mirror of https://github.com/langgenius/dify.git
Merge branch 'main' into fix/chore-fix
This commit is contained in:
commit
196bfeaaf4
|
|
@ -125,7 +125,7 @@ jobs:
|
|||
with:
|
||||
images: ${{ env[matrix.image_name_env] }}
|
||||
tags: |
|
||||
type=raw,value=latest,enable=${{ startsWith(github.ref, 'refs/tags/') }}
|
||||
type=raw,value=latest,enable=${{ startsWith(github.ref, 'refs/tags/') && !contains(github.ref, '-') }}
|
||||
type=ref,event=branch
|
||||
type=sha,enable=true,priority=100,prefix=,suffix=,format=long
|
||||
type=raw,value=${{ github.ref_name }},enable=${{ startsWith(github.ref, 'refs/tags/') }}
|
||||
|
|
|
|||
|
|
@ -231,7 +231,8 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
|
|||
except Exception as e:
|
||||
logger.error(e)
|
||||
break
|
||||
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
|
||||
if tts_publisher:
|
||||
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
|
||||
|
||||
def _process_stream_response(
|
||||
self,
|
||||
|
|
|
|||
|
|
@ -212,7 +212,8 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
|
|||
except Exception as e:
|
||||
logger.error(e)
|
||||
break
|
||||
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
|
||||
if tts_publisher:
|
||||
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
|
||||
|
||||
def _process_stream_response(
|
||||
self,
|
||||
|
|
|
|||
|
|
@ -248,7 +248,8 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline, MessageCycleMan
|
|||
else:
|
||||
start_listener_time = time.time()
|
||||
yield MessageAudioStreamResponse(audio=audio.audio, task_id=task_id)
|
||||
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
|
||||
if publisher:
|
||||
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
|
||||
|
||||
def _process_stream_response(
|
||||
self, publisher: AppGeneratorTTSPublisher, trace_manager: Optional[TraceQueueManager] = None
|
||||
|
|
|
|||
|
|
@ -1,3 +1,4 @@
|
|||
from abc import ABC, abstractmethod
|
||||
from typing import Optional
|
||||
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
|
||||
|
|
@ -13,7 +14,7 @@ _TEXT_COLOR_MAPPING = {
|
|||
}
|
||||
|
||||
|
||||
class Callback:
|
||||
class Callback(ABC):
|
||||
"""
|
||||
Base class for callbacks.
|
||||
Only for LLM.
|
||||
|
|
@ -21,6 +22,7 @@ class Callback:
|
|||
|
||||
raise_error: bool = False
|
||||
|
||||
@abstractmethod
|
||||
def on_before_invoke(
|
||||
self,
|
||||
llm_instance: AIModel,
|
||||
|
|
@ -48,6 +50,7 @@ class Callback:
|
|||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def on_new_chunk(
|
||||
self,
|
||||
llm_instance: AIModel,
|
||||
|
|
@ -77,6 +80,7 @@ class Callback:
|
|||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def on_after_invoke(
|
||||
self,
|
||||
llm_instance: AIModel,
|
||||
|
|
@ -106,6 +110,7 @@ class Callback:
|
|||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def on_invoke_error(
|
||||
self,
|
||||
llm_instance: AIModel,
|
||||
|
|
|
|||
|
|
@ -0,0 +1,310 @@
|
|||
## Custom Integration of Pre-defined Models
|
||||
|
||||
### Introduction
|
||||
|
||||
After completing the vendors integration, the next step is to connect the vendor's models. To illustrate the entire connection process, we will use Xinference as an example to demonstrate a complete vendor integration.
|
||||
|
||||
It is important to note that for custom models, each model connection requires a complete vendor credential.
|
||||
|
||||
Unlike pre-defined models, a custom vendor integration always includes the following two parameters, which do not need to be defined in the vendor YAML file.
|
||||
|
||||

|
||||
|
||||
As mentioned earlier, vendors do not need to implement validate_provider_credential. The runtime will automatically call the corresponding model layer's validate_credentials to validate the credentials based on the model type and name selected by the user.
|
||||
|
||||
### Writing the Vendor YAML
|
||||
|
||||
First, we need to identify the types of models supported by the vendor we are integrating.
|
||||
|
||||
Currently supported model types are as follows:
|
||||
|
||||
- `llm` Text Generation Models
|
||||
|
||||
- `text_embedding` Text Embedding Models
|
||||
|
||||
- `rerank` Rerank Models
|
||||
|
||||
- `speech2text` Speech-to-Text
|
||||
|
||||
- `tts` Text-to-Speech
|
||||
|
||||
- `moderation` Moderation
|
||||
|
||||
Xinference supports LLM, Text Embedding, and Rerank. So we will start by writing xinference.yaml.
|
||||
|
||||
```yaml
|
||||
provider: xinference #Define the vendor identifier
|
||||
label: # Vendor display name, supports both en_US (English) and zh_Hans (Simplified Chinese). If zh_Hans is not set, it will use en_US by default.
|
||||
en_US: Xorbits Inference
|
||||
icon_small: # Small icon, refer to other vendors' icons stored in the _assets directory within the vendor implementation directory; follows the same language policy as the label
|
||||
en_US: icon_s_en.svg
|
||||
icon_large: # Large icon
|
||||
en_US: icon_l_en.svg
|
||||
help: # Help information
|
||||
title:
|
||||
en_US: How to deploy Xinference
|
||||
zh_Hans: 如何部署 Xinference
|
||||
url:
|
||||
en_US: https://github.com/xorbitsai/inference
|
||||
supported_model_types: # Supported model types. Xinference supports LLM, Text Embedding, and Rerank
|
||||
- llm
|
||||
- text-embedding
|
||||
- rerank
|
||||
configurate_methods: # Since Xinference is a locally deployed vendor with no predefined models, users need to deploy whatever models they need according to Xinference documentation. Thus, it only supports custom models.
|
||||
- customizable-model
|
||||
provider_credential_schema:
|
||||
credential_form_schemas:
|
||||
```
|
||||
|
||||
|
||||
Then, we need to determine what credentials are required to define a model in Xinference.
|
||||
|
||||
- Since it supports three different types of models, we need to specify the model_type to denote the model type. Here is how we can define it:
|
||||
|
||||
```yaml
|
||||
provider_credential_schema:
|
||||
credential_form_schemas:
|
||||
- variable: model_type
|
||||
type: select
|
||||
label:
|
||||
en_US: Model type
|
||||
zh_Hans: 模型类型
|
||||
required: true
|
||||
options:
|
||||
- value: text-generation
|
||||
label:
|
||||
en_US: Language Model
|
||||
zh_Hans: 语言模型
|
||||
- value: embeddings
|
||||
label:
|
||||
en_US: Text Embedding
|
||||
- value: reranking
|
||||
label:
|
||||
en_US: Rerank
|
||||
```
|
||||
|
||||
- Next, each model has its own model_name, so we need to define that here:
|
||||
|
||||
```yaml
|
||||
- variable: model_name
|
||||
type: text-input
|
||||
label:
|
||||
en_US: Model name
|
||||
zh_Hans: 模型名称
|
||||
required: true
|
||||
placeholder:
|
||||
zh_Hans: 填写模型名称
|
||||
en_US: Input model name
|
||||
```
|
||||
|
||||
- Specify the Xinference local deployment address:
|
||||
|
||||
```yaml
|
||||
- variable: server_url
|
||||
label:
|
||||
zh_Hans: 服务器URL
|
||||
en_US: Server url
|
||||
type: text-input
|
||||
required: true
|
||||
placeholder:
|
||||
zh_Hans: 在此输入Xinference的服务器地址,如 https://example.com/xxx
|
||||
en_US: Enter the url of your Xinference, for example https://example.com/xxx
|
||||
```
|
||||
|
||||
- Each model has a unique model_uid, so we also need to define that here:
|
||||
|
||||
```yaml
|
||||
- variable: model_uid
|
||||
label:
|
||||
zh_Hans: 模型UID
|
||||
en_US: Model uid
|
||||
type: text-input
|
||||
required: true
|
||||
placeholder:
|
||||
zh_Hans: 在此输入您的Model UID
|
||||
en_US: Enter the model uid
|
||||
```
|
||||
|
||||
Now, we have completed the basic definition of the vendor.
|
||||
|
||||
### Writing the Model Code
|
||||
|
||||
Next, let's take the `llm` type as an example and write `xinference.llm.llm.py`.
|
||||
|
||||
In `llm.py`, create a Xinference LLM class, we name it `XinferenceAILargeLanguageModel` (this can be arbitrary), inheriting from the `__base.large_language_model.LargeLanguageModel` base class, and implement the following methods:
|
||||
|
||||
- LLM Invocation
|
||||
|
||||
Implement the core method for LLM invocation, supporting both stream and synchronous responses.
|
||||
|
||||
```python
|
||||
def _invoke(self, model: str, credentials: dict,
|
||||
prompt_messages: list[PromptMessage], model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
|
||||
stream: bool = True, user: Optional[str] = None) \
|
||||
-> Union[LLMResult, Generator]:
|
||||
"""
|
||||
Invoke large language model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param prompt_messages: prompt messages
|
||||
:param model_parameters: model parameters
|
||||
:param tools: tools for tool usage
|
||||
:param stop: stop words
|
||||
:param stream: is the response a stream
|
||||
:param user: unique user id
|
||||
:return: full response or stream response chunk generator result
|
||||
"""
|
||||
```
|
||||
|
||||
When implementing, ensure to use two functions to return data separately for synchronous and stream responses. This is important because Python treats functions containing the `yield` keyword as generator functions, mandating them to return `Generator` types. Here’s an example (note that the example uses simplified parameters; in real implementation, use the parameter list as defined above):
|
||||
|
||||
```python
|
||||
def _invoke(self, stream: bool, **kwargs) \
|
||||
-> Union[LLMResult, Generator]:
|
||||
if stream:
|
||||
return self._handle_stream_response(**kwargs)
|
||||
return self._handle_sync_response(**kwargs)
|
||||
|
||||
def _handle_stream_response(self, **kwargs) -> Generator:
|
||||
for chunk in response:
|
||||
yield chunk
|
||||
def _handle_sync_response(self, **kwargs) -> LLMResult:
|
||||
return LLMResult(**response)
|
||||
```
|
||||
|
||||
- Pre-compute Input Tokens
|
||||
|
||||
If the model does not provide an interface for pre-computing tokens, you can return 0 directly.
