mirror of https://github.com/langgenius/dify.git
merge feat/plugins
This commit is contained in:
commit
1cc15d1ce8
|
|
@ -65,7 +65,7 @@ OPENDAL_FS_ROOT=storage
|
|||
|
||||
# S3 Storage configuration
|
||||
S3_USE_AWS_MANAGED_IAM=false
|
||||
S3_ENDPOINT=https://your-bucket-name.storage.s3.clooudflare.com
|
||||
S3_ENDPOINT=https://your-bucket-name.storage.s3.cloudflare.com
|
||||
S3_BUCKET_NAME=your-bucket-name
|
||||
S3_ACCESS_KEY=your-access-key
|
||||
S3_SECRET_KEY=your-secret-key
|
||||
|
|
@ -74,7 +74,7 @@ S3_REGION=your-region
|
|||
# Azure Blob Storage configuration
|
||||
AZURE_BLOB_ACCOUNT_NAME=your-account-name
|
||||
AZURE_BLOB_ACCOUNT_KEY=your-account-key
|
||||
AZURE_BLOB_CONTAINER_NAME=yout-container-name
|
||||
AZURE_BLOB_CONTAINER_NAME=your-container-name
|
||||
AZURE_BLOB_ACCOUNT_URL=https://<your_account_name>.blob.core.windows.net
|
||||
|
||||
# Aliyun oss Storage configuration
|
||||
|
|
@ -88,7 +88,7 @@ ALIYUN_OSS_REGION=your-region
|
|||
ALIYUN_OSS_PATH=your-path
|
||||
|
||||
# Google Storage configuration
|
||||
GOOGLE_STORAGE_BUCKET_NAME=yout-bucket-name
|
||||
GOOGLE_STORAGE_BUCKET_NAME=your-bucket-name
|
||||
GOOGLE_STORAGE_SERVICE_ACCOUNT_JSON_BASE64=your-google-service-account-json-base64-string
|
||||
|
||||
# Tencent COS Storage configuration
|
||||
|
|
|
|||
|
|
@ -67,7 +67,7 @@ ignore = [
|
|||
"SIM105", # suppressible-exception
|
||||
"SIM107", # return-in-try-except-finally
|
||||
"SIM108", # if-else-block-instead-of-if-exp
|
||||
"SIM113", # eumerate-for-loop
|
||||
"SIM113", # enumerate-for-loop
|
||||
"SIM117", # multiple-with-statements
|
||||
"SIM210", # if-expr-with-true-false
|
||||
]
|
||||
|
|
|
|||
|
|
@ -563,8 +563,13 @@ def create_tenant(email: str, language: Optional[str] = None, name: Optional[str
|
|||
new_password = secrets.token_urlsafe(16)
|
||||
|
||||
# register account
|
||||
account = RegisterService.register(email=email, name=account_name, password=new_password, language=language)
|
||||
|
||||
account = RegisterService.register(
|
||||
email=email,
|
||||
name=account_name,
|
||||
password=new_password,
|
||||
language=language,
|
||||
create_workspace_required=False,
|
||||
)
|
||||
TenantService.create_owner_tenant_if_not_exist(account, name)
|
||||
|
||||
click.echo(
|
||||
|
|
@ -584,7 +589,7 @@ def upgrade_db():
|
|||
click.echo(click.style("Starting database migration.", fg="green"))
|
||||
|
||||
# run db migration
|
||||
import flask_migrate
|
||||
import flask_migrate # type: ignore
|
||||
|
||||
flask_migrate.upgrade()
|
||||
|
||||
|
|
|
|||
|
|
@ -659,7 +659,7 @@ class RagEtlConfig(BaseSettings):
|
|||
|
||||
UNSTRUCTURED_API_KEY: Optional[str] = Field(
|
||||
description="API key for Unstructured.io service",
|
||||
default=None,
|
||||
default="",
|
||||
)
|
||||
|
||||
SCARF_NO_ANALYTICS: Optional[str] = Field(
|
||||
|
|
|
|||
|
|
@ -232,7 +232,7 @@ class DataSourceNotionApi(Resource):
|
|||
args["doc_form"],
|
||||
args["doc_language"],
|
||||
)
|
||||
return response, 200
|
||||
return response.model_dump(), 200
|
||||
|
||||
|
||||
class DataSourceNotionDatasetSyncApi(Resource):
|
||||
|
|
|
|||
|
|
@ -464,7 +464,7 @@ class DatasetIndexingEstimateApi(Resource):
|
|||
except Exception as e:
|
||||
raise IndexingEstimateError(str(e))
|
||||
|
||||
return response, 200
|
||||
return response.model_dump(), 200
|
||||
|
||||
|
||||
class DatasetRelatedAppListApi(Resource):
|
||||
|
|
@ -733,6 +733,18 @@ class DatasetPermissionUserListApi(Resource):
|
|||
}, 200
|
||||
|
||||
|
||||
class DatasetAutoDisableLogApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self, dataset_id):
|
||||
dataset_id_str = str(dataset_id)
|
||||
dataset = DatasetService.get_dataset(dataset_id_str)
|
||||
if dataset is None:
|
||||
raise NotFound("Dataset not found.")
|
||||
return DatasetService.get_dataset_auto_disable_logs(dataset_id_str), 200
|
||||
|
||||
|
||||
api.add_resource(DatasetListApi, "/datasets")
|
||||
api.add_resource(DatasetApi, "/datasets/<uuid:dataset_id>")
|
||||
api.add_resource(DatasetUseCheckApi, "/datasets/<uuid:dataset_id>/use-check")
|
||||
|
|
@ -747,3 +759,4 @@ api.add_resource(DatasetApiBaseUrlApi, "/datasets/api-base-info")
|
|||
api.add_resource(DatasetRetrievalSettingApi, "/datasets/retrieval-setting")
|
||||
api.add_resource(DatasetRetrievalSettingMockApi, "/datasets/retrieval-setting/<string:vector_type>")
|
||||
api.add_resource(DatasetPermissionUserListApi, "/datasets/<uuid:dataset_id>/permission-part-users")
|
||||
api.add_resource(DatasetAutoDisableLogApi, "/datasets/<uuid:dataset_id>/auto-disable-logs")
|
||||
|
|
|
|||
|
|
@ -52,6 +52,7 @@ from fields.document_fields import (
|
|||
from libs.login import login_required
|
||||
from models import Dataset, DatasetProcessRule, Document, DocumentSegment, UploadFile
|
||||
from services.dataset_service import DatasetService, DocumentService
|
||||
from services.entities.knowledge_entities.knowledge_entities import KnowledgeConfig
|
||||
from tasks.add_document_to_index_task import add_document_to_index_task
|
||||
from tasks.remove_document_from_index_task import remove_document_from_index_task
|
||||
|
||||
|
|
@ -267,20 +268,22 @@ class DatasetDocumentListApi(Resource):
|
|||
parser.add_argument("duplicate", type=bool, default=True, nullable=False, location="json")
|
||||
parser.add_argument("original_document_id", type=str, required=False, location="json")
|
||||
parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
|
||||
parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
|
||||
|
||||
parser.add_argument(
|
||||
"doc_language", type=str, default="English", required=False, nullable=False, location="json"
|
||||
)
|
||||
parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
|
||||
args = parser.parse_args()
|
||||
knowledge_config = KnowledgeConfig(**args)
|
||||
|
||||
if not dataset.indexing_technique and not args["indexing_technique"]:
|
||||
if not dataset.indexing_technique and not knowledge_config.indexing_technique:
|
||||
raise ValueError("indexing_technique is required.")
|
||||
|
||||
# validate args
|
||||
DocumentService.document_create_args_validate(args)
|
||||
DocumentService.document_create_args_validate(knowledge_config)
|
||||
|
||||
try:
|
||||
documents, batch = DocumentService.save_document_with_dataset_id(dataset, args, current_user)
|
||||
documents, batch = DocumentService.save_document_with_dataset_id(dataset, knowledge_config, current_user)
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
except QuotaExceededError:
|
||||
|
|
@ -290,6 +293,25 @@ class DatasetDocumentListApi(Resource):
|
|||
|
||||
return {"documents": documents, "batch": batch}
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def delete(self, dataset_id):
|
||||
dataset_id = str(dataset_id)
|
||||
dataset = DatasetService.get_dataset(dataset_id)
|
||||
if dataset is None:
|
||||
raise NotFound("Dataset not found.")
|
||||
# check user's model setting
|
||||
DatasetService.check_dataset_model_setting(dataset)
|
||||
|
||||
try:
|
||||
document_ids = request.args.getlist("document_id")
|
||||
DocumentService.delete_documents(dataset, document_ids)
|
||||
except services.errors.document.DocumentIndexingError:
|
||||
raise DocumentIndexingError("Cannot delete document during indexing.")
|
||||
|
||||
return {"result": "success"}, 204
|
||||
|
||||
|
||||
class DatasetInitApi(Resource):
|
||||
@setup_required
|
||||
|
|
@ -325,9 +347,9 @@ class DatasetInitApi(Resource):
|
|||
# The role of the current user in the ta table must be admin, owner, or editor, or dataset_operator
|
||||
if not current_user.is_dataset_editor:
|
||||
raise Forbidden()
|
||||
|
||||
if args["indexing_technique"] == "high_quality":
|
||||
if args["embedding_model"] is None or args["embedding_model_provider"] is None:
|
||||
knowledge_config = KnowledgeConfig(**args)
|
||||
if knowledge_config.indexing_technique == "high_quality":
|
||||
if knowledge_config.embedding_model is None or knowledge_config.embedding_model_provider is None:
|
||||
raise ValueError("embedding model and embedding model provider are required for high quality indexing.")
|
||||
try:
|
||||
model_manager = ModelManager()
|
||||
|
|
@ -346,11 +368,11 @@ class DatasetInitApi(Resource):
|
|||
raise ProviderNotInitializeError(ex.description)
|
||||
|
||||
# validate args
|
||||
DocumentService.document_create_args_validate(args)
|
||||
DocumentService.document_create_args_validate(knowledge_config)
|
||||
|
||||
try:
|
||||
dataset, documents, batch = DocumentService.save_document_without_dataset_id(
|
||||
tenant_id=current_user.current_tenant_id, document_data=args, account=current_user
|
||||
tenant_id=current_user.current_tenant_id, knowledge_config=knowledge_config, account=current_user
|
||||
)
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
|
|
@ -403,7 +425,7 @@ class DocumentIndexingEstimateApi(DocumentResource):
|
|||
indexing_runner = IndexingRunner()
|
||||
|
||||
try:
|
||||
response = indexing_runner.indexing_estimate(
|
||||
estimate_response = indexing_runner.indexing_estimate(
|
||||
current_user.current_tenant_id,
|
||||
[extract_setting],
|
||||
data_process_rule_dict,
|
||||
|
|
@ -411,6 +433,7 @@ class DocumentIndexingEstimateApi(DocumentResource):
|
|||
"English",
|
||||
dataset_id,
|
||||
)
|
||||
return estimate_response.model_dump(), 200
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
|
|
@ -423,7 +446,7 @@ class DocumentIndexingEstimateApi(DocumentResource):
|
|||
except Exception as e:
|
||||
raise IndexingEstimateError(str(e))
|
||||
|
||||
return response
|
||||
return response, 200
|
||||
|
||||
|
||||
class DocumentBatchIndexingEstimateApi(DocumentResource):
|
||||
|
|
@ -434,9 +457,8 @@ class DocumentBatchIndexingEstimateApi(DocumentResource):
|
|||
dataset_id = str(dataset_id)
|
||||
batch = str(batch)
|
||||
documents = self.get_batch_documents(dataset_id, batch)
|
||||
response = {"tokens": 0, "total_price": 0, "currency": "USD", "total_segments": 0, "preview": []}
|
||||
if not documents:
|
||||
return response
|
||||
return {"tokens": 0, "total_price": 0, "currency": "USD", "total_segments": 0, "preview": []}, 200
|
||||
data_process_rule = documents[0].dataset_process_rule
|
||||
data_process_rule_dict = data_process_rule.to_dict()
|
||||
info_list = []
|
||||
|
|
@ -514,6 +536,7 @@ class DocumentBatchIndexingEstimateApi(DocumentResource):
|
|||
"English",
|
||||
dataset_id,
|
||||
)
|
||||
return response.model_dump(), 200
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
|
|
@ -525,7 +548,6 @@ class DocumentBatchIndexingEstimateApi(DocumentResource):
|
|||
raise ProviderNotInitializeError(ex.description)
|
||||
except Exception as e:
|
||||
raise IndexingEstimateError(str(e))
|
||||
return response
|
||||
|
||||
|
||||
class DocumentBatchIndexingStatusApi(DocumentResource):
|
||||
|
|
@ -598,7 +620,8 @@ class DocumentDetailApi(DocumentResource):
|
|||
if metadata == "only":
|
||||
response = {"id": document.id, "doc_type": document.doc_type, "doc_metadata": document.doc_metadata}
|
||||
elif metadata == "without":
|
||||
process_rules = DatasetService.get_process_rules(dataset_id)
|
||||
dataset_process_rules = DatasetService.get_process_rules(dataset_id)
|
||||
document_process_rules = document.dataset_process_rule.to_dict()
|
||||
data_source_info = document.data_source_detail_dict
|
||||
response = {
|
||||
"id": document.id,
|
||||
|
|
@ -606,7 +629,8 @@ class DocumentDetailApi(DocumentResource):
|
|||
"data_source_type": document.data_source_type,
|
||||
"data_source_info": data_source_info,
|
||||
"dataset_process_rule_id": document.dataset_process_rule_id,
|
||||
"dataset_process_rule": process_rules,
|
||||
"dataset_process_rule": dataset_process_rules,
|
||||
"document_process_rule": document_process_rules,
|
||||
"name": document.name,
|
||||
"created_from": document.created_from,
|
||||
"created_by": document.created_by,
|
||||
|
|
@ -629,7 +653,8 @@ class DocumentDetailApi(DocumentResource):
|
|||
"doc_language": document.doc_language,
|
||||
}
|
||||
else:
|
||||
process_rules = DatasetService.get_process_rules(dataset_id)
|
||||
dataset_process_rules = DatasetService.get_process_rules(dataset_id)
|
||||
document_process_rules = document.dataset_process_rule.to_dict()
|
||||
data_source_info = document.data_source_detail_dict
|
||||
response = {
|
||||
"id": document.id,
|
||||
|
|
@ -637,7 +662,8 @@ class DocumentDetailApi(DocumentResource):
|
|||
"data_source_type": document.data_source_type,
|
||||
"data_source_info": data_source_info,
|
||||
"dataset_process_rule_id": document.dataset_process_rule_id,
|
||||
"dataset_process_rule": process_rules,
|
||||
"dataset_process_rule": dataset_process_rules,
|
||||
"document_process_rule": document_process_rules,
|
||||
"name": document.name,
|
||||
"created_from": document.created_from,
|
||||
"created_by": document.created_by,
|
||||
|
|
@ -773,9 +799,8 @@ class DocumentStatusApi(DocumentResource):
|
|||
@login_required
|
||||
@account_initialization_required
|
||||
@cloud_edition_billing_resource_check("vector_space")
|
||||
def patch(self, dataset_id, document_id, action):
|
||||
def patch(self, dataset_id, action):
|
||||
dataset_id = str(dataset_id)
|
||||
document_id = str(document_id)
|
||||
dataset = DatasetService.get_dataset(dataset_id)
|
||||
if dataset is None:
|
||||
raise NotFound("Dataset not found.")
|
||||
|
|
@ -790,84 +815,79 @@ class DocumentStatusApi(DocumentResource):
|
|||
# check user's permission
|
||||
DatasetService.check_dataset_permission(dataset, current_user)
|
||||
|
||||
document = self.get_document(dataset_id, document_id)
|
||||
document_ids = request.args.getlist("document_id")
|
||||
for document_id in document_ids:
|
||||
document = self.get_document(dataset_id, document_id)
|
||||
|
||||
indexing_cache_key = "document_{}_indexing".format(document.id)
|
||||
cache_result = redis_client.get(indexing_cache_key)
|
||||
if cache_result is not None:
|
||||
raise InvalidActionError("Document is being indexed, please try again later")
|
||||
indexing_cache_key = "document_{}_indexing".format(document.id)
|
||||
cache_result = redis_client.get(indexing_cache_key)
|
||||
if cache_result is not None:
|
||||
raise InvalidActionError(f"Document:{document.name} is being indexed, please try again later")
|
||||
|
||||
if action == "enable":
|
||||
if document.enabled:
|
||||
raise InvalidActionError("Document already enabled.")
|
||||
if action == "enable":
|
||||
if document.enabled:
|
||||
continue
|
||||
document.enabled = True
|
||||
document.disabled_at = None
|
||||
document.disabled_by = None
|
||||
document.updated_at = datetime.now(UTC).replace(tzinfo=None)
|
||||
db.session.commit()
|
||||
|
||||
document.enabled = True
|
||||
document.disabled_at = None
|
||||
document.disabled_by = None
|
||||
document.updated_at = datetime.now(UTC).replace(tzinfo=None)
|
||||
db.session.commit()
|
||||
# Set cache to prevent indexing the same document multiple times
|
||||
redis_client.setex(indexing_cache_key, 600, 1)
|
||||
|
||||
# Set cache to prevent indexing the same document multiple times
|
||||
redis_client.setex(indexing_cache_key, 600, 1)
|
||||
add_document_to_index_task.delay(document_id)
|
||||
|
||||
add_document_to_index_task.delay(document_id)
|
||||
elif action == "disable":
|
||||
if not document.completed_at or document.indexing_status != "completed":
|
||||
raise InvalidActionError(f"Document: {document.name} is not completed.")
|
||||
if not document.enabled:
|
||||
continue
|
||||
|
||||
return {"result": "success"}, 200
|
||||
document.enabled = False
|
||||
document.disabled_at = datetime.now(UTC).replace(tzinfo=None)
|
||||
document.disabled_by = current_user.id
|
||||
document.updated_at = datetime.now(UTC).replace(tzinfo=None)
|
||||
db.session.commit()
|
||||
|
||||
elif action == "disable":
|
||||
if not document.completed_at or document.indexing_status != "completed":
|
||||
raise InvalidActionError("Document is not completed.")
|
||||
if not document.enabled:
|
||||
raise InvalidActionError("Document already disabled.")
|
||||
|
||||
document.enabled = False
|
||||
document.disabled_at = datetime.now(UTC).replace(tzinfo=None)
|
||||
document.disabled_by = current_user.id
|
||||
document.updated_at = datetime.now(UTC).replace(tzinfo=None)
|
||||
db.session.commit()
|
||||
|
||||
# Set cache to prevent indexing the same document multiple times
|
||||
redis_client.setex(indexing_cache_key, 600, 1)
|
||||
|
||||
remove_document_from_index_task.delay(document_id)
|
||||
|
||||
return {"result": "success"}, 200
|
||||
|
||||
elif action == "archive":
|
||||
if document.archived:
|
||||
raise InvalidActionError("Document already archived.")
|
||||
|
||||
document.archived = True
|
||||
document.archived_at = datetime.now(UTC).replace(tzinfo=None)
|
||||
document.archived_by = current_user.id
|
||||
document.updated_at = datetime.now(UTC).replace(tzinfo=None)
|
||||
db.session.commit()
|
||||
|
||||
if document.enabled:
|
||||
# Set cache to prevent indexing the same document multiple times
|
||||
redis_client.setex(indexing_cache_key, 600, 1)
|
||||
|
||||
remove_document_from_index_task.delay(document_id)
|
||||
|
||||
return {"result": "success"}, 200
|
||||
elif action == "un_archive":
|
||||
if not document.archived:
|
||||
raise InvalidActionError("Document is not archived.")
|
||||
elif action == "archive":
|
||||
if document.archived:
|
||||
continue
|
||||
|
||||
document.archived = False
|
||||
document.archived_at = None
|
||||
document.archived_by = None
|
||||
document.updated_at = datetime.now(UTC).replace(tzinfo=None)
|
||||
db.session.commit()
|
||||
document.archived = True
|
||||
document.archived_at = datetime.now(UTC).replace(tzinfo=None)
|
||||
document.archived_by = current_user.id
|
||||
document.updated_at = datetime.now(UTC).replace(tzinfo=None)
|
||||
db.session.commit()
|
||||
|
||||
# Set cache to prevent indexing the same document multiple times
|
||||
redis_client.setex(indexing_cache_key, 600, 1)
|
||||
if document.enabled:
|
||||
# Set cache to prevent indexing the same document multiple times
|
||||
redis_client.setex(indexing_cache_key, 600, 1)
|
||||
|
||||
add_document_to_index_task.delay(document_id)
|
||||
remove_document_from_index_task.delay(document_id)
|
||||
|
||||
return {"result": "success"}, 200
|
||||
else:
|
||||
raise InvalidActionError()
|
||||
elif action == "un_archive":
|
||||
if not document.archived:
|
||||
continue
|
||||
document.archived = False
|
||||
document.archived_at = None
|
||||
document.archived_by = None
|
||||
document.updated_at = datetime.now(UTC).replace(tzinfo=None)
|
||||
db.session.commit()
|
||||
|
||||
# Set cache to prevent indexing the same document multiple times
|
||||
redis_client.setex(indexing_cache_key, 600, 1)
|
||||
|
||||
add_document_to_index_task.delay(document_id)
|
||||
|
||||
else:
|
||||
raise InvalidActionError()
|
||||
return {"result": "success"}, 200
|
||||
|
||||
|
||||
class DocumentPauseApi(DocumentResource):
|
||||
|
|
@ -1038,7 +1058,7 @@ api.add_resource(
|
|||
)
|
||||
api.add_resource(DocumentDeleteApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")
|
||||
api.add_resource(DocumentMetadataApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/metadata")
|
||||
api.add_resource(DocumentStatusApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/status/<string:action>")
|
||||
api.add_resource(DocumentStatusApi, "/datasets/<uuid:dataset_id>/documents/status/<string:action>/batch")
|
||||
api.add_resource(DocumentPauseApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/pause")
|
||||
api.add_resource(DocumentRecoverApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/resume")
|
||||
api.add_resource(DocumentRetryApi, "/datasets/<uuid:dataset_id>/retry")
|
||||
|
|
|
|||
|
|
@ -1,5 +1,4 @@
|
|||
import uuid
|
||||
from datetime import UTC, datetime
|
||||
|
||||
import pandas as pd
|
||||
from flask import request
|
||||
|
|
@ -10,7 +9,13 @@ from werkzeug.exceptions import Forbidden, NotFound
|
|||
import services
|
||||
from controllers.console import api
|
||||
from controllers.console.app.error import ProviderNotInitializeError
|
||||
from controllers.console.datasets.error import InvalidActionError, NoFileUploadedError, TooManyFilesError
|
||||
from controllers.console.datasets.error import (
|
||||
ChildChunkDeleteIndexError,
|
||||
ChildChunkIndexingError,
|
||||
InvalidActionError,
|
||||
NoFileUploadedError,
|
||||
TooManyFilesError,
|
||||
)
|
||||
from controllers.console.wraps import (
|
||||
account_initialization_required,
|
||||
cloud_edition_billing_knowledge_limit_check,
|
||||
|
|
@ -20,15 +25,15 @@ from controllers.console.wraps import (
|
|||
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
|
||||
from core.model_manager import ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from fields.segment_fields import segment_fields
|
||||
from fields.segment_fields import child_chunk_fields, segment_fields
|
||||
from libs.login import login_required
|
||||
from models import DocumentSegment
|
||||
from models.dataset import ChildChunk, DocumentSegment
|
||||
from services.dataset_service import DatasetService, DocumentService, SegmentService
|
||||
from services.entities.knowledge_entities.knowledge_entities import ChildChunkUpdateArgs, SegmentUpdateArgs
|
||||
from services.errors.chunk import ChildChunkDeleteIndexError as ChildChunkDeleteIndexServiceError
|
||||
from services.errors.chunk import ChildChunkIndexingError as ChildChunkIndexingServiceError
|
||||
from tasks.batch_create_segment_to_index_task import batch_create_segment_to_index_task
|
||||
from tasks.disable_segment_from_index_task import disable_segment_from_index_task
|
||||
from tasks.enable_segment_to_index_task import enable_segment_to_index_task
|
||||
|
||||
|
||||
class DatasetDocumentSegmentListApi(Resource):
|
||||
|
|
@ -53,15 +58,16 @@ class DatasetDocumentSegmentListApi(Resource):
|
|||
raise NotFound("Document not found.")
