp('{end_date.isoformat()}'))"
sql = f"""
SELECT DATE(from_unixtime(__time__)) as date, SUM(total_tokens) as token_count
FROM {AliyunLogStore.workflow_execution_logstore}
WHERE tenant_id='{tenant_id}'
AND app_id='{app_id}'
AND triggered_from='{triggered_from}'
AND finished_at IS NOT NULL
{time_filter}
GROUP BY date
ORDER BY date
"""
try:
results = self.logstore_client.execute_sql(
sql=sql, query="*", logstore=AliyunLogStore.workflow_execution_logstore
)
response_data = []
for row in results:
response_data.append({"date": str(row.get("date", "")), "token_count": row.get("token_count", 0)})
return cast(list[DailyTokenCostStats], response_data)
except Exception:
logger.exception("Failed to get daily token cost statistics")
raise
def get_average_app_interaction_statistics(
self,
tenant_id: str,
app_id: str,
triggered_from: str,
start_date: datetime | None = None,
end_date: datetime | None = None,
timezone: str = "UTC",
) -> list[AverageInteractionStats]:
"""
Get average app interaction statistics using optimized query.
Optimization: Use finished_at IS NOT NULL + AVG (20-100x faster)
"""
logger.debug(
"get_average_app_interaction_statistics: tenant_id=%s, app_id=%s, triggered_from=%s",
tenant_id,
app_id,
triggered_from,
)
# Build time range filter
time_filter = ""
if start_date:
time_filter += f" AND __time__ >= to_unixtime(from_iso8601_timestamp('{start_date.isoformat()}'))"
if end_date:
time_filter += f" AND __time__ < to_unixtime(from_iso8601_timestamp('{end_date.isoformat()}'))"
sql = f"""
SELECT
AVG(sub.interactions) AS interactions,
sub.date
FROM (
SELECT
DATE(from_unixtime(__time__)) AS date,
created_by,
COUNT(DISTINCT id) AS interactions
FROM {AliyunLogStore.workflow_execution_logstore}
WHERE tenant_id='{tenant_id}'
AND app_id='{app_id}'
AND triggered_from='{triggered_from}'
AND finished_at IS NOT NULL
{time_filter}
GROUP BY date, created_by
) sub
GROUP BY sub.date
"""
try:
results = self.logstore_client.execute_sql(
sql=sql, query="*", logstore=AliyunLogStore.workflow_execution_logstore
)
response_data = []
for row in results:
response_data.append(
{
"date": str(row.get("date", "")),
"interactions": float(row.get("interactions", 0)),
}
)
return cast(list[AverageInteractionStats], response_data)
except Exception:
logger.exception("Failed to get average app interaction statistics")
raise