|
||||
|
||||
```python
|
||||
def get_num_tokens(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],tools: Optional[list[PromptMessageTool]] = None) -> int:
|
||||
"""
|
||||
Get number of tokens for given prompt messages
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param prompt_messages: prompt messages
|
||||
:param tools: tools for tool usage
|
||||
:return: token count
|
||||
"""
|
||||
```
|
||||
|
||||
|
||||
Sometimes, you might not want to return 0 directly. In such cases, you can use `self._get_num_tokens_by_gpt2(text: str)` to get pre-computed tokens. This method is provided by the `AIModel` base class, and it uses GPT2's Tokenizer for calculation. However, it should be noted that this is only a substitute and may not be fully accurate.
|
||||
|
||||
- Model Credentials Validation
|
||||
|
||||
Similar to vendor credentials validation, this method validates individual model credentials.
|
||||
|
||||
```python
|
||||
def validate_credentials(self, model: str, credentials: dict) -> None:
|
||||
"""
|
||||
Validate model credentials
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:return: None
|
||||
"""
|
||||
```
|
||||
|
||||
- Model Parameter Schema
|
||||
|
||||
Unlike custom types, since the YAML file does not define which parameters a model supports, we need to dynamically generate the model parameter schema.
|
||||
|
||||
For instance, Xinference supports `max_tokens`, `temperature`, and `top_p` parameters.
|
||||
|
||||
However, some vendors may support different parameters for different models. For example, the `OpenLLM` vendor supports `top_k`, but not all models provided by this vendor support `top_k`. Let's say model A supports `top_k` but model B does not. In such cases, we need to dynamically generate the model parameter schema, as illustrated below:
|
||||
|
||||
```python
|
||||
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
|
||||
"""
|
||||
used to define customizable model schema
|
||||
"""
|
||||
rules = [
|
||||
ParameterRule(
|
||||
name='temperature', type=ParameterType.FLOAT,
|
||||
use_template='temperature',
|
||||
label=I18nObject(
|
||||
zh_Hans='温度', en_US='Temperature'
|
||||
)
|
||||
),
|
||||
ParameterRule(
|
||||
name='top_p', type=ParameterType.FLOAT,
|
||||
use_template='top_p',
|
||||
label=I18nObject(
|
||||
zh_Hans='Top P', en_US='Top P'
|
||||
)
|
||||
),
|
||||
ParameterRule(
|
||||
name='max_tokens', type=ParameterType.INT,
|
||||
use_template='max_tokens',
|
||||
min=1,
|
||||
default=512,
|
||||
label=I18nObject(
|
||||
zh_Hans='最大生成长度', en_US='Max Tokens'
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
# if model is A, add top_k to rules
|
||||
if model == 'A':
|
||||
rules.append(
|
||||
ParameterRule(
|
||||
name='top_k', type=ParameterType.INT,
|
||||
use_template='top_k',
|
||||
min=1,
|
||||
default=50,
|
||||
label=I18nObject(
|
||||
zh_Hans='Top K', en_US='Top K'
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
"""
|
||||
some NOT IMPORTANT code here
|
||||
"""
|
||||
|
||||
entity = AIModelEntity(
|
||||
model=model,
|
||||
label=I18nObject(
|
||||
en_US=model
|
||||
),
|
||||
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
|
||||
model_type=model_type,
|
||||
model_properties={
|
||||
ModelPropertyKey.MODE: ModelType.LLM,
|
||||
},
|
||||
parameter_rules=rules
|
||||
)
|
||||
|
||||
return entity
|
||||
```
|
||||
|
||||
- Exception Error Mapping
|
||||
|
||||
When a model invocation error occurs, it should be mapped to the runtime's specified `InvokeError` type, enabling Dify to handle different errors appropriately.
|
||||
|
||||
Runtime Errors:
|
||||
|
||||
- `InvokeConnectionError` Connection error during invocation
|
||||
- `InvokeServerUnavailableError` Service provider unavailable
|
||||
- `InvokeRateLimitError` Rate limit reached
|
||||
- `InvokeAuthorizationError` Authorization failure
|
||||
- `InvokeBadRequestError` Invalid request parameters
|
||||
|
||||
```python
|
||||
@property
|
||||
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
|
||||
"""
|
||||
Map model invoke error to unified error
|
||||
The key is the error type thrown to the caller
|
||||
The value is the error type thrown by the model,
|
||||
which needs to be converted into a unified error type for the caller.
|
||||
|
||||
:return: Invoke error mapping
|
||||
"""
|
||||
```
|
||||
|
||||
For interface method details, see: [Interfaces](./interfaces.md). For specific implementations, refer to: [llm.py](https://github.com/langgenius/dify-runtime/blob/main/lib/model_providers/anthropic/llm/llm.py).
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 230 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 205 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 44 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 262 KiB |
|
|
@ -0,0 +1,173 @@
|
|||
## Predefined Model Integration
|
||||
|
||||
After completing the vendor integration, the next step is to integrate the models from the vendor.
|
||||
|
||||
First, we need to determine the type of model to be integrated and create the corresponding model type `module` under the respective vendor's directory.
|
||||
|
||||
Currently supported model types are:
|
||||
|
||||
- `llm` Text Generation Model
|
||||
- `text_embedding` Text Embedding Model
|
||||
- `rerank` Rerank Model
|
||||
- `speech2text` Speech-to-Text
|
||||
- `tts` Text-to-Speech
|
||||
- `moderation` Moderation
|
||||
|
||||
Continuing with `Anthropic` as an example, `Anthropic` only supports LLM, so create a `module` named `llm` under `model_providers.anthropic`.
|
||||
|
||||
For predefined models, we first need to create a YAML file named after the model under the `llm` `module`, such as `claude-2.1.yaml`.
|
||||
|
||||
### Prepare Model YAML
|
||||
|
||||
```yaml
|
||||
model: claude-2.1 # Model identifier
|
||||
# Display name of the model, which can be set to en_US English or zh_Hans Chinese. If zh_Hans is not set, it will default to en_US.
|
||||
# This can also be omitted, in which case the model identifier will be used as the label
|
||||
label:
|
||||
en_US: claude-2.1
|
||||
model_type: llm # Model type, claude-2.1 is an LLM
|
||||
features: # Supported features, agent-thought supports Agent reasoning, vision supports image understanding
|
||||
- agent-thought
|
||||
model_properties: # Model properties
|
||||
mode: chat # LLM mode, complete for text completion models, chat for conversation models
|
||||
context_size: 200000 # Maximum context size
|
||||
parameter_rules: # Parameter rules for the model call; only LLM requires this
|
||||
- name: temperature # Parameter variable name
|
||||
# Five default configuration templates are provided: temperature/top_p/max_tokens/presence_penalty/frequency_penalty
|
||||
# The template variable name can be set directly in use_template, which will use the default configuration in entities.defaults.PARAMETER_RULE_TEMPLATE
|
||||
# Additional configuration parameters will override the default configuration if set
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label: # Display name of the parameter
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int # Parameter type, supports float/int/string/boolean
|
||||
help: # Help information, describing the parameter's function
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false # Whether the parameter is mandatory; can be omitted
|
||||
- name: max_tokens_to_sample
|
||||
use_template: max_tokens
|
||||
default: 4096 # Default value of the parameter
|
||||
min: 1 # Minimum value of the parameter, applicable to float/int only
|
||||
max: 4096 # Maximum value of the parameter, applicable to float/int only
|
||||
pricing: # Pricing information
|
||||
input: '8.00' # Input unit price, i.e., prompt price
|
||||
output: '24.00' # Output unit price, i.e., response content price
|
||||
unit: '0.000001' # Price unit, meaning the above prices are per 100K
|
||||
currency: USD # Price currency
|
||||
```
|
||||
|
||||
It is recommended to prepare all model configurations before starting the implementation of the model code.
|
||||
|
||||
You can also refer to the YAML configuration information under the corresponding model type directories of other vendors in the `model_providers` directory. For the complete YAML rules, refer to: [Schema](schema.md#aimodelentity).
|
||||
|
||||
### Implement the Model Call Code
|
||||
|
||||
Next, create a Python file named `llm.py` under the `llm` `module` to write the implementation code.
|
||||
|
||||
Create an Anthropic LLM class named `AnthropicLargeLanguageModel` (or any other name), inheriting from the `__base.large_language_model.LargeLanguageModel` base class, and implement the following methods:
|
||||
|
||||
- LLM Call
|
||||
|
||||
Implement the core method for calling the LLM, supporting both streaming and synchronous responses.
|
||||
|
||||
```python
|
||||
def _invoke(self, model: str, credentials: dict,
|
||||
prompt_messages: list[PromptMessage], model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
|
||||
stream: bool = True, user: Optional[str] = None) \
|
||||
-> Union[LLMResult, Generator]:
|
||||
"""
|
||||
Invoke large language model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param prompt_messages: prompt messages
|
||||
:param model_parameters: model parameters
|
||||
:param tools: tools for tool calling
|
||||
:param stop: stop words
|
||||
:param stream: is stream response
|
||||
:param user: unique user id
|
||||
:return: full response or stream response chunk generator result
|
||||
"""
|
||||
```
|
||||
|
||||
Ensure to use two functions for returning data, one for synchronous returns and the other for streaming returns, because Python identifies functions containing the `yield` keyword as generator functions, fixing the return type to `Generator`. Thus, synchronous and streaming returns need to be implemented separately, as shown below (note that the example uses simplified parameters, for actual implementation follow the above parameter list):
|
||||
|
||||
```python
|
||||
def _invoke(self, stream: bool, **kwargs) \
|
||||
-> Union[LLMResult, Generator]:
|
||||
if stream:
|
||||
return self._handle_stream_response(**kwargs)
|
||||
return self._handle_sync_response(**kwargs)
|
||||
|
||||
def _handle_stream_response(self, **kwargs) -> Generator:
|
||||
for chunk in response:
|
||||
yield chunk
|
||||
def _handle_sync_response(self, **kwargs) -> LLMResult:
|
||||
return LLMResult(**response)
|
||||
```
|
||||
|
||||
- Pre-compute Input Tokens
|
||||
|
||||
If the model does not provide an interface to precompute tokens, return 0 directly.