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument("last_id", type=str, default=None, location="args")
|
||||
parser.add_argument("limit", type=int, default=20, location="args")
|
||||
parser.add_argument("status", type=str, action="append", default=[], location="args")
|
||||
parser.add_argument("hit_count_gte", type=int, default=None, location="args")
|
||||
parser.add_argument("enabled", type=str, default="all", location="args")
|
||||
parser.add_argument("keyword", type=str, default=None, location="args")
|
||||
parser.add_argument("page", type=int, default=1, location="args")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
last_id = args["last_id"]
|
||||
page = args["page"]
|
||||
limit = min(args["limit"], 100)
|
||||
status_list = args["status"]
|
||||
hit_count_gte = args["hit_count_gte"]
|
||||
|
|
@ -69,14 +75,7 @@ class DatasetDocumentSegmentListApi(Resource):
|
|||
|
||||
query = DocumentSegment.query.filter(
|
||||
DocumentSegment.document_id == str(document_id), DocumentSegment.tenant_id == current_user.current_tenant_id
|
||||
)
|
||||
|
||||
if last_id is not None:
|
||||
last_segment = db.session.get(DocumentSegment, str(last_id))
|
||||
if last_segment:
|
||||
query = query.filter(DocumentSegment.position > last_segment.position)
|
||||
else:
|
||||
return {"data": [], "has_more": False, "limit": limit}, 200
|
||||
).order_by(DocumentSegment.position.asc())
|
||||
|
||||
if status_list:
|
||||
query = query.filter(DocumentSegment.status.in_(status_list))
|
||||
|
|
@ -93,21 +92,44 @@ class DatasetDocumentSegmentListApi(Resource):
|
|||
elif args["enabled"].lower() == "false":
|
||||
query = query.filter(DocumentSegment.enabled == False)
|
||||
|
||||
total = query.count()
|
||||
segments = query.order_by(DocumentSegment.position).limit(limit + 1).all()
|
||||
segments = query.paginate(page=page, per_page=limit, max_per_page=100, error_out=False)
|
||||
|
||||
has_more = False
|
||||
if len(segments) > limit:
|
||||
has_more = True
|
||||
segments = segments[:-1]
|
||||
|
||||
return {
|
||||
"data": marshal(segments, segment_fields),
|
||||
"doc_form": document.doc_form,
|
||||
"has_more": has_more,
|
||||
response = {
|
||||
"data": marshal(segments.items, segment_fields),
|
||||
"limit": limit,
|
||||
"total": total,
|
||||
}, 200
|
||||
"total": segments.total,
|
||||
"total_pages": segments.pages,
|
||||
"page": page,
|
||||
}
|
||||
return response, 200
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def delete(self, dataset_id, document_id):
|
||||
# check dataset
|
||||
dataset_id = str(dataset_id)
|
||||
dataset = DatasetService.get_dataset(dataset_id)
|
||||
if not dataset:
|
||||
raise NotFound("Dataset not found.")
|
||||
# check user's model setting
|
||||
DatasetService.check_dataset_model_setting(dataset)
|
||||
# check document
|
||||
document_id = str(document_id)
|
||||
document = DocumentService.get_document(dataset_id, document_id)
|
||||
if not document:
|
||||
raise NotFound("Document not found.")
|
||||
segment_ids = request.args.getlist("segment_id")
|
||||
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if not current_user.is_editor:
|
||||
raise Forbidden()
|
||||
try:
|
||||
DatasetService.check_dataset_permission(dataset, current_user)
|
||||
except services.errors.account.NoPermissionError as e:
|
||||
raise Forbidden(str(e))
|
||||
SegmentService.delete_segments(segment_ids, document, dataset)
|
||||
return {"result": "success"}, 200
|
||||
|
||||
|
||||
class DatasetDocumentSegmentApi(Resource):
|
||||
|
|
@ -115,11 +137,15 @@ class DatasetDocumentSegmentApi(Resource):
|
|||
@login_required
|
||||
@account_initialization_required
|
||||
@cloud_edition_billing_resource_check("vector_space")
|
||||
def patch(self, dataset_id, segment_id, action):
|
||||
def patch(self, dataset_id, document_id, action):
|
||||
dataset_id = str(dataset_id)
|
||||
dataset = DatasetService.get_dataset(dataset_id)
|
||||
if not dataset:
|
||||
raise NotFound("Dataset not found.")
|
||||
document_id = str(document_id)
|
||||
document = DocumentService.get_document(dataset_id, document_id)
|
||||
if not document:
|
||||
raise NotFound("Document not found.")
|
||||
# check user's model setting
|
||||
DatasetService.check_dataset_model_setting(dataset)
|
||||
# The role of the current user in the ta table must be admin, owner, or editor
|
||||
|
|
@ -147,59 +173,17 @@ class DatasetDocumentSegmentApi(Resource):
|
|||
)
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
segment_ids = request.args.getlist("segment_id")
|
||||
|
||||
segment = DocumentSegment.query.filter(
|
||||
DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id
|
||||
).first()
|
||||
|
||||
if not segment:
|
||||
raise NotFound("Segment not found.")
|
||||
|
||||
if segment.status != "completed":
|
||||
raise NotFound("Segment is not completed, enable or disable function is not allowed")
|
||||
|
||||
document_indexing_cache_key = "document_{}_indexing".format(segment.document_id)
|
||||
document_indexing_cache_key = "document_{}_indexing".format(document.id)
|
||||
cache_result = redis_client.get(document_indexing_cache_key)
|
||||
if cache_result is not None:
|
||||
raise InvalidActionError("Document is being indexed, please try again later")
|
||||
|
||||
indexing_cache_key = "segment_{}_indexing".format(segment.id)
|
||||
cache_result = redis_client.get(indexing_cache_key)
|
||||
if cache_result is not None:
|
||||
raise InvalidActionError("Segment is being indexed, please try again later")
|
||||
|
||||
if action == "enable":
|
||||
if segment.enabled:
|
||||
raise InvalidActionError("Segment is already enabled.")
|
||||
|
||||
segment.enabled = True
|
||||
segment.disabled_at = None
|
||||
segment.disabled_by = None
|
||||
db.session.commit()
|
||||
|
||||
# Set cache to prevent indexing the same segment multiple times
|
||||
redis_client.setex(indexing_cache_key, 600, 1)
|
||||
|
||||
enable_segment_to_index_task.delay(segment.id)
|
||||
|
||||
return {"result": "success"}, 200
|
||||
elif action == "disable":
|
||||
if not segment.enabled:
|
||||
raise InvalidActionError("Segment is already disabled.")
|
||||
|
||||
segment.enabled = False
|
||||
segment.disabled_at = datetime.now(UTC).replace(tzinfo=None)
|
||||
segment.disabled_by = current_user.id
|
||||
db.session.commit()
|
||||
|
||||
# Set cache to prevent indexing the same segment multiple times
|
||||
redis_client.setex(indexing_cache_key, 600, 1)
|
||||
|
||||
disable_segment_from_index_task.delay(segment.id)
|
||||
|
||||
return {"result": "success"}, 200
|
||||
else:
|
||||
raise InvalidActionError()
|
||||
try:
|
||||
SegmentService.update_segments_status(segment_ids, action, dataset, document)
|
||||
except Exception as e:
|
||||
raise InvalidActionError(str(e))
|
||||
return {"result": "success"}, 200
|
||||
|
||||
|
||||
class DatasetDocumentSegmentAddApi(Resource):
|
||||
|
|
@ -307,9 +291,12 @@ class DatasetDocumentSegmentUpdateApi(Resource):
|
|||
parser.add_argument("content", type=str, required=True, nullable=False, location="json")
|
||||
parser.add_argument("answer", type=str, required=False, nullable=True, location="json")
|
||||
parser.add_argument("keywords", type=list, required=False, nullable=True, location="json")
|
||||
parser.add_argument(
|
||||
"regenerate_child_chunks", type=bool, required=False, nullable=True, default=False, location="json"
|
||||
)
|
||||
args = parser.parse_args()
|
||||
SegmentService.segment_create_args_validate(args, document)
|
||||
segment = SegmentService.update_segment(args, segment, document, dataset)
|
||||
segment = SegmentService.update_segment(SegmentUpdateArgs(**args), segment, document, dataset)
|
||||
return {"data": marshal(segment, segment_fields), "doc_form": document.doc_form}, 200
|
||||
|
||||
@setup_required
|
||||
|
|
@ -412,8 +399,248 @@ class DatasetDocumentSegmentBatchImportApi(Resource):
|
|||
return {"job_id": job_id, "job_status": cache_result.decode()}, 200
|
||||
|
||||
|
||||
class ChildChunkAddApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@cloud_edition_billing_resource_check("vector_space")
|
||||
@cloud_edition_billing_knowledge_limit_check("add_segment")
|
||||
def post(self, dataset_id, document_id, segment_id):
|
||||
# check dataset
|
||||
dataset_id = str(dataset_id)
|
||||
dataset = DatasetService.get_dataset(dataset_id)
|
||||
if not dataset:
|
||||
raise NotFound("Dataset not found.")
|
||||
# check document
|
||||
document_id = str(document_id)
|
||||
document = DocumentService.get_document(dataset_id, document_id)
|
||||
if not document:
|
||||
raise NotFound("Document not found.")
|
||||
# check segment
|
||||
segment_id = str(segment_id)
|
||||
segment = DocumentSegment.query.filter(
|
||||
DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id
|
||||
).first()
|
||||
if not segment:
|
||||
raise NotFound("Segment not found.")
|
||||
if not current_user.is_editor:
|
||||
raise Forbidden()
|
||||
# check embedding model setting
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
try:
|
||||
model_manager = ModelManager()
|
||||
model_manager.get_model_instance(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
provider=dataset.embedding_model_provider,
|
||||
model_type=ModelType.TEXT_EMBEDDING,
|
||||
model=dataset.embedding_model,
|
||||
)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider."
|
||||
)
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
try:
|
||||
DatasetService.check_dataset_permission(dataset, current_user)
|
||||
except services.errors.account.NoPermissionError as e:
|
||||
raise Forbidden(str(e))
|
||||
# validate args
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument("content", type=str, required=True, nullable=False, location="json")
|
||||
args = parser.parse_args()
|
||||
try:
|
||||
child_chunk = SegmentService.create_child_chunk(args.get("content"), segment, document, dataset)
|
||||
except ChildChunkIndexingServiceError as e:
|
||||
raise ChildChunkIndexingError(str(e))
|
||||
return {"data": marshal(child_chunk, child_chunk_fields)}, 200
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self, dataset_id, document_id, segment_id):
|
||||
# check dataset
|
||||
dataset_id = str(dataset_id)
|
||||
dataset = DatasetService.get_dataset(dataset_id)
|
||||
if not dataset:
|
||||
raise NotFound("Dataset not found.")
|
||||
# check user's model setting
|
||||
DatasetService.check_dataset_model_setting(dataset)
|
||||
# check document
|
||||
document_id = str(document_id)
|
||||
document = DocumentService.get_document(dataset_id, document_id)
|
||||
if not document:
|
||||
raise NotFound("Document not found.")
|
||||
# check segment
|
||||
segment_id = str(segment_id)
|
||||
segment = DocumentSegment.query.filter(
|
||||
DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id
|
||||
).first()
|
||||
if not segment:
|
||||
raise NotFound("Segment not found.")
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument("limit", type=int, default=20, location="args")
|
||||
parser.add_argument("keyword", type=str, default=None, location="args")
|
||||
parser.add_argument("page", type=int, default=1, location="args")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
page = args["page"]
|
||||
limit = min(args["limit"], 100)
|
||||
keyword = args["keyword"]
|
||||
|
||||
child_chunks = SegmentService.get_child_chunks(segment_id, document_id, dataset_id, page, limit, keyword)
|
||||
return {
|
||||
"data": marshal(child_chunks.items, child_chunk_fields),
|
||||
"total": child_chunks.total,
|
||||
"total_pages": child_chunks.pages,
|
||||
"page": page,
|
||||
"limit": limit,
|
||||
}, 200
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@cloud_edition_billing_resource_check("vector_space")
|
||||
def patch(self, dataset_id, document_id, segment_id):
|
||||
# check dataset
|
||||
dataset_id = str(dataset_id)
|
||||
dataset = DatasetService.get_dataset(dataset_id)
|
||||
if not dataset:
|
||||
raise NotFound("Dataset not found.")
|
||||
# check user's model setting
|
||||
DatasetService.check_dataset_model_setting(dataset)
|
||||
# check document
|
||||
document_id = str(document_id)
|
||||
document = DocumentService.get_document(dataset_id, document_id)
|
||||
if not document:
|
||||
raise NotFound("Document not found.")
|
||||
# check segment
|
||||
segment_id = str(segment_id)
|
||||
segment = DocumentSegment.query.filter(
|
||||
DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id
|
||||
).first()
|
||||
if not segment:
|
||||
raise NotFound("Segment not found.")
|
||||
# The role of the current user in the ta table must be admin, owner, or editor
|
||||
if not current_user.is_editor:
|
||||
raise Forbidden()
|
||||
try:
|
||||
DatasetService.check_dataset_permission(dataset, current_user)
|
||||
except services.errors.account.NoPermissionError as e:
|
||||
raise Forbidden(str(e))
|
||||
# validate args
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument("chunks", type=list, required=True, nullable=False, location="json")
|
||||
args = parser.parse_args()
|
||||
try:
|
||||
chunks = [ChildChunkUpdateArgs(**chunk) for chunk in args.get("chunks")]
|
||||
child_chunks = SegmentService.update_child_chunks(chunks, segment, document, dataset)
|
||||
except ChildChunkIndexingServiceError as e:
|
||||
raise ChildChunkIndexingError(str(e))
|
||||
return {"data": marshal(child_chunks, child_chunk_fields)}, 200
|
||||
|
||||
|
||||
class ChildChunkUpdateApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def delete(self, dataset_id, document_id, segment_id, child_chunk_id):
|
||||
# check dataset
|
||||
dataset_id = str(dataset_id)
|
||||
dataset = DatasetService.get_dataset(dataset_id)
|
||||
if not dataset:
|
||||
raise NotFound("Dataset not found.")
|
||||
# check user's model setting
|
||||
DatasetService.check_dataset_model_setting(dataset)
|
||||
# check document
|
||||
document_id = str(document_id)
|
||||
document = DocumentService.get_document(dataset_id, document_id)
|
||||
if not document:
|
||||
raise NotFound("Document not found.")
|
||||
# check segment
|
||||
segment_id = str(segment_id)
|
||||
segment = DocumentSegment.query.filter(
|
||||
DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id
|
||||
).first()
|
||||
if not segment:
|
||||
raise NotFound("Segment not found.")
|
||||
# check child chunk
|
||||
child_chunk_id = str(child_chunk_id)
|
||||
child_chunk = ChildChunk.query.filter(
|
||||
ChildChunk.id == str(child_chunk_id), ChildChunk.tenant_id == current_user.current_tenant_id
|
||||
).first()
|
||||
if not child_chunk:
|
||||
raise NotFound("Child chunk not found.")
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if not current_user.is_editor:
|
||||
raise Forbidden()
|
||||
try:
|
||||
DatasetService.check_dataset_permission(dataset, current_user)
|
||||
except services.errors.account.NoPermissionError as e:
|
||||
raise Forbidden(str(e))
|
||||
try:
|
||||
SegmentService.delete_child_chunk(child_chunk, dataset)
|
||||
except ChildChunkDeleteIndexServiceError as e:
|
||||
raise ChildChunkDeleteIndexError(str(e))
|
||||
return {"result": "success"}, 200
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@cloud_edition_billing_resource_check("vector_space")
|
||||
def patch(self, dataset_id, document_id, segment_id, child_chunk_id):
|
||||
# check dataset
|
||||
dataset_id = str(dataset_id)
|
||||
dataset = DatasetService.get_dataset(dataset_id)
|
||||
if not dataset:
|
||||
raise NotFound("Dataset not found.")
|
||||
# check user's model setting
|
||||
DatasetService.check_dataset_model_setting(dataset)
|
||||
# check document
|
||||
document_id = str(document_id)
|
||||
document = DocumentService.get_document(dataset_id, document_id)
|
||||
if not document:
|
||||
raise NotFound("Document not found.")
|
||||
# check segment
|
||||
segment_id = str(segment_id)
|
||||
segment = DocumentSegment.query.filter(
|
||||
DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id
|
||||
).first()
|
||||
if not segment:
|
||||
raise NotFound("Segment not found.")
|
||||
# check child chunk
|
||||
child_chunk_id = str(child_chunk_id)
|
||||
child_chunk = ChildChunk.query.filter(
|
||||
ChildChunk.id == str(child_chunk_id), ChildChunk.tenant_id == current_user.current_tenant_id
|
||||
).first()
|
||||
if not child_chunk:
|
||||
raise NotFound("Child chunk not found.")
|
||||
# The role of the current user in the ta table must be admin or owner
|
||||
if not current_user.is_editor:
|
||||
raise Forbidden()
|
||||
try:
|
||||
DatasetService.check_dataset_permission(dataset, current_user)
|
||||
except services.errors.account.NoPermissionError as e:
|
||||
raise Forbidden(str(e))
|
||||
# validate args
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument("content", type=str, required=True, nullable=False, location="json")
|
||||
args = parser.parse_args()
|
||||
try:
|
||||
child_chunk = SegmentService.update_child_chunk(
|
||||
args.get("content"), child_chunk, segment, document, dataset
|
||||
)
|
||||
except ChildChunkIndexingServiceError as e:
|
||||
raise ChildChunkIndexingError(str(e))
|
||||
return {"data": marshal(child_chunk, child_chunk_fields)}, 200
|
||||
|
||||
|
||||
api.add_resource(DatasetDocumentSegmentListApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments")
|
||||
api.add_resource(DatasetDocumentSegmentApi, "/datasets/<uuid:dataset_id>/segments/<uuid:segment_id>/<string:action>")
|
||||
api.add_resource(
|
||||
DatasetDocumentSegmentApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segment/<string:action>"
|
||||
)
|
||||
api.add_resource(DatasetDocumentSegmentAddApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segment")
|
||||
api.add_resource(
|
||||
DatasetDocumentSegmentUpdateApi,
|
||||
|
|
@ -424,3 +651,11 @@ api.add_resource(
|
|||
"/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/batch_import",
|
||||
"/datasets/batch_import_status/<uuid:job_id>",
|
||||
)
|
||||
api.add_resource(
|
||||
ChildChunkAddApi,
|
||||
"/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>/child_chunks",
|
||||
)
|
||||
api.add_resource(
|
||||
ChildChunkUpdateApi,
|
||||
"/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>/child_chunks/<uuid:child_chunk_id>",
|
||||
)
|
||||
|
|
|
|||
|
|
@ -89,3 +89,15 @@ class IndexingEstimateError(BaseHTTPException):
|
|||
error_code = "indexing_estimate_error"
|
||||
description = "Knowledge indexing estimate failed: {message}"
|
||||
code = 500
|
||||
|
||||
|
||||
class ChildChunkIndexingError(BaseHTTPException):
|
||||
error_code = "child_chunk_indexing_error"
|
||||
description = "Create child chunk index failed: {message}"
|
||||
code = 500
|
||||
|
||||
|
||||
class ChildChunkDeleteIndexError(BaseHTTPException):
|
||||
error_code = "child_chunk_delete_index_error"
|
||||
description = "Delete child chunk index failed: {message}"
|
||||
code = 500
|
||||
|
|
|
|||
|
|
@ -69,7 +69,7 @@ class MessageFeedbackApi(InstalledAppResource):
|
|||
args = parser.parse_args()
|
||||
|
||||
try:
|
||||
MessageService.create_feedback(app_model, message_id, current_user, args["rating"], args["content"])
|
||||
MessageService.create_feedback(app_model, message_id, current_user, args.get("rating"), args.get("content"))
|
||||
except services.errors.message.MessageNotExistsError:
|
||||
raise NotFound("Message Not Exists.")
|
||||
|
||||
|
|
|
|||
|
|
@ -108,7 +108,7 @@ class MessageFeedbackApi(Resource):
|
|||
args = parser.parse_args()
|
||||
|
||||
try:
|
||||
MessageService.create_feedback(app_model, message_id, end_user, args["rating"], args["content"])
|
||||
MessageService.create_feedback(app_model, message_id, end_user, args.get("rating"), args.get("content"))
|
||||
except services.errors.message.MessageNotExistsError:
|
||||
raise NotFound("Message Not Exists.")