View File

@ -0,0 +1,164 @@
import json
import logging
import os
import time
from typing import Union
from sqlalchemy.engine import Engine
from sqlalchemy.orm import sessionmaker
from core.repositories.sqlalchemy_workflow_execution_repository import SQLAlchemyWorkflowExecutionRepository
from core.workflow.entities import WorkflowExecution
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
from extensions.logstore.aliyun_logstore import AliyunLogStore
from libs.helper import extract_tenant_id
from models import (
Account,
CreatorUserRole,
EndUser,
)
from models.enums import WorkflowRunTriggeredFrom
logger = logging.getLogger(__name__)
class LogstoreWorkflowExecutionRepository(WorkflowExecutionRepository):
def __init__(
self,
session_factory: sessionmaker | Engine,
user: Union[Account, EndUser],
app_id: str | None,
triggered_from: WorkflowRunTriggeredFrom | None,
):
"""
Initialize the repository with a SQLAlchemy sessionmaker or engine and context information.
Args:
session_factory: SQLAlchemy sessionmaker or engine for creating sessions
user: Account or EndUser object containing tenant_id, user ID, and role information
app_id: App ID for filtering by application (can be None)
triggered_from: Source of the execution trigger (DEBUGGING or APP_RUN)
"""
logger.debug(
"LogstoreWorkflowExecutionRepository.__init__: app_id=%s, triggered_from=%s", app_id, triggered_from
)
# Initialize LogStore client
# Note: Project/logstore/index initialization is done at app startup via ext_logstore
self.logstore_client = AliyunLogStore()
# Extract tenant_id from user
tenant_id = extract_tenant_id(user)
if not tenant_id:
raise ValueError("User must have a tenant_id or current_tenant_id")
self._tenant_id = tenant_id
# Store app context
self._app_id = app_id
# Extract user context
self._triggered_from = triggered_from
self._creator_user_id = user.id
# Determine user role based on user type
self._creator_user_role = CreatorUserRole.ACCOUNT if isinstance(user, Account) else CreatorUserRole.END_USER
# Initialize SQL repository for dual-write support
self.sql_repository = SQLAlchemyWorkflowExecutionRepository(session_factory, user, app_id, triggered_from)
# Control flag for dual-write (write to both LogStore and SQL database)
# Set to True to enable dual-write for safe migration, False to use LogStore only
self._enable_dual_write = os.environ.get("LOGSTORE_DUAL_WRITE_ENABLED", "true").lower() == "true"
def _to_logstore_model(self, domain_model: WorkflowExecution) -> list[tuple[str, str]]:
"""
Convert a domain model to a logstore model (List[Tuple[str, str]]).
Args:
domain_model: The domain model to convert
Returns:
The logstore model as a list of key-value tuples
"""
logger.debug(
"_to_logstore_model: id=%s, workflow_id=%s, status=%s",
domain_model.id_,
domain_model.workflow_id,
domain_model.status.value,
)
# Use values from constructor if provided
if not self._triggered_from:
raise ValueError("triggered_from is required in repository constructor")
if not self._creator_user_id:
raise ValueError("created_by is required in repository constructor")
if not self._creator_user_role:
raise ValueError("created_by_role is required in repository constructor")
# Generate log_version as nanosecond timestamp for record versioning
log_version = str(time.time_ns())
logstore_model = [
("id", domain_model.id_),
("log_version", log_version), # Add log_version field for append-only writes
("tenant_id", self._tenant_id),
("app_id", self._app_id or ""),
("workflow_id", domain_model.workflow_id),
(
"triggered_from",
self._triggered_from.value if hasattr(self._triggered_from, "value") else str(self._triggered_from),
),
("type", domain_model.workflow_type.value),
("version", domain_model.workflow_version),
("graph", json.dumps(domain_model.graph, ensure_ascii=False) if domain_model.graph else "{}"),
("inputs", json.dumps(domain_model.inputs, ensure_ascii=False) if domain_model.inputs else "{}"),
("outputs", json.dumps(domain_model.outputs, ensure_ascii=False) if domain_model.outputs else "{}"),
("status", domain_model.status.value),
("error_message", domain_model.error_message or ""),
("total_tokens", str(domain_model.total_tokens)),
("total_steps", str(domain_model.total_steps)),
("exceptions_count", str(domain_model.exceptions_count)),
(
"created_by_role",
self._creator_user_role.value
if hasattr(self._creator_user_role, "value")
else str(self._creator_user_role),
),
("created_by", self._creator_user_id),
("started_at", domain_model.started_at.isoformat() if domain_model.started_at else ""),
("finished_at", domain_model.finished_at.isoformat() if domain_model.finished_at else ""),
]
return logstore_model
def save(self, execution: WorkflowExecution) -> None:
"""
Save or update a WorkflowExecution domain entity to the logstore.
This method serves as a domain-to-logstore adapter that:
1. Converts the domain entity to its logstore representation
2. Persists the logstore model using Aliyun SLS
3. Maintains proper multi-tenancy by including tenant context during conversion
4. Optionally writes to SQL database for dual-write support (controlled by LOGSTORE_DUAL_WRITE_ENABLED)
Args:
execution: The WorkflowExecution domain entity to persist
"""
logger.debug(
"save: id=%s, workflow_id=%s, status=%s", execution.id_, execution.workflow_id, execution.status.value
)
try:
logstore_model = self._to_logstore_model(execution)
self.logstore_client.put_log(AliyunLogStore.workflow_execution_logstore, logstore_model)
logger.debug("Saved workflow execution to logstore: id=%s", execution.id_)
except Exception:
logger.exception("Failed to save workflow execution to logstore: id=%s", execution.id_)
raise
# Dual-write to SQL database if enabled (for safe migration)
if self._enable_dual_write:
try:
self.sql_repository.save(execution)
logger.debug("Dual-write: saved workflow execution to SQL database: id=%s", execution.id_)
except Exception:
logger.exception("Failed to dual-write workflow execution to SQL database: id=%s", execution.id_)
# Don't raise - LogStore write succeeded, SQL is just a backup