|
||||
|
||||
```python
|
||||
def get_num_tokens(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
|
||||
tools: Optional[list[PromptMessageTool]] = None) -> int:
|
||||
"""
|
||||
Get number of tokens for given prompt messages
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param prompt_messages: prompt messages
|
||||
:param tools: tools for tool calling
|
||||
:return:
|
||||
"""
|
||||
```
|
||||
|
||||
- Validate Model Credentials
|
||||
|
||||
Similar to vendor credential validation, but specific to a single model.
|
||||
|
||||
```python
|
||||
def validate_credentials(self, model: str, credentials: dict) -> None:
|
||||
"""
|
||||
Validate model credentials
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:return:
|
||||
"""
|
||||
```
|
||||
|
||||
- Map Invoke Errors
|
||||
|
||||
When a model call fails, map it to a specific `InvokeError` type as required by Runtime, allowing Dify to handle different errors accordingly.
|
||||
|
||||
Runtime Errors:
|
||||
|
||||
- `InvokeConnectionError` Connection error
|
||||
|
||||
- `InvokeServerUnavailableError` Service provider unavailable
|
||||
- `InvokeRateLimitError` Rate limit reached
|
||||
- `InvokeAuthorizationError` Authorization failed
|
||||
- `InvokeBadRequestError` Parameter error
|
||||
|
||||
```python
|
||||
@property
|
||||
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
|
||||
"""
|
||||
Map model invoke error to unified error
|
||||
The key is the error type thrown to the caller
|
||||
The value is the error type thrown by the model,
|
||||
which needs to be converted into a unified error type for the caller.
|
||||
|
||||
:return: Invoke error mapping
|
||||
"""
|
||||
```
|
||||
|
||||
For interface method explanations, see: [Interfaces](./interfaces.md). For detailed implementation, refer to: [llm.py](https://github.com/langgenius/dify-runtime/blob/main/lib/model_providers/anthropic/llm/llm.py).
|
||||
|
|
@ -58,7 +58,7 @@ provider_credential_schema: # Provider credential rules, as Anthropic only supp
|
|||
en_US: Enter your API URL
|
||||
```
|
||||
|
||||
You can also refer to the YAML configuration information under other provider directories in `model_providers`. The complete YAML rules are available at: [Schema](schema.md#Provider).
|
||||
You can also refer to the YAML configuration information under other provider directories in `model_providers`. The complete YAML rules are available at: [Schema](schema.md#provider).
|
||||
|
||||
### Implementing Provider Code
|
||||
|
||||
|
|
|
|||
|
|
@ -117,7 +117,7 @@ model_credential_schema:
|
|||
en_US: Enter your API Base
|
||||
```
|
||||
|
||||
也可以参考 `model_providers` 目录下其他供应商目录下的 YAML 配置信息,完整的 YAML 规则见:[Schema](schema.md#Provider)。
|
||||
也可以参考 `model_providers` 目录下其他供应商目录下的 YAML 配置信息,完整的 YAML 规则见:[Schema](schema.md#provider)。
|
||||
|
||||
#### 实现供应商代码
|
||||
|
||||
|
|
|
|||
|
|
@ -40,3 +40,4 @@
|
|||
- fireworks
|
||||
- mixedbread
|
||||
- nomic
|
||||
- voyage
|
||||
|
|
|
|||
|
|
@ -1,238 +0,0 @@
|
|||
import json
|
||||
import logging
|
||||
import time
|
||||
from typing import Optional
|
||||
|
||||
import boto3
|
||||
from botocore.config import Config
|
||||
from botocore.exceptions import (
|
||||
ClientError,
|
||||
EndpointConnectionError,
|
||||
NoRegionError,
|
||||
ServiceNotInRegionError,
|
||||
UnknownServiceError,
|
||||
)
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import (
|
||||
InvokeAuthorizationError,
|
||||
InvokeBadRequestError,
|
||||
InvokeConnectionError,
|
||||
InvokeError,
|
||||
InvokeRateLimitError,
|
||||
InvokeServerUnavailableError,
|
||||
)
|
||||
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class BedrockTextEmbeddingModel(TextEmbeddingModel):
|
||||
def _invoke(
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
texts: list[str],
|
||||
user: Optional[str] = None,
|
||||
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
|
||||
) -> TextEmbeddingResult:
|
||||
"""
|
||||
Invoke text embedding model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param texts: texts to embed
|
||||
:param user: unique user id
|
||||
:param input_type: input type
|
||||
:return: embeddings result
|
||||
"""
|
||||
client_config = Config(region_name=credentials["aws_region"])
|
||||
|
||||
bedrock_runtime = boto3.client(
|
||||
service_name="bedrock-runtime",
|
||||
config=client_config,
|
||||
aws_access_key_id=credentials.get("aws_access_key_id"),
|
||||
aws_secret_access_key=credentials.get("aws_secret_access_key"),
|
||||
)
|
||||
|
||||
embeddings = []
|
||||
token_usage = 0
|
||||
|
||||
model_prefix = model.split(".")[0]
|
||||
|
||||
if model_prefix == "amazon":
|
||||
for text in texts:
|
||||
body = {
|
||||
"inputText": text,
|
||||
}
|
||||
response_body = self._invoke_bedrock_embedding(model, bedrock_runtime, body)
|
||||
embeddings.extend([response_body.get("embedding")])
|
||||
token_usage += response_body.get("inputTextTokenCount")
|
||||
logger.warning(f"Total Tokens: {token_usage}")
|
||||
result = TextEmbeddingResult(
|
||||
model=model,
|
||||
embeddings=embeddings,
|
||||
usage=self._calc_response_usage(model=model, credentials=credentials, tokens=token_usage),
|
||||
)
|
||||
return result
|
||||
|
||||
if model_prefix == "cohere":
|
||||
input_type = "search_document" if len(texts) > 1 else "search_query"
|
||||
for text in texts:
|
||||
body = {
|
||||
"texts": [text],
|
||||
"input_type": input_type,
|
||||
}
|
||||
response_body = self._invoke_bedrock_embedding(model, bedrock_runtime, body)
|
||||
embeddings.extend(response_body.get("embeddings"))
|
||||
token_usage += len(text)
|
||||
result = TextEmbeddingResult(
|
||||
model=model,
|
||||
embeddings=embeddings,
|
||||
usage=self._calc_response_usage(model=model, credentials=credentials, tokens=token_usage),
|
||||
)
|
||||
return result
|
||||
|
||||
# others
|
||||
raise ValueError(f"Got unknown model prefix {model_prefix} when handling block response")
|
||||
|
||||
def get_num_tokens(self, model: str, credentials: dict, texts: list[str]) -> int:
|
||||
"""
|
||||
Get number of tokens for given prompt messages
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param texts: texts to embed
|
||||
:return:
|
||||
"""
|
||||
num_tokens = 0
|
||||
for text in texts:
|
||||
num_tokens += self._get_num_tokens_by_gpt2(text)
|
||||
return num_tokens
|
||||
|
||||
def validate_credentials(self, model: str, credentials: dict) -> None:
|
||||
"""
|
||||
Validate model credentials
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:return:
|
||||
"""
|
||||
|
||||
@property
|
||||
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
|
||||
"""
|
||||
Map model invoke error to unified error
|
||||
The key is the ermd = genai.GenerativeModel(model) error type thrown to the caller
|
||||
The value is the md = genai.GenerativeModel(model) error type thrown by the model,
|
||||
which needs to be converted into a unified error type for the caller.
|
||||
|
||||
:return: Invoke emd = genai.GenerativeModel(model) error mapping
|
||||
"""
|
||||
return {
|
||||
InvokeConnectionError: [],
|
||||
InvokeServerUnavailableError: [],
|
||||
InvokeRateLimitError: [],
|
||||
InvokeAuthorizationError: [],
|
||||
InvokeBadRequestError: [],
|
||||
}
|
||||
|
||||
def _create_payload(
|
||||
self,
|
||||
model_prefix: str,
|
||||
texts: list[str],
|
||||
model_parameters: dict,
|
||||
stop: Optional[list[str]] = None,
|
||||
stream: bool = True,
|
||||
):
|
||||
"""
|
||||
Create payload for bedrock api call depending on model provider
|
||||
"""
|
||||
payload = {}
|
||||
|
||||
if model_prefix == "amazon":
|
||||
payload["inputText"] = texts
|
||||
|
||||
def _calc_response_usage(self, model: str, credentials: dict, tokens: int) -> EmbeddingUsage:
|
||||
"""
|
||||
Calculate response usage
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param tokens: input tokens
|
||||
:return: usage
|
||||
"""
|
||||
# get input price info
|
||||
input_price_info = self.get_price(
|
||||
model=model, credentials=credentials, price_type=PriceType.INPUT, tokens=tokens
|
||||
)
|
||||
|
||||
# transform usage
|
||||
usage = EmbeddingUsage(
|
||||
tokens=tokens,
|
||||
total_tokens=tokens,
|
||||
unit_price=input_price_info.unit_price,
|
||||
price_unit=input_price_info.unit,
|
||||
total_price=input_price_info.total_amount,
|
||||
currency=input_price_info.currency,
|
||||
latency=time.perf_counter() - self.started_at,
|
||||
)
|
||||
|
||||
return usage
|
||||
|
||||
def _map_client_to_invoke_error(self, error_code: str, error_msg: str) -> type[InvokeError]:
|
||||
"""
|
||||
Map client error to invoke error
|
||||
|
||||
:param error_code: error code
|
||||
:param error_msg: error message
|
||||
:return: invoke error
|
||||
"""
|
||||
|
||||
if error_code == "AccessDeniedException":
|
||||
return InvokeAuthorizationError(error_msg)
|
||||
elif error_code in {"ResourceNotFoundException", "ValidationException"}:
|
||||
return InvokeBadRequestError(error_msg)
|
||||
elif error_code in {"ThrottlingException", "ServiceQuotaExceededException"}:
|
||||
return InvokeRateLimitError(error_msg)
|
||||
elif error_code in {
|
||||
"ModelTimeoutException",
|
||||
"ModelErrorException",
|
||||
"InternalServerException",
|
||||
"ModelNotReadyException",
|
||||
}:
|
||||
return InvokeServerUnavailableError(error_msg)
|
||||
elif error_code == "ModelStreamErrorException":
|
||||
return InvokeConnectionError(error_msg)
|
||||
|
||||
return InvokeError(error_msg)
|
||||
|
||||
def _invoke_bedrock_embedding(
|
||||
self,
|
||||
model: str,
|
||||
bedrock_runtime,
|
||||
body: dict,
|
||||
):
|
||||
accept = "application/json"
|
||||
content_type = "application/json"
|
||||
try:
|
||||
response = bedrock_runtime.invoke_model(
|
||||
body=json.dumps(body), modelId=model, accept=accept, contentType=content_type
|
||||
)
|
||||
response_body = json.loads(response.get("body").read().decode("utf-8"))
|
||||
return response_body
|
||||
except ClientError as ex:
|
||||
error_code = ex.response["Error"]["Code"]
|
||||
full_error_msg = f"{error_code}: {ex.response['Error']['Message']}"
|
||||
raise self._map_client_to_invoke_error(error_code, full_error_msg)
|
||||
|
||||
except (EndpointConnectionError, NoRegionError, ServiceNotInRegionError) as ex:
|
||||
raise InvokeConnectionError(str(ex))
|
||||
|
||||
except UnknownServiceError as ex:
|
||||
raise InvokeServerUnavailableError(str(ex))
|
||||
|
||||
except Exception as ex:
|
||||
raise InvokeError(str(ex))
|
||||
|
|
@ -1,223 +0,0 @@
|
|||
import json
|
||||
import time
|
||||
from decimal import Decimal
|
||||
from typing import Optional
|
||||
from urllib.parse import urljoin
|
||||
|
||||
import numpy as np
|
||||
import requests
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import (
|
||||
AIModelEntity,
|
||||
FetchFrom,
|
||||
ModelPropertyKey,
|
||||
ModelType,
|
||||
PriceConfig,
|
||||
PriceType,
|
||||
)
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
||||
from core.model_runtime.model_providers.openai_api_compatible._common import _CommonOaiApiCompat
|
||||
|
||||
|
||||
class OAICompatEmbeddingModel(_CommonOaiApiCompat, TextEmbeddingModel):
|
||||
"""
|
||||
Model class for an OpenAI API-compatible text embedding model.
