mirror of https://github.com/langgenius/dify.git
feat(api): support boolean types in parameter extractor node
This commit is contained in:
parent
0e3ccb4dcc
commit
168d82f9b0
|
|
@ -1,10 +1,46 @@
|
|||
from typing import Any, Literal, Optional
|
||||
from typing import Annotated, Any, Literal, Optional
|
||||
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
BeforeValidator,
|
||||
Field,
|
||||
field_validator,
|
||||
)
|
||||
|
||||
from core.prompt.entities.advanced_prompt_entities import MemoryConfig
|
||||
from core.variables.types import SegmentType
|
||||
from core.workflow.nodes.base import BaseNodeData
|
||||
from core.workflow.nodes.llm import ModelConfig, VisionConfig
|
||||
from core.workflow.nodes.llm.entities import ModelConfig, VisionConfig
|
||||
|
||||
_OLD_BOOL_TYPE_NAME = "bool"
|
||||
_OLD_SELECT_TYPE_NAME = "select"
|
||||
|
||||
_VALID_PARAMETER_TYPES = frozenset(
|
||||
[
|
||||
SegmentType.STRING, # "string",
|
||||
SegmentType.NUMBER, # "number",
|
||||
SegmentType.BOOLEAN,
|
||||
SegmentType.ARRAY_STRING,
|
||||
SegmentType.ARRAY_NUMBER,
|
||||
SegmentType.ARRAY_OBJECT,
|
||||
SegmentType.ARRAY_BOOLEAN,
|
||||
_OLD_BOOL_TYPE_NAME, # old boolean type used by Parameter Extractor node
|
||||
_OLD_SELECT_TYPE_NAME, # string type with enumeration choices.
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def _validate_type(parameter_type: str) -> SegmentType:
|
||||
if not isinstance(parameter_type, str):
|
||||
raise TypeError(f"type should be str, got {type(parameter_type)}, value={parameter_type}")
|
||||
if parameter_type not in _VALID_PARAMETER_TYPES:
|
||||
raise ValueError(f"type {parameter_type} is not allowd to use in Parameter Extractor node.")
|
||||
|
||||
if parameter_type == _OLD_BOOL_TYPE_NAME:
|
||||
return SegmentType.BOOLEAN
|
||||
elif parameter_type == _OLD_SELECT_TYPE_NAME:
|
||||
return SegmentType.STRING
|
||||
return SegmentType(parameter_type)
|
||||
|
||||
|
||||
class _ParameterConfigError(Exception):
|
||||
|
|
@ -17,11 +53,25 @@ class ParameterConfig(BaseModel):
|
|||
"""
|
||||
|
||||
name: str
|
||||
type: Literal["string", "number", "bool", "select", "array[string]", "array[number]", "array[object]"]
|
||||
type: Annotated[SegmentType, BeforeValidator(_validate_type)]
|
||||
options: Optional[list[str]] = None
|
||||
description: str
|
||||
required: bool
|
||||
|
||||
_is_old_select_type: bool = PrivateAttr(default=False)
|
||||
|
||||
@model_validator(mode="wrap")
|
||||
@classmethod
|
||||
def log_failed_validation(cls, data: Any, handler: ModelWrapValidatorHandler[Self]) -> Self:
|
||||
if not isinstance(data, dict):
|
||||
return handler(data)
|
||||
|
||||
original_type = data.get("type")
|
||||
instance = handler(data)
|
||||
if original_type == _OLD_SELECT_TYPE_NAME:
|
||||
instance._is_old_select_type = True
|
||||
return instance
|
||||
|
||||
@field_validator("name", mode="before")
|
||||
@classmethod
|
||||
def validate_name(cls, value) -> str:
|
||||
|
|
@ -32,17 +82,20 @@ class ParameterConfig(BaseModel):
|
|||
return str(value)
|
||||
|
||||
def is_array_type(self) -> bool:
|
||||
return self.type in ("array[string]", "array[number]", "array[object]")
|
||||
return self.type.is_array_type()
|
||||
|
||||
def element_type(self) -> Literal["string", "number", "object"]:
|
||||
if self.type == "array[number]":
|
||||
return "number"
|
||||
elif self.type == "array[string]":
|
||||
return "string"
|
||||
elif self.type == "array[object]":
|
||||
return "object"
|
||||
else:
|
||||
raise _ParameterConfigError(f"{self.type} is not array type.")