|
||||
|
||||
|
|
|
|||
|
|
@ -22,6 +22,7 @@ from fields.document_fields import document_fields, document_status_fields
|
|||
from libs.login import current_user
|
||||
from models.dataset import Dataset, Document, DocumentSegment
|
||||
from services.dataset_service import DocumentService
|
||||
from services.entities.knowledge_entities.knowledge_entities import KnowledgeConfig
|
||||
from services.file_service import FileService
|
||||
|
||||
|
||||
|
|
@ -67,13 +68,14 @@ class DocumentAddByTextApi(DatasetApiResource):
|
|||
"info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
|
||||
}
|
||||
args["data_source"] = data_source
|
||||
knowledge_config = KnowledgeConfig(**args)
|
||||
# validate args
|
||||
DocumentService.document_create_args_validate(args)
|
||||
DocumentService.document_create_args_validate(knowledge_config)
|
||||
|
||||
try:
|
||||
documents, batch = DocumentService.save_document_with_dataset_id(
|
||||
dataset=dataset,
|
||||
document_data=args,
|
||||
knowledge_config=knowledge_config,
|
||||
account=current_user,
|
||||
dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
|
||||
created_from="api",
|
||||
|
|
@ -122,12 +124,13 @@ class DocumentUpdateByTextApi(DatasetApiResource):
|
|||
args["data_source"] = data_source
|
||||
# validate args
|
||||
args["original_document_id"] = str(document_id)
|
||||
DocumentService.document_create_args_validate(args)
|
||||
knowledge_config = KnowledgeConfig(**args)
|
||||
DocumentService.document_create_args_validate(knowledge_config)
|
||||
|
||||
try:
|
||||
documents, batch = DocumentService.save_document_with_dataset_id(
|
||||
dataset=dataset,
|
||||
document_data=args,
|
||||
knowledge_config=knowledge_config,
|
||||
account=current_user,
|
||||
dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
|
||||
created_from="api",
|
||||
|
|
@ -186,12 +189,13 @@ class DocumentAddByFileApi(DatasetApiResource):
|
|||
data_source = {"type": "upload_file", "info_list": {"file_info_list": {"file_ids": [upload_file.id]}}}
|
||||
args["data_source"] = data_source
|
||||
# validate args
|
||||
DocumentService.document_create_args_validate(args)
|
||||
knowledge_config = KnowledgeConfig(**args)
|
||||
DocumentService.document_create_args_validate(knowledge_config)
|
||||
|
||||
try:
|
||||
documents, batch = DocumentService.save_document_with_dataset_id(
|
||||
dataset=dataset,
|
||||
document_data=args,
|
||||
knowledge_config=knowledge_config,
|
||||
account=dataset.created_by_account,
|
||||
dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
|
||||
created_from="api",
|
||||
|
|
@ -245,12 +249,14 @@ class DocumentUpdateByFileApi(DatasetApiResource):
|
|||
args["data_source"] = data_source
|
||||
# validate args
|
||||
args["original_document_id"] = str(document_id)
|
||||
DocumentService.document_create_args_validate(args)
|
||||
|
||||
knowledge_config = KnowledgeConfig(**args)
|
||||
DocumentService.document_create_args_validate(knowledge_config)
|
||||
|
||||
try:
|
||||
documents, batch = DocumentService.save_document_with_dataset_id(
|
||||
dataset=dataset,
|
||||
document_data=args,
|
||||
knowledge_config=knowledge_config,
|
||||
account=dataset.created_by_account,
|
||||
dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
|
||||
created_from="api",
|
||||
|
|
|
|||
|
|
@ -16,6 +16,7 @@ from extensions.ext_database import db
|
|||
from fields.segment_fields import segment_fields
|
||||
from models.dataset import Dataset, DocumentSegment
|
||||
from services.dataset_service import DatasetService, DocumentService, SegmentService
|
||||
from services.entities.knowledge_entities.knowledge_entities import SegmentUpdateArgs
|
||||
|
||||
|
||||
class SegmentApi(DatasetApiResource):
|
||||
|
|
@ -193,7 +194,7 @@ class DatasetSegmentApi(DatasetApiResource):
|
|||
args = parser.parse_args()
|
||||
|
||||
SegmentService.segment_create_args_validate(args["segment"], document)
|
||||
segment = SegmentService.update_segment(args["segment"], segment, document, dataset)
|
||||
segment = SegmentService.update_segment(SegmentUpdateArgs(**args["segment"]), segment, document, dataset)
|
||||
return {"data": marshal(segment, segment_fields), "doc_form": document.doc_form}, 200
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -105,10 +105,17 @@ class MessageFeedbackApi(WebApiResource):
|
|||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument("rating", type=str, choices=["like", "dislike", None], location="json")
|
||||
parser.add_argument("content", type=str, location="json", default=None)
|
||||
args = parser.parse_args()
|
||||
|
||||
try:
|
||||
MessageService.create_feedback(app_model, message_id, end_user, args["rating"], args["content"])
|
||||
MessageService.create_feedback(
|
||||
app_model=app_model,
|
||||
message_id=message_id,
|
||||
user=end_user,
|
||||
rating=args.get("rating"),
|
||||
content=args.get("content"),
|
||||
)
|
||||
except services.errors.message.MessageNotExistsError:
|
||||
raise NotFound("Message Not Exists.")
|
||||
|
||||
|
|
|
|||
|
|
@ -393,7 +393,7 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
|
|||
try:
|
||||
return generate_task_pipeline.process()
|
||||
except ValueError as e:
|
||||
if e.args[0] == "I/O operation on closed file.": # ignore this error
|
||||
if len(e.args) > 0 and e.args[0] == "I/O operation on closed file.": # ignore this error
|
||||
raise GenerateTaskStoppedError()
|
||||
else:
|
||||
logger.exception(f"Failed to process generate task pipeline, conversation_id: {conversation.id}")
|
||||
|
|
|
|||
|
|
@ -5,6 +5,9 @@ from collections.abc import Generator, Mapping
|
|||
from threading import Thread
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from constants.tts_auto_play_timeout import TTS_AUTO_PLAY_TIMEOUT, TTS_AUTO_PLAY_YIELD_CPU_TIME
|
||||
from core.app.apps.advanced_chat.app_generator_tts_publisher import AppGeneratorTTSPublisher, AudioTrunk
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
|
|
@ -66,7 +69,6 @@ from models.enums import CreatedByRole
|
|||
from models.workflow import (
|
||||
Workflow,
|
||||
WorkflowNodeExecution,
|
||||
WorkflowRun,
|
||||
WorkflowRunStatus,
|
||||
)
|
||||
|
||||
|
|
@ -80,8 +82,6 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
|
|||
|
||||
_task_state: WorkflowTaskState
|
||||
_application_generate_entity: AdvancedChatAppGenerateEntity
|
||||
_workflow: Workflow
|
||||
_user: Union[Account, EndUser]
|
||||
_workflow_system_variables: dict[SystemVariableKey, Any]
|
||||
_wip_workflow_node_executions: dict[str, WorkflowNodeExecution]
|
||||
_conversation_name_generate_thread: Optional[Thread] = None
|
||||
|
|
@ -97,32 +97,37 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
|
|||
stream: bool,
|
||||
dialogue_count: int,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize AdvancedChatAppGenerateTaskPipeline.
|
||||
:param application_generate_entity: application generate entity
|
||||
:param workflow: workflow
|
||||
:param queue_manager: queue manager
|
||||
:param conversation: conversation
|
||||
:param message: message
|
||||
:param user: user
|
||||
:param stream: stream
|
||||
:param dialogue_count: dialogue count
|
||||
"""
|
||||
super().__init__(application_generate_entity, queue_manager, user, stream)
|
||||
super().__init__(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
if isinstance(self._user, EndUser):
|
||||
user_id = self._user.session_id
|
||||
if isinstance(user, EndUser):
|
||||
self._user_id = user.id
|
||||
user_session_id = user.session_id
|
||||
self._created_by_role = CreatedByRole.END_USER
|
||||
elif isinstance(user, Account):
|
||||
self._user_id = user.id
|
||||
user_session_id = user.id
|
||||
self._created_by_role = CreatedByRole.ACCOUNT
|
||||
else:
|
||||
user_id = self._user.id
|
||||
raise NotImplementedError(f"User type not supported: {type(user)}")
|
||||
|
||||
self._workflow_id = workflow.id
|
||||
self._workflow_features_dict = workflow.features_dict
|
||||
|
||||
self._conversation_id = conversation.id
|
||||
self._conversation_mode = conversation.mode
|
||||
|
||||
self._message_id = message.id
|
||||
self._message_created_at = int(message.created_at.timestamp())
|
||||
|
||||
self._workflow = workflow
|
||||
self._conversation = conversation
|
||||
self._message = message
|
||||
self._workflow_system_variables = {
|
||||
SystemVariableKey.QUERY: message.query,
|
||||
SystemVariableKey.FILES: application_generate_entity.files,
|
||||
SystemVariableKey.CONVERSATION_ID: conversation.id,
|
||||
SystemVariableKey.USER_ID: user_id,
|
||||
SystemVariableKey.USER_ID: user_session_id,
|
||||
SystemVariableKey.DIALOGUE_COUNT: dialogue_count,
|
||||
SystemVariableKey.APP_ID: application_generate_entity.app_config.app_id,
|
||||
SystemVariableKey.WORKFLOW_ID: workflow.id,
|
||||
|
|
@ -135,19 +140,16 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
|
|||
|
||||
self._conversation_name_generate_thread = None
|
||||
self._recorded_files: list[Mapping[str, Any]] = []
|
||||
self._workflow_run_id = ""
|
||||
|
||||
def process(self) -> Union[ChatbotAppBlockingResponse, Generator[ChatbotAppStreamResponse, None, None]]:
|
||||
"""
|
||||
Process generate task pipeline.
|
||||
:return:
|
||||
"""
|
||||
db.session.refresh(self._workflow)
|
||||
db.session.refresh(self._user)
|
||||
db.session.close()
|
||||
|
||||
# start generate conversation name thread
|
||||
self._conversation_name_generate_thread = self._generate_conversation_name(
|
||||
self._conversation, self._application_generate_entity.query
|
||||
conversation_id=self._conversation_id, query=self._application_generate_entity.query
|
||||
)
|
||||
|
||||
generator = self._wrapper_process_stream_response(trace_manager=self._application_generate_entity.trace_manager)
|
||||
|
|
@ -173,12 +175,12 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
|
|||
return ChatbotAppBlockingResponse(
|
||||
task_id=stream_response.task_id,
|
||||
data=ChatbotAppBlockingResponse.Data(
|
||||
id=self._message.id,
|
||||
mode=self._conversation.mode,
|
||||
conversation_id=self._conversation.id,
|
||||
message_id=self._message.id,
|
||||
id=self._message_id,
|
||||
mode=self._conversation_mode,
|
||||
conversation_id=self._conversation_id,
|
||||
message_id=self._message_id,
|
||||
answer=self._task_state.answer,
|
||||
created_at=int(self._message.created_at.timestamp()),
|
||||
created_at=self._message_created_at,
|
||||
**extras,
|
||||
),
|
||||
)
|
||||
|
|
@ -196,9 +198,9 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
|
|||
"""
|
||||
for stream_response in generator:
|
||||
yield ChatbotAppStreamResponse(
|
||||
conversation_id=self._conversation.id,
|
||||
message_id=self._message.id,
|
||||
created_at=int(self._message.created_at.timestamp()),
|
||||
conversation_id=self._conversation_id,
|
||||
message_id=self._message_id,
|
||||
created_at=self._message_created_at,
|
||||
stream_response=stream_response,
|
||||
)
|
||||
|
||||
|
|
@ -216,7 +218,7 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
|
|||
tts_publisher = None
|
||||
task_id = self._application_generate_entity.task_id
|
||||
tenant_id = self._application_generate_entity.app_config.tenant_id
|
||||
features_dict = self._workflow.features_dict
|
||||
features_dict = self._workflow_features_dict
|
||||
|
||||
if (
|
||||
features_dict.get("text_to_speech")
|
||||
|
|
@ -268,7 +270,6 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
|
|||
"""
|
||||
# init fake graph runtime state
|
||||
graph_runtime_state: Optional[GraphRuntimeState] = None
|
||||
workflow_run: Optional[WorkflowRun] = None
|
||||
|
||||
for queue_message in self._queue_manager.listen():
|
||||
event = queue_message.event
|
||||
|
|
@ -276,75 +277,97 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
|
|||
if isinstance(event, QueuePingEvent):
|
||||
yield self._ping_stream_response()
|
||||
elif isinstance(event, QueueErrorEvent):
|
||||
err = self._handle_error(event, self._message)
|
||||
with Session(db.engine) as session:
|
||||
err = self._handle_error(event=event, session=session, message_id=self._message_id)
|
||||
session.commit()
|
||||
yield self._error_to_stream_response(err)
|
||||
break
|
||||
elif isinstance(event, QueueWorkflowStartedEvent):
|
||||
# override graph runtime state
|
||||
graph_runtime_state = event.graph_runtime_state
|
||||
|
||||
# init workflow run
|
||||
workflow_run = self._handle_workflow_run_start()
|
||||
with Session(db.engine) as session:
|
||||
# init workflow run
|
||||
workflow_run = self._handle_workflow_run_start(
|
||||
session=session,
|
||||
workflow_id=self._workflow_id,
|
||||
user_id=self._user_id,
|
||||
created_by_role=self._created_by_role,
|
||||
)
|
||||
self._workflow_run_id = workflow_run.id
|
||||
message = self._get_message(session=session)
|
||||
if not message:
|
||||
raise ValueError(f"Message not found: {self._message_id}")
|
||||
message.workflow_run_id = workflow_run.id
|
||||
workflow_start_resp = self._workflow_start_to_stream_response(
|
||||
session=session, task_id=self._application_generate_entity.task_id, workflow_run=workflow_run
|
||||
)
|
||||
session.commit()
|
||||
|
||||
self._refetch_message()
|
||||
self._message.workflow_run_id = workflow_run.id
|
||||
|
||||
db.session.commit()
|
||||
db.session.refresh(self._message)
|
||||
db.session.close()
|
||||
|
||||
yield self._workflow_start_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id, workflow_run=workflow_run
|
||||
)
|
||||
yield workflow_start_resp
|
||||
elif isinstance(
|
||||
event,
|
||||
QueueNodeRetryEvent,
|
||||
):
|
||||
if not workflow_run:
|
||||
if not self._workflow_run_id:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
workflow_node_execution = self._handle_workflow_node_execution_retried(
|
||||
workflow_run=workflow_run, event=event
|
||||
)
|
||||
|
||||
response = self._workflow_node_retry_to_stream_response(
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_node_execution=workflow_node_execution,
|
||||
)
|
||||
with Session(db.engine) as session:
|
||||
workflow_run = self._get_workflow_run(session=session, workflow_run_id=self._workflow_run_id)
|
||||
workflow_node_execution = self._handle_workflow_node_execution_retried(
|
||||
session=session, workflow_run=workflow_run, event=event
|
||||
)
|
||||
node_retry_resp = self._workflow_node_retry_to_stream_response(
|
||||
session=session,
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_node_execution=workflow_node_execution,
|
||||
)
|
||||
session.commit()
|
||||
|
||||
if response:
|
||||
yield response
|
||||
if node_retry_resp:
|
||||
yield node_retry_resp
|
||||
elif isinstance(event, QueueNodeStartedEvent):
|
||||
if not workflow_run:
|
||||
if not self._workflow_run_id:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
workflow_node_execution = self._handle_node_execution_start(workflow_run=workflow_run, event=event)
|
||||
with Session(db.engine) as session:
|
||||
workflow_run = self._get_workflow_run(session=session, workflow_run_id=self._workflow_run_id)
|
||||
workflow_node_execution = self._handle_node_execution_start(
|
||||
session=session, workflow_run=workflow_run, event=event
|
||||
)
|
||||
|
||||
response_start = self._workflow_node_start_to_stream_response(
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_node_execution=workflow_node_execution,
|
||||
)
|
||||
node_start_resp = self._workflow_node_start_to_stream_response(
|
||||
session=session,
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_node_execution=workflow_node_execution,
|
||||
)
|
||||
session.commit()
|
||||
|
||||
if response_start:
|
||||
yield response_start
|
||||
if node_start_resp:
|
||||
yield node_start_resp
|
||||
elif isinstance(event, QueueNodeSucceededEvent):
|
||||
workflow_node_execution = self._handle_workflow_node_execution_success(event)
|
||||
|
||||
# Record files if it's an answer node or end node
|
||||
if event.node_type in [NodeType.ANSWER, NodeType.END]:
|
||||
self._recorded_files.extend(self._fetch_files_from_node_outputs(event.outputs or {}))
|
||||
|
||||
response_finish = self._workflow_node_finish_to_stream_response(
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_node_execution=workflow_node_execution,
|
||||
)
|
||||
with Session(db.engine) as session:
|
||||
workflow_node_execution = self._handle_workflow_node_execution_success(session=session, event=event)
|
||||
|
||||
if response_finish:
|
||||
yield response_finish
|
||||
node_finish_resp = self._workflow_node_finish_to_stream_response(
|
||||
session=session,
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_node_execution=workflow_node_execution,
|
||||
)
|
||||
session.commit()
|
||||
|
||||
if node_finish_resp:
|
||||
yield node_finish_resp
|
||||
elif isinstance(event, QueueNodeFailedEvent | QueueNodeInIterationFailedEvent | QueueNodeExceptionEvent):
|
||||
workflow_node_execution = self._handle_workflow_node_execution_failed(event)
|
||||
with Session(db.engine) as session:
|
||||
workflow_node_execution = self._handle_workflow_node_execution_failed(session=session, event=event)
|
||||
|
||||
response_finish = self._workflow_node_finish_to_stream_response(
|
||||
event=event,
|
||||
|
|
@ -355,158 +378,203 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
|
|||
if response_finish:
|
||||
yield response_finish
|
||||
|
||||
if node_finish_resp:
|
||||
yield node_finish_resp
|
||||
elif isinstance(event, QueueParallelBranchRunStartedEvent):
|
||||
if not workflow_run:
|
||||
if not self._workflow_run_id:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
yield self._workflow_parallel_branch_start_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id, workflow_run=workflow_run, event=event
|
||||
)
|
||||
elif isinstance(event, QueueParallelBranchRunSucceededEvent | QueueParallelBranchRunFailedEvent):
|
||||
if not workflow_run:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
yield self._workflow_parallel_branch_finished_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id, workflow_run=workflow_run, event=event
|
||||
)
|
||||
elif isinstance(event, QueueIterationStartEvent):
|
||||
if not workflow_run:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
yield self._workflow_iteration_start_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id, workflow_run=workflow_run, event=event
|
||||
)
|
||||
elif isinstance(event, QueueIterationNextEvent):
|
||||
if not workflow_run:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
yield self._workflow_iteration_next_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id, workflow_run=workflow_run, event=event
|
||||
)
|
||||
elif isinstance(event, QueueIterationCompletedEvent):
|
||||
if not workflow_run:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
yield self._workflow_iteration_completed_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id, workflow_run=workflow_run, event=event
|
||||
)
|
||||
elif isinstance(event, QueueWorkflowSucceededEvent):
|
||||
if not workflow_run:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
if not graph_runtime_state:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
workflow_run = self._handle_workflow_run_success(
|
||||
workflow_run=workflow_run,
|
||||
start_at=graph_runtime_state.start_at,
|
||||
total_tokens=graph_runtime_state.total_tokens,
|
||||
total_steps=graph_runtime_state.node_run_steps,
|
||||
outputs=event.outputs,
|
||||
conversation_id=self._conversation.id,
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
|
||||
yield self._workflow_finish_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id, workflow_run=workflow_run
|
||||
)
|
||||
|
||||
self._queue_manager.publish(QueueAdvancedChatMessageEndEvent(), PublishFrom.TASK_PIPELINE)
|
||||
elif isinstance(event, QueueWorkflowPartialSuccessEvent):
|
||||
if not workflow_run:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
if not graph_runtime_state:
|
||||
raise ValueError("graph runtime state not initialized.")
|
||||
|
||||
workflow_run = self._handle_workflow_run_partial_success(
|
||||
workflow_run=workflow_run,
|
||||
start_at=graph_runtime_state.start_at,
|
||||
total_tokens=graph_runtime_state.total_tokens,
|
||||
total_steps=graph_runtime_state.node_run_steps,
|
||||
outputs=event.outputs,
|
||||
exceptions_count=event.exceptions_count,
|
||||
conversation_id=None,
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
|
||||
yield self._workflow_finish_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id, workflow_run=workflow_run
|
||||
)
|
||||
|
||||
self._queue_manager.publish(QueueAdvancedChatMessageEndEvent(), PublishFrom.TASK_PIPELINE)
|
||||
elif isinstance(event, QueueWorkflowFailedEvent):
|
||||
if not workflow_run:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
if not graph_runtime_state:
|
||||
raise ValueError("graph runtime state not initialized.")
|
||||
|
||||
workflow_run = self._handle_workflow_run_failed(
|
||||
workflow_run=workflow_run,
|
||||
start_at=graph_runtime_state.start_at,
|
||||
total_tokens=graph_runtime_state.total_tokens,
|
||||
total_steps=graph_runtime_state.node_run_steps,
|
||||
status=WorkflowRunStatus.FAILED,
|
||||
error=event.error,
|
||||
conversation_id=self._conversation.id,
|
||||
trace_manager=trace_manager,
|
||||
exceptions_count=event.exceptions_count,
|
||||
)
|
||||
|
||||
yield self._workflow_finish_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id, workflow_run=workflow_run
|
||||
)
|
||||
|
||||
err_event = QueueErrorEvent(error=ValueError(f"Run failed: {workflow_run.error}"))
|
||||
yield self._error_to_stream_response(self._handle_error(err_event, self._message))
|
||||
break
|
||||
elif isinstance(event, QueueStopEvent):
|
||||
if workflow_run and graph_runtime_state:
|
||||
workflow_run = self._handle_workflow_run_failed(
|
||||
with Session(db.engine) as session:
|
||||
workflow_run = self._get_workflow_run(session=session, workflow_run_id=self._workflow_run_id)
|
||||
parallel_start_resp = self._workflow_parallel_branch_start_to_stream_response(
|
||||
session=session,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_run=workflow_run,
|
||||
event=event,
|
||||
)
|
||||
|
||||
yield parallel_start_resp
|
||||
elif isinstance(event, QueueParallelBranchRunSucceededEvent | QueueParallelBranchRunFailedEvent):
|
||||
if not self._workflow_run_id:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
with Session(db.engine) as session:
|
||||
workflow_run = self._get_workflow_run(session=session, workflow_run_id=self._workflow_run_id)
|
||||
parallel_finish_resp = self._workflow_parallel_branch_finished_to_stream_response(
|
||||
session=session,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_run=workflow_run,
|
||||
event=event,
|
||||
)
|
||||
|
||||
yield parallel_finish_resp
|
||||
elif isinstance(event, QueueIterationStartEvent):
|
||||
if not self._workflow_run_id:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
with Session(db.engine) as session:
|
||||
workflow_run = self._get_workflow_run(session=session, workflow_run_id=self._workflow_run_id)
|
||||
iter_start_resp = self._workflow_iteration_start_to_stream_response(
|
||||
session=session,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_run=workflow_run,
|
||||
event=event,
|
||||
)
|
||||
|
||||
yield iter_start_resp
|
||||
elif isinstance(event, QueueIterationNextEvent):
|
||||
if not self._workflow_run_id:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
with Session(db.engine) as session:
|
||||
workflow_run = self._get_workflow_run(session=session, workflow_run_id=self._workflow_run_id)
|
||||
iter_next_resp = self._workflow_iteration_next_to_stream_response(
|
||||
session=session,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_run=workflow_run,
|
||||
event=event,
|
||||
)
|
||||
|
||||
yield iter_next_resp
|
||||
elif isinstance(event, QueueIterationCompletedEvent):
|
||||
if not self._workflow_run_id:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
with Session(db.engine) as session:
|
||||
workflow_run = self._get_workflow_run(session=session, workflow_run_id=self._workflow_run_id)
|
||||
iter_finish_resp = self._workflow_iteration_completed_to_stream_response(
|
||||
session=session,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_run=workflow_run,
|
||||
event=event,
|
||||
)
|
||||
|
||||
yield iter_finish_resp
|
||||
elif isinstance(event, QueueWorkflowSucceededEvent):
|
||||
if not self._workflow_run_id:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
if not graph_runtime_state:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
with Session(db.engine) as session:
|
||||
workflow_run = self._handle_workflow_run_success(
|
||||
session=session,
|
||||
workflow_run_id=self._workflow_run_id,
|
||||
start_at=graph_runtime_state.start_at,
|
||||
total_tokens=graph_runtime_state.total_tokens,
|
||||
total_steps=graph_runtime_state.node_run_steps,
|
||||
status=WorkflowRunStatus.STOPPED,
|
||||
error=event.get_stop_reason(),
|
||||
conversation_id=self._conversation.id,
|
||||
outputs=event.outputs,
|
||||
conversation_id=self._conversation_id,
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
|
||||
yield self._workflow_finish_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id, workflow_run=workflow_run
|
||||
workflow_finish_resp = self._workflow_finish_to_stream_response(
|
||||
session=session, task_id=self._application_generate_entity.task_id, workflow_run=workflow_run
|
||||
)
|
||||
session.commit()
|
||||
|
||||
# Save message
|
||||
self._save_message(graph_runtime_state=graph_runtime_state)
|
||||
yield workflow_finish_resp
|
||||
self._queue_manager.publish(QueueAdvancedChatMessageEndEvent(), PublishFrom.TASK_PIPELINE)
|
||||
elif isinstance(event, QueueWorkflowPartialSuccessEvent):
|
||||
if not self._workflow_run_id:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
if not graph_runtime_state:
|
||||
raise ValueError("graph runtime state not initialized.")