|
||||
"""
|
||||
|
||||
def _invoke(
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
texts: list[str],
|
||||
user: Optional[str] = None,
|
||||
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
|
||||
) -> TextEmbeddingResult:
|
||||
"""
|
||||
Invoke text embedding model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param texts: texts to embed
|
||||
:param user: unique user id
|
||||
:param input_type: input type
|
||||
:return: embeddings result
|
||||
"""
|
||||
|
||||
# Prepare headers and payload for the request
|
||||
headers = {"Content-Type": "application/json"}
|
||||
|
||||
api_key = credentials.get("api_key")
|
||||
if api_key:
|
||||
headers["Authorization"] = f"Bearer {api_key}"
|
||||
|
||||
if "endpoint_url" not in credentials or credentials["endpoint_url"] == "":
|
||||
endpoint_url = "https://cloud.perfxlab.cn/v1/"
|
||||
else:
|
||||
endpoint_url = credentials.get("endpoint_url")
|
||||
if not endpoint_url.endswith("/"):
|
||||
endpoint_url += "/"
|
||||
|
||||
endpoint_url = urljoin(endpoint_url, "embeddings")
|
||||
|
||||
extra_model_kwargs = {}
|
||||
if user:
|
||||
extra_model_kwargs["user"] = user
|
||||
|
||||
extra_model_kwargs["encoding_format"] = "float"
|
||||
|
||||
# get model properties
|
||||
context_size = self._get_context_size(model, credentials)
|
||||
max_chunks = self._get_max_chunks(model, credentials)
|
||||
|
||||
inputs = []
|
||||
indices = []
|
||||
used_tokens = 0
|
||||
|
||||
for i, text in enumerate(texts):
|
||||
# Here token count is only an approximation based on the GPT2 tokenizer
|
||||
# TODO: Optimize for better token estimation and chunking
|
||||
num_tokens = self._get_num_tokens_by_gpt2(text)
|
||||
|
||||
if num_tokens >= context_size:
|
||||
cutoff = int(np.floor(len(text) * (context_size / num_tokens)))
|
||||
# if num tokens is larger than context length, only use the start
|
||||
inputs.append(text[0:cutoff])
|
||||
else:
|
||||
inputs.append(text)
|
||||
indices += [i]
|
||||
|
||||
batched_embeddings = []
|
||||
_iter = range(0, len(inputs), max_chunks)
|
||||
|
||||
for i in _iter:
|
||||
# Prepare the payload for the request
|
||||
payload = {"input": inputs[i : i + max_chunks], "model": model, **extra_model_kwargs}
|
||||
|
||||
# Make the request to the OpenAI API
|
||||
response = requests.post(endpoint_url, headers=headers, data=json.dumps(payload), timeout=(10, 300))
|
||||
|
||||
response.raise_for_status() # Raise an exception for HTTP errors
|
||||
response_data = response.json()
|
||||
|
||||
# Extract embeddings and used tokens from the response
|
||||
embeddings_batch = [data["embedding"] for data in response_data["data"]]
|
||||
embedding_used_tokens = response_data["usage"]["total_tokens"]
|
||||
|
||||
used_tokens += embedding_used_tokens
|
||||
batched_embeddings += embeddings_batch
|
||||
|
||||
# calc usage
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials, tokens=used_tokens)
|
||||
|
||||
return TextEmbeddingResult(embeddings=batched_embeddings, usage=usage, model=model)
|
||||
|
||||
def get_num_tokens(self, model: str, credentials: dict, texts: list[str]) -> int:
|
||||
"""
|
||||
Approximate number of tokens for given messages using GPT2 tokenizer
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param texts: texts to embed
|
||||
:return:
|
||||
"""
|
||||
return sum(self._get_num_tokens_by_gpt2(text) for text in texts)
|
||||
|
||||
def validate_credentials(self, model: str, credentials: dict) -> None:
|
||||
"""
|
||||
Validate model credentials
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:return:
|
||||
"""
|
||||
try:
|
||||
headers = {"Content-Type": "application/json"}
|
||||
|
||||
api_key = credentials.get("api_key")
|
||||
|
||||
if api_key:
|
||||
headers["Authorization"] = f"Bearer {api_key}"
|
||||
|
||||
if "endpoint_url" not in credentials or credentials["endpoint_url"] == "":
|
||||
endpoint_url = "https://cloud.perfxlab.cn/v1/"
|
||||
else:
|
||||
endpoint_url = credentials.get("endpoint_url")
|
||||
if not endpoint_url.endswith("/"):
|
||||
endpoint_url += "/"
|
||||
|
||||
endpoint_url = urljoin(endpoint_url, "embeddings")
|
||||
|
||||
payload = {"input": "ping", "model": model}
|
||||
|
||||
response = requests.post(url=endpoint_url, headers=headers, data=json.dumps(payload), timeout=(10, 300))
|
||||
|
||||
if response.status_code != 200:
|
||||
raise CredentialsValidateFailedError(
|
||||
f"Credentials validation failed with status code {response.status_code}"
|
||||
)
|
||||
|
||||
try:
|
||||
json_result = response.json()
|
||||
except json.JSONDecodeError as e:
|
||||
raise CredentialsValidateFailedError("Credentials validation failed: JSON decode error")
|
||||
|
||||
if "model" not in json_result:
|
||||
raise CredentialsValidateFailedError("Credentials validation failed: invalid response")
|
||||
except CredentialsValidateFailedError:
|
||||
raise
|
||||
except Exception as ex:
|
||||
raise CredentialsValidateFailedError(str(ex))
|
||||
|
||||
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity:
|
||||
"""
|
||||
generate custom model entities from credentials
|
||||
"""
|
||||
entity = AIModelEntity(
|
||||
model=model,
|
||||
label=I18nObject(en_US=model),
|
||||
model_type=ModelType.TEXT_EMBEDDING,
|
||||
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
|
||||
model_properties={
|
||||
ModelPropertyKey.CONTEXT_SIZE: int(credentials.get("context_size")),
|
||||
ModelPropertyKey.MAX_CHUNKS: 1,
|
||||
},
|
||||
parameter_rules=[],
|
||||
pricing=PriceConfig(
|
||||
input=Decimal(credentials.get("input_price", 0)),
|
||||
unit=Decimal(credentials.get("unit", 0)),
|
||||
currency=credentials.get("currency", "USD"),
|
||||
),
|
||||
)
|
||||
|
||||
return entity
|
||||
|
||||
def _calc_response_usage(self, model: str, credentials: dict, tokens: int) -> EmbeddingUsage:
|
||||
"""
|
||||
Calculate response usage
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param tokens: input tokens
|
||||
:return: usage
|
||||
"""
|
||||
# get input price info
|
||||
input_price_info = self.get_price(
|
||||
model=model, credentials=credentials, price_type=PriceType.INPUT, tokens=tokens
|
||||
)
|
||||
|
||||
# transform usage
|
||||
usage = EmbeddingUsage(
|
||||
tokens=tokens,
|
||||
total_tokens=tokens,
|
||||
unit_price=input_price_info.unit_price,
|
||||
price_unit=input_price_info.unit,
|
||||
total_price=input_price_info.total_amount,
|
||||
currency=input_price_info.currency,
|
||||
latency=time.perf_counter() - self.started_at,
|
||||
)
|
||||
|
||||
return usage
|
||||
|
|
@ -0,0 +1,21 @@
|
|||
<svg version="1.0" xmlns="http://www.w3.org/2000/svg" width="100.000000pt" height="19.000000pt" viewBox="0 0 300.000000 57.000000" preserveAspectRatio="xMidYMid meet"><g transform="translate(0.000000,57.000000) scale(0.100000,-0.100000)" fill="#000000" stroke="none"><path d="M2505 368 c-38 -84 -86 -188 -106 -230 l-38 -78 27 0 c24 0 30 7 55
|
||||
75 l28 75 100 0 100 0 25 -55 c13 -31 24 -64 24 -75 0 -17 7 -20 44 -20 l43 0
|
||||
-37 73 c-20 39 -68 143 -106 229 -38 87 -74 158 -80 158 -5 0 -41 -69 -79
|
||||
-152z m110 -30 c22 -51 41 -95 42 -98 2 -3 -36 -6 -83 -7 -76 -1 -85 0 -81 15
|
||||
12 40 72 182 77 182 3 0 24 -41 45 -92z"/><path d="M63 493 c19 -61 197 -438 209 -440 10 -2 147 282 216 449 2 4 -10 8
|
||||
-27 8 -23 0 -31 -5 -31 -17 0 -16 -142 -365 -146 -360 -8 11 -144 329 -149
|
||||
350 -6 23 -12 27 -42 27 -29 0 -34 -3 -30 -17z"/><path d="M2855 285 l0 -225 30 0 30 0 0 225 0 225 -30 0 -30 0 0 -225z"/><path d="M588 380 c-55 -30 -82 -74 -86 -145 -3 -50 0 -66 20 -95 39 -58 82