View File

@ -0,0 +1,366 @@
"""
LogStore implementation of the WorkflowNodeExecutionRepository.
This module provides a LogStore-based repository for WorkflowNodeExecution entities,
using Aliyun SLS LogStore with append-only writes and version control.
"""
import json
import logging
import os
import time
from collections.abc import Sequence
from datetime import datetime
from typing import Any, Union
from sqlalchemy.engine import Engine
from sqlalchemy.orm import sessionmaker
from core.model_runtime.utils.encoders import jsonable_encoder
from core.repositories import SQLAlchemyWorkflowNodeExecutionRepository
from core.workflow.entities import WorkflowNodeExecution
from core.workflow.entities.workflow_node_execution import WorkflowNodeExecutionMetadataKey, WorkflowNodeExecutionStatus
from core.workflow.enums import NodeType
from core.workflow.repositories.workflow_node_execution_repository import OrderConfig, WorkflowNodeExecutionRepository
from core.workflow.workflow_type_encoder import WorkflowRuntimeTypeConverter
from extensions.logstore.aliyun_logstore import AliyunLogStore
from libs.helper import extract_tenant_id
from models import (
Account,
CreatorUserRole,
EndUser,
WorkflowNodeExecutionTriggeredFrom,
)
logger = logging.getLogger(__name__)
def _dict_to_workflow_node_execution(data: dict[str, Any]) -> WorkflowNodeExecution:
"""
Convert LogStore result dictionary to WorkflowNodeExecution domain model.
Args:
data: Dictionary from LogStore query result
Returns:
WorkflowNodeExecution domain model instance
"""
logger.debug("_dict_to_workflow_node_execution: data keys=%s", list(data.keys())[:5])
# Parse JSON fields
inputs = json.loads(data.get("inputs", "{}"))
process_data = json.loads(data.get("process_data", "{}"))
outputs = json.loads(data.get("outputs", "{}"))
metadata = json.loads(data.get("execution_metadata", "{}"))
# Convert metadata to domain enum keys
domain_metadata = {}
for k, v in metadata.items():
try:
domain_metadata[WorkflowNodeExecutionMetadataKey(k)] = v
except ValueError:
# Skip invalid metadata keys
continue
# Convert status to domain enum
status = WorkflowNodeExecutionStatus(data.get("status", "running"))
# Parse datetime fields
created_at = datetime.fromisoformat(data.get("created_at", "")) if data.get("created_at") else datetime.now()
finished_at = datetime.fromisoformat(data.get("finished_at", "")) if data.get("finished_at") else None
return WorkflowNodeExecution(
id=data.get("id", ""),
node_execution_id=data.get("node_execution_id"),
workflow_id=data.get("workflow_id", ""),
workflow_execution_id=data.get("workflow_run_id"),
index=int(data.get("index", 0)),
predecessor_node_id=data.get("predecessor_node_id"),
node_id=data.get("node_id", ""),
node_type=NodeType(data.get("node_type", "start")),
title=data.get("title", ""),
inputs=inputs,
process_data=process_data,
outputs=outputs,
status=status,
error=data.get("error"),
elapsed_time=float(data.get("elapsed_time", 0.0)),
metadata=domain_metadata,
created_at=created_at,
finished_at=finished_at,
)
class LogstoreWorkflowNodeExecutionRepository(WorkflowNodeExecutionRepository):
"""
LogStore implementation of the WorkflowNodeExecutionRepository interface.
This implementation uses Aliyun SLS LogStore with an append-only write strategy:
- Each save() operation appends a new record with a version timestamp
- Updates are simulated by writing new records with higher version numbers
- Queries retrieve the latest version using finished_at IS NOT NULL filter
- Multi-tenancy is maintained through tenant_id filtering
Version Strategy:
version = time.time_ns() # Nanosecond timestamp for unique ordering
"""
def __init__(
self,
session_factory: sessionmaker | Engine,
user: Union[Account, EndUser],
app_id: str | None,
triggered_from: WorkflowNodeExecutionTriggeredFrom | None,
):
"""
Initialize the repository with a SQLAlchemy sessionmaker or engine and context information.
Args:
session_factory: SQLAlchemy sessionmaker or engine for creating sessions
user: Account or EndUser object containing tenant_id, user ID, and role information
app_id: App ID for filtering by application (can be None)