|
||||
def element_type(self) -> SegmentType:
|
||||
"""Return the element type of the parameter.
|
||||
|
||||
Raises a ValueError if the parameter's type is not an array type.
|
||||
"""
|
||||
element_type = self.type.element_type()
|
||||
# At this point, self.type is guaranteed to be one of `ARRAY_STRING`,
|
||||
# `ARRAY_NUMBER`, `ARRAY_OBJECT`, or `ARRAY_BOOLEAN`.
|
||||
#
|
||||
# See: _VALID_PARAMETER_TYPES for reference.
|
||||
assert element_type is not None, f"the element type should not be None, {self.type=}"
|
||||
return element_type
|
||||
|
||||
|
||||
class ParameterExtractorNodeData(BaseNodeData):
|
||||
|
|
@ -74,16 +127,18 @@ class ParameterExtractorNodeData(BaseNodeData):
|
|||
for parameter in self.parameters:
|
||||
parameter_schema: dict[str, Any] = {"description": parameter.description}
|
||||
|
||||
if parameter.type in {"string", "select"}:
|
||||
if parameter.type == SegmentType.STRING:
|
||||
parameter_schema["type"] = "string"
|
||||
elif parameter.type.startswith("array"):
|
||||
elif parameter.type.is_array_type():
|
||||
parameter_schema["type"] = "array"
|
||||
nested_type = parameter.type[6:-1]
|
||||
parameter_schema["items"] = {"type": nested_type}
|
||||
element_type = parameter.type.element_type()
|
||||
if element_type is None:
|
||||
raise AssertionError("element type should not be None.")
|
||||
parameter_schema["items"] = {"type": element_type.value}
|
||||
else:
|
||||
parameter_schema["type"] = parameter.type
|
||||
|
||||
if parameter.type == "select":
|
||||
if parameter._is_old_select_type:
|
||||
parameter_schema["enum"] = parameter.options
|
||||
|
||||
parameters["properties"][parameter.name] = parameter_schema
|
||||
|
|
|
|||
|
|
@ -1,3 +1,8 @@
|
|||
from typing import Any
|
||||
|
||||
from core.variables.types import SegmentType
|
||||
|
||||
|
||||
class ParameterExtractorNodeError(ValueError):
|
||||
"""Base error for ParameterExtractorNode."""
|
||||
|
||||
|
|
@ -48,3 +53,23 @@ class InvalidArrayValueError(ParameterExtractorNodeError):
|
|||
|
||||
class InvalidModelModeError(ParameterExtractorNodeError):
|
||||
"""Raised when the model mode is invalid."""