|
||||
-80 153 -80 68 0 110 21 149 73 32 43 30 150 -3 196 -47 66 -158 90 -233 51z
|
||||
m133 -16 c59 -30 89 -156 54 -224 -45 -87 -162 -78 -201 16 -18 44 -18 128 1
|
||||
164 28 55 90 73 146 44z"/><path d="M935 303 l76 -98 -7 -72 -6 -73 33 0 34 0 -3 78 -4 77 71 93 c65 85
|
||||
68 92 46 92 -15 0 -29 -9 -36 -22 -18 -33 -90 -128 -98 -128 -6 1 -67 85 -88
|
||||
122 -8 15 -24 23 -53 25 l-41 4 76 -98z"/><path d="M1257 230 c-82 -169 -83 -170 -57 -170 17 0 27 6 27 15 0 8 7 31 17
|
||||
52 l17 38 79 0 78 1 16 -34 c9 -18 16 -42 16 -52 0 -17 7 -20 41 -20 22 0 39
|
||||
3 37 8 -2 4 -39 80 -83 170 -43 89 -84 162 -92 162 -7 0 -50 -76 -96 -170z
|
||||
m90 -38 c-33 -2 -61 -1 -63 1 -2 2 10 34 26 71 l31 68 33 -68 33 -69 -60 -3z"/><path d="M1665 386 c-37 -16 -84 -63 -97 -96 -13 -35 -12 -104 2 -132 49 -94
|
||||
182 -134 280 -83 24 12 29 22 32 64 3 49 3 49 -30 53 l-33 4 3 -45 c4 -61 -5
|
||||
-71 -60 -71 -93 0 -142 57 -142 164 0 44 5 60 25 85 47 55 136 65 184 20 30
|
||||
-28 35 -20 11 19 -19 31 -22 32 -82 32 -35 -1 -76 -7 -93 -14z"/><path d="M1955 230 l0 -170 91 0 c76 0 93 3 98 16 4 9 5 18 4 20 -2 1 -31 -1
|
||||
-66 -5 -34 -4 -64 -5 -67 -3 -3 3 -5 36 -5 73 l0 68 55 -6 c49 -5 55 -4 55 13
|
||||
0 17 -6 19 -55 16 l-55 -4 0 61 0 61 64 0 c48 0 65 4 70 15 4 13 -10 15 -92
|
||||
15 l-97 0 0 -170z"/></g></svg>
|
||||
|
After Width: | Height: | Size: 2.2 KiB |
|
|
@ -0,0 +1,8 @@
|
|||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<svg width="64px" height="64px" viewBox="0 0 64 64" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||
<title>voyage</title>
|
||||
<g id="voyage" stroke="none" stroke-width="1" fill="none" fill-rule="evenodd">
|
||||
<rect id="矩形" fill="#333333" x="0" y="0" width="64" height="64" rx="12"></rect>
|
||||
<path d="M12.1128004,51.4376727 C13.8950799,45.8316747 30.5922254,11.1847688 31.7178757,11.0009656 C32.6559176,10.8171624 45.5070913,36.9172188 51.9795803,52.2647871 C52.1671887,52.6323936 51.0415384,53 49.4468672,53 C47.2893709,53 46.5389374,52.540492 46.5389374,51.4376727 C46.5389374,49.967247 33.2187427,17.8935861 32.8435259,18.3530942 C32.0930924,19.3640118 19.3357228,48.5887229 18.8667019,50.5186566 C18.3038768,52.6323936 17.7410516,53 14.926926,53 C12.2066045,53 11.7375836,52.7242952 12.1128004,51.4376727 Z" id="路径" fill="#FFFFFF" transform="translate(32, 32) scale(1, -1) translate(-32, -32)"></path>
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 1.0 KiB |
|
|
@ -0,0 +1,4 @@
|
|||
model: rerank-1
|
||||
model_type: rerank
|
||||
model_properties:
|
||||
context_size: 8000
|
||||
|
|
@ -0,0 +1,4 @@
|
|||
model: rerank-lite-1
|
||||
model_type: rerank
|
||||
model_properties:
|
||||
context_size: 4000
|
||||
|
|
@ -0,0 +1,123 @@
|
|||
from typing import Optional
|
||||
|
||||
import httpx
|
||||
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType
|
||||
from core.model_runtime.entities.rerank_entities import RerankDocument, RerankResult
|
||||
from core.model_runtime.errors.invoke import (
|
||||
InvokeAuthorizationError,
|
||||
InvokeBadRequestError,
|
||||
InvokeConnectionError,
|
||||
InvokeError,
|
||||
InvokeRateLimitError,
|
||||
InvokeServerUnavailableError,
|
||||
)
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.__base.rerank_model import RerankModel
|
||||
|
||||
|
||||
class VoyageRerankModel(RerankModel):
|
||||
"""
|
||||
Model class for Voyage rerank model.
|
||||
"""
|
||||
|
||||
def _invoke(
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
query: str,
|
||||
docs: list[str],
|
||||
score_threshold: Optional[float] = None,
|
||||
top_n: Optional[int] = None,
|
||||
user: Optional[str] = None,
|
||||
) -> RerankResult:
|
||||
"""
|
||||
Invoke rerank model
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param query: search query
|
||||
:param docs: docs for reranking
|
||||
:param score_threshold: score threshold
|
||||
:param top_n: top n documents to return
|
||||
:param user: unique user id
|
||||
:return: rerank result
|
||||
"""
|
||||
if len(docs) == 0:
|
||||
return RerankResult(model=model, docs=[])
|
||||
|
||||
base_url = credentials.get("base_url", "https://api.voyageai.com/v1")
|
||||
base_url = base_url.removesuffix("/")
|
||||
|
||||
try:
|
||||
response = httpx.post(
|
||||
base_url + "/rerank",
|
||||
json={"model": model, "query": query, "documents": docs, "top_k": top_n, "return_documents": True},
|
||||
headers={"Authorization": f"Bearer {credentials.get('api_key')}", "Content-Type": "application/json"},
|
||||
)
|
||||
response.raise_for_status()
|
||||
results = response.json()
|
||||
|
||||
rerank_documents = []
|
||||
for result in results["data"]:
|
||||
rerank_document = RerankDocument(
|
||||
index=result["index"],
|
||||
text=result["document"],
|
||||
score=result["relevance_score"],
|
||||
)
|
||||
if score_threshold is None or result["relevance_score"] >= score_threshold:
|
||||
rerank_documents.append(rerank_document)
|
||||
|
||||
return RerankResult(model=model, docs=rerank_documents)
|
||||
except httpx.HTTPStatusError as e:
|
||||
raise InvokeServerUnavailableError(str(e))
|
||||
|
||||
def validate_credentials(self, model: str, credentials: dict) -> None:
|
||||
"""
|
||||
Validate model credentials
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:return:
|
||||
"""
|
||||
try:
|
||||
self._invoke(
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
query="What is the capital of the United States?",
|
||||
docs=[
|
||||
"Carson City is the capital city of the American state of Nevada. At the 2010 United States "
|
||||
"Census, Carson City had a population of 55,274.",
|
||||
"The Commonwealth of the Northern Mariana Islands is a group of islands in the Pacific Ocean that "
|
||||
"are a political division controlled by the United States. Its capital is Saipan.",
|
||||
],
|
||||
score_threshold=0.8,
|
||||
)
|
||||
except Exception as ex:
|
||||
raise CredentialsValidateFailedError(str(ex))
|
||||
|
||||
@property
|
||||
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
|
||||
"""
|
||||
Map model invoke error to unified error
|
||||
"""
|
||||
return {
|
||||
InvokeConnectionError: [httpx.ConnectError],
|
||||
InvokeServerUnavailableError: [httpx.RemoteProtocolError],
|
||||
InvokeRateLimitError: [],
|
||||
InvokeAuthorizationError: [httpx.HTTPStatusError],
|
||||
InvokeBadRequestError: [httpx.RequestError],
|
||||
}
|
||||
|
||||
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity:
|
||||
"""
|
||||
generate custom model entities from credentials
|
||||
"""
|
||||
entity = AIModelEntity(
|
||||
model=model,
|
||||
label=I18nObject(en_US=model),
|
||||
model_type=ModelType.RERANK,
|
||||
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
|
||||
model_properties={ModelPropertyKey.CONTEXT_SIZE: int(credentials.get("context_size", "8000"))},
|
||||
)
|
||||
|
||||
return entity
|
||||
|
|
@ -0,0 +1,172 @@
|
|||
import time
|
||||
from json import JSONDecodeError, dumps
|
||||
from typing import Optional
|
||||
|
||||
import requests
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import (
|
||||
InvokeAuthorizationError,
|
||||
InvokeBadRequestError,
|
||||
InvokeConnectionError,
|
||||
InvokeError,
|
||||
InvokeRateLimitError,
|
||||
InvokeServerUnavailableError,
|
||||
)
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
||||
|
||||
|
||||
class VoyageTextEmbeddingModel(TextEmbeddingModel):
|
||||
"""
|
||||
Model class for Voyage text embedding model.