|
||||
|
||||
with Session(db.engine) as session:
|
||||
workflow_run = self._handle_workflow_run_partial_success(
|
||||
session=session,
|
||||
workflow_run_id=self._workflow_run_id,
|
||||
start_at=graph_runtime_state.start_at,
|
||||
total_tokens=graph_runtime_state.total_tokens,
|
||||
total_steps=graph_runtime_state.node_run_steps,
|
||||
outputs=event.outputs,
|
||||
exceptions_count=event.exceptions_count,
|
||||
conversation_id=None,
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
workflow_finish_resp = self._workflow_finish_to_stream_response(
|
||||
session=session, task_id=self._application_generate_entity.task_id, workflow_run=workflow_run
|
||||
)
|
||||
session.commit()
|
||||
|
||||
yield workflow_finish_resp
|
||||
self._queue_manager.publish(QueueAdvancedChatMessageEndEvent(), PublishFrom.TASK_PIPELINE)
|
||||
elif isinstance(event, QueueWorkflowFailedEvent):
|
||||
if not self._workflow_run_id:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
if not graph_runtime_state:
|
||||
raise ValueError("graph runtime state not initialized.")
|
||||
|
||||
with Session(db.engine) as session:
|
||||
workflow_run = self._handle_workflow_run_failed(
|
||||
session=session,
|
||||
workflow_run_id=self._workflow_run_id,
|
||||
start_at=graph_runtime_state.start_at,
|
||||
total_tokens=graph_runtime_state.total_tokens,
|
||||
total_steps=graph_runtime_state.node_run_steps,
|
||||
status=WorkflowRunStatus.FAILED,
|
||||
error=event.error,
|
||||
conversation_id=self._conversation_id,
|
||||
trace_manager=trace_manager,
|
||||
exceptions_count=event.exceptions_count,
|
||||
)
|
||||
workflow_finish_resp = self._workflow_finish_to_stream_response(
|
||||
session=session, task_id=self._application_generate_entity.task_id, workflow_run=workflow_run
|
||||
)
|
||||
err_event = QueueErrorEvent(error=ValueError(f"Run failed: {workflow_run.error}"))
|
||||
err = self._handle_error(event=err_event, session=session, message_id=self._message_id)
|
||||
session.commit()
|
||||
|
||||
yield workflow_finish_resp
|
||||
yield self._error_to_stream_response(err)
|
||||
break
|
||||
elif isinstance(event, QueueStopEvent):
|
||||
if self._workflow_run_id and graph_runtime_state:
|
||||
with Session(db.engine) as session:
|
||||
workflow_run = self._handle_workflow_run_failed(
|
||||
session=session,
|
||||
workflow_run_id=self._workflow_run_id,
|
||||
start_at=graph_runtime_state.start_at,
|
||||
total_tokens=graph_runtime_state.total_tokens,
|
||||
total_steps=graph_runtime_state.node_run_steps,
|
||||
status=WorkflowRunStatus.STOPPED,
|
||||
error=event.get_stop_reason(),
|
||||
conversation_id=self._conversation_id,
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
workflow_finish_resp = self._workflow_finish_to_stream_response(
|
||||
session=session,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_run=workflow_run,
|
||||
)
|
||||
# Save message
|
||||
self._save_message(session=session, graph_runtime_state=graph_runtime_state)
|
||||
session.commit()
|
||||
|
||||
yield workflow_finish_resp
|
||||
|
||||
yield self._message_end_to_stream_response()
|
||||
break
|
||||
elif isinstance(event, QueueRetrieverResourcesEvent):
|
||||
self._handle_retriever_resources(event)
|
||||
|
||||
self._refetch_message()
|
||||
|
||||
self._message.message_metadata = (
|
||||
json.dumps(jsonable_encoder(self._task_state.metadata)) if self._task_state.metadata else None
|
||||
)
|
||||
|
||||
db.session.commit()
|
||||
db.session.refresh(self._message)
|
||||
db.session.close()
|
||||
with Session(db.engine) as session:
|
||||
message = self._get_message(session=session)
|
||||
message.message_metadata = (
|
||||
json.dumps(jsonable_encoder(self._task_state.metadata)) if self._task_state.metadata else None
|
||||
)
|
||||
session.commit()
|
||||
elif isinstance(event, QueueAnnotationReplyEvent):
|
||||
self._handle_annotation_reply(event)
|
||||
|
||||
self._refetch_message()
|
||||
|
||||
self._message.message_metadata = (
|
||||
json.dumps(jsonable_encoder(self._task_state.metadata)) if self._task_state.metadata else None
|
||||
)
|
||||
|
||||
db.session.commit()
|
||||
db.session.refresh(self._message)
|
||||
db.session.close()
|
||||
with Session(db.engine) as session:
|
||||
message = self._get_message(session=session)
|
||||
message.message_metadata = (
|
||||
json.dumps(jsonable_encoder(self._task_state.metadata)) if self._task_state.metadata else None
|
||||
)
|
||||
session.commit()
|
||||
elif isinstance(event, QueueTextChunkEvent):
|
||||
delta_text = event.text
|
||||
if delta_text is None:
|
||||
|
|
@ -523,7 +591,7 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
|
|||
|
||||
self._task_state.answer += delta_text
|
||||
yield self._message_to_stream_response(
|
||||
answer=delta_text, message_id=self._message.id, from_variable_selector=event.from_variable_selector
|
||||
answer=delta_text, message_id=self._message_id, from_variable_selector=event.from_variable_selector
|
||||
)
|
||||
elif isinstance(event, QueueMessageReplaceEvent):
|
||||
# published by moderation
|
||||
|
|
@ -538,7 +606,9 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
|
|||
yield self._message_replace_to_stream_response(answer=output_moderation_answer)
|
||||
|
||||
# Save message
|
||||
self._save_message(graph_runtime_state=graph_runtime_state)
|
||||
with Session(db.engine) as session:
|
||||
self._save_message(session=session, graph_runtime_state=graph_runtime_state)
|
||||
session.commit()
|
||||
|
||||
yield self._message_end_to_stream_response()
|
||||
elif isinstance(event, QueueAgentLogEvent):
|
||||
|
|
@ -553,54 +623,46 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
|
|||
if self._conversation_name_generate_thread:
|
||||
self._conversation_name_generate_thread.join()
|
||||
|
||||
def _save_message(self, graph_runtime_state: Optional[GraphRuntimeState] = None) -> None:
|
||||
self._refetch_message()
|
||||
|
||||
self._message.answer = self._task_state.answer
|
||||
self._message.provider_response_latency = time.perf_counter() - self._start_at
|
||||
self._message.message_metadata = (
|
||||
def _save_message(self, *, session: Session, graph_runtime_state: Optional[GraphRuntimeState] = None) -> None:
|
||||
message = self._get_message(session=session)
|
||||
message.answer = self._task_state.answer
|
||||
message.provider_response_latency = time.perf_counter() - self._start_at
|
||||
message.message_metadata = (
|
||||
json.dumps(jsonable_encoder(self._task_state.metadata)) if self._task_state.metadata else None
|
||||
)
|
||||
message_files = [
|
||||
MessageFile(
|
||||
message_id=self._message.id,
|
||||
message_id=message.id,
|
||||
type=file["type"],
|
||||
transfer_method=file["transfer_method"],
|
||||
url=file["remote_url"],
|
||||
belongs_to="assistant",
|
||||
upload_file_id=file["related_id"],
|
||||
created_by_role=CreatedByRole.ACCOUNT
|
||||
if self._message.invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER}
|
||||
if message.invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER}
|
||||
else CreatedByRole.END_USER,
|
||||
created_by=self._message.from_account_id or self._message.from_end_user_id or "",
|
||||
created_by=message.from_account_id or message.from_end_user_id or "",
|
||||
)
|
||||
for file in self._recorded_files
|
||||
]
|
||||
db.session.add_all(message_files)
|
||||
session.add_all(message_files)
|
||||
|
||||
if graph_runtime_state and graph_runtime_state.llm_usage:
|
||||
usage = graph_runtime_state.llm_usage
|
||||
self._message.message_tokens = usage.prompt_tokens
|
||||
self._message.message_unit_price = usage.prompt_unit_price
|
||||
self._message.message_price_unit = usage.prompt_price_unit
|
||||
self._message.answer_tokens = usage.completion_tokens
|
||||
self._message.answer_unit_price = usage.completion_unit_price
|
||||
self._message.answer_price_unit = usage.completion_price_unit
|
||||
self._message.total_price = usage.total_price
|
||||
self._message.currency = usage.currency
|
||||
|
||||
message.message_tokens = usage.prompt_tokens
|
||||
message.message_unit_price = usage.prompt_unit_price
|
||||
message.message_price_unit = usage.prompt_price_unit
|
||||
message.answer_tokens = usage.completion_tokens
|
||||
message.answer_unit_price = usage.completion_unit_price
|
||||
message.answer_price_unit = usage.completion_price_unit
|
||||
message.total_price = usage.total_price
|
||||
message.currency = usage.currency
|
||||
self._task_state.metadata["usage"] = jsonable_encoder(usage)
|
||||
else:
|
||||
self._task_state.metadata["usage"] = jsonable_encoder(LLMUsage.empty_usage())
|
||||
|
||||
db.session.commit()
|
||||
|
||||
message_was_created.send(
|
||||
self._message,
|
||||
message,
|
||||
application_generate_entity=self._application_generate_entity,
|
||||
conversation=self._conversation,
|
||||
is_first_message=self._application_generate_entity.conversation_id is None,
|
||||
extras=self._application_generate_entity.extras,
|
||||
)
|
||||
|
||||
def _message_end_to_stream_response(self) -> MessageEndStreamResponse:
|
||||
|
|
@ -617,7 +679,7 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
|
|||
|
||||
return MessageEndStreamResponse(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
id=self._message.id,
|
||||
id=self._message_id,
|
||||
files=self._recorded_files,
|
||||
metadata=extras.get("metadata", {}),
|
||||
)
|
||||
|
|
@ -645,11 +707,9 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
|
|||
|
||||
return False
|
||||
|
||||
def _refetch_message(self) -> None:
|
||||
"""
|
||||
Refetch message.
|
||||
:return:
|
||||
"""
|
||||
message = db.session.query(Message).filter(Message.id == self._message.id).first()
|
||||
if message:
|
||||
self._message = message
|
||||
def _get_message(self, *, session: Session):
|
||||
stmt = select(Message).where(Message.id == self._message_id)
|
||||
message = session.scalar(stmt)
|
||||
if not message:
|
||||
raise ValueError(f"Message not found: {self._message_id}")
|
||||
return message
|
||||
|
|
|
|||
|
|
@ -70,14 +70,13 @@ class MessageBasedAppGenerator(BaseAppGenerator):
|
|||
queue_manager=queue_manager,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
user=user,
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
try:
|
||||
return generate_task_pipeline.process()
|
||||
except ValueError as e:
|
||||
if e.args[0] == "I/O operation on closed file.": # ignore this error
|
||||
if len(e.args) > 0 and e.args[0] == "I/O operation on closed file.": # ignore this error
|
||||
raise GenerateTaskStoppedError()
|
||||
else:
|
||||
logger.exception(f"Failed to handle response, conversation_id: {conversation.id}")
|
||||
|
|
|
|||
|
|
@ -325,7 +325,7 @@ class WorkflowAppGenerator(BaseAppGenerator):
|
|||
try:
|
||||
return generate_task_pipeline.process()
|
||||
except ValueError as e:
|
||||
if e.args[0] == "I/O operation on closed file.": # ignore this error
|
||||
if len(e.args) > 0 and e.args[0] == "I/O operation on closed file.": # ignore this error
|
||||
raise GenerateTaskStoppedError()
|
||||
else:
|
||||
logger.exception(
|
||||
|
|
|
|||
|
|
@ -3,6 +3,8 @@ import time
|
|||
from collections.abc import Generator
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from constants.tts_auto_play_timeout import TTS_AUTO_PLAY_TIMEOUT, TTS_AUTO_PLAY_YIELD_CPU_TIME
|
||||
from core.app.apps.advanced_chat.app_generator_tts_publisher import AppGeneratorTTSPublisher, AudioTrunk
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager
|
||||
|
|
@ -51,6 +53,7 @@ from core.ops.ops_trace_manager import TraceQueueManager
|
|||
from core.workflow.enums import SystemVariableKey
|
||||
from extensions.ext_database import db
|
||||
from models.account import Account
|
||||
from models.enums import CreatedByRole
|
||||
from models.model import EndUser
|
||||
from models.workflow import (
|
||||
Workflow,
|
||||
|
|
@ -69,8 +72,6 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
|
|||
WorkflowAppGenerateTaskPipeline is a class that generate stream output and state management for Application.
|
||||
"""
|
||||
|
||||
_workflow: Workflow
|
||||
_user: Union[Account, EndUser]
|
||||
_task_state: WorkflowTaskState
|
||||
_application_generate_entity: WorkflowAppGenerateEntity
|
||||
_workflow_system_variables: dict[SystemVariableKey, Any]
|
||||
|
|
@ -84,25 +85,29 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
|
|||
user: Union[Account, EndUser],
|
||||
stream: bool,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize GenerateTaskPipeline.
|
||||
:param application_generate_entity: application generate entity
|
||||
:param workflow: workflow
|
||||
:param queue_manager: queue manager
|
||||
:param user: user
|
||||
:param stream: is streamed
|
||||
"""
|
||||
super().__init__(application_generate_entity, queue_manager, user, stream)
|
||||
super().__init__(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
if isinstance(self._user, EndUser):
|
||||
user_id = self._user.session_id
|
||||
if isinstance(user, EndUser):
|
||||
self._user_id = user.id
|
||||
user_session_id = user.session_id
|
||||
self._created_by_role = CreatedByRole.END_USER
|
||||
elif isinstance(user, Account):
|
||||
self._user_id = user.id
|
||||
user_session_id = user.id
|
||||
self._created_by_role = CreatedByRole.ACCOUNT
|
||||
else:
|
||||
user_id = self._user.id
|
||||
raise ValueError(f"Invalid user type: {type(user)}")
|
||||
|
||||
self._workflow_id = workflow.id
|
||||
self._workflow_features_dict = workflow.features_dict
|
||||
|
||||
self._workflow = workflow
|
||||
self._workflow_system_variables = {
|
||||
SystemVariableKey.FILES: application_generate_entity.files,
|
||||
SystemVariableKey.USER_ID: user_id,
|
||||
SystemVariableKey.USER_ID: user_session_id,
|
||||
SystemVariableKey.APP_ID: application_generate_entity.app_config.app_id,
|
||||
SystemVariableKey.WORKFLOW_ID: workflow.id,
|
||||
SystemVariableKey.WORKFLOW_RUN_ID: application_generate_entity.workflow_run_id,
|
||||
|
|
@ -118,10 +123,6 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
|
|||
Process generate task pipeline.
|
||||
:return:
|
||||
"""
|
||||
db.session.refresh(self._workflow)
|
||||
db.session.refresh(self._user)
|
||||
db.session.close()
|
||||
|
||||
generator = self._wrapper_process_stream_response(trace_manager=self._application_generate_entity.trace_manager)
|
||||
if self._stream:
|
||||
return self._to_stream_response(generator)
|
||||
|
|
@ -188,7 +189,7 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
|
|||
tts_publisher = None
|
||||
task_id = self._application_generate_entity.task_id
|
||||
tenant_id = self._application_generate_entity.app_config.tenant_id
|
||||
features_dict = self._workflow.features_dict
|
||||
features_dict = self._workflow_features_dict
|
||||
|
||||
if (
|
||||
features_dict.get("text_to_speech")
|
||||
|
|
@ -237,7 +238,6 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
|
|||
:return:
|
||||
"""
|
||||
graph_runtime_state = None
|
||||
workflow_run = None
|
||||
|
||||
for queue_message in self._queue_manager.listen():
|
||||
event = queue_message.event
|
||||
|
|
@ -245,180 +245,261 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
|
|||
if isinstance(event, QueuePingEvent):
|
||||
yield self._ping_stream_response()
|
||||
elif isinstance(event, QueueErrorEvent):
|
||||
err = self._handle_error(event)
|
||||
err = self._handle_error(event=event)
|
||||
yield self._error_to_stream_response(err)
|
||||
break
|
||||
elif isinstance(event, QueueWorkflowStartedEvent):
|
||||
# override graph runtime state
|
||||
graph_runtime_state = event.graph_runtime_state
|
||||
|
||||
# init workflow run
|
||||
workflow_run = self._handle_workflow_run_start()
|
||||
yield self._workflow_start_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id, workflow_run=workflow_run
|
||||
)
|
||||
with Session(db.engine) as session:
|
||||
# init workflow run
|
||||
workflow_run = self._handle_workflow_run_start(
|
||||
session=session,
|
||||
workflow_id=self._workflow_id,
|
||||
user_id=self._user_id,
|
||||
created_by_role=self._created_by_role,
|
||||
)
|
||||
self._workflow_run_id = workflow_run.id
|
||||
start_resp = self._workflow_start_to_stream_response(
|
||||
session=session, task_id=self._application_generate_entity.task_id, workflow_run=workflow_run
|
||||
)
|
||||
session.commit()
|
||||
|
||||
yield start_resp
|
||||
elif isinstance(
|
||||
event,
|
||||
QueueNodeRetryEvent,
|
||||
):
|
||||
if not workflow_run:
|
||||
if not self._workflow_run_id:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
workflow_node_execution = self._handle_workflow_node_execution_retried(
|
||||
workflow_run=workflow_run, event=event
|
||||
)
|
||||
|
||||
response = self._workflow_node_retry_to_stream_response(
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_node_execution=workflow_node_execution,
|
||||
)
|
||||
with Session(db.engine) as session:
|
||||
workflow_run = self._get_workflow_run(session=session, workflow_run_id=self._workflow_run_id)
|
||||
workflow_node_execution = self._handle_workflow_node_execution_retried(
|
||||
session=session, workflow_run=workflow_run, event=event
|
||||
)
|
||||
response = self._workflow_node_retry_to_stream_response(
|
||||
session=session,
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_node_execution=workflow_node_execution,
|
||||
)
|
||||
session.commit()
|
||||
|
||||
if response:
|
||||
yield response
|
||||
elif isinstance(event, QueueNodeStartedEvent):
|
||||
if not workflow_run:
|
||||
if not self._workflow_run_id:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
workflow_node_execution = self._handle_node_execution_start(workflow_run=workflow_run, event=event)
|
||||
|
||||
node_start_response = self._workflow_node_start_to_stream_response(
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_node_execution=workflow_node_execution,
|
||||
)
|
||||
with Session(db.engine) as session:
|
||||
workflow_run = self._get_workflow_run(session=session, workflow_run_id=self._workflow_run_id)
|
||||
workflow_node_execution = self._handle_node_execution_start(
|
||||
session=session, workflow_run=workflow_run, event=event
|
||||
)
|
||||
node_start_response = self._workflow_node_start_to_stream_response(
|
||||
session=session,
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_node_execution=workflow_node_execution,
|
||||
)
|
||||
session.commit()
|
||||
|
||||
if node_start_response:
|
||||
yield node_start_response
|
||||
elif isinstance(event, QueueNodeSucceededEvent):
|
||||
workflow_node_execution = self._handle_workflow_node_execution_success(event)
|
||||
|
||||
node_success_response = self._workflow_node_finish_to_stream_response(
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_node_execution=workflow_node_execution,
|
||||
)
|
||||
with Session(db.engine) as session:
|
||||
workflow_node_execution = self._handle_workflow_node_execution_success(session=session, event=event)
|
||||
node_success_response = self._workflow_node_finish_to_stream_response(
|
||||
session=session,
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_node_execution=workflow_node_execution,
|
||||
)
|
||||
session.commit()
|
||||
|
||||
if node_success_response:
|
||||
yield node_success_response
|
||||
elif isinstance(event, QueueNodeFailedEvent | QueueNodeInIterationFailedEvent | QueueNodeExceptionEvent):
|
||||
workflow_node_execution = self._handle_workflow_node_execution_failed(event)
|
||||
with Session(db.engine) as session:
|
||||
workflow_node_execution = self._handle_workflow_node_execution_failed(
|
||||
session=session,
|
||||
event=event,
|
||||
)
|
||||
node_failed_response = self._workflow_node_finish_to_stream_response(
|
||||
session=session,
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_node_execution=workflow_node_execution,
|
||||
)
|
||||
session.commit()
|
||||
|
||||
node_failed_response = self._workflow_node_finish_to_stream_response(
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_node_execution=workflow_node_execution,
|
||||
)
|
||||
if node_failed_response:
|
||||
yield node_failed_response
|
||||
|
||||
elif isinstance(event, QueueParallelBranchRunStartedEvent):
|
||||
if not workflow_run:
|
||||
if not self._workflow_run_id:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
yield self._workflow_parallel_branch_start_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id, workflow_run=workflow_run, event=event
|
||||
)
|
||||
with Session(db.engine) as session:
|
||||
workflow_run = self._get_workflow_run(session=session, workflow_run_id=self._workflow_run_id)
|
||||
parallel_start_resp = self._workflow_parallel_branch_start_to_stream_response(
|
||||
session=session,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_run=workflow_run,
|
||||
event=event,
|
||||
)
|
||||
|
||||
yield parallel_start_resp
|
||||
|
||||
elif isinstance(event, QueueParallelBranchRunSucceededEvent | QueueParallelBranchRunFailedEvent):
|
||||
if not workflow_run:
|
||||
if not self._workflow_run_id:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
yield self._workflow_parallel_branch_finished_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id, workflow_run=workflow_run, event=event
|
||||
)
|
||||
with Session(db.engine) as session:
|
||||
workflow_run = self._get_workflow_run(session=session, workflow_run_id=self._workflow_run_id)
|
||||
parallel_finish_resp = self._workflow_parallel_branch_finished_to_stream_response(
|
||||
session=session,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_run=workflow_run,
|
||||
event=event,
|
||||
)
|
||||
|
||||
yield parallel_finish_resp
|
||||
|
||||
elif isinstance(event, QueueIterationStartEvent):
|
||||
if not workflow_run:
|
||||
if not self._workflow_run_id:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
yield self._workflow_iteration_start_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id, workflow_run=workflow_run, event=event
|
||||
)
|
||||
with Session(db.engine) as session:
|
||||
workflow_run = self._get_workflow_run(session=session, workflow_run_id=self._workflow_run_id)
|
||||
iter_start_resp = self._workflow_iteration_start_to_stream_response(
|
||||
session=session,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_run=workflow_run,
|
||||
event=event,
|
||||
)
|
||||
|
||||
yield iter_start_resp
|
||||
|
||||
elif isinstance(event, QueueIterationNextEvent):
|
||||
if not workflow_run:
|
||||
if not self._workflow_run_id:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
yield self._workflow_iteration_next_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id, workflow_run=workflow_run, event=event
|
||||
)
|
||||
with Session(db.engine) as session:
|
||||
workflow_run = self._get_workflow_run(session=session, workflow_run_id=self._workflow_run_id)
|
||||
iter_next_resp = self._workflow_iteration_next_to_stream_response(
|
||||
session=session,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_run=workflow_run,
|
||||
event=event,
|
||||
)
|
||||
|
||||
yield iter_next_resp
|
||||
|
||||
elif isinstance(event, QueueIterationCompletedEvent):
|
||||
if not workflow_run:
|
||||
if not self._workflow_run_id:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
yield self._workflow_iteration_completed_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id, workflow_run=workflow_run, event=event
|
||||
)
|
||||
with Session(db.engine) as session:
|
||||
workflow_run = self._get_workflow_run(session=session, workflow_run_id=self._workflow_run_id)
|
||||
iter_finish_resp = self._workflow_iteration_completed_to_stream_response(
|
||||
session=session,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_run=workflow_run,
|
||||
event=event,
|
||||
)
|
||||
|
||||
yield iter_finish_resp
|
||||
|
||||
elif isinstance(event, QueueWorkflowSucceededEvent):
|
||||
if not workflow_run:
|
||||
if not self._workflow_run_id:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
if not graph_runtime_state:
|
||||
raise ValueError("graph runtime state not initialized.")