triggered_from: Source of the execution trigger (SINGLE_STEP or WORKFLOW_RUN)
"""
logger.debug(
"LogstoreWorkflowNodeExecutionRepository.__init__: app_id=%s, triggered_from=%s", app_id, triggered_from
)
# Initialize LogStore client
self.logstore_client = AliyunLogStore()
# Extract tenant_id from user
tenant_id = extract_tenant_id(user)
if not tenant_id:
raise ValueError("User must have a tenant_id or current_tenant_id")
self._tenant_id = tenant_id
# Store app context
self._app_id = app_id
# Extract user context
self._triggered_from = triggered_from
self._creator_user_id = user.id
# Determine user role based on user type
self._creator_user_role = CreatorUserRole.ACCOUNT if isinstance(user, Account) else CreatorUserRole.END_USER
# Initialize SQL repository for dual-write support
self.sql_repository = SQLAlchemyWorkflowNodeExecutionRepository(session_factory, user, app_id, triggered_from)
# Control flag for dual-write (write to both LogStore and SQL database)
# Set to True to enable dual-write for safe migration, False to use LogStore only
self._enable_dual_write = os.environ.get("LOGSTORE_DUAL_WRITE_ENABLED", "true").lower() == "true"
def _to_logstore_model(self, domain_model: WorkflowNodeExecution) -> Sequence[tuple[str, str]]:
logger.debug(
"_to_logstore_model: id=%s, node_id=%s, status=%s",
domain_model.id,
domain_model.node_id,
domain_model.status.value,
)
if not self._triggered_from:
raise ValueError("triggered_from is required in repository constructor")
if not self._creator_user_id:
raise ValueError("created_by is required in repository constructor")
if not self._creator_user_role:
raise ValueError("created_by_role is required in repository constructor")
# Generate log_version as nanosecond timestamp for record versioning
log_version = str(time.time_ns())
json_converter = WorkflowRuntimeTypeConverter()
logstore_model = [
("id", domain_model.id),
("log_version", log_version), # Add log_version field for append-only writes
("tenant_id", self._tenant_id),
("app_id", self._app_id or ""),
("workflow_id", domain_model.workflow_id),
(
"triggered_from",
self._triggered_from.value if hasattr(self._triggered_from, "value") else str(self._triggered_from),
),
("workflow_run_id", domain_model.workflow_execution_id or ""),
("index", str(domain_model.index)),
("predecessor_node_id", domain_model.predecessor_node_id or ""),
("node_execution_id", domain_model.node_execution_id or ""),
("node_id", domain_model.node_id),
("node_type", domain_model.node_type.value),
("title", domain_model.title),
(
"inputs",
json.dumps(json_converter.to_json_encodable(domain_model.inputs), ensure_ascii=False)
if domain_model.inputs
else "{}",
),
(
"process_data",
json.dumps(json_converter.to_json_encodable(domain_model.process_data), ensure_ascii=False)
if domain_model.process_data
else "{}",
),
(
"outputs",
json.dumps(json_converter.to_json_encodable(domain_model.outputs), ensure_ascii=False)
if domain_model.outputs
else "{}",
),
("status", domain_model.status.value),
("error", domain_model.error or ""),
("elapsed_time", str(domain_model.elapsed_time)),
(
"execution_metadata",
json.dumps(jsonable_encoder(domain_model.metadata), ensure_ascii=False)
if domain_model.metadata
else "{}",
),
("created_at", domain_model.created_at.isoformat() if domain_model.created_at else ""),
("created_by_role", self._creator_user_role.value),
("created_by", self._creator_user_id),
("finished_at", domain_model.finished_at.isoformat() if domain_model.finished_at else ""),
]
return logstore_model
def save(self, execution: WorkflowNodeExecution) -> None:
"""
Save or update a NodeExecution domain entity to LogStore.
This method serves as a domain-to-logstore adapter that:
1. Converts the domain entity to its logstore representation
2. Appends a new record with a log_version timestamp
3. Maintains proper multi-tenancy by including tenant context during conversion
4. Optionally writes to SQL database for dual-write support (controlled by LOGSTORE_DUAL_WRITE_ENABLED)
Each save operation creates a new record. Updates are simulated by writing
new records with higher log_version numbers.
Args:
execution: The NodeExecution domain entity to persist
"""
logger.debug(
"save: id=%s, node_execution_id=%s, status=%s",
execution.id,
execution.node_execution_id,
execution.status.value,
)
try:
logstore_model = self._to_logstore_model(execution)
self.logstore_client.put_log(AliyunLogStore.workflow_node_execution_logstore, logstore_model)
logger.debug(
"Saved node execution to LogStore: id=%s, node_execution_id=%s, status=%s",
execution.id,
execution.node_execution_id,
execution.status.value,
)
except Exception:
logger.exception(
"Failed to save node execution to LogStore: id=%s, node_execution_id=%s",
execution.id,
execution.node_execution_id,
)
raise
# Dual-write to SQL database if enabled (for safe migration)
if self._enable_dual_write:
try:
self.sql_repository.save(execution)
logger.debug("Dual-write: saved node execution to SQL database: id=%s", execution.id)
except Exception:
logger.exception("Failed to dual-write node execution to SQL database: id=%s", execution.id)
# Don't raise - LogStore write succeeded, SQL is just a backup
def save_execution_data(self, execution: WorkflowNodeExecution) -> None:
"""
Save or update the inputs, process_data, or outputs associated with a specific
node_execution record.
For LogStore implementation, this is similar to save() since we always write
complete records. We append a new record with updated data fields.
Args:
execution: The NodeExecution instance with data to save
"""
logger.debug("save_execution_data: id=%s, node_execution_id=%s", execution.id, execution.node_execution_id)
# In LogStore, we simply write a new complete record with the data
# The log_version timestamp will ensure this is treated as the latest version
self.save(execution)
def get_by_workflow_run(
self,
workflow_run_id: str,
order_config: OrderConfig | None = None,
) -> Sequence[WorkflowNodeExecution]:
"""
Retrieve all NodeExecution instances for a specific workflow run.
Uses LogStore SQL query with finished_at IS NOT NULL filter for deduplication.
This ensures we only get the final version of each node execution.
Args:
workflow_run_id: The workflow run ID
order_config: Optional configuration for ordering results
order_config.order_by: List of fields to order by (e.g., ["index", "created_at"])
order_config.order_direction: Direction to order ("asc" or "desc")
Returns:
A list of NodeExecution instances
Note:
This method filters by finished_at IS NOT NULL to avoid duplicates from
version updates. For complete history including intermediate states,
a different query strategy would be needed.
"""
logger.debug("get_by_workflow_run: workflow_run_id=%s, order_config=%s", workflow_run_id, order_config)
# Build SQL query with deduplication using finished_at IS NOT NULL
# This optimization avoids window functions for common case where we only
# want the final state of each node execution
# Build ORDER BY clause
order_clause = ""
if order_config and order_config.order_by:
order_fields = []
for field in order_config.order_by:
# Map domain field names to logstore field names if needed
field_name = field
if order_config.order_direction == "desc":
order_fields.append(f"{field_name} DESC")
else:
order_fields.append(f"{field_name} ASC")
if order_fields:
order_clause = "ORDER BY " + ", ".join(order_fields)
sql = f"""
SELECT *
FROM {AliyunLogStore.workflow_node_execution_logstore}
WHERE workflow_run_id='{workflow_run_id}'
AND tenant_id='{self._tenant_id}'
AND finished_at IS NOT NULL
"""
if self._app_id:
sql += f" AND app_id='{self._app_id}'"
if order_clause:
sql += f" {order_clause}"
try:
# Execute SQL query
results = self.logstore_client.execute_sql(
sql=sql,
query="*",
logstore=AliyunLogStore.workflow_node_execution_logstore,
)
# Convert LogStore results to WorkflowNodeExecution domain models
executions = []
for row in results:
try:
execution = _dict_to_workflow_node_execution(row)
executions.append(execution)
except Exception as e:
logger.warning("Failed to convert row to WorkflowNodeExecution: %s, row=%s", e, row)
continue
return executions
except Exception:
logger.exception("Failed to retrieve node executions from LogStore: workflow_run_id=%s", workflow_run_id)
raise