|
||||
"""
|
||||
|
||||
api_base: str = "https://api.voyageai.com/v1"
|
||||
|
||||
def _invoke(
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
texts: list[str],
|
||||
user: Optional[str] = None,
|
||||
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
|
||||
) -> TextEmbeddingResult:
|
||||
"""
|
||||
Invoke text embedding model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param texts: texts to embed
|
||||
:param user: unique user id
|
||||
:param input_type: input type
|
||||
:return: embeddings result
|
||||
"""
|
||||
api_key = credentials["api_key"]
|
||||
if not api_key:
|
||||
raise CredentialsValidateFailedError("api_key is required")
|
||||
|
||||
base_url = credentials.get("base_url", self.api_base)
|
||||
base_url = base_url.removesuffix("/")
|
||||
|
||||
url = base_url + "/embeddings"
|
||||
headers = {"Authorization": "Bearer " + api_key, "Content-Type": "application/json"}
|
||||
voyage_input_type = "null"
|
||||
if input_type is not None:
|
||||
voyage_input_type = input_type.value
|
||||
data = {"model": model, "input": texts, "input_type": voyage_input_type}
|
||||
|
||||
try:
|
||||
response = requests.post(url, headers=headers, data=dumps(data))
|
||||
except Exception as e:
|
||||
raise InvokeConnectionError(str(e))
|
||||
|
||||
if response.status_code != 200:
|
||||
try:
|
||||
resp = response.json()
|
||||
msg = resp["detail"]
|
||||
if response.status_code == 401:
|
||||
raise InvokeAuthorizationError(msg)
|
||||
elif response.status_code == 429:
|
||||
raise InvokeRateLimitError(msg)
|
||||
elif response.status_code == 500:
|
||||
raise InvokeServerUnavailableError(msg)
|
||||
else:
|
||||
raise InvokeBadRequestError(msg)
|
||||
except JSONDecodeError as e:
|
||||
raise InvokeServerUnavailableError(
|
||||
f"Failed to convert response to json: {e} with text: {response.text}"
|
||||
)
|
||||
|
||||
try:
|
||||
resp = response.json()
|
||||
embeddings = resp["data"]
|
||||
usage = resp["usage"]
|
||||
except Exception as e:
|
||||
raise InvokeServerUnavailableError(f"Failed to convert response to json: {e} with text: {response.text}")
|
||||
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials, tokens=usage["total_tokens"])
|
||||
|
||||
result = TextEmbeddingResult(
|
||||
model=model, embeddings=[[float(data) for data in x["embedding"]] for x in embeddings], usage=usage
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
def get_num_tokens(self, model: str, credentials: dict, texts: list[str]) -> int:
|
||||
"""
|
||||
Get number of tokens for given prompt messages
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param texts: texts to embed
|
||||
:return:
|
||||
"""
|
||||
return sum(self._get_num_tokens_by_gpt2(text) for text in texts)
|
||||
|
||||
def validate_credentials(self, model: str, credentials: dict) -> None:
|
||||
"""
|
||||
Validate model credentials
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:return:
|
||||
"""
|
||||
try:
|
||||
self._invoke(model=model, credentials=credentials, texts=["ping"])
|
||||
except Exception as e:
|
||||
raise CredentialsValidateFailedError(f"Credentials validation failed: {e}")
|
||||
|
||||
@property
|
||||
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
|
||||
return {
|
||||
InvokeConnectionError: [InvokeConnectionError],
|
||||
InvokeServerUnavailableError: [InvokeServerUnavailableError],
|
||||
InvokeRateLimitError: [InvokeRateLimitError],
|
||||
InvokeAuthorizationError: [InvokeAuthorizationError],
|
||||
InvokeBadRequestError: [KeyError, InvokeBadRequestError],
|
||||
}
|
||||
|
||||
def _calc_response_usage(self, model: str, credentials: dict, tokens: int) -> EmbeddingUsage:
|
||||
"""
|
||||
Calculate response usage
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param tokens: input tokens
|
||||
:return: usage
|
||||
"""
|
||||
# get input price info
|
||||
input_price_info = self.get_price(
|
||||
model=model, credentials=credentials, price_type=PriceType.INPUT, tokens=tokens
|
||||
)
|
||||
|
||||
# transform usage
|
||||
usage = EmbeddingUsage(
|
||||
tokens=tokens,
|
||||
total_tokens=tokens,
|
||||
unit_price=input_price_info.unit_price,
|
||||
price_unit=input_price_info.unit,
|
||||
total_price=input_price_info.total_amount,
|
||||
currency=input_price_info.currency,
|
||||
latency=time.perf_counter() - self.started_at,
|
||||
)
|
||||
|
||||
return usage
|
||||
|
||||
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity:
|
||||
"""
|
||||
generate custom model entities from credentials
|
||||
"""
|
||||
entity = AIModelEntity(
|
||||
model=model,
|
||||
label=I18nObject(en_US=model),
|
||||
model_type=ModelType.TEXT_EMBEDDING,
|
||||
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
|
||||
model_properties={ModelPropertyKey.CONTEXT_SIZE: int(credentials.get("context_size"))},
|
||||
)
|
||||
|
||||
return entity
|
||||
|
|
@ -0,0 +1,8 @@
|
|||
model: voyage-3-lite
|
||||
model_type: text-embedding
|
||||
model_properties:
|
||||
context_size: 32000
|
||||
pricing:
|
||||
input: '0.00002'
|
||||
unit: '0.001'
|
||||
currency: USD
|
||||
|
|
@ -0,0 +1,8 @@
|
|||
model: voyage-3
|
||||
model_type: text-embedding
|
||||
model_properties:
|
||||
context_size: 32000
|
||||
pricing:
|
||||
input: '0.00006'
|
||||
unit: '0.001'
|
||||
currency: USD
|
||||
|
|
@ -0,0 +1,28 @@
|
|||
import logging
|
||||
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.__base.model_provider import ModelProvider
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class VoyageProvider(ModelProvider):
|
||||
def validate_provider_credentials(self, credentials: dict) -> None:
|
||||
"""
|
||||
Validate provider credentials
|
||||
if validate failed, raise exception
|
||||
|
||||
:param credentials: provider credentials, credentials form defined in `provider_credential_schema`.
|
||||
"""
|
||||
try:
|
||||
model_instance = self.get_model_instance(ModelType.TEXT_EMBEDDING)
|
||||
|
||||
# Use `voyage-3` model for validate,
|
||||
# no matter what model you pass in, text completion model or chat model
|
||||
model_instance.validate_credentials(model="voyage-3", credentials=credentials)
|
||||
except CredentialsValidateFailedError as ex:
|
||||
raise ex
|
||||
except Exception as ex:
|
||||
logger.exception(f"{self.get_provider_schema().provider} credentials validate failed")
|
||||
raise ex
|
||||
|
|
@ -0,0 +1,31 @@
|
|||
provider: voyage
|
||||
label:
|
||||
en_US: Voyage
|
||||
description:
|
||||
en_US: Embedding and Rerank Model Supported
|
||||
icon_small:
|
||||
en_US: icon_s_en.svg
|
||||
icon_large:
|
||||
en_US: icon_l_en.svg
|
||||
background: "#EFFDFD"
|
||||
help:
|
||||
title:
|
||||
en_US: Get your API key from Voyage AI
|
||||
zh_Hans: 从 Voyage 获取 API Key
|
||||
url:
|
||||
en_US: https://dash.voyageai.com/
|
||||
supported_model_types:
|
||||
- text-embedding
|
||||
- rerank
|
||||
configurate_methods:
|
||||
- predefined-model
|
||||
provider_credential_schema:
|
||||
credential_form_schemas:
|
||||
- variable: api_key
|
||||
label:
|
||||
en_US: API Key
|
||||
type: secret-input
|
||||
required: true
|
||||
placeholder:
|
||||
zh_Hans: 在此输入您的 API Key
|
||||
en_US: Enter your API Key
|
||||
|
|
@ -1,142 +0,0 @@
|
|||
import time
|
||||
from typing import Optional
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
||||
from core.model_runtime.model_providers.zhipuai._common import _CommonZhipuaiAI
|
||||
from core.model_runtime.model_providers.zhipuai.zhipuai_sdk._client import ZhipuAI
|
||||
|
||||
|
||||
class ZhipuAITextEmbeddingModel(_CommonZhipuaiAI, TextEmbeddingModel):
|
||||
"""
|
||||
Model class for ZhipuAI text embedding model.
|
||||
"""
|
||||
|
||||
def _invoke(
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
texts: list[str],
|
||||
user: Optional[str] = None,
|
||||
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
|
||||
) -> TextEmbeddingResult:
|
||||
"""
|
||||
Invoke text embedding model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param texts: texts to embed
|
||||
:param user: unique user id
|
||||
:param input_type: input type
|
||||
:return: embeddings result
|
||||
"""
|
||||
credentials_kwargs = self._to_credential_kwargs(credentials)
|
||||
client = ZhipuAI(api_key=credentials_kwargs["api_key"])
|
||||
|
||||
embeddings, embedding_used_tokens = self.embed_documents(model, client, texts)
|
||||
|
||||
return TextEmbeddingResult(
|
||||
embeddings=embeddings,
|
||||
usage=self._calc_response_usage(model, credentials_kwargs, embedding_used_tokens),
|
||||
model=model,
|
||||
)
|
||||
|
||||
def get_num_tokens(self, model: str, credentials: dict, texts: list[str]) -> int:
|
||||
"""
|
||||
Get number of tokens for given prompt messages
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param texts: texts to embed
|
||||
:return:
|
||||
"""
|
||||
if len(texts) == 0:
|
||||
return 0
|
||||
|
||||
total_num_tokens = 0
|
||||
for text in texts:
|
||||
total_num_tokens += self._get_num_tokens_by_gpt2(text)
|
||||
|
||||
return total_num_tokens
|
||||
|
||||
def validate_credentials(self, model: str, credentials: dict) -> None:
|
||||
"""
|
||||
Validate model credentials
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:return:
|
||||
"""
|
||||
try:
|
||||
# transform credentials to kwargs for model instance
|
||||
credentials_kwargs = self._to_credential_kwargs(credentials)
|
||||
client = ZhipuAI(api_key=credentials_kwargs["api_key"])
|
||||
|
||||
# call embedding model
|
||||
self.embed_documents(
|
||||
model=model,
|
||||
client=client,
|
||||
texts=["ping"],
|
||||
)
|
||||
except Exception as ex:
|
||||
raise CredentialsValidateFailedError(str(ex))
|
||||
|
||||
def embed_documents(self, model: str, client: ZhipuAI, texts: list[str]) -> tuple[list[list[float]], int]:
|
||||
"""Call out to ZhipuAI's embedding endpoint.
|
||||
|
||||
Args:
|
||||
texts: The list of texts to embed.