|
||||
|
||||
workflow_run = self._handle_workflow_run_success(
|
||||
workflow_run=workflow_run,
|
||||
start_at=graph_runtime_state.start_at,
|
||||
total_tokens=graph_runtime_state.total_tokens,
|
||||
total_steps=graph_runtime_state.node_run_steps,
|
||||
outputs=event.outputs,
|
||||
conversation_id=None,
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
with Session(db.engine) as session:
|
||||
workflow_run = self._handle_workflow_run_success(
|
||||
session=session,
|
||||
workflow_run_id=self._workflow_run_id,
|
||||
start_at=graph_runtime_state.start_at,
|
||||
total_tokens=graph_runtime_state.total_tokens,
|
||||
total_steps=graph_runtime_state.node_run_steps,
|
||||
outputs=event.outputs,
|
||||
conversation_id=None,
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
|
||||
# save workflow app log
|
||||
self._save_workflow_app_log(workflow_run)
|
||||
# save workflow app log
|
||||
self._save_workflow_app_log(session=session, workflow_run=workflow_run)
|
||||
|
||||
yield self._workflow_finish_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id, workflow_run=workflow_run
|
||||
)
|
||||
workflow_finish_resp = self._workflow_finish_to_stream_response(
|
||||
session=session,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_run=workflow_run,
|
||||
)
|
||||
session.commit()
|
||||
|
||||
yield workflow_finish_resp
|
||||
elif isinstance(event, QueueWorkflowPartialSuccessEvent):
|
||||
if not workflow_run:
|
||||
if not self._workflow_run_id:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
if not graph_runtime_state:
|
||||
raise ValueError("graph runtime state not initialized.")
|
||||
|
||||
workflow_run = self._handle_workflow_run_partial_success(
|
||||
workflow_run=workflow_run,
|
||||
start_at=graph_runtime_state.start_at,
|
||||
total_tokens=graph_runtime_state.total_tokens,
|
||||
total_steps=graph_runtime_state.node_run_steps,
|
||||
outputs=event.outputs,
|
||||
exceptions_count=event.exceptions_count,
|
||||
conversation_id=None,
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
with Session(db.engine) as session:
|
||||
workflow_run = self._handle_workflow_run_partial_success(
|
||||
session=session,
|
||||
workflow_run_id=self._workflow_run_id,
|
||||
start_at=graph_runtime_state.start_at,
|
||||
total_tokens=graph_runtime_state.total_tokens,
|
||||
total_steps=graph_runtime_state.node_run_steps,
|
||||
outputs=event.outputs,
|
||||
exceptions_count=event.exceptions_count,
|
||||
conversation_id=None,
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
|
||||
# save workflow app log
|
||||
self._save_workflow_app_log(workflow_run)
|
||||
# save workflow app log
|
||||
self._save_workflow_app_log(session=session, workflow_run=workflow_run)
|
||||
|
||||
yield self._workflow_finish_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id, workflow_run=workflow_run
|
||||
)
|
||||
workflow_finish_resp = self._workflow_finish_to_stream_response(
|
||||
session=session, task_id=self._application_generate_entity.task_id, workflow_run=workflow_run
|
||||
)
|
||||
session.commit()
|
||||
|
||||
yield workflow_finish_resp
|
||||
elif isinstance(event, QueueWorkflowFailedEvent | QueueStopEvent):
|
||||
if not workflow_run:
|
||||
if not self._workflow_run_id:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
if not graph_runtime_state:
|
||||
raise ValueError("graph runtime state not initialized.")
|
||||
workflow_run = self._handle_workflow_run_failed(
|
||||
workflow_run=workflow_run,
|
||||
start_at=graph_runtime_state.start_at,
|
||||
total_tokens=graph_runtime_state.total_tokens,
|
||||
total_steps=graph_runtime_state.node_run_steps,
|
||||
status=WorkflowRunStatus.FAILED
|
||||
if isinstance(event, QueueWorkflowFailedEvent)
|
||||
else WorkflowRunStatus.STOPPED,
|
||||
error=event.error if isinstance(event, QueueWorkflowFailedEvent) else event.get_stop_reason(),
|
||||
conversation_id=None,
|
||||
trace_manager=trace_manager,
|
||||
exceptions_count=event.exceptions_count if isinstance(event, QueueWorkflowFailedEvent) else 0,
|
||||
)
|
||||
|
||||
# save workflow app log
|
||||
self._save_workflow_app_log(workflow_run)
|
||||
with Session(db.engine) as session:
|
||||
workflow_run = self._handle_workflow_run_failed(
|
||||
session=session,
|
||||
workflow_run_id=self._workflow_run_id,
|
||||
start_at=graph_runtime_state.start_at,
|
||||
total_tokens=graph_runtime_state.total_tokens,
|
||||
total_steps=graph_runtime_state.node_run_steps,
|
||||
status=WorkflowRunStatus.FAILED
|
||||
if isinstance(event, QueueWorkflowFailedEvent)
|
||||
else WorkflowRunStatus.STOPPED,
|
||||
error=event.error if isinstance(event, QueueWorkflowFailedEvent) else event.get_stop_reason(),
|
||||
conversation_id=None,
|
||||
trace_manager=trace_manager,
|
||||
exceptions_count=event.exceptions_count if isinstance(event, QueueWorkflowFailedEvent) else 0,
|
||||
)
|
||||
|
||||
yield self._workflow_finish_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id, workflow_run=workflow_run
|
||||
)
|
||||
# save workflow app log
|
||||
self._save_workflow_app_log(session=session, workflow_run=workflow_run)
|
||||
|
||||
workflow_finish_resp = self._workflow_finish_to_stream_response(
|
||||
session=session, task_id=self._application_generate_entity.task_id, workflow_run=workflow_run
|
||||
)
|
||||
session.commit()
|
||||
|
||||
yield workflow_finish_resp
|
||||
elif isinstance(event, QueueTextChunkEvent):
|
||||
delta_text = event.text
|
||||
if delta_text is None:
|
||||
|
|
@ -440,7 +521,7 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
|
|||
if tts_publisher:
|
||||
tts_publisher.publish(None)
|
||||
|
||||
def _save_workflow_app_log(self, workflow_run: WorkflowRun) -> None:
|
||||
def _save_workflow_app_log(self, *, session: Session, workflow_run: WorkflowRun) -> None:
|
||||
"""
|
||||
Save workflow app log.
|
||||
:return:
|
||||
|
|
@ -462,12 +543,10 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
|
|||
workflow_app_log.workflow_id = workflow_run.workflow_id
|
||||
workflow_app_log.workflow_run_id = workflow_run.id
|
||||
workflow_app_log.created_from = created_from.value
|
||||
workflow_app_log.created_by_role = "account" if isinstance(self._user, Account) else "end_user"
|
||||
workflow_app_log.created_by = self._user.id
|
||||
workflow_app_log.created_by_role = self._created_by_role
|
||||
workflow_app_log.created_by = self._user_id
|
||||
|
||||
db.session.add(workflow_app_log)
|
||||
db.session.commit()
|
||||
db.session.close()
|
||||
session.add(workflow_app_log)
|
||||
|
||||
def _text_chunk_to_stream_response(
|
||||
self, text: str, from_variable_selector: Optional[list[str]] = None
|
||||
|
|
|
|||
|
|
@ -1,6 +1,9 @@
|
|||
import logging
|
||||
import time
|
||||
from typing import Optional, Union
|
||||
from typing import Optional
|
||||
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager
|
||||
from core.app.entities.app_invoke_entities import (
|
||||
|
|
@ -17,9 +20,7 @@ from core.app.entities.task_entities import (
|
|||
from core.errors.error import QuotaExceededError
|
||||
from core.model_runtime.errors.invoke import InvokeAuthorizationError, InvokeError
|
||||
from core.moderation.output_moderation import ModerationRule, OutputModeration
|
||||
from extensions.ext_database import db
|
||||
from models.account import Account
|
||||
from models.model import EndUser, Message
|
||||
from models.model import Message
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
|
@ -36,7 +37,6 @@ class BasedGenerateTaskPipeline:
|
|||
self,
|
||||
application_generate_entity: AppGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
user: Union[Account, EndUser],
|
||||
stream: bool,
|
||||
) -> None:
|
||||
"""
|
||||
|
|
@ -48,18 +48,11 @@ class BasedGenerateTaskPipeline:
|
|||
"""
|
||||
self._application_generate_entity = application_generate_entity
|
||||
self._queue_manager = queue_manager
|
||||
self._user = user
|
||||
self._start_at = time.perf_counter()
|
||||
self._output_moderation_handler = self._init_output_moderation()
|
||||
self._stream = stream
|
||||
|
||||
def _handle_error(self, event: QueueErrorEvent, message: Optional[Message] = None):
|
||||
"""
|
||||
Handle error event.
|
||||
:param event: event
|
||||
:param message: message
|
||||
:return:
|
||||
"""
|
||||
def _handle_error(self, *, event: QueueErrorEvent, session: Session | None = None, message_id: str = ""):
|
||||
logger.debug("error: %s", event.error)
|
||||
e = event.error
|
||||
err: Exception
|
||||
|
|
@ -71,16 +64,17 @@ class BasedGenerateTaskPipeline:
|
|||
else:
|
||||
err = Exception(e.description if getattr(e, "description", None) is not None else str(e))
|
||||
|
||||
if message:
|
||||
refetch_message = db.session.query(Message).filter(Message.id == message.id).first()
|
||||
if not message_id or not session:
|
||||
return err
|
||||
|
||||
if refetch_message:
|
||||
err_desc = self._error_to_desc(err)
|
||||
refetch_message.status = "error"
|
||||
refetch_message.error = err_desc
|
||||
|
||||
db.session.commit()
|
||||
stmt = select(Message).where(Message.id == message_id)
|
||||
message = session.scalar(stmt)
|
||||
if not message:
|
||||
return err
|
||||
|
||||
err_desc = self._error_to_desc(err)
|
||||
message.status = "error"
|
||||
message.error = err_desc
|
||||
return err
|
||||
|
||||
def _error_to_desc(self, e: Exception) -> str:
|
||||
|
|
|
|||
|
|
@ -5,6 +5,9 @@ from collections.abc import Generator
|
|||
from threading import Thread
|
||||
from typing import Optional, Union, cast
|
||||
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from constants.tts_auto_play_timeout import TTS_AUTO_PLAY_TIMEOUT, TTS_AUTO_PLAY_YIELD_CPU_TIME
|
||||
from core.app.apps.advanced_chat.app_generator_tts_publisher import AppGeneratorTTSPublisher, AudioTrunk
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
|
|
@ -55,8 +58,7 @@ from core.prompt.utils.prompt_message_util import PromptMessageUtil
|
|||
from core.prompt.utils.prompt_template_parser import PromptTemplateParser
|
||||
from events.message_event import message_was_created
|
||||
from extensions.ext_database import db
|
||||
from models.account import Account
|
||||
from models.model import AppMode, Conversation, EndUser, Message, MessageAgentThought
|
||||
from models.model import AppMode, Conversation, Message, MessageAgentThought
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
|
@ -77,23 +79,21 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline, MessageCycleMan
|
|||
queue_manager: AppQueueManager,
|
||||
conversation: Conversation,
|
||||
message: Message,
|
||||
user: Union[Account, EndUser],
|
||||
stream: bool,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize GenerateTaskPipeline.
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: queue manager
|
||||
:param conversation: conversation
|
||||
:param message: message
|
||||
:param user: user
|
||||
:param stream: stream
|
||||
"""
|
||||
super().__init__(application_generate_entity, queue_manager, user, stream)
|
||||
super().__init__(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
stream=stream,
|
||||
)
|
||||
self._model_config = application_generate_entity.model_conf
|
||||
self._app_config = application_generate_entity.app_config
|
||||
self._conversation = conversation
|
||||
self._message = message
|
||||
|
||||
self._conversation_id = conversation.id
|
||||
self._conversation_mode = conversation.mode
|
||||
|
||||
self._message_id = message.id
|
||||
self._message_created_at = int(message.created_at.timestamp())
|
||||
|
||||
self._task_state = EasyUITaskState(
|
||||
llm_result=LLMResult(
|
||||
|
|
@ -113,18 +113,10 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline, MessageCycleMan
|
|||
CompletionAppBlockingResponse,
|
||||
Generator[Union[ChatbotAppStreamResponse, CompletionAppStreamResponse], None, None],
|
||||
]:
|
||||
"""
|
||||
Process generate task pipeline.
|
||||
:return:
|
||||
"""
|
||||
db.session.refresh(self._conversation)
|
||||
db.session.refresh(self._message)
|
||||
db.session.close()
|
||||
|
||||
if self._application_generate_entity.app_config.app_mode != AppMode.COMPLETION:
|
||||
# start generate conversation name thread
|
||||
self._conversation_name_generate_thread = self._generate_conversation_name(
|
||||
self._conversation, self._application_generate_entity.query or ""
|
||||
conversation_id=self._conversation_id, query=self._application_generate_entity.query or ""
|
||||
)
|
||||
|
||||
generator = self._wrapper_process_stream_response(trace_manager=self._application_generate_entity.trace_manager)
|
||||
|
|
@ -148,15 +140,15 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline, MessageCycleMan
|
|||
if self._task_state.metadata:
|
||||
extras["metadata"] = self._task_state.metadata
|
||||
response: Union[ChatbotAppBlockingResponse, CompletionAppBlockingResponse]
|
||||
if self._conversation.mode == AppMode.COMPLETION.value:
|
||||
if self._conversation_mode == AppMode.COMPLETION.value:
|
||||
response = CompletionAppBlockingResponse(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
data=CompletionAppBlockingResponse.Data(
|
||||
id=self._message.id,
|
||||
mode=self._conversation.mode,
|
||||
message_id=self._message.id,
|
||||
id=self._message_id,
|
||||
mode=self._conversation_mode,
|
||||
message_id=self._message_id,
|
||||
answer=cast(str, self._task_state.llm_result.message.content),
|
||||
created_at=int(self._message.created_at.timestamp()),
|
||||
created_at=self._message_created_at,
|
||||
**extras,
|
||||
),
|
||||
)
|
||||
|
|
@ -164,12 +156,12 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline, MessageCycleMan
|
|||
response = ChatbotAppBlockingResponse(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
data=ChatbotAppBlockingResponse.Data(
|
||||
id=self._message.id,
|
||||
mode=self._conversation.mode,
|
||||
conversation_id=self._conversation.id,
|
||||
message_id=self._message.id,
|
||||
id=self._message_id,
|
||||
mode=self._conversation_mode,
|
||||
conversation_id=self._conversation_id,
|
||||
message_id=self._message_id,
|
||||
answer=cast(str, self._task_state.llm_result.message.content),
|
||||
created_at=int(self._message.created_at.timestamp()),
|
||||
created_at=self._message_created_at,
|
||||
**extras,
|
||||
),
|
||||
)
|
||||
|
|
@ -190,15 +182,15 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline, MessageCycleMan
|
|||
for stream_response in generator:
|
||||
if isinstance(self._application_generate_entity, CompletionAppGenerateEntity):
|
||||
yield CompletionAppStreamResponse(
|
||||
message_id=self._message.id,
|
||||
created_at=int(self._message.created_at.timestamp()),
|
||||
message_id=self._message_id,
|
||||
created_at=self._message_created_at,
|
||||
stream_response=stream_response,
|
||||
)
|
||||
else:
|
||||
yield ChatbotAppStreamResponse(
|
||||
conversation_id=self._conversation.id,
|
||||
message_id=self._message.id,
|
||||
created_at=int(self._message.created_at.timestamp()),
|
||||
conversation_id=self._conversation_id,
|
||||
message_id=self._message_id,
|
||||
created_at=self._message_created_at,
|
||||
stream_response=stream_response,
|
||||
)
|
||||
|
||||
|
|
@ -265,7 +257,9 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline, MessageCycleMan
|
|||
event = message.event
|
||||
|
||||
if isinstance(event, QueueErrorEvent):
|
||||
err = self._handle_error(event, self._message)
|
||||
with Session(db.engine) as session:
|
||||
err = self._handle_error(event=event, session=session, message_id=self._message_id)
|
||||
session.commit()
|
||||
yield self._error_to_stream_response(err)
|
||||
break
|
||||
elif isinstance(event, QueueStopEvent | QueueMessageEndEvent):
|
||||
|
|
@ -283,10 +277,12 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline, MessageCycleMan
|
|||
self._task_state.llm_result.message.content = output_moderation_answer
|
||||
yield self._message_replace_to_stream_response(answer=output_moderation_answer)
|
||||
|
||||
# Save message
|
||||
self._save_message(trace_manager)
|
||||
|
||||
yield self._message_end_to_stream_response()
|
||||
with Session(db.engine) as session:
|
||||
# Save message
|
||||
self._save_message(session=session, trace_manager=trace_manager)
|
||||
session.commit()
|
||||
message_end_resp = self._message_end_to_stream_response()
|
||||
yield message_end_resp
|
||||
elif isinstance(event, QueueRetrieverResourcesEvent):
|
||||
self._handle_retriever_resources(event)
|
||||
elif isinstance(event, QueueAnnotationReplyEvent):
|
||||
|
|
@ -320,9 +316,15 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline, MessageCycleMan
|
|||
self._task_state.llm_result.message.content = current_content
|
||||
|
||||
if isinstance(event, QueueLLMChunkEvent):
|
||||
yield self._message_to_stream_response(cast(str, delta_text), self._message.id)
|
||||
yield self._message_to_stream_response(
|
||||
answer=cast(str, delta_text),
|
||||
message_id=self._message_id,
|
||||
)
|
||||
else:
|
||||
yield self._agent_message_to_stream_response(cast(str, delta_text), self._message.id)
|
||||
yield self._agent_message_to_stream_response(
|
||||
answer=cast(str, delta_text),
|
||||
message_id=self._message_id,
|
||||
)
|
||||
elif isinstance(event, QueueMessageReplaceEvent):
|
||||
yield self._message_replace_to_stream_response(answer=event.text)
|
||||
elif isinstance(event, QueuePingEvent):
|
||||
|
|
@ -334,7 +336,7 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline, MessageCycleMan
|
|||
if self._conversation_name_generate_thread:
|
||||
self._conversation_name_generate_thread.join()
|
||||
|
||||
def _save_message(self, trace_manager: Optional[TraceQueueManager] = None) -> None:
|
||||
def _save_message(self, *, session: Session, trace_manager: Optional[TraceQueueManager] = None) -> None:
|
||||
"""
|
||||
Save message.
|
||||
:return:
|
||||
|
|
@ -342,53 +344,46 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline, MessageCycleMan
|
|||
llm_result = self._task_state.llm_result
|
||||
usage = llm_result.usage
|
||||
|
||||
message = db.session.query(Message).filter(Message.id == self._message.id).first()
|
||||
message_stmt = select(Message).where(Message.id == self._message_id)
|
||||
message = session.scalar(message_stmt)
|
||||
if not message:
|
||||
raise Exception(f"Message {self._message.id} not found")
|
||||
self._message = message
|
||||
conversation = db.session.query(Conversation).filter(Conversation.id == self._conversation.id).first()
|
||||
raise ValueError(f"message {self._message_id} not found")
|
||||
conversation_stmt = select(Conversation).where(Conversation.id == self._conversation_id)
|
||||
conversation = session.scalar(conversation_stmt)
|
||||
if not conversation:
|
||||
raise Exception(f"Conversation {self._conversation.id} not found")
|
||||
self._conversation = conversation
|
||||
raise ValueError(f"Conversation {self._conversation_id} not found")
|
||||
|
||||
self._message.message = PromptMessageUtil.prompt_messages_to_prompt_for_saving(
|
||||
message.message = PromptMessageUtil.prompt_messages_to_prompt_for_saving(
|
||||
self._model_config.mode, self._task_state.llm_result.prompt_messages
|
||||
)
|
||||
self._message.message_tokens = usage.prompt_tokens
|
||||
self._message.message_unit_price = usage.prompt_unit_price
|
||||
self._message.message_price_unit = usage.prompt_price_unit
|
||||
self._message.answer = (
|
||||
message.message_tokens = usage.prompt_tokens
|
||||
message.message_unit_price = usage.prompt_unit_price
|
||||
message.message_price_unit = usage.prompt_price_unit
|
||||
message.answer = (
|
||||
PromptTemplateParser.remove_template_variables(cast(str, llm_result.message.content).strip())
|
||||
if llm_result.message.content
|
||||
else ""
|
||||
)
|
||||
self._message.answer_tokens = usage.completion_tokens
|
||||
self._message.answer_unit_price = usage.completion_unit_price
|
||||
self._message.answer_price_unit = usage.completion_price_unit
|
||||
self._message.provider_response_latency = time.perf_counter() - self._start_at
|
||||
self._message.total_price = usage.total_price
|
||||
self._message.currency = usage.currency
|
||||
self._message.message_metadata = (
|
||||
message.answer_tokens = usage.completion_tokens
|
||||
message.answer_unit_price = usage.completion_unit_price
|
||||
message.answer_price_unit = usage.completion_price_unit
|
||||
message.provider_response_latency = time.perf_counter() - self._start_at
|
||||
message.total_price = usage.total_price
|
||||
message.currency = usage.currency
|
||||
message.message_metadata = (
|
||||
json.dumps(jsonable_encoder(self._task_state.metadata)) if self._task_state.metadata else None
|
||||
)
|
||||
|
||||
db.session.commit()
|
||||
|
||||
if trace_manager:
|
||||
trace_manager.add_trace_task(
|
||||
TraceTask(
|
||||
TraceTaskName.MESSAGE_TRACE, conversation_id=self._conversation.id, message_id=self._message.id
|
||||
TraceTaskName.MESSAGE_TRACE, conversation_id=self._conversation_id, message_id=self._message_id
|
||||
)
|
||||
)
|
||||
|
||||
message_was_created.send(
|
||||
self._message,
|
||||
message,
|
||||
application_generate_entity=self._application_generate_entity,
|
||||
conversation=self._conversation,
|
||||
is_first_message=self._application_generate_entity.app_config.app_mode in {AppMode.AGENT_CHAT, AppMode.CHAT}
|
||||
and hasattr(self._application_generate_entity, "conversation_id")
|
||||
and self._application_generate_entity.conversation_id is None,
|
||||
extras=self._application_generate_entity.extras,
|
||||
)
|
||||
|
||||
def _handle_stop(self, event: QueueStopEvent) -> None:
|
||||
|
|
@ -434,7 +429,7 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline, MessageCycleMan
|
|||
|
||||
return MessageEndStreamResponse(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
id=self._message.id,
|
||||
id=self._message_id,
|
||||
metadata=extras.get("metadata", {}),
|
||||
)
|
||||
|
||||
|
|
|
|||
|
|
@ -36,7 +36,7 @@ class MessageCycleManage:
|
|||
]
|
||||
_task_state: Union[EasyUITaskState, WorkflowTaskState]
|
||||
|
||||
def _generate_conversation_name(self, conversation: Conversation, query: str) -> Optional[Thread]:
|
||||
def _generate_conversation_name(self, *, conversation_id: str, query: str) -> Optional[Thread]:
|
||||
"""
|
||||
Generate conversation name.