|
||||
|
||||
|
||||
class InvalidValueTypeError(ParameterExtractorNodeError):
|
||||
def __init__(
|
||||
self,
|
||||
/,
|
||||
parameter_name: str,
|
||||
expected_type: SegmentType,
|
||||
actual_type: SegmentType | None,
|
||||
value: Any,
|
||||
) -> None:
|
||||
message = (
|
||||
f"Invalid value for parameter {parameter_name}, expected segment type: {expected_type}, "
|
||||
f"actual_type: {actual_type}, python_type: {type(value)}, value: {value}"
|
||||
)
|
||||
super().__init__(message)
|
||||
self.parameter_name = parameter_name
|
||||
self.expected_type = expected_type
|
||||
self.actual_type = actual_type
|
||||
self.value = value
|
||||
|
|
|
|||
|
|
@ -25,7 +25,7 @@ from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
|
|||
from core.prompt.entities.advanced_prompt_entities import ChatModelMessage, CompletionModelPromptTemplate
|
||||
from core.prompt.simple_prompt_transform import ModelMode
|
||||
from core.prompt.utils.prompt_message_util import PromptMessageUtil
|
||||
from core.variables.types import SegmentType
|
||||
from core.variables.types import ArrayValidation, SegmentType
|
||||
from core.workflow.entities.node_entities import NodeRunResult
|
||||
from core.workflow.entities.variable_pool import VariablePool
|
||||
from core.workflow.entities.workflow_node_execution import WorkflowNodeExecutionMetadataKey, WorkflowNodeExecutionStatus
|
||||
|
|
@ -38,16 +38,13 @@ from factories.variable_factory import build_segment_with_type
|
|||
|
||||
from .entities import ParameterExtractorNodeData
|
||||
from .exc import (
|
||||
InvalidArrayValueError,
|
||||
InvalidBoolValueError,
|
||||
InvalidInvokeResultError,
|
||||
InvalidModelModeError,
|
||||
InvalidModelTypeError,
|
||||
InvalidNumberOfParametersError,
|
||||
InvalidNumberValueError,
|
||||
InvalidSelectValueError,
|
||||
InvalidStringValueError,
|
||||
InvalidTextContentTypeError,
|
||||
InvalidValueTypeError,
|
||||
ModelSchemaNotFoundError,
|
||||
ParameterExtractorNodeError,
|
||||
RequiredParameterMissingError,
|
||||
|
|
@ -548,9 +545,6 @@ class ParameterExtractorNode(BaseNode):
|
|||
return prompt_messages
|
||||
|
||||
def _validate_result(self, data: ParameterExtractorNodeData, result: dict) -> dict:
|
||||
"""
|
||||
Validate result.
|
||||
"""
|
||||
if len(data.parameters) != len(result):
|
||||
raise InvalidNumberOfParametersError("Invalid number of parameters")
|
||||
|
||||
|
|
@ -558,101 +552,106 @@ class ParameterExtractorNode(BaseNode):
|
|||
if parameter.required and parameter.name not in result:
|
||||
raise RequiredParameterMissingError(f"Parameter {parameter.name} is required")
|
||||
|
||||
if parameter.type == "select" and parameter.options and result.get(parameter.name) not in parameter.options:
|
||||
raise InvalidSelectValueError(f"Invalid `select` value for parameter {parameter.name}")
|
||||
|
||||
if parameter.type == "number" and not isinstance(result.get(parameter.name), int | float):
|
||||
raise InvalidNumberValueError(f"Invalid `number` value for parameter {parameter.name}")
|
||||
|
||||
if parameter.type == "bool" and not isinstance(result.get(parameter.name), bool):
|
||||
raise InvalidBoolValueError(f"Invalid `bool` value for parameter {parameter.name}")
|
||||
|
||||
if parameter.type == "string" and not isinstance(result.get(parameter.name), str):
|
||||
raise InvalidStringValueError(f"Invalid `string` value for parameter {parameter.name}")
|
||||
|
||||
if parameter.type.startswith("array"):
|
||||
parameters = result.get(parameter.name)
|
||||
if not isinstance(parameters, list):
|
||||
raise InvalidArrayValueError(f"Invalid `array` value for parameter {parameter.name}")
|
||||
nested_type = parameter.type[6:-1]
|
||||
for item in parameters:
|
||||
if nested_type == "number" and not isinstance(item, int | float):
|
||||
raise InvalidArrayValueError(f"Invalid `array[number]` value for parameter {parameter.name}")
|
||||
if nested_type == "string" and not isinstance(item, str):
|
||||
raise InvalidArrayValueError(f"Invalid `array[string]` value for parameter {parameter.name}")
|
||||
if nested_type == "object" and not isinstance(item, dict):
|
||||
raise InvalidArrayValueError(f"Invalid `array[object]` value for parameter {parameter.name}")
|
||||
param_value = result.get(parameter.name)
|
||||
if not parameter.type.is_valid(param_value, array_validation=ArrayValidation.ALL):
|
||||
inferred_type = SegmentType.infer_segment_type(param_value)
|
||||
raise InvalidValueTypeError(
|
||||
parameter_name=parameter.name,
|
||||
expected_type=parameter.type,
|
||||
actual_type=inferred_type,
|
||||
value=param_value,
|
||||
)
|
||||
if parameter.type == SegmentType.STRING and parameter.options:
|
||||
if param_value not in parameter.options:
|
||||
raise InvalidSelectValueError(f"Invalid `select` value for parameter {parameter.name}")
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
def _transform_number(value: int | float | str | bool) -> int | float | None:
|
||||
"""
|
||||
Attempts to transform the input into an integer or float.