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
embeddings = []
|
||||
embedding_used_tokens = 0
|
||||
|
||||
for text in texts:
|
||||
response = client.embeddings.create(model=model, input=text)
|
||||
data = response.data[0]
|
||||
embeddings.append(data.embedding)
|
||||
embedding_used_tokens += response.usage.total_tokens
|
||||
|
||||
return [list(map(float, e)) for e in embeddings], embedding_used_tokens
|
||||
|
||||
def embed_query(self, text: str) -> list[float]:
|
||||
"""Call out to ZhipuAI's embedding endpoint.
|
||||
|
||||
Args:
|
||||
text: The text to embed.
|
||||
|
||||
Returns:
|
||||
Embeddings for the text.
|
||||
"""
|
||||
return self.embed_documents([text])[0]
|
||||
|
||||
def _calc_response_usage(self, model: str, credentials: dict, tokens: int) -> EmbeddingUsage:
|
||||
"""
|
||||
Calculate response usage
|
||||
|
||||
:param model: model name
|
||||
:param tokens: input tokens
|
||||
:return: usage
|
||||
"""
|
||||
# get input price info
|
||||
input_price_info = self.get_price(
|
||||
model=model, credentials=credentials, price_type=PriceType.INPUT, tokens=tokens
|
||||
)
|
||||
|
||||
# transform usage
|
||||
usage = EmbeddingUsage(
|
||||
tokens=tokens,
|
||||
total_tokens=tokens,
|
||||
unit_price=input_price_info.unit_price,
|
||||
price_unit=input_price_info.unit,
|
||||
total_price=input_price_info.total_amount,
|
||||
currency=input_price_info.currency,
|
||||
latency=time.perf_counter() - self.started_at,
|
||||
)
|
||||
|
||||
return usage
|
||||
|
|
@ -45,7 +45,7 @@ class Jieba(BaseKeyword):
|
|||
keyword_table_handler = JiebaKeywordTableHandler()
|
||||
|
||||
keyword_table = self._get_dataset_keyword_table()
|
||||
keywords_list = kwargs.get("keywords_list", None)
|
||||
keywords_list = kwargs.get("keywords_list")
|
||||
for i in range(len(texts)):
|
||||
text = texts[i]
|
||||
if keywords_list:
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ from models.dataset import Document
|
|||
@document_index_created.connect
|
||||
def handle(sender, **kwargs):
|
||||
dataset_id = sender
|
||||
document_ids = kwargs.get("document_ids", None)
|
||||
document_ids = kwargs.get("document_ids")
|
||||
documents = []
|
||||
start_at = time.perf_counter()
|
||||
for document_id in document_ids:
|
||||
|
|
|
|||
|
|
@ -8074,29 +8074,29 @@ pyasn1 = ">=0.1.3"
|
|||
|
||||
[[package]]
|
||||
name = "ruff"
|
||||
version = "0.6.5"
|
||||
version = "0.6.8"
|
||||
description = "An extremely fast Python linter and code formatter, written in Rust."
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "ruff-0.6.5-py3-none-linux_armv6l.whl", hash = "sha256:7e4e308f16e07c95fc7753fc1aaac690a323b2bb9f4ec5e844a97bb7fbebd748"},
|
||||
{file = "ruff-0.6.5-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:932cd69eefe4daf8c7d92bd6689f7e8182571cb934ea720af218929da7bd7d69"},
|
||||
{file = "ruff-0.6.5-py3-none-macosx_11_0_arm64.whl", hash = "sha256:3a8d42d11fff8d3143ff4da41742a98f8f233bf8890e9fe23077826818f8d680"},
|
||||
{file = "ruff-0.6.5-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a50af6e828ee692fb10ff2dfe53f05caecf077f4210fae9677e06a808275754f"},
|
||||
{file = "ruff-0.6.5-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:794ada3400a0d0b89e3015f1a7e01f4c97320ac665b7bc3ade24b50b54cb2972"},
|
||||
{file = "ruff-0.6.5-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:381413ec47f71ce1d1c614f7779d88886f406f1fd53d289c77e4e533dc6ea200"},
|
||||
{file = "ruff-0.6.5-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:52e75a82bbc9b42e63c08d22ad0ac525117e72aee9729a069d7c4f235fc4d276"},
|
||||
{file = "ruff-0.6.5-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09c72a833fd3551135ceddcba5ebdb68ff89225d30758027280968c9acdc7810"},
|
||||
{file = "ruff-0.6.5-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:800c50371bdcb99b3c1551d5691e14d16d6f07063a518770254227f7f6e8c178"},
|
||||
{file = "ruff-0.6.5-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e25ddd9cd63ba1f3bd51c1f09903904a6adf8429df34f17d728a8fa11174253"},
|
||||
{file = "ruff-0.6.5-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:7291e64d7129f24d1b0c947ec3ec4c0076e958d1475c61202497c6aced35dd19"},
|
||||
{file = "ruff-0.6.5-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:9ad7dfbd138d09d9a7e6931e6a7e797651ce29becd688be8a0d4d5f8177b4b0c"},
|
||||
{file = "ruff-0.6.5-py3-none-musllinux_1_2_i686.whl", hash = "sha256:005256d977021790cc52aa23d78f06bb5090dc0bfbd42de46d49c201533982ae"},
|
||||
{file = "ruff-0.6.5-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:482c1e6bfeb615eafc5899127b805d28e387bd87db38b2c0c41d271f5e58d8cc"},
|
||||
{file = "ruff-0.6.5-py3-none-win32.whl", hash = "sha256:cf4d3fa53644137f6a4a27a2b397381d16454a1566ae5335855c187fbf67e4f5"},
|
||||
{file = "ruff-0.6.5-py3-none-win_amd64.whl", hash = "sha256:3e42a57b58e3612051a636bc1ac4e6b838679530235520e8f095f7c44f706ff9"},
|
||||
{file = "ruff-0.6.5-py3-none-win_arm64.whl", hash = "sha256:51935067740773afdf97493ba9b8231279e9beef0f2a8079188c4776c25688e0"},
|
||||
{file = "ruff-0.6.5.tar.gz", hash = "sha256:4d32d87fab433c0cf285c3683dd4dae63be05fd7a1d65b3f5bf7cdd05a6b96fb"},
|
||||
{file = "ruff-0.6.8-py3-none-linux_armv6l.whl", hash = "sha256:77944bca110ff0a43b768f05a529fecd0706aac7bcce36d7f1eeb4cbfca5f0f2"},
|
||||
{file = "ruff-0.6.8-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:27b87e1801e786cd6ede4ada3faa5e254ce774de835e6723fd94551464c56b8c"},
|
||||
{file = "ruff-0.6.8-py3-none-macosx_11_0_arm64.whl", hash = "sha256:cd48f945da2a6334f1793d7f701725a76ba93bf3d73c36f6b21fb04d5338dcf5"},
|
||||
{file = "ruff-0.6.8-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:677e03c00f37c66cea033274295a983c7c546edea5043d0c798833adf4cf4c6f"},
|
||||
{file = "ruff-0.6.8-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9f1476236b3eacfacfc0f66aa9e6cd39f2a624cb73ea99189556015f27c0bdeb"},
|
||||
{file = "ruff-0.6.8-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6f5a2f17c7d32991169195d52a04c95b256378bbf0de8cb98478351eb70d526f"},
|
||||
{file = "ruff-0.6.8-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:5fd0d4b7b1457c49e435ee1e437900ced9b35cb8dc5178921dfb7d98d65a08d0"},
|
||||
{file = "ruff-0.6.8-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f8034b19b993e9601f2ddf2c517451e17a6ab5cdb1c13fdff50c1442a7171d87"},
|
||||
{file = "ruff-0.6.8-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6cfb227b932ba8ef6e56c9f875d987973cd5e35bc5d05f5abf045af78ad8e098"},
|
||||
{file = "ruff-0.6.8-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6ef0411eccfc3909269fed47c61ffebdcb84a04504bafa6b6df9b85c27e813b0"},
|
||||
{file = "ruff-0.6.8-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:007dee844738c3d2e6c24ab5bc7d43c99ba3e1943bd2d95d598582e9c1b27750"},
|
||||
{file = "ruff-0.6.8-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:ce60058d3cdd8490e5e5471ef086b3f1e90ab872b548814e35930e21d848c9ce"},
|
||||
{file = "ruff-0.6.8-py3-none-musllinux_1_2_i686.whl", hash = "sha256:1085c455d1b3fdb8021ad534379c60353b81ba079712bce7a900e834859182fa"},
|
||||
{file = "ruff-0.6.8-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:70edf6a93b19481affd287d696d9e311388d808671bc209fb8907b46a8c3af44"},
|
||||
{file = "ruff-0.6.8-py3-none-win32.whl", hash = "sha256:792213f7be25316f9b46b854df80a77e0da87ec66691e8f012f887b4a671ab5a"},
|
||||
{file = "ruff-0.6.8-py3-none-win_amd64.whl", hash = "sha256:ec0517dc0f37cad14a5319ba7bba6e7e339d03fbf967a6d69b0907d61be7a263"},
|
||||
{file = "ruff-0.6.8-py3-none-win_arm64.whl", hash = "sha256:8d3bb2e3fbb9875172119021a13eed38849e762499e3cfde9588e4b4d70968dc"},
|
||||
{file = "ruff-0.6.8.tar.gz", hash = "sha256:a5bf44b1aa0adaf6d9d20f86162b34f7c593bfedabc51239953e446aefc8ce18"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
|
@ -10501,4 +10501,4 @@ cffi = ["cffi (>=1.11)"]
|
|||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = ">=3.10,<3.13"
|
||||
content-hash = "69b42bb1ff033f14e199fee8335356275099421d72bbd7037b7a991ea65cae08"
|
||||