|
||||
:param conversation: conversation
|
||||
|
|
@ -56,7 +56,7 @@ class MessageCycleManage:
|
|||
target=self._generate_conversation_name_worker,
|
||||
kwargs={
|
||||
"flask_app": current_app._get_current_object(), # type: ignore
|
||||
"conversation_id": conversation.id,
|
||||
"conversation_id": conversation_id,
|
||||
"query": query,
|
||||
},
|
||||
)
|
||||
|
|
|
|||
|
|
@ -5,6 +5,7 @@ from datetime import UTC, datetime
|
|||
from typing import Any, Optional, Union, cast
|
||||
from uuid import uuid4
|
||||
|
||||
from sqlalchemy import func, select
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from core.app.entities.app_invoke_entities import AdvancedChatAppGenerateEntity, InvokeFrom, WorkflowAppGenerateEntity
|
||||
|
|
@ -47,7 +48,6 @@ from core.workflow.enums import SystemVariableKey
|
|||
from core.workflow.nodes import NodeType
|
||||
from core.workflow.nodes.tool.entities import ToolNodeData
|
||||
from core.workflow.workflow_entry import WorkflowEntry
|
||||
from extensions.ext_database import db
|
||||
from models.account import Account
|
||||
from models.enums import CreatedByRole, WorkflowRunTriggeredFrom
|
||||
from models.model import EndUser
|
||||
|
|
@ -65,28 +65,35 @@ from .exc import WorkflowNodeExecutionNotFoundError, WorkflowRunNotFoundError
|
|||
|
||||
class WorkflowCycleManage:
|
||||
_application_generate_entity: Union[AdvancedChatAppGenerateEntity, WorkflowAppGenerateEntity]
|
||||
_workflow: Workflow
|
||||
_user: Union[Account, EndUser]
|
||||
_task_state: WorkflowTaskState
|
||||
_workflow_system_variables: dict[SystemVariableKey, Any]
|
||||
_wip_workflow_node_executions: dict[str, WorkflowNodeExecution]
|
||||
_wip_workflow_agent_logs: dict[str, list[AgentLogStreamResponse.Data]]
|
||||
|
||||
def _handle_workflow_run_start(self) -> WorkflowRun:
|
||||
max_sequence = (
|
||||
db.session.query(db.func.max(WorkflowRun.sequence_number))
|
||||
.filter(WorkflowRun.tenant_id == self._workflow.tenant_id)
|
||||
.filter(WorkflowRun.app_id == self._workflow.app_id)
|
||||
.scalar()
|
||||
or 0
|
||||
def _handle_workflow_run_start(
|
||||
self,
|
||||
*,
|
||||
session: Session,
|
||||
workflow_id: str,
|
||||
user_id: str,
|
||||
created_by_role: CreatedByRole,
|
||||
) -> WorkflowRun:
|
||||
workflow_stmt = select(Workflow).where(Workflow.id == workflow_id)
|
||||
workflow = session.scalar(workflow_stmt)
|
||||
if not workflow:
|
||||
raise ValueError(f"Workflow not found: {workflow_id}")
|
||||
|
||||
max_sequence_stmt = select(func.max(WorkflowRun.sequence_number)).where(
|
||||
WorkflowRun.tenant_id == workflow.tenant_id,
|
||||
WorkflowRun.app_id == workflow.app_id,
|
||||
)
|
||||
max_sequence = session.scalar(max_sequence_stmt) or 0
|
||||
new_sequence_number = max_sequence + 1
|
||||
|
||||
inputs = {**self._application_generate_entity.inputs}
|
||||
for key, value in (self._workflow_system_variables or {}).items():
|
||||
if key.value == "conversation":
|
||||
continue
|
||||
|
||||
inputs[f"sys.{key.value}"] = value
|
||||
|
||||
triggered_from = (
|
||||
|
|
@ -99,34 +106,33 @@ class WorkflowCycleManage:
|
|||
inputs = dict(WorkflowEntry.handle_special_values(inputs) or {})
|
||||
|
||||
# init workflow run
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
workflow_run = WorkflowRun()
|
||||
system_id = self._workflow_system_variables[SystemVariableKey.WORKFLOW_RUN_ID]
|
||||
workflow_run.id = system_id or str(uuid4())
|
||||
workflow_run.tenant_id = self._workflow.tenant_id
|
||||
workflow_run.app_id = self._workflow.app_id
|
||||
workflow_run.sequence_number = new_sequence_number
|
||||
workflow_run.workflow_id = self._workflow.id
|
||||
workflow_run.type = self._workflow.type
|
||||
workflow_run.triggered_from = triggered_from.value
|
||||
workflow_run.version = self._workflow.version
|
||||
workflow_run.graph = self._workflow.graph
|
||||
workflow_run.inputs = json.dumps(inputs)
|
||||
workflow_run.status = WorkflowRunStatus.RUNNING
|
||||
workflow_run.created_by_role = (
|
||||
CreatedByRole.ACCOUNT if isinstance(self._user, Account) else CreatedByRole.END_USER
|
||||
)
|
||||
workflow_run.created_by = self._user.id
|
||||
workflow_run.created_at = datetime.now(UTC).replace(tzinfo=None)
|
||||
workflow_run_id = str(self._workflow_system_variables.get(SystemVariableKey.WORKFLOW_RUN_ID, uuid4()))
|
||||
|
||||
session.add(workflow_run)
|
||||
session.commit()
|
||||
workflow_run = WorkflowRun()
|
||||
workflow_run.id = workflow_run_id
|
||||
workflow_run.tenant_id = workflow.tenant_id
|
||||
workflow_run.app_id = workflow.app_id
|
||||
workflow_run.sequence_number = new_sequence_number
|
||||
workflow_run.workflow_id = workflow.id
|
||||
workflow_run.type = workflow.type
|
||||
workflow_run.triggered_from = triggered_from.value
|
||||
workflow_run.version = workflow.version
|
||||
workflow_run.graph = workflow.graph
|
||||
workflow_run.inputs = json.dumps(inputs)
|
||||
workflow_run.status = WorkflowRunStatus.RUNNING
|
||||
workflow_run.created_by_role = created_by_role
|
||||
workflow_run.created_by = user_id
|
||||
workflow_run.created_at = datetime.now(UTC).replace(tzinfo=None)
|
||||
|
||||
session.add(workflow_run)
|
||||
|
||||
return workflow_run
|
||||
|
||||
def _handle_workflow_run_success(
|
||||
self,
|
||||
workflow_run: WorkflowRun,
|
||||
*,
|
||||
session: Session,
|
||||
workflow_run_id: str,
|
||||
start_at: float,
|
||||
total_tokens: int,
|
||||
total_steps: int,
|
||||
|
|
@ -144,7 +150,7 @@ class WorkflowCycleManage:
|
|||
:param conversation_id: conversation id
|
||||
:return:
|
||||
"""
|
||||
workflow_run = self._refetch_workflow_run(workflow_run.id)
|
||||
workflow_run = self._get_workflow_run(session=session, workflow_run_id=workflow_run_id)
|
||||
|
||||
outputs = WorkflowEntry.handle_special_values(outputs)
|
||||
|
||||
|
|
@ -155,9 +161,6 @@ class WorkflowCycleManage:
|
|||
workflow_run.total_steps = total_steps
|
||||
workflow_run.finished_at = datetime.now(UTC).replace(tzinfo=None)
|
||||
|
||||
db.session.commit()
|
||||
db.session.refresh(workflow_run)
|
||||
|
||||
if trace_manager:
|
||||
trace_manager.add_trace_task(
|
||||
TraceTask(
|
||||
|
|
@ -168,13 +171,13 @@ class WorkflowCycleManage:
|
|||
)
|
||||
)
|
||||
|
||||
db.session.close()
|
||||
|
||||
return workflow_run
|
||||
|
||||
def _handle_workflow_run_partial_success(
|
||||
self,
|
||||
workflow_run: WorkflowRun,
|
||||
*,
|
||||
session: Session,
|
||||
workflow_run_id: str,
|
||||
start_at: float,
|
||||
total_tokens: int,
|
||||
total_steps: int,
|
||||
|
|
@ -183,18 +186,7 @@ class WorkflowCycleManage:
|
|||
conversation_id: Optional[str] = None,
|
||||
trace_manager: Optional[TraceQueueManager] = None,
|
||||
) -> WorkflowRun:
|
||||
"""
|
||||
Workflow run success
|
||||
:param workflow_run: workflow run
|
||||
:param start_at: start time
|
||||
:param total_tokens: total tokens
|
||||
:param total_steps: total steps
|
||||
:param outputs: outputs
|
||||
:param conversation_id: conversation id
|
||||
:return:
|
||||
"""
|
||||
workflow_run = self._refetch_workflow_run(workflow_run.id)
|
||||
|
||||
workflow_run = self._get_workflow_run(session=session, workflow_run_id=workflow_run_id)
|
||||
outputs = WorkflowEntry.handle_special_values(dict(outputs) if outputs else None)
|
||||
|
||||
workflow_run.status = WorkflowRunStatus.PARTIAL_SUCCESSED.value
|
||||
|
|
@ -204,8 +196,6 @@ class WorkflowCycleManage:
|
|||
workflow_run.total_steps = total_steps
|
||||
workflow_run.finished_at = datetime.now(UTC).replace(tzinfo=None)
|
||||
workflow_run.exceptions_count = exceptions_count
|
||||
db.session.commit()
|
||||
db.session.refresh(workflow_run)
|
||||
|
||||
if trace_manager:
|
||||
trace_manager.add_trace_task(
|
||||
|
|
@ -217,13 +207,13 @@ class WorkflowCycleManage:
|
|||
)
|
||||
)
|
||||
|
||||
db.session.close()
|
||||
|
||||
return workflow_run
|
||||
|
||||
def _handle_workflow_run_failed(
|
||||
self,
|
||||
workflow_run: WorkflowRun,
|
||||
*,
|
||||
session: Session,
|
||||
workflow_run_id: str,
|
||||
start_at: float,
|
||||
total_tokens: int,
|
||||
total_steps: int,
|
||||
|
|
@ -243,7 +233,7 @@ class WorkflowCycleManage:
|
|||
:param error: error message
|
||||
:return:
|
||||
"""
|
||||
workflow_run = self._refetch_workflow_run(workflow_run.id)
|
||||
workflow_run = self._get_workflow_run(session=session, workflow_run_id=workflow_run_id)
|
||||
|
||||
workflow_run.status = status.value
|
||||
workflow_run.error = error
|
||||
|
|
@ -252,21 +242,18 @@ class WorkflowCycleManage:
|
|||
workflow_run.total_steps = total_steps
|
||||
workflow_run.finished_at = datetime.now(UTC).replace(tzinfo=None)
|
||||
workflow_run.exceptions_count = exceptions_count
|
||||
db.session.commit()
|
||||
|
||||
running_workflow_node_executions = (
|
||||
db.session.query(WorkflowNodeExecution)
|
||||
.filter(
|
||||
WorkflowNodeExecution.tenant_id == workflow_run.tenant_id,
|
||||
WorkflowNodeExecution.app_id == workflow_run.app_id,
|
||||
WorkflowNodeExecution.workflow_id == workflow_run.workflow_id,
|
||||
WorkflowNodeExecution.triggered_from == WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN.value,
|
||||
WorkflowNodeExecution.workflow_run_id == workflow_run.id,
|
||||
WorkflowNodeExecution.status == WorkflowNodeExecutionStatus.RUNNING.value,
|
||||
)
|
||||
.all()
|
||||
stmt = select(WorkflowNodeExecution).where(
|
||||
WorkflowNodeExecution.tenant_id == workflow_run.tenant_id,
|
||||
WorkflowNodeExecution.app_id == workflow_run.app_id,
|
||||
WorkflowNodeExecution.workflow_id == workflow_run.workflow_id,
|
||||
WorkflowNodeExecution.triggered_from == WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN.value,
|
||||
WorkflowNodeExecution.workflow_run_id == workflow_run.id,
|
||||
WorkflowNodeExecution.status == WorkflowNodeExecutionStatus.RUNNING.value,
|
||||
)
|
||||
|
||||
running_workflow_node_executions = session.scalars(stmt).all()
|
||||
|
||||
for workflow_node_execution in running_workflow_node_executions:
|
||||
workflow_node_execution.status = WorkflowNodeExecutionStatus.FAILED.value
|
||||
workflow_node_execution.error = error
|
||||
|
|
@ -274,13 +261,6 @@ class WorkflowCycleManage:
|
|||
workflow_node_execution.elapsed_time = (
|
||||
workflow_node_execution.finished_at - workflow_node_execution.created_at
|
||||
).total_seconds()
|
||||
db.session.commit()
|
||||
|
||||
db.session.close()
|
||||
|
||||
# with Session(db.engine, expire_on_commit=False) as session:
|
||||
# session.add(workflow_run)
|
||||
# session.refresh(workflow_run)
|
||||
|
||||
if trace_manager:
|
||||
trace_manager.add_trace_task(
|
||||
|
|
@ -295,49 +275,41 @@ class WorkflowCycleManage:
|
|||
return workflow_run
|
||||
|
||||
def _handle_node_execution_start(
|
||||
self, workflow_run: WorkflowRun, event: QueueNodeStartedEvent
|
||||
self, *, session: Session, workflow_run: WorkflowRun, event: QueueNodeStartedEvent
|
||||
) -> WorkflowNodeExecution:
|
||||
# init workflow node execution
|
||||
workflow_node_execution = WorkflowNodeExecution()
|
||||
workflow_node_execution.id = event.node_execution_id
|
||||
workflow_node_execution.tenant_id = workflow_run.tenant_id
|
||||
workflow_node_execution.app_id = workflow_run.app_id
|
||||
workflow_node_execution.workflow_id = workflow_run.workflow_id
|
||||
workflow_node_execution.triggered_from = WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN.value
|
||||
workflow_node_execution.workflow_run_id = workflow_run.id
|
||||
workflow_node_execution.predecessor_node_id = event.predecessor_node_id
|
||||
workflow_node_execution.index = event.node_run_index
|
||||
workflow_node_execution.node_execution_id = event.node_execution_id
|
||||
workflow_node_execution.node_id = event.node_id
|
||||
workflow_node_execution.node_type = event.node_type.value
|
||||
workflow_node_execution.title = event.node_data.title
|
||||
workflow_node_execution.status = WorkflowNodeExecutionStatus.RUNNING.value
|
||||
workflow_node_execution.created_by_role = workflow_run.created_by_role
|
||||
workflow_node_execution.created_by = workflow_run.created_by
|
||||
workflow_node_execution.execution_metadata = json.dumps(
|
||||
{
|
||||
NodeRunMetadataKey.PARALLEL_MODE_RUN_ID: event.parallel_mode_run_id,
|
||||
NodeRunMetadataKey.ITERATION_ID: event.in_iteration_id,
|
||||
}
|
||||
)
|
||||
workflow_node_execution.created_at = datetime.now(UTC).replace(tzinfo=None)
|
||||
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
workflow_node_execution = WorkflowNodeExecution()
|
||||
workflow_node_execution.tenant_id = workflow_run.tenant_id
|
||||
workflow_node_execution.app_id = workflow_run.app_id
|
||||
workflow_node_execution.workflow_id = workflow_run.workflow_id
|
||||
workflow_node_execution.triggered_from = WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN.value
|
||||
workflow_node_execution.workflow_run_id = workflow_run.id
|
||||
workflow_node_execution.predecessor_node_id = event.predecessor_node_id
|
||||
workflow_node_execution.index = event.node_run_index
|
||||
workflow_node_execution.node_execution_id = event.node_execution_id
|
||||
workflow_node_execution.node_id = event.node_id
|
||||
workflow_node_execution.node_type = event.node_type.value
|
||||
workflow_node_execution.title = event.node_data.title
|
||||
workflow_node_execution.status = WorkflowNodeExecutionStatus.RUNNING.value
|
||||
workflow_node_execution.created_by_role = workflow_run.created_by_role
|
||||
workflow_node_execution.created_by = workflow_run.created_by
|
||||
workflow_node_execution.execution_metadata = json.dumps(
|
||||
{
|
||||
NodeRunMetadataKey.PARALLEL_MODE_RUN_ID: event.parallel_mode_run_id,
|
||||
NodeRunMetadataKey.ITERATION_ID: event.in_iteration_id,
|
||||
}
|
||||
)
|
||||
workflow_node_execution.created_at = datetime.now(UTC).replace(tzinfo=None)
|
||||
|
||||
session.add(workflow_node_execution)
|
||||
session.commit()
|
||||
session.refresh(workflow_node_execution)
|
||||
|
||||
self._wip_workflow_node_executions[workflow_node_execution.node_execution_id] = workflow_node_execution
|
||||
session.add(workflow_node_execution)
|
||||
return workflow_node_execution
|
||||
|
||||
def _handle_workflow_node_execution_success(self, event: QueueNodeSucceededEvent) -> WorkflowNodeExecution:
|
||||
"""
|
||||
Workflow node execution success
|
||||
:param event: queue node succeeded event
|
||||
:return:
|
||||
"""
|
||||
workflow_node_execution = self._refetch_workflow_node_execution(event.node_execution_id)
|
||||
|
||||
def _handle_workflow_node_execution_success(
|
||||
self, *, session: Session, event: QueueNodeSucceededEvent
|
||||
) -> WorkflowNodeExecution:
|
||||
workflow_node_execution = self._get_workflow_node_execution(
|
||||
session=session, node_execution_id=event.node_execution_id
|
||||
)
|
||||
inputs = WorkflowEntry.handle_special_values(event.inputs)
|
||||
process_data = WorkflowEntry.handle_special_values(event.process_data)
|
||||
outputs = WorkflowEntry.handle_special_values(event.outputs)
|
||||
|
|
@ -378,19 +350,22 @@ class WorkflowCycleManage:
|
|||
workflow_node_execution.finished_at = finished_at
|
||||
workflow_node_execution.elapsed_time = elapsed_time
|
||||
|
||||
self._wip_workflow_node_executions.pop(workflow_node_execution.node_execution_id)
|
||||
|
||||
return workflow_node_execution
|
||||
|
||||
def _handle_workflow_node_execution_failed(
|
||||
self, event: QueueNodeFailedEvent | QueueNodeInIterationFailedEvent | QueueNodeExceptionEvent
|
||||
self,
|
||||
*,
|
||||
session: Session,
|
||||
event: QueueNodeFailedEvent | QueueNodeInIterationFailedEvent | QueueNodeExceptionEvent,
|
||||
) -> WorkflowNodeExecution:
|
||||
"""
|
||||
Workflow node execution failed
|
||||
:param event: queue node failed event
|
||||
:return:
|
||||
"""
|
||||
workflow_node_execution = self._refetch_workflow_node_execution(event.node_execution_id)
|
||||
workflow_node_execution = self._get_workflow_node_execution(
|
||||
session=session, node_execution_id=event.node_execution_id
|
||||
)
|
||||
|
||||
inputs = WorkflowEntry.handle_special_values(event.inputs)
|
||||
process_data = WorkflowEntry.handle_special_values(event.process_data)
|
||||
|
|
@ -440,12 +415,10 @@ class WorkflowCycleManage:
|
|||
workflow_node_execution.elapsed_time = elapsed_time
|
||||
workflow_node_execution.execution_metadata = execution_metadata
|
||||
|
||||
self._wip_workflow_node_executions.pop(workflow_node_execution.node_execution_id)
|
||||
|
||||
return workflow_node_execution
|
||||
|
||||
def _handle_workflow_node_execution_retried(
|
||||
self, workflow_run: WorkflowRun, event: QueueNodeRetryEvent
|
||||
self, *, session: Session, workflow_run: WorkflowRun, event: QueueNodeRetryEvent
|
||||
) -> WorkflowNodeExecution:
|
||||
"""
|
||||
Workflow node execution failed
|
||||
|
|
@ -469,6 +442,7 @@ class WorkflowCycleManage:
|
|||
execution_metadata = json.dumps(merged_metadata)
|
||||
|
||||
workflow_node_execution = WorkflowNodeExecution()
|
||||
workflow_node_execution.id = event.node_execution_id
|
||||
workflow_node_execution.tenant_id = workflow_run.tenant_id
|
||||
workflow_node_execution.app_id = workflow_run.app_id
|
||||
workflow_node_execution.workflow_id = workflow_run.workflow_id
|
||||
|
|
@ -491,10 +465,7 @@ class WorkflowCycleManage:
|
|||
workflow_node_execution.execution_metadata = execution_metadata
|
||||
workflow_node_execution.index = event.node_run_index
|
||||
|
||||
db.session.add(workflow_node_execution)
|
||||
db.session.commit()
|
||||
db.session.refresh(workflow_node_execution)
|
||||
|
||||
session.add(workflow_node_execution)
|
||||
return workflow_node_execution
|
||||
|
||||
#################################################
|
||||
|
|
@ -502,14 +473,14 @@ class WorkflowCycleManage:
|
|||
#################################################
|
||||
|
||||
def _workflow_start_to_stream_response(
|
||||
self, task_id: str, workflow_run: WorkflowRun
|
||||
self,
|
||||
*,
|
||||
session: Session,
|
||||
task_id: str,
|
||||
workflow_run: WorkflowRun,
|
||||
) -> WorkflowStartStreamResponse:
|
||||
"""
|
||||
Workflow start to stream response.
|
||||
:param task_id: task id
|
||||
:param workflow_run: workflow run
|
||||
:return:
|
||||
"""
|
||||
# receive session to make sure the workflow_run won't be expired, need a more elegant way to handle this
|
||||
_ = session
|
||||
return WorkflowStartStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=workflow_run.id,
|
||||
|
|
@ -523,36 +494,32 @@ class WorkflowCycleManage:
|
|||
)
|
||||
|
||||
def _workflow_finish_to_stream_response(
|
||||
self, task_id: str, workflow_run: WorkflowRun
|
||||
self,
|
||||
*,
|
||||
session: Session,
|
||||
task_id: str,
|
||||
workflow_run: WorkflowRun,
|
||||
) -> WorkflowFinishStreamResponse:
|
||||
"""
|
||||
Workflow finish to stream response.
|
||||
:param task_id: task id
|
||||
:param workflow_run: workflow run
|
||||
:return:
|
||||
"""
|
||||
# Attach WorkflowRun to an active session so "created_by_role" can be accessed.
|
||||
workflow_run = db.session.merge(workflow_run)
|
||||
|
||||
# Refresh to ensure any expired attributes are fully loaded
|
||||
db.session.refresh(workflow_run)
|
||||
|
||||
created_by = None
|
||||
if workflow_run.created_by_role == CreatedByRole.ACCOUNT.value:
|
||||
created_by_account = workflow_run.created_by_account
|
||||
if created_by_account:
|
||||
if workflow_run.created_by_role == CreatedByRole.ACCOUNT:
|
||||
stmt = select(Account).where(Account.id == workflow_run.created_by)
|
||||
account = session.scalar(stmt)
|
||||
if account:
|
||||
created_by = {
|
||||
"id": created_by_account.id,
|
||||
"name": created_by_account.name,
|
||||
"email": created_by_account.email,
|
||||
"id": account.id,
|
||||
"name": account.name,
|
||||
"email": account.email,
|
||||
}
|
||||
elif workflow_run.created_by_role == CreatedByRole.END_USER:
|
||||
stmt = select(EndUser).where(EndUser.id == workflow_run.created_by)
|
||||
end_user = session.scalar(stmt)
|
||||
if end_user:
|
||||
created_by = {
|
||||
"id": end_user.id,
|
||||
"user": end_user.session_id,
|
||||
}
|
||||
else:
|
||||
created_by_end_user = workflow_run.created_by_end_user
|
||||
if created_by_end_user:
|
||||
created_by = {
|
||||
"id": created_by_end_user.id,
|
||||
"user": created_by_end_user.session_id,
|
||||
}
|
||||
raise NotImplementedError(f"unknown created_by_role: {workflow_run.created_by_role}")
|
||||
|
||||
return WorkflowFinishStreamResponse(
|
||||
task_id=task_id,
|
||||
|
|
@ -576,17 +543,20 @@ class WorkflowCycleManage:
|
|||
)
|
||||
|
||||
def _workflow_node_start_to_stream_response(
|
||||
self, event: QueueNodeStartedEvent, task_id: str, workflow_node_execution: WorkflowNodeExecution
|
||||
self,
|
||||
*,
|
||||
session: Session,
|
||||
event: QueueNodeStartedEvent,
|
||||
task_id: str,
|
||||
workflow_node_execution: WorkflowNodeExecution,
|
||||
) -> Optional[NodeStartStreamResponse]:
|
||||
"""
|
||||
Workflow node start to stream response.