View File

@ -1,5 +1,4 @@
import functools
import os
from collections.abc import Callable
from typing import Any, TypeVar, cast
@ -7,22 +6,13 @@ from opentelemetry.trace import get_tracer
from configs import dify_config
from extensions.otel.decorators.handler import SpanHandler
from extensions.otel.runtime import is_instrument_flag_enabled
T = TypeVar("T", bound=Callable[..., Any])
_HANDLER_INSTANCES: dict[type[SpanHandler], SpanHandler] = {SpanHandler: SpanHandler()}
def _is_instrument_flag_enabled() -> bool:
"""
Check if external instrumentation is enabled via environment variable.
Third-party non-invasive instrumentation agents set this flag to coordinate
with Dify's manual OpenTelemetry instrumentation.
"""
return os.getenv("ENABLE_OTEL_FOR_INSTRUMENT", "").strip().lower() == "true"
def _get_handler_instance(handler_class: type[SpanHandler]) -> SpanHandler:
"""Get or create a singleton instance of the handler class."""
if handler_class not in _HANDLER_INSTANCES:
@ -43,7 +33,7 @@ def trace_span(handler_class: type[SpanHandler] | None = None) -> Callable[[T],
def decorator(func: T) -> T:
@functools.wraps(func)
def wrapper(*args: Any, **kwargs: Any) -> Any:
if not (dify_config.ENABLE_OTEL or _is_instrument_flag_enabled()):
if not (dify_config.ENABLE_OTEL or is_instrument_flag_enabled()):
return func(*args, **kwargs)
handler = _get_handler_instance(handler_class or SpanHandler)

View File

@ -1,4 +1,5 @@
import logging
import os
import sys
from typing import Union
@ -71,3 +72,13 @@ def init_celery_worker(*args, **kwargs):
if dify_config.DEBUG:
logger.info("Initializing OpenTelemetry for Celery worker")
CeleryInstrumentor(tracer_provider=tracer_provider, meter_provider=metric_provider).instrument()
def is_instrument_flag_enabled() -> bool:
"""
Check if external instrumentation is enabled via environment variable.
Third-party non-invasive instrumentation agents set this flag to coordinate
with Dify's manual OpenTelemetry instrumentation.
"""
return os.getenv("ENABLE_OTEL_FOR_INSTRUMENT", "").strip().lower() == "true"

View File

@ -87,15 +87,16 @@ class OpenDALStorage(BaseStorage):
if not self.exists(path):
raise FileNotFoundError("Path not found")
all_files = self.op.scan(path=path)
# Use the new OpenDAL 0.46.0+ API with recursive listing
lister = self.op.list(path, recursive=True)
if files and directories:
logger.debug("files and directories on %s scanned", path)
return [f.path for f in all_files]
return [entry.path for entry in lister]
if files:
logger.debug("files on %s scanned", path)
return [f.path for f in all_files if not f.path.endswith("/")]
return [entry.path for entry in lister if not entry.metadata.is_dir]
elif directories:
logger.debug("directories on %s scanned", path)
return [f.path for f in all_files if f.path.endswith("/")]
return [entry.path for entry in lister if entry.metadata.is_dir]
else:
raise ValueError("At least one of files or directories must be True")

View File

@ -1,3 +1,4 @@
import logging
import mimetypes
import os
import re
@ -17,6 +18,8 @@ from core.helper import ssrf_proxy
from extensions.ext_database import db
from models import MessageFile, ToolFile, UploadFile
logger = logging.getLogger(__name__)
def build_from_message_files(
*,
@ -356,15 +359,20 @@ def _build_from_tool_file(
transfer_method: FileTransferMethod,
strict_type_validation: bool = False,
) -> File:
# Backward/interop compatibility: allow tool_file_id to come from related_id or URL
tool_file_id = mapping.get("tool_file_id")
if not tool_file_id:
raise ValueError(f"ToolFile {tool_file_id} not found")
tool_file = db.session.scalar(
select(ToolFile).where(
ToolFile.id == mapping.get("tool_file_id"),
ToolFile.id == tool_file_id,
ToolFile.tenant_id == tenant_id,
)
)
if tool_file is None:
raise ValueError(f"ToolFile {mapping.get('tool_file_id')} not found")
raise ValueError(f"ToolFile {tool_file_id} not found")
extension = "." + tool_file.file_key.split(".")[-1] if "." in tool_file.file_key else ".bin"
@ -402,10 +410,13 @@ def _build_from_datasource_file(
transfer_method: FileTransferMethod,
strict_type_validation: bool = False,
) -> File:
datasource_file_id = mapping.get("datasource_file_id")
if not datasource_file_id:
raise ValueError(f"DatasourceFile {datasource_file_id} not found")
datasource_file = (
db.session.query(UploadFile)
.where(
UploadFile.id == mapping.get("datasource_file_id"),
UploadFile.id == datasource_file_id,
UploadFile.tenant_id == tenant_id,
)
.first()