content-hash = "c4580c22e2b220c8c80dbc3f765060a09e14874ed29b690c13a533bf0365e789"
|
||||
|
|
|
|||
|
|
@ -123,6 +123,7 @@ FIRECRAWL_API_KEY = "fc-"
|
|||
TEI_EMBEDDING_SERVER_URL = "http://a.abc.com:11451"
|
||||
TEI_RERANK_SERVER_URL = "http://a.abc.com:11451"
|
||||
MIXEDBREAD_API_KEY = "mk-aaaaaaaaaaaaaaaaaaaa"
|
||||
VOYAGE_API_KEY = "va-aaaaaaaaaaaaaaaaaaaa"
|
||||
|
||||
[tool.poetry]
|
||||
name = "dify-api"
|
||||
|
|
@ -286,4 +287,4 @@ optional = true
|
|||
|
||||
[tool.poetry.group.lint.dependencies]
|
||||
dotenv-linter = "~0.5.0"
|
||||
ruff = "~0.6.5"
|
||||
ruff = "~0.6.8"
|
||||
|
|
|
|||
|
|
@ -0,0 +1,25 @@
|
|||
import os
|
||||
from unittest.mock import Mock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.voyage.voyage import VoyageProvider
|
||||
|
||||
|
||||
def test_validate_provider_credentials():
|
||||
provider = VoyageProvider()
|
||||
|
||||
with pytest.raises(CredentialsValidateFailedError):
|
||||
provider.validate_provider_credentials(credentials={"api_key": "hahahaha"})
|
||||
with patch("requests.post") as mock_post:
|
||||
mock_response = Mock()
|
||||
mock_response.json.return_value = {
|
||||
"object": "list",
|
||||
"data": [{"object": "embedding", "embedding": [0.23333 for _ in range(1024)], "index": 0}],
|
||||
"model": "voyage-3",
|
||||
"usage": {"total_tokens": 1},
|
||||
}
|
||||
mock_response.status_code = 200
|
||||
mock_post.return_value = mock_response
|
||||
provider.validate_provider_credentials(credentials={"api_key": os.environ.get("VOYAGE_API_KEY")})
|
||||
|
|
@ -0,0 +1,92 @@
|
|||
import os
|
||||
from unittest.mock import Mock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from core.model_runtime.entities.rerank_entities import RerankResult
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.voyage.rerank.rerank import VoyageRerankModel
|
||||
|
||||
|
||||
def test_validate_credentials():
|
||||
model = VoyageRerankModel()
|
||||
|
||||
with pytest.raises(CredentialsValidateFailedError):
|
||||
model.validate_credentials(
|
||||
model="rerank-lite-1",
|
||||
credentials={"api_key": "invalid_key"},
|
||||
)
|
||||
with patch("httpx.post") as mock_post:
|
||||
mock_response = Mock()
|
||||
mock_response.json.return_value = {
|
||||
"object": "list",
|
||||
"data": [
|
||||
{
|
||||
"relevance_score": 0.546875,
|
||||
"index": 0,
|
||||
"document": "Carson City is the capital city of the American state of Nevada. At the 2010 United "
|
||||
"States Census, Carson City had a population of 55,274.",
|
||||
},
|
||||
{
|
||||
"relevance_score": 0.4765625,
|
||||
"index": 1,
|
||||
"document": "The Commonwealth of the Northern Mariana Islands is a group of islands in the "
|
||||
"Pacific Ocean that are a political division controlled by the United States. Its "
|
||||
"capital is Saipan.",
|
||||
},
|
||||
],
|
||||
"model": "rerank-lite-1",
|
||||
"usage": {"total_tokens": 96},
|
||||
}
|
||||
mock_response.status_code = 200
|
||||
mock_post.return_value = mock_response
|
||||
model.validate_credentials(
|
||||
model="rerank-lite-1",
|
||||
credentials={
|
||||
"api_key": os.environ.get("VOYAGE_API_KEY"),
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def test_invoke_model():
|
||||
model = VoyageRerankModel()
|
||||
with patch("httpx.post") as mock_post:
|
||||
mock_response = Mock()
|
||||
mock_response.json.return_value = {
|
||||
"object": "list",
|
||||
"data": [
|
||||
{
|
||||
"relevance_score": 0.84375,
|
||||
"index": 0,
|
||||
"document": "Kasumi is a girl name of Japanese origin meaning mist.",
|
||||
},
|
||||
{
|
||||
"relevance_score": 0.4765625,
|
||||
"index": 1,
|
||||
"document": "Her music is a kawaii bass, a mix of future bass, pop, and kawaii music and she "
|
||||
"leads a team named PopiParty.",
|
||||
},
|
||||
],
|
||||
"model": "rerank-lite-1",
|
||||
"usage": {"total_tokens": 59},
|
||||
}
|
||||
mock_response.status_code = 200
|
||||
mock_post.return_value = mock_response
|
||||
result = model.invoke(
|
||||
model="rerank-lite-1",
|
||||
credentials={
|
||||
"api_key": os.environ.get("VOYAGE_API_KEY"),
|
||||
},
|
||||
query="Who is Kasumi?",
|
||||
docs=[
|
||||
"Kasumi is a girl name of Japanese origin meaning mist.",
|
||||
"Her music is a kawaii bass, a mix of future bass, pop, and kawaii music and she leads a team named "
|
||||
"PopiParty.",
|
||||
],
|
||||
score_threshold=0.5,
|
||||
)
|
||||
|
||||
assert isinstance(result, RerankResult)
|
||||
assert len(result.docs) == 1
|
||||
assert result.docs[0].index == 0
|
||||
assert result.docs[0].score >= 0.5
|
||||
|
|
@ -0,0 +1,70 @@
|
|||
import os
|
||||
from unittest.mock import Mock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.voyage.text_embedding.text_embedding import VoyageTextEmbeddingModel
|
||||
|
||||
|
||||
def test_validate_credentials():
|
||||
model = VoyageTextEmbeddingModel()
|
||||
|
||||
with pytest.raises(CredentialsValidateFailedError):
|
||||
model.validate_credentials(model="voyage-3", credentials={"api_key": "invalid_key"})
|
||||
with patch("requests.post") as mock_post:
|
||||
mock_response = Mock()
|
||||
mock_response.json.return_value = {
|
||||
"object": "list",
|
||||
"data": [{"object": "embedding", "embedding": [0.23333 for _ in range(1024)], "index": 0}],
|
||||
"model": "voyage-3",
|
||||
"usage": {"total_tokens": 1},
|
||||
}
|
||||
mock_response.status_code = 200
|
||||
mock_post.return_value = mock_response
|
||||
model.validate_credentials(model="voyage-3", credentials={"api_key": os.environ.get("VOYAGE_API_KEY")})
|
||||
|
||||
|
||||
def test_invoke_model():
|
||||
model = VoyageTextEmbeddingModel()
|
||||
|
||||
with patch("requests.post") as mock_post:
|
||||
mock_response = Mock()
|
||||
mock_response.json.return_value = {
|
||||
"object": "list",
|
||||
"data": [
|
||||
{"object": "embedding", "embedding": [0.23333 for _ in range(1024)], "index": 0},
|
||||
{"object": "embedding", "embedding": [0.23333 for _ in range(1024)], "index": 1},
|
||||
],
|
||||
"model": "voyage-3",
|
||||
"usage": {"total_tokens": 2},
|
||||
}
|
||||
mock_response.status_code = 200
|
||||
mock_post.return_value = mock_response
|
||||
result = model.invoke(
|
||||
model="voyage-3",
|
||||
credentials={
|
||||
"api_key": os.environ.get("VOYAGE_API_KEY"),
|
||||
},
|
||||
texts=["hello", "world"],
|
||||
user="abc-123",
|
||||
)
|
||||
|
||||
assert isinstance(result, TextEmbeddingResult)
|
||||
assert len(result.embeddings) == 2
|
||||
assert result.usage.total_tokens == 2
|
||||
|
||||
|
||||
def test_get_num_tokens():
|
||||
model = VoyageTextEmbeddingModel()
|
||||
|
||||
num_tokens = model.get_num_tokens(
|
||||
model="voyage-3",
|
||||
credentials={
|
||||
"api_key": os.environ.get("VOYAGE_API_KEY"),
|
||||
},
|
||||
texts=["ping"],
|
||||
)
|
||||
|
||||
assert num_tokens == 1
|
||||
|
|
@ -17,7 +17,7 @@ class MockedHttp:
|
|||
request = httpx.Request(
|
||||
method, url, params=kwargs.get("params"), headers=kwargs.get("headers"), cookies=kwargs.get("cookies")
|
||||
)
|
||||
data = kwargs.get("data", None)
|
||||
data = kwargs.get("data")
|
||||
resp = json.dumps(data).encode("utf-8") if data else b"OK"
|
||||
response = httpx.Response(
|
||||
status_code=200,
|
||||
|
|
|
|||
|
|
@ -22,8 +22,8 @@ class MockedHttp:
|
|||
return response
|
||||
|
||||
# get data, files
|
||||
data = kwargs.get("data", None)
|
||||
files = kwargs.get("files", None)
|
||||
data = kwargs.get("data")
|
||||
files = kwargs.get("files")
|
||||
if data is not None:
|
||||
resp = dumps(data).encode("utf-8")
|
||||
elif files is not None:
|
||||
|
|
|
|||
|
|
@ -9,4 +9,5 @@ pytest api/tests/integration_tests/model_runtime/anthropic \
|
|||
api/tests/integration_tests/model_runtime/upstage \
|
||||
api/tests/integration_tests/model_runtime/fireworks \
|
||||
api/tests/integration_tests/model_runtime/nomic \
|
||||
api/tests/integration_tests/model_runtime/mixedbread
|
||||
api/tests/integration_tests/model_runtime/mixedbread \
|
||||
api/tests/integration_tests/model_runtime/voyage
|
||||
Loading…
Reference in New Issue