|
||||
:param event: queue node started event
|
||||
:param task_id: task id
|
||||
:param workflow_node_execution: workflow node execution
|
||||
:return:
|
||||
"""
|
||||
# receive session to make sure the workflow_run won't be expired, need a more elegant way to handle this
|
||||
_ = session
|
||||
|
||||
if workflow_node_execution.node_type in {NodeType.ITERATION.value, NodeType.LOOP.value}:
|
||||
return None
|
||||
if not workflow_node_execution.workflow_run_id:
|
||||
return None
|
||||
|
||||
response = NodeStartStreamResponse(
|
||||
task_id=task_id,
|
||||
|
|
@ -622,6 +592,8 @@ class WorkflowCycleManage:
|
|||
|
||||
def _workflow_node_finish_to_stream_response(
|
||||
self,
|
||||
*,
|
||||
session: Session,
|
||||
event: QueueNodeSucceededEvent
|
||||
| QueueNodeFailedEvent
|
||||
| QueueNodeInIterationFailedEvent
|
||||
|
|
@ -629,15 +601,14 @@ class WorkflowCycleManage:
|
|||
task_id: str,
|
||||
workflow_node_execution: WorkflowNodeExecution,
|
||||
) -> Optional[NodeFinishStreamResponse]:
|
||||
"""
|
||||
Workflow node finish to stream response.
|
||||
:param event: queue node succeeded or failed event
|
||||
:param task_id: task id
|
||||
:param workflow_node_execution: workflow node execution
|
||||
:return:
|
||||
"""
|
||||
# receive session to make sure the workflow_run won't be expired, need a more elegant way to handle this
|
||||
_ = session
|
||||
if workflow_node_execution.node_type in {NodeType.ITERATION.value, NodeType.LOOP.value}:
|
||||
return None
|
||||
if not workflow_node_execution.workflow_run_id:
|
||||
return None
|
||||
if not workflow_node_execution.finished_at:
|
||||
return None
|
||||
|
||||
return NodeFinishStreamResponse(
|
||||
task_id=task_id,
|
||||
|
|
@ -669,19 +640,20 @@ class WorkflowCycleManage:
|
|||
|
||||
def _workflow_node_retry_to_stream_response(
|
||||
self,
|
||||
*,
|
||||
session: Session,
|
||||
event: QueueNodeRetryEvent,
|
||||
task_id: str,
|
||||
workflow_node_execution: WorkflowNodeExecution,
|
||||
) -> Optional[Union[NodeRetryStreamResponse, NodeFinishStreamResponse]]:
|
||||
"""
|
||||
Workflow node finish to stream response.
|
||||
:param event: queue node succeeded or failed event
|
||||
:param task_id: task id
|
||||
:param workflow_node_execution: workflow node execution
|
||||
:return:
|
||||
"""
|
||||
# receive session to make sure the workflow_run won't be expired, need a more elegant way to handle this
|
||||
_ = session
|
||||
if workflow_node_execution.node_type in {NodeType.ITERATION.value, NodeType.LOOP.value}:
|
||||
return None
|
||||
if not workflow_node_execution.workflow_run_id:
|
||||
return None
|
||||
if not workflow_node_execution.finished_at:
|
||||
return None
|
||||
|
||||
return NodeRetryStreamResponse(
|
||||
task_id=task_id,
|
||||
|
|
@ -713,15 +685,10 @@ class WorkflowCycleManage:
|
|||
)
|
||||
|
||||
def _workflow_parallel_branch_start_to_stream_response(
|
||||
self, task_id: str, workflow_run: WorkflowRun, event: QueueParallelBranchRunStartedEvent
|
||||
self, *, session: Session, task_id: str, workflow_run: WorkflowRun, event: QueueParallelBranchRunStartedEvent
|
||||
) -> ParallelBranchStartStreamResponse:
|
||||
"""
|
||||
Workflow parallel branch start to stream response
|
||||
:param task_id: task id
|
||||
:param workflow_run: workflow run
|
||||
:param event: parallel branch run started event
|
||||
:return:
|
||||
"""
|
||||
# receive session to make sure the workflow_run won't be expired, need a more elegant way to handle this
|
||||
_ = session
|
||||
return ParallelBranchStartStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=workflow_run.id,
|
||||
|
|
@ -737,17 +704,14 @@ class WorkflowCycleManage:
|
|||
|
||||
def _workflow_parallel_branch_finished_to_stream_response(
|
||||
self,
|
||||
*,
|
||||
session: Session,
|
||||
task_id: str,
|
||||
workflow_run: WorkflowRun,
|
||||
event: QueueParallelBranchRunSucceededEvent | QueueParallelBranchRunFailedEvent,
|
||||
) -> ParallelBranchFinishedStreamResponse:
|
||||
"""
|
||||
Workflow parallel branch finished to stream response
|
||||
:param task_id: task id
|
||||
:param workflow_run: workflow run
|
||||
:param event: parallel branch run succeeded or failed event
|
||||
:return:
|
||||
"""
|
||||
# receive session to make sure the workflow_run won't be expired, need a more elegant way to handle this
|
||||
_ = session
|
||||
return ParallelBranchFinishedStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=workflow_run.id,
|
||||
|
|
@ -764,15 +728,10 @@ class WorkflowCycleManage:
|
|||
)
|
||||
|
||||
def _workflow_iteration_start_to_stream_response(
|
||||
self, task_id: str, workflow_run: WorkflowRun, event: QueueIterationStartEvent
|
||||
self, *, session: Session, task_id: str, workflow_run: WorkflowRun, event: QueueIterationStartEvent
|
||||
) -> IterationNodeStartStreamResponse:
|
||||
"""
|
||||
Workflow iteration start to stream response
|
||||
:param task_id: task id
|
||||
:param workflow_run: workflow run
|
||||
:param event: iteration start event
|
||||
:return:
|
||||
"""
|
||||
# receive session to make sure the workflow_run won't be expired, need a more elegant way to handle this
|
||||
_ = session
|
||||
return IterationNodeStartStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=workflow_run.id,
|
||||
|
|
@ -791,15 +750,10 @@ class WorkflowCycleManage:
|
|||
)
|
||||
|
||||
def _workflow_iteration_next_to_stream_response(
|
||||
self, task_id: str, workflow_run: WorkflowRun, event: QueueIterationNextEvent
|
||||
self, *, session: Session, task_id: str, workflow_run: WorkflowRun, event: QueueIterationNextEvent
|
||||
) -> IterationNodeNextStreamResponse:
|
||||
"""
|
||||
Workflow iteration next to stream response
|
||||
:param task_id: task id
|
||||
:param workflow_run: workflow run
|
||||
:param event: iteration next event
|
||||
:return:
|
||||
"""
|
||||
# receive session to make sure the workflow_run won't be expired, need a more elegant way to handle this
|
||||
_ = session
|
||||
return IterationNodeNextStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=workflow_run.id,
|
||||
|
|
@ -820,15 +774,10 @@ class WorkflowCycleManage:
|
|||
)
|
||||
|
||||
def _workflow_iteration_completed_to_stream_response(
|
||||
self, task_id: str, workflow_run: WorkflowRun, event: QueueIterationCompletedEvent
|
||||
self, *, session: Session, task_id: str, workflow_run: WorkflowRun, event: QueueIterationCompletedEvent
|
||||
) -> IterationNodeCompletedStreamResponse:
|
||||
"""
|
||||
Workflow iteration completed to stream response
|
||||
:param task_id: task id
|
||||
:param workflow_run: workflow run
|
||||
:param event: iteration completed event
|
||||
:return:
|
||||
"""
|
||||
# receive session to make sure the workflow_run won't be expired, need a more elegant way to handle this
|
||||
_ = session
|
||||
return IterationNodeCompletedStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=workflow_run.id,
|
||||
|
|
@ -912,27 +861,22 @@ class WorkflowCycleManage:
|
|||
|
||||
return None
|
||||
|
||||
def _refetch_workflow_run(self, workflow_run_id: str) -> WorkflowRun:
|
||||
def _get_workflow_run(self, *, session: Session, workflow_run_id: str) -> WorkflowRun:
|
||||
"""
|
||||
Refetch workflow run
|
||||
:param workflow_run_id: workflow run id
|
||||
:return:
|
||||
"""
|
||||
workflow_run = db.session.query(WorkflowRun).filter(WorkflowRun.id == workflow_run_id).first()
|
||||
|
||||
stmt = select(WorkflowRun).where(WorkflowRun.id == workflow_run_id)
|
||||
workflow_run = session.scalar(stmt)
|
||||
if not workflow_run:
|
||||
raise WorkflowRunNotFoundError(workflow_run_id)
|
||||
|
||||
return workflow_run
|
||||
|
||||
def _refetch_workflow_node_execution(self, node_execution_id: str) -> WorkflowNodeExecution:
|
||||
"""
|
||||
Refetch workflow node execution
|
||||
:param node_execution_id: workflow node execution id
|
||||
:return:
|
||||
"""
|
||||
workflow_node_execution = self._wip_workflow_node_executions.get(node_execution_id)
|
||||
|
||||
def _get_workflow_node_execution(self, session: Session, node_execution_id: str) -> WorkflowNodeExecution:
|
||||
stmt = select(WorkflowNodeExecution).where(WorkflowNodeExecution.id == node_execution_id)
|
||||
workflow_node_execution = session.scalar(stmt)
|
||||
if not workflow_node_execution:
|
||||
raise WorkflowNodeExecutionNotFoundError(node_execution_id)
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,19 @@
|
|||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class PreviewDetail(BaseModel):
|
||||
content: str
|
||||
child_chunks: Optional[list[str]] = None
|
||||
|
||||
|
||||
class QAPreviewDetail(BaseModel):
|
||||
question: str
|
||||
answer: str
|
||||
|
||||
|
||||
class IndexingEstimate(BaseModel):
|
||||
total_segments: int
|
||||
preview: list[PreviewDetail]
|
||||
qa_preview: Optional[list[QAPreviewDetail]] = None
|
||||
|
|
@ -881,7 +881,7 @@ class ProviderConfiguration(BaseModel):
|
|||
# if llm name not in restricted llm list, remove it
|
||||
restrict_model_names = [rm.model for rm in restrict_models]
|
||||
for model in provider_models:
|
||||
if model.model_type == ModelType.LLM and m.model not in restrict_model_names:
|
||||
if model.model_type == ModelType.LLM and model.model not in restrict_model_names:
|
||||
model.status = ModelStatus.NO_PERMISSION
|
||||
elif not quota_configuration.is_valid:
|
||||
model.status = ModelStatus.QUOTA_EXCEEDED
|
||||
|
|
|
|||
|
|
@ -70,7 +70,8 @@ def make_request(method, url, max_retries=SSRF_DEFAULT_MAX_RETRIES, **kwargs):
|
|||
retries += 1
|
||||
if retries <= max_retries:
|
||||
time.sleep(BACKOFF_FACTOR * (2 ** (retries - 1)))
|
||||
raise MaxRetriesExceededError(f"Reached maximum retries ({max_retries}) for URL {url}")
|
||||
raise MaxRetriesExceededError(
|
||||
f"Reached maximum retries ({max_retries}) for URL {url}")
|
||||
|
||||
|
||||
def get(url, max_retries=SSRF_DEFAULT_MAX_RETRIES, **kwargs):
|
||||
|
|
|
|||
|
|
@ -8,22 +8,23 @@ import time
|
|||
import uuid
|
||||
from typing import Any, Optional, cast
|
||||
|
||||
from flask import Flask, current_app
|
||||
from flask import current_app
|
||||
from flask_login import current_user # type: ignore
|
||||
from sqlalchemy.orm.exc import ObjectDeletedError
|
||||
|
||||
from configs import dify_config
|
||||
from core.entities.knowledge_entities import IndexingEstimate, PreviewDetail, QAPreviewDetail
|
||||
from core.errors.error import ProviderTokenNotInitError
|
||||
from core.llm_generator.llm_generator import LLMGenerator
|
||||
from core.model_manager import ModelInstance, ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.rag.cleaner.clean_processor import CleanProcessor
|
||||
from core.rag.datasource.keyword.keyword_factory import Keyword
|
||||
from core.rag.docstore.dataset_docstore import DatasetDocumentStore
|
||||
from core.rag.extractor.entity.extract_setting import ExtractSetting
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.index_processor_base import BaseIndexProcessor
|
||||
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.models.document import ChildDocument, Document
|
||||
from core.rag.splitter.fixed_text_splitter import (
|
||||
EnhanceRecursiveCharacterTextSplitter,
|
||||
FixedRecursiveCharacterTextSplitter,
|
||||
|
|
@ -35,7 +36,7 @@ from extensions.ext_database import db
|
|||
from extensions.ext_redis import redis_client
|
||||
from extensions.ext_storage import storage
|
||||
from libs import helper
|
||||
from models.dataset import Dataset, DatasetProcessRule, DocumentSegment
|
||||
from models.dataset import ChildChunk, Dataset, DatasetProcessRule, DocumentSegment
|
||||
from models.dataset import Document as DatasetDocument
|
||||
from models.model import UploadFile
|
||||
from services.feature_service import FeatureService
|
||||
|
|
@ -115,6 +116,9 @@ class IndexingRunner:
|
|||
|
||||
for document_segment in document_segments:
|
||||
db.session.delete(document_segment)
|
||||
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
# delete child chunks
|
||||
db.session.query(ChildChunk).filter(ChildChunk.segment_id == document_segment.id).delete()
|
||||
db.session.commit()
|
||||
# get the process rule
|
||||
processing_rule = (
|
||||
|
|
@ -183,7 +187,22 @@ class IndexingRunner:
|
|||
"dataset_id": document_segment.dataset_id,
|
||||
},
|
||||
)
|
||||
|
||||
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
child_chunks = document_segment.child_chunks
|
||||
if child_chunks:
|
||||
child_documents = []
|
||||
for child_chunk in child_chunks:
|
||||
child_document = ChildDocument(
|
||||
page_content=child_chunk.content,
|
||||
metadata={
|
||||
"doc_id": child_chunk.index_node_id,
|
||||
"doc_hash": child_chunk.index_node_hash,
|
||||
"document_id": document_segment.document_id,
|
||||
"dataset_id": document_segment.dataset_id,
|
||||
},
|
||||
)
|
||||
child_documents.append(child_document)
|
||||
document.children = child_documents
|
||||
documents.append(document)
|
||||
|
||||
# build index
|
||||
|
|
@ -222,7 +241,7 @@ class IndexingRunner:
|
|||
doc_language: str = "English",
|
||||
dataset_id: Optional[str] = None,
|
||||
indexing_technique: str = "economy",
|
||||
) -> dict:
|
||||
) -> IndexingEstimate:
|
||||
"""
|
||||
Estimate the indexing for the document.
|
||||
"""
|
||||
|
|
@ -258,31 +277,38 @@ class IndexingRunner:
|
|||
tenant_id=tenant_id,
|
||||
model_type=ModelType.TEXT_EMBEDDING,
|
||||
)
|
||||
preview_texts: list[str] = []
|
||||
preview_texts = [] # type: ignore
|
||||
|
||||
total_segments = 0
|
||||
index_type = doc_form
|
||||
index_processor = IndexProcessorFactory(index_type).init_index_processor()
|
||||
all_text_docs = []
|
||||
for extract_setting in extract_settings:
|
||||
# extract
|
||||
text_docs = index_processor.extract(extract_setting, process_rule_mode=tmp_processing_rule["mode"])
|
||||
all_text_docs.extend(text_docs)
|
||||
processing_rule = DatasetProcessRule(
|
||||
mode=tmp_processing_rule["mode"], rules=json.dumps(tmp_processing_rule["rules"])
|
||||
)
|
||||
|
||||
# get splitter
|
||||
splitter = self._get_splitter(processing_rule, embedding_model_instance)
|
||||
|
||||
# split to documents
|
||||
documents = self._split_to_documents_for_estimate(
|
||||
text_docs=text_docs, splitter=splitter, processing_rule=processing_rule
|
||||
text_docs = index_processor.extract(extract_setting, process_rule_mode=tmp_processing_rule["mode"])
|
||||
documents = index_processor.transform(
|
||||
text_docs,
|
||||
embedding_model_instance=embedding_model_instance,
|
||||
process_rule=processing_rule.to_dict(),
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
doc_language=doc_language,
|
||||
preview=True,
|
||||
)
|
||||
|
||||
total_segments += len(documents)
|
||||
for document in documents:
|
||||
if len(preview_texts) < 5:
|
||||
preview_texts.append(document.page_content)
|
||||
if len(preview_texts) < 10:
|
||||
if doc_form and doc_form == "qa_model":
|
||||
preview_detail = QAPreviewDetail(
|
||||
question=document.page_content, answer=document.metadata.get("answer") or ""
|
||||
)
|
||||
preview_texts.append(preview_detail)
|
||||
else:
|
||||
preview_detail = PreviewDetail(content=document.page_content) # type: ignore
|
||||
if document.children:
|
||||
preview_detail.child_chunks = [child.page_content for child in document.children] # type: ignore
|
||||
preview_texts.append(preview_detail)
|
||||
|
||||
# delete image files and related db records
|
||||
image_upload_file_ids = get_image_upload_file_ids(document.page_content)
|
||||
|
|
@ -299,15 +325,8 @@ class IndexingRunner:
|
|||
db.session.delete(image_file)
|
||||
|
||||
if doc_form and doc_form == "qa_model":
|
||||
if len(preview_texts) > 0:
|
||||
# qa model document
|
||||
response = LLMGenerator.generate_qa_document(
|
||||
current_user.current_tenant_id, preview_texts[0], doc_language
|
||||
)
|
||||
document_qa_list = self.format_split_text(response)
|
||||
|
||||
return {"total_segments": total_segments * 20, "qa_preview": document_qa_list, "preview": preview_texts}
|
||||
return {"total_segments": total_segments, "preview": preview_texts}
|
||||
return IndexingEstimate(total_segments=total_segments * 20, qa_preview=preview_texts, preview=[])
|
||||
return IndexingEstimate(total_segments=total_segments, preview=preview_texts) # type: ignore
|
||||
|
||||
def _extract(
|
||||
self, index_processor: BaseIndexProcessor, dataset_document: DatasetDocument, process_rule: dict
|
||||
|
|
@ -401,31 +420,26 @@ class IndexingRunner:
|
|||
|
||||
@staticmethod
|
||||
def _get_splitter(
|
||||
processing_rule: DatasetProcessRule, embedding_model_instance: Optional[ModelInstance]
|
||||
processing_rule_mode: str,
|
||||
max_tokens: int,
|
||||
chunk_overlap: int,
|
||||
separator: str,
|
||||
embedding_model_instance: Optional[ModelInstance],
|
||||
) -> TextSplitter:
|
||||
"""
|
||||
Get the NodeParser object according to the processing rule.
|
||||
"""
|
||||
character_splitter: TextSplitter
|
||||
if processing_rule.mode == "custom":
|
||||
if processing_rule_mode in ["custom", "hierarchical"]:
|
||||
# The user-defined segmentation rule
|
||||
rules = json.loads(processing_rule.rules)
|
||||
segmentation = rules["segmentation"]
|
||||
max_segmentation_tokens_length = dify_config.INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH
|
||||
if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > max_segmentation_tokens_length:
|
||||
if max_tokens < 50 or max_tokens > max_segmentation_tokens_length:
|
||||
raise ValueError(f"Custom segment length should be between 50 and {max_segmentation_tokens_length}.")
|
||||
|
||||
separator = segmentation["separator"]
|
||||
if separator:
|
||||
separator = separator.replace("\\n", "\n")
|
||||
|
||||
if segmentation.get("chunk_overlap"):
|
||||
chunk_overlap = segmentation["chunk_overlap"]
|
||||
else:
|
||||
chunk_overlap = 0
|
||||
|
||||
character_splitter = FixedRecursiveCharacterTextSplitter.from_encoder(
|
||||
chunk_size=segmentation["max_tokens"],
|
||||
chunk_size=max_tokens,
|
||||
chunk_overlap=chunk_overlap,
|
||||
fixed_separator=separator,
|
||||
separators=["\n\n", "。", ". ", " ", ""],
|
||||
|
|
@ -441,143 +455,7 @@ class IndexingRunner:
|
|||
embedding_model_instance=embedding_model_instance,
|
||||
)
|
||||
|
||||
return character_splitter
|
||||
|
||||
def _step_split(
|
||||
self,
|
||||
text_docs: list[Document],
|
||||
splitter: TextSplitter,
|
||||
dataset: Dataset,
|
||||
dataset_document: DatasetDocument,
|
||||
processing_rule: DatasetProcessRule,
|
||||
) -> list[Document]:
|
||||
"""
|
||||
Split the text documents into documents and save them to the document segment.
|
||||
"""
|
||||
documents = self._split_to_documents(
|
||||
text_docs=text_docs,
|
||||
splitter=splitter,
|
||||
processing_rule=processing_rule,
|
||||
tenant_id=dataset.tenant_id,
|
||||
document_form=dataset_document.doc_form,
|
||||
document_language=dataset_document.doc_language,
|
||||
)
|
||||
|
||||
# save node to document segment
|
||||
doc_store = DatasetDocumentStore(
|
||||
dataset=dataset, user_id=dataset_document.created_by, document_id=dataset_document.id
|
||||
)
|
||||
|
||||
# add document segments
|
||||
doc_store.add_documents(documents)
|
||||
|
||||
# update document status to indexing
|
||||
cur_time = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
|
||||
self._update_document_index_status(
|
||||
document_id=dataset_document.id,
|
||||
after_indexing_status="indexing",
|
||||
extra_update_params={
|
||||
DatasetDocument.cleaning_completed_at: cur_time,
|
||||
DatasetDocument.splitting_completed_at: cur_time,
|
||||
},
|
||||
)
|
||||
|
||||
# update segment status to indexing
|
||||
self._update_segments_by_document(
|
||||
dataset_document_id=dataset_document.id,
|
||||
update_params={
|
||||
DocumentSegment.status: "indexing",
|
||||
DocumentSegment.indexing_at: datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
|
||||
},
|
||||
)
|
||||
|
||||
return documents
|
||||
|
||||
def _split_to_documents(
|
||||
self,
|
||||
text_docs: list[Document],
|
||||
splitter: TextSplitter,
|
||||
processing_rule: DatasetProcessRule,
|
||||
tenant_id: str,
|
||||
document_form: str,
|
||||
document_language: str,
|
||||
) -> list[Document]:
|
||||
"""
|
||||
Split the text documents into nodes.