66
api/libs/encryption.py Normal file
View File

@ -0,0 +1,66 @@
"""
Field Encoding/Decoding Utilities
Provides Base64 decoding for sensitive fields (password, verification code)
received from the frontend.
Note: This uses Base64 encoding for obfuscation, not cryptographic encryption.
Real security relies on HTTPS for transport layer encryption.
"""
import base64
import logging
logger = logging.getLogger(__name__)
class FieldEncryption:
"""Handle decoding of sensitive fields during transmission"""
@classmethod
def decrypt_field(cls, encoded_text: str) -> str | None:
"""
Decode Base64 encoded field from frontend.
Args:
encoded_text: Base64 encoded text from frontend
Returns:
Decoded plaintext, or None if decoding fails
"""
try:
# Decode base64
decoded_bytes = base64.b64decode(encoded_text)
decoded_text = decoded_bytes.decode("utf-8")
logger.debug("Field decoding successful")
return decoded_text
except Exception:
# Decoding failed - return None to trigger error in caller
return None
@classmethod
def decrypt_password(cls, encrypted_password: str) -> str | None:
"""
Decrypt password field
Args:
encrypted_password: Encrypted password from frontend
Returns:
Decrypted password or None if decryption fails
"""
return cls.decrypt_field(encrypted_password)
@classmethod
def decrypt_verification_code(cls, encrypted_code: str) -> str | None:
"""
Decrypt verification code field
Args:
encrypted_code: Encrypted code from frontend
Returns:
Decrypted code or None if decryption fails
"""
return cls.decrypt_field(encrypted_code)

View File

@ -11,6 +11,7 @@ from collections.abc import Generator, Mapping
from datetime import datetime
from hashlib import sha256
from typing import TYPE_CHECKING, Annotated, Any, Optional, Union, cast
from uuid import UUID
from zoneinfo import available_timezones
from flask import Response, stream_with_context
@ -119,6 +120,19 @@ def uuid_value(value: Any) -> str:
raise ValueError(error)
def normalize_uuid(value: str | UUID) -> str:
if not value:
return ""
try:
return uuid_value(value)
except ValueError as exc:
raise ValueError("must be a valid UUID") from exc
UUIDStrOrEmpty = Annotated[str, AfterValidator(normalize_uuid)]
def alphanumeric(value: str):
# check if the value is alphanumeric and underlined
if re.match(r"^[a-zA-Z0-9_]+$", value):
@ -184,7 +198,7 @@ def timezone(timezone_string):
def convert_datetime_to_date(field, target_timezone: str = ":tz"):
if dify_config.DB_TYPE == "postgresql":
return f"DATE(DATE_TRUNC('day', {field} AT TIME ZONE 'UTC' AT TIME ZONE {target_timezone}))"
elif dify_config.DB_TYPE == "mysql":
elif dify_config.DB_TYPE in ["mysql", "oceanbase", "seekdb"]:
return f"DATE(CONVERT_TZ({field}, 'UTC', {target_timezone}))"
else:
raise NotImplementedError(f"Unsupported database type: {dify_config.DB_TYPE}")

View File

@ -0,0 +1,31 @@
"""add type column not null default tool
Revision ID: 03ea244985ce
Revises: d57accd375ae
Create Date: 2025-12-16 18:17:12.193877
"""
from alembic import op
import models as models
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = '03ea244985ce'
down_revision = 'd57accd375ae'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('pipeline_recommended_plugins', schema=None) as batch_op:
batch_op.add_column(sa.Column('type', sa.String(length=50), server_default=sa.text("'tool'"), nullable=False))
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('pipeline_recommended_plugins', schema=None) as batch_op:
batch_op.drop_column('type')
# ### end Alembic commands ###

View File

@ -1532,6 +1532,7 @@ class PipelineRecommendedPlugin(TypeBase):
)
plugin_id: Mapped[str] = mapped_column(LongText, nullable=False)
provider_name: Mapped[str] = mapped_column(LongText, nullable=False)
type: Mapped[str] = mapped_column(sa.String(50), nullable=False, server_default=sa.text("'tool'"))
position: Mapped[int] = mapped_column(sa.Integer, nullable=False, default=0)
active: Mapped[bool] = mapped_column(sa.Boolean, nullable=False, default=True)
created_at: Mapped[datetime] = mapped_column(

Some files were not shown because too many files have changed in this diff Show More