|
||||
|
||||
Returns:
|
||||
int or float: The transformed number if the conversion is successful.
|
||||
None: If the transformation fails.
|
||||
|
||||
Note:
|
||||
Boolean values `True` and `False` are converted to integers `1` and `0`, respectively.
|
||||
This behavior ensures compatibility with existing workflows that may use boolean types as integers.
|
||||
"""
|
||||
if isinstance(value, bool):
|
||||
return int(value)
|
||||
elif isinstance(value, (int, float)):
|
||||
return value
|
||||
elif not isinstance(value, str):
|
||||
return None
|
||||
if "." in value:
|
||||
try:
|
||||
return float(value)
|
||||
except ValueError:
|
||||
return None
|
||||
else:
|
||||
try:
|
||||
return int(value)
|
||||
except ValueError:
|
||||
return None
|
||||
|
||||
def _transform_result(self, data: ParameterExtractorNodeData, result: dict) -> dict:
|
||||
"""
|
||||
Transform result into standard format.
|
||||
"""
|
||||
transformed_result = {}
|
||||
transformed_result: dict[str, Any] = {}
|
||||
for parameter in data.parameters:
|
||||
if parameter.name in result:
|
||||
param_value = result[parameter.name]
|
||||
# transform value
|
||||
if parameter.type == "number":
|
||||
if isinstance(result[parameter.name], int | float):
|
||||
transformed_result[parameter.name] = result[parameter.name]
|
||||
elif isinstance(result[parameter.name], str):
|
||||
try:
|
||||
if "." in result[parameter.name]:
|
||||
result[parameter.name] = float(result[parameter.name])
|
||||
else:
|
||||
result[parameter.name] = int(result[parameter.name])
|
||||
except ValueError:
|
||||
pass
|
||||
else:
|
||||
pass
|
||||
# TODO: bool is not supported in the current version
|
||||
# elif parameter.type == 'bool':
|
||||
# if isinstance(result[parameter.name], bool):
|
||||
# transformed_result[parameter.name] = bool(result[parameter.name])
|
||||
# elif isinstance(result[parameter.name], str):
|
||||
# if result[parameter.name].lower() in ['true', 'false']:
|
||||
# transformed_result[parameter.name] = bool(result[parameter.name].lower() == 'true')
|
||||
# elif isinstance(result[parameter.name], int):
|
||||
# transformed_result[parameter.name] = bool(result[parameter.name])
|
||||
elif parameter.type in {"string", "select"}:
|
||||
if isinstance(result[parameter.name], str):
|
||||
transformed_result[parameter.name] = result[parameter.name]
|
||||
if parameter.type == SegmentType.NUMBER:
|
||||
transformed = self._transform_number(param_value)
|
||||
if transformed is not None:
|
||||
transformed_result[parameter.name] = transformed
|
||||
elif parameter.type == SegmentType.BOOLEAN:
|
||||
if isinstance(result[parameter.name], (bool, int)):
|
||||
transformed_result[parameter.name] = bool(result[parameter.name])
|
||||
# elif isinstance(result[parameter.name], str):
|
||||
# if result[parameter.name].lower() in ["true", "false"]:
|
||||
# transformed_result[parameter.name] = bool(result[parameter.name].lower() == "true")
|
||||
elif parameter.type == SegmentType.STRING:
|
||||
if isinstance(param_value, str):
|
||||
transformed_result[parameter.name] = param_value
|
||||
elif parameter.is_array_type():
|
||||
if isinstance(result[parameter.name], list):
|
||||
if isinstance(param_value, list):
|
||||
nested_type = parameter.element_type()
|
||||
assert nested_type is not None
|
||||
segment_value = build_segment_with_type(segment_type=SegmentType(parameter.type), value=[])
|
||||
transformed_result[parameter.name] = segment_value
|
||||
for item in result[parameter.name]:
|
||||
if nested_type == "number":
|
||||
if isinstance(item, int | float):
|
||||
segment_value.value.append(item)
|
||||
elif isinstance(item, str):
|
||||
try:
|
||||
if "." in item:
|
||||
segment_value.value.append(float(item))
|
||||
else:
|
||||
segment_value.value.append(int(item))
|
||||
except ValueError:
|
||||
pass
|
||||
elif nested_type == "string":
|
||||
for item in param_value:
|
||||
if nested_type == SegmentType.NUMBER:
|
||||
transformed = self._transform_number(item)
|
||||
if transformed is not None:
|
||||
segment_value.value.append(transformed)
|
||||
elif nested_type == SegmentType.STRING:
|
||||
if isinstance(item, str):
|
||||
segment_value.value.append(item)
|
||||
elif nested_type == "object":
|
||||
elif nested_type == SegmentType.OBJECT:
|
||||
if isinstance(item, dict):
|
||||
segment_value.value.append(item)
|
||||
elif nested_type == SegmentType.BOOLEAN:
|
||||
if isinstance(item, bool):
|
||||
segment_value.value.append(item)
|
||||
|
||||
if parameter.name not in transformed_result:
|
||||
if parameter.type == "number":
|
||||
transformed_result[parameter.name] = 0
|
||||
elif parameter.type == "bool":
|
||||
transformed_result[parameter.name] = False
|
||||
elif parameter.type in {"string", "select"}:
|
||||
transformed_result[parameter.name] = ""
|
||||
elif parameter.type.startswith("array"):
|
||||
if parameter.type.is_array_type():
|
||||
transformed_result[parameter.name] = build_segment_with_type(
|
||||
segment_type=SegmentType(parameter.type), value=[]
|
||||
)
|
||||
elif parameter.type in (SegmentType.STRING, SegmentType.SECRET):
|
||||
transformed_result[parameter.name] = ""
|
||||
elif parameter.type == SegmentType.NUMBER:
|
||||
transformed_result[parameter.name] = 0
|
||||
elif parameter.type == SegmentType.BOOLEAN:
|
||||
transformed_result[parameter.name] = False
|
||||
else:
|
||||
raise AssertionError("this statement should be unreachable.")
|
||||
|
||||
return transformed_result
|
||||
|
||||
|
|
|
|||
|
|
@ -3,6 +3,7 @@ from typing import Any, Literal, Union
|
|||
|
||||
from core.file import FileAttribute, file_manager
|
||||
from core.variables import ArrayFileSegment
|
||||
from core.variables.segments import BooleanSegment
|
||||
from core.workflow.entities.variable_pool import VariablePool
|
||||
|
||||
from .entities import Condition, SubCondition, SupportedComparisonOperator
|
||||
|
|
@ -51,6 +52,9 @@ class ConditionProcessor:
|
|||
expected_value = condition.value
|
||||
if isinstance(expected_value, str):
|
||||
expected_value = variable_pool.convert_template(expected_value).text
|
||||
# Here we need to explicit convet the input string to boolean.
|
||||
if isinstance(variable, BooleanSegment) and not variable.value_type.is_valid(expected_value):
|
||||
raise TypeError(f"unexpected value: type={type(expected_value)}, value={expected_value}")
|
||||
input_conditions.append(
|
||||
{
|
||||
"actual_value": actual_value,
|
||||
|
|
@ -77,7 +81,7 @@ def _evaluate_condition(
|
|||
*,
|
||||
operator: SupportedComparisonOperator,
|
||||
value: Any,
|
||||
expected: Union[str, Sequence[str], None],
|
||||
expected: Union[str, Sequence[str], bool, None],
|
||||
) -> bool:
|
||||
match operator:
|
||||
case "contains":
|
||||
|
|
|
|||
Loading…
Reference in New Issue