|
||||
"""
|
||||
all_documents: list[Document] = []
|
||||
all_qa_documents: list[Document] = []
|
||||
for text_doc in text_docs:
|
||||
# document clean
|
||||
document_text = self._document_clean(text_doc.page_content, processing_rule)
|
||||
text_doc.page_content = document_text
|
||||
|
||||
# parse document to nodes
|
||||
documents = splitter.split_documents([text_doc])
|
||||
split_documents = []
|
||||
for document_node in documents:
|
||||
if document_node.page_content.strip():
|
||||
if document_node.metadata is not None:
|
||||
doc_id = str(uuid.uuid4())
|
||||
hash = helper.generate_text_hash(document_node.page_content)
|
||||
document_node.metadata["doc_id"] = doc_id
|
||||
document_node.metadata["doc_hash"] = hash
|
||||
# delete Splitter character
|
||||
page_content = document_node.page_content
|
||||
document_node.page_content = remove_leading_symbols(page_content)
|
||||
|
||||
if document_node.page_content:
|
||||
split_documents.append(document_node)
|
||||
all_documents.extend(split_documents)
|
||||
# processing qa document
|
||||
if document_form == "qa_model":
|
||||
for i in range(0, len(all_documents), 10):
|
||||
threads = []
|
||||
sub_documents = all_documents[i : i + 10]
|
||||
for doc in sub_documents:
|
||||
document_format_thread = threading.Thread(
|
||||
target=self.format_qa_document,
|
||||
kwargs={
|
||||
"flask_app": current_app._get_current_object(), # type: ignore
|
||||
"tenant_id": tenant_id,
|
||||
"document_node": doc,
|
||||
"all_qa_documents": all_qa_documents,
|
||||
"document_language": document_language,
|
||||
},
|
||||
)
|
||||
threads.append(document_format_thread)
|
||||
document_format_thread.start()
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
return all_qa_documents
|
||||
return all_documents
|
||||
|
||||
def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
|
||||
format_documents = []
|
||||
if document_node.page_content is None or not document_node.page_content.strip():
|
||||
return
|
||||
with flask_app.app_context():
|
||||
try:
|
||||
# qa model document
|
||||
response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language)
|
||||
document_qa_list = self.format_split_text(response)
|
||||
qa_documents = []
|
||||
for result in document_qa_list:
|
||||
qa_document = Document(
|
||||
page_content=result["question"], metadata=document_node.metadata.model_copy()
|
||||
)
|
||||
if qa_document.metadata is not None:
|
||||
doc_id = str(uuid.uuid4())
|
||||
hash = helper.generate_text_hash(result["question"])
|
||||
qa_document.metadata["answer"] = result["answer"]
|
||||
qa_document.metadata["doc_id"] = doc_id
|
||||
qa_document.metadata["doc_hash"] = hash
|
||||
qa_documents.append(qa_document)
|
||||
format_documents.extend(qa_documents)
|
||||
except Exception as e:
|
||||
logging.exception("Failed to format qa document")
|
||||
|
||||
all_qa_documents.extend(format_documents)
|
||||
return character_splitter # type: ignore
|
||||
|
||||
def _split_to_documents_for_estimate(
|
||||
self, text_docs: list[Document], splitter: TextSplitter, processing_rule: DatasetProcessRule
|
||||
|
|
@ -624,11 +502,11 @@ class IndexingRunner:
|
|||
return document_text
|
||||
|
||||
@staticmethod
|
||||
def format_split_text(text):
|
||||
def format_split_text(text: str) -> list[QAPreviewDetail]:
|
||||
regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q\d+:|$)"
|
||||
matches = re.findall(regex, text, re.UNICODE)
|
||||
|
||||
return [{"question": q, "answer": re.sub(r"\n\s*", "\n", a.strip())} for q, a in matches if q and a]
|
||||
return [QAPreviewDetail(question=q, answer=re.sub(r"\n\s*", "\n", a.strip())) for q, a in matches if q and a]
|
||||
|
||||
def _load(
|
||||
self,
|
||||
|
|
@ -654,13 +532,14 @@ class IndexingRunner:
|
|||
indexing_start_at = time.perf_counter()
|
||||
tokens = 0
|
||||
chunk_size = 10
|
||||
if dataset_document.doc_form != IndexType.PARENT_CHILD_INDEX:
|
||||
# create keyword index
|
||||
create_keyword_thread = threading.Thread(
|
||||
target=self._process_keyword_index,
|
||||
args=(current_app._get_current_object(), dataset.id, dataset_document.id, documents), # type: ignore
|
||||
)
|
||||
create_keyword_thread.start()
|
||||
|
||||
# create keyword index
|
||||
create_keyword_thread = threading.Thread(
|
||||
target=self._process_keyword_index,
|
||||
args=(current_app._get_current_object(), dataset.id, dataset_document.id, documents), # type: ignore
|
||||
)
|
||||
create_keyword_thread.start()
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
|
||||
futures = []
|
||||
|
|
@ -680,8 +559,8 @@ class IndexingRunner:
|
|||
|
||||
for future in futures:
|
||||
tokens += future.result()
|
||||
|
||||
create_keyword_thread.join()
|
||||
if dataset_document.doc_form != IndexType.PARENT_CHILD_INDEX:
|
||||
create_keyword_thread.join()
|
||||
indexing_end_at = time.perf_counter()
|
||||
|
||||
# update document status to completed
|
||||
|
|
@ -791,28 +670,6 @@ class IndexingRunner:
|
|||
DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
|
||||
db.session.commit()
|
||||
|
||||
@staticmethod
|
||||
def batch_add_segments(segments: list[DocumentSegment], dataset: Dataset):
|
||||
"""
|
||||
Batch add segments index processing
|
||||
"""
|
||||
documents = []
|
||||
for segment in segments:
|
||||
document = Document(
|
||||
page_content=segment.content,
|
||||
metadata={
|
||||
"doc_id": segment.index_node_id,
|
||||
"doc_hash": segment.index_node_hash,
|
||||
"document_id": segment.document_id,
|
||||
"dataset_id": segment.dataset_id,
|
||||
},
|
||||
)
|
||||
documents.append(document)
|
||||
# save vector index
|
||||
index_type = dataset.doc_form
|
||||
index_processor = IndexProcessorFactory(index_type).init_index_processor()
|
||||
index_processor.load(dataset, documents)
|
||||
|
||||
def _transform(
|
||||
self,
|
||||
index_processor: BaseIndexProcessor,
|
||||
|
|
@ -854,7 +711,7 @@ class IndexingRunner:
|
|||
)
|
||||
|
||||
# add document segments
|
||||
doc_store.add_documents(documents)
|
||||
doc_store.add_documents(docs=documents, save_child=dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX)
|
||||
|
||||
# update document status to indexing
|
||||
cur_time = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
|
||||
|
|
|
|||
|
|
@ -0,0 +1,770 @@
|
|||
import copy
|
||||
import json
|
||||
import logging
|
||||
from collections.abc import Generator, Sequence
|
||||
from typing import Optional, Union, cast
|
||||
|
||||
import tiktoken
|
||||
from openai import AzureOpenAI, Stream
|
||||
from openai.types import Completion
|
||||
from openai.types.chat import ChatCompletion, ChatCompletionChunk, ChatCompletionMessageToolCall
|
||||
from openai.types.chat.chat_completion_chunk import ChoiceDeltaToolCall
|
||||
|
||||
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
ImagePromptMessageContent,
|
||||
PromptMessage,
|
||||
PromptMessageContentType,
|
||||
PromptMessageFunction,
|
||||
PromptMessageTool,
|
||||
SystemPromptMessage,
|
||||
TextPromptMessageContent,
|
||||
ToolPromptMessage,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, ModelPropertyKey
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.model_runtime.model_providers.azure_openai._common import _CommonAzureOpenAI
|
||||
from core.model_runtime.model_providers.azure_openai._constant import LLM_BASE_MODELS
|
||||
from core.model_runtime.utils import helper
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
|
||||
def _invoke(
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None,
|
||||
stop: Optional[list[str]] = None,
|
||||
stream: bool = True,
|
||||
user: Optional[str] = None,
|
||||
) -> Union[LLMResult, Generator]:
|
||||
base_model_name = self._get_base_model_name(credentials)
|
||||
ai_model_entity = self._get_ai_model_entity(base_model_name=base_model_name, model=model)
|
||||
|
||||
if ai_model_entity and ai_model_entity.entity.model_properties.get(ModelPropertyKey.MODE) == LLMMode.CHAT.value:
|
||||
# chat model
|
||||
return self._chat_generate(
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=model_parameters,
|
||||
tools=tools,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
user=user,
|
||||
)
|
||||
else:
|
||||
# text completion model
|
||||
return self._generate(
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=model_parameters,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
user=user,
|
||||
)
|
||||
|
||||
def get_num_tokens(
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
prompt_messages: list[PromptMessage],
|
||||
tools: Optional[list[PromptMessageTool]] = None,
|
||||
) -> int:
|
||||
base_model_name = self._get_base_model_name(credentials)
|
||||
model_entity = self._get_ai_model_entity(base_model_name=base_model_name, model=model)
|
||||
if not model_entity:
|
||||
raise ValueError(f"Base Model Name {base_model_name} is invalid")
|
||||
model_mode = model_entity.entity.model_properties.get(ModelPropertyKey.MODE)
|
||||
|
||||
if model_mode == LLMMode.CHAT.value:
|
||||
# chat model
|
||||
return self._num_tokens_from_messages(credentials, prompt_messages, tools)
|
||||
else:
|
||||
# text completion model, do not support tool calling
|
||||
content = prompt_messages[0].content
|
||||
assert isinstance(content, str)
|
||||
return self._num_tokens_from_string(credentials, content)
|
||||
|
||||
def validate_credentials(self, model: str, credentials: dict) -> None:
|
||||
if "openai_api_base" not in credentials:
|
||||
raise CredentialsValidateFailedError("Azure OpenAI API Base Endpoint is required")
|
||||
|
||||
if "openai_api_key" not in credentials:
|
||||
raise CredentialsValidateFailedError("Azure OpenAI API key is required")
|
||||
|
||||
if "base_model_name" not in credentials:
|
||||
raise CredentialsValidateFailedError("Base Model Name is required")
|
||||
|
||||
base_model_name = self._get_base_model_name(credentials)
|
||||
ai_model_entity = self._get_ai_model_entity(base_model_name=base_model_name, model=model)
|
||||
|
||||
if not ai_model_entity:
|
||||
raise CredentialsValidateFailedError(f'Base Model Name {credentials["base_model_name"]} is invalid')
|
||||
|
||||
try:
|
||||
client = AzureOpenAI(**self._to_credential_kwargs(credentials))
|
||||
|
||||
if model.startswith("o1"):
|
||||
client.chat.completions.create(
|
||||
messages=[{"role": "user", "content": "ping"}],
|
||||
model=model,
|
||||
temperature=1,
|
||||
max_completion_tokens=20,
|
||||
stream=False,
|
||||
)
|
||||
elif ai_model_entity.entity.model_properties.get(ModelPropertyKey.MODE) == LLMMode.CHAT.value:
|
||||
# chat model
|
||||
client.chat.completions.create(
|
||||
messages=[{"role": "user", "content": "ping"}],
|
||||
model=model,
|
||||
temperature=0,
|
||||
max_tokens=20,
|
||||
stream=False,
|
||||
)
|
||||
else:
|
||||
# text completion model
|
||||
client.completions.create(
|
||||
prompt="ping",
|
||||
model=model,
|
||||
temperature=0,
|
||||
max_tokens=20,
|
||||
stream=False,
|
||||
)
|
||||
except Exception as ex:
|
||||
raise CredentialsValidateFailedError(str(ex))
|
||||
|
||||
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
|
||||
base_model_name = self._get_base_model_name(credentials)
|
||||
ai_model_entity = self._get_ai_model_entity(base_model_name=base_model_name, model=model)
|
||||
return ai_model_entity.entity if ai_model_entity else None
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict,
|
||||
stop: Optional[list[str]] = None,
|
||||
stream: bool = True,
|
||||
user: Optional[str] = None,
|
||||
) -> Union[LLMResult, Generator]:
|
||||
client = AzureOpenAI(**self._to_credential_kwargs(credentials))
|
||||
|
||||
extra_model_kwargs = {}
|
||||
|
||||
if stop:
|
||||
extra_model_kwargs["stop"] = stop
|
||||
|
||||
if user:
|
||||
extra_model_kwargs["user"] = user
|
||||
|
||||
# text completion model
|
||||
response = client.completions.create(
|
||||
prompt=prompt_messages[0].content, model=model, stream=stream, **model_parameters, **extra_model_kwargs
|
||||
)
|
||||
|
||||
if stream:
|
||||
return self._handle_generate_stream_response(model, credentials, response, prompt_messages)
|
||||
|
||||
return self._handle_generate_response(model, credentials, response, prompt_messages)
|
||||
|
||||
def _handle_generate_response(
|
||||
self, model: str, credentials: dict, response: Completion, prompt_messages: list[PromptMessage]
|
||||
):
|
||||
assistant_text = response.choices[0].text
|
||||
|
||||
# transform assistant message to prompt message
|
||||
assistant_prompt_message = AssistantPromptMessage(content=assistant_text)
|
||||
|
||||
# calculate num tokens
|
||||
if response.usage:
|
||||
# transform usage
|
||||
prompt_tokens = response.usage.prompt_tokens
|
||||
completion_tokens = response.usage.completion_tokens
|
||||
else:
|
||||
# calculate num tokens
|
||||
content = prompt_messages[0].content
|
||||
assert isinstance(content, str)
|
||||
prompt_tokens = self._num_tokens_from_string(credentials, content)
|
||||
completion_tokens = self._num_tokens_from_string(credentials, assistant_text)
|
||||
|
||||
# transform usage
|
||||
usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
|
||||
|
||||
# transform response
|
||||
result = LLMResult(
|
||||
model=response.model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=assistant_prompt_message,
|
||||
usage=usage,
|
||||
system_fingerprint=response.system_fingerprint,
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
def _handle_generate_stream_response(
|
||||
self, model: str, credentials: dict, response: Stream[Completion], prompt_messages: list[PromptMessage]
|
||||
) -> Generator:
|
||||
full_text = ""
|
||||
for chunk in response:
|
||||
if len(chunk.choices) == 0:
|
||||
continue
|
||||
|
||||
delta = chunk.choices[0]
|
||||
|
||||
if delta.finish_reason is None and (delta.text is None or delta.text == ""):
|
||||
continue
|
||||
|
||||
# transform assistant message to prompt message
|
||||
text = delta.text or ""
|
||||
assistant_prompt_message = AssistantPromptMessage(content=text)
|
||||
|
||||
full_text += text
|
||||
|
||||
if delta.finish_reason is not None:
|
||||
# calculate num tokens
|
||||
if chunk.usage:
|
||||
# transform usage
|
||||
prompt_tokens = chunk.usage.prompt_tokens
|
||||
completion_tokens = chunk.usage.completion_tokens
|
||||
else:
|
||||
# calculate num tokens
|
||||
content = prompt_messages[0].content
|
||||
assert isinstance(content, str)
|
||||
prompt_tokens = self._num_tokens_from_string(credentials, content)
|
||||
completion_tokens = self._num_tokens_from_string(credentials, full_text)
|
||||
|
||||
# transform usage
|
||||
usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
|
||||
|
||||
yield LLMResultChunk(
|
||||
model=chunk.model,
|
||||
prompt_messages=prompt_messages,
|
||||
system_fingerprint=chunk.system_fingerprint,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=delta.index,
|
||||
message=assistant_prompt_message,
|
||||
finish_reason=delta.finish_reason,
|
||||
usage=usage,
|
||||
),
|
||||
)
|
||||
else:
|
||||
yield LLMResultChunk(
|
||||
model=chunk.model,
|
||||
prompt_messages=prompt_messages,
|
||||
system_fingerprint=chunk.system_fingerprint,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=delta.index,
|
||||
message=assistant_prompt_message,
|
||||
),
|
||||
)
|
||||
|
||||
def _chat_generate(
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None,
|
||||
stop: Optional[list[str]] = None,
|
||||
stream: bool = True,
|
||||
user: Optional[str] = None,
|
||||
) -> Union[LLMResult, Generator]:
|
||||
client = AzureOpenAI(**self._to_credential_kwargs(credentials))
|
||||
|
||||
response_format = model_parameters.get("response_format")
|
||||
if response_format:
|
||||
if response_format == "json_schema":
|
||||
json_schema = model_parameters.get("json_schema")
|
||||
if not json_schema:
|
||||
raise ValueError("Must define JSON Schema when the response format is json_schema")
|
||||
try:
|
||||
schema = json.loads(json_schema)
|
||||
except:
|
||||
raise ValueError(f"not correct json_schema format: {json_schema}")
|
||||
model_parameters.pop("json_schema")
|
||||
model_parameters["response_format"] = {"type": "json_schema", "json_schema": schema}
|
||||
else:
|
||||
model_parameters["response_format"] = {"type": response_format}
|
||||
|
||||
extra_model_kwargs = {}
|
||||
|
||||
if tools:
|
||||
extra_model_kwargs["tools"] = [helper.dump_model(PromptMessageFunction(function=tool)) for tool in tools]
|
||||
|
||||
if stop:
|
||||
extra_model_kwargs["stop"] = stop
|
||||
|
||||
if user:
|
||||
extra_model_kwargs["user"] = user
|
||||
|
||||
# clear illegal prompt messages
|
||||
prompt_messages = self._clear_illegal_prompt_messages(model, prompt_messages)
|
||||
|
||||
block_as_stream = False
|
||||
if model.startswith("o1"):
|
||||
if "max_tokens" in model_parameters:
|
||||
model_parameters["max_completion_tokens"] = model_parameters["max_tokens"]
|
||||
del model_parameters["max_tokens"]
|
||||
if stream:
|
||||
block_as_stream = True
|
||||
stream = False
|
||||
|
||||
if "stream_options" in extra_model_kwargs:
|
||||
del extra_model_kwargs["stream_options"]
|
||||
|
||||
if "stop" in extra_model_kwargs:
|
||||
del extra_model_kwargs["stop"]
|
||||
|
||||
# chat model
|
||||
response = client.chat.completions.create(
|
||||
messages=[self._convert_prompt_message_to_dict(m) for m in prompt_messages],
|
||||
model=model,
|
||||
stream=stream,
|
||||
**model_parameters,
|
||||
**extra_model_kwargs,
|
||||
)
|
||||
|
||||
if stream:
|
||||
return self._handle_chat_generate_stream_response(model, credentials, response, prompt_messages, tools)
|
||||
|
||||
block_result = self._handle_chat_generate_response(model, credentials, response, prompt_messages, tools)
|
||||
|
||||
if block_as_stream:
|
||||
return self._handle_chat_block_as_stream_response(block_result, prompt_messages, stop)
|
||||
|
||||
return block_result
|
||||
|
||||
def _handle_chat_block_as_stream_response(
|
||||
self,
|
||||
block_result: LLMResult,
|
||||
prompt_messages: list[PromptMessage],
|
||||
stop: Optional[list[str]] = None,
|
||||
) -> Generator[LLMResultChunk, None, None]:
|
||||
"""
|
||||
Handle llm chat response
|
||||
|
||||
:param model: model name
|
||||
:param credentials: credentials
|
||||
:param response: response
|
||||
:param prompt_messages: prompt messages
|
||||
:param tools: tools for tool calling
|
||||
:param stop: stop words
|
||||
:return: llm response chunk generator
|
||||
"""
|
||||
text = block_result.message.content
|
||||
text = cast(str, text)
|
||||
|
||||
if stop:
|
||||
text = self.enforce_stop_tokens(text, stop)
|
||||
|
||||
yield LLMResultChunk(
|
||||
model=block_result.model,
|
||||
prompt_messages=prompt_messages,
|
||||
system_fingerprint=block_result.system_fingerprint,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=AssistantPromptMessage(content=text),
|
||||
finish_reason="stop",
|
||||
usage=block_result.usage,
|
||||
),
|
||||
)
|
||||
|
||||
def _clear_illegal_prompt_messages(self, model: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
Clear illegal prompt messages for OpenAI API
|
||||
|
||||
:param model: model name
|
||||
:param prompt_messages: prompt messages
|
||||
:return: cleaned prompt messages
|
||||
"""
|
||||
checklist = ["gpt-4-turbo", "gpt-4-turbo-2024-04-09"]
|
||||
|
||||
if model in checklist:
|
||||
# count how many user messages are there
|
||||
user_message_count = len([m for m in prompt_messages if isinstance(m, UserPromptMessage)])
|
||||
if user_message_count > 1:
|
||||
for prompt_message in prompt_messages:
|
||||
if isinstance(prompt_message, UserPromptMessage):
|
||||
if isinstance(prompt_message.content, list):
|
||||
prompt_message.content = "\n".join(
|
||||
[
|
||||
item.data
|
||||
if item.type == PromptMessageContentType.TEXT
|
||||
else "[IMAGE]"
|
||||
if item.type == PromptMessageContentType.IMAGE
|
||||
else ""
|
||||
for item in prompt_message.content
|
||||
]
|
||||
)
|
||||
|
||||
if model.startswith("o1"):
|
||||
system_message_count = len([m for m in prompt_messages if isinstance(m, SystemPromptMessage)])
|
||||
if system_message_count > 0:
|
||||
new_prompt_messages = []
|
||||
for prompt_message in prompt_messages:
|
||||
if isinstance(prompt_message, SystemPromptMessage):
|
||||
prompt_message = UserPromptMessage(
|
||||
content=prompt_message.content,
|
||||
name=prompt_message.name,
|
||||
)
|
||||
|
||||
new_prompt_messages.append(prompt_message)
|
||||
prompt_messages = new_prompt_messages
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _handle_chat_generate_response(
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
response: ChatCompletion,
|
||||
prompt_messages: list[PromptMessage],
|
||||
tools: Optional[list[PromptMessageTool]] = None,
|
||||
):
|
||||
assistant_message = response.choices[0].message
|
||||
assistant_message_tool_calls = assistant_message.tool_calls
|
||||
|
||||
# extract tool calls from response
|
||||
tool_calls = []
|
||||
self._update_tool_calls(tool_calls=tool_calls, tool_calls_response=assistant_message_tool_calls)
|
||||
|
||||
# transform assistant message to prompt message
|
||||
assistant_prompt_message = AssistantPromptMessage(content=assistant_message.content, tool_calls=tool_calls)
|
||||
|
||||
# calculate num tokens
|
||||
if response.usage:
|
||||
# transform usage
|
||||
prompt_tokens = response.usage.prompt_tokens
|
||||
completion_tokens = response.usage.completion_tokens
|
||||
else:
|
||||
# calculate num tokens
|
||||
prompt_tokens = self._num_tokens_from_messages(credentials, prompt_messages, tools)
|
||||
completion_tokens = self._num_tokens_from_messages(credentials, [assistant_prompt_message])
|
||||
|
||||
# transform usage
|
||||
usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
|
||||
|
||||
# transform response
|
||||
result = LLMResult(
|
||||
model=response.model or model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=assistant_prompt_message,
|
||||
usage=usage,
|
||||
system_fingerprint=response.system_fingerprint,
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
def _handle_chat_generate_stream_response(
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
response: Stream[ChatCompletionChunk],
|
||||
prompt_messages: list[PromptMessage],
|
||||
tools: Optional[list[PromptMessageTool]] = None,
|
||||
):
|
||||
index = 0
|
||||
full_assistant_content = ""
|
||||
real_model = model
|
||||
system_fingerprint = None
|
||||
completion = ""
|
||||
tool_calls = []
|
||||
for chunk in response:
|
||||
if len(chunk.choices) == 0:
|
||||
continue
|
||||
|
||||
delta = chunk.choices[0]
|
||||
# NOTE: For fix https://github.com/langgenius/dify/issues/5790
|
||||
if delta.delta is None:
|
||||
continue
|
||||
|
||||
# extract tool calls from response
|
||||
self._update_tool_calls(tool_calls=tool_calls, tool_calls_response=delta.delta.tool_calls)
|
||||
|
||||
# Handling exceptions when content filters' streaming mode is set to asynchronous modified filter
|
||||
if delta.finish_reason is None and not delta.delta.content:
|
||||
continue
|
||||
|
||||
# transform assistant message to prompt message
|
||||
assistant_prompt_message = AssistantPromptMessage(content=delta.delta.content or "", tool_calls=tool_calls)
|
||||
|
||||
full_assistant_content += delta.delta.content or ""
|
||||
|
||||
real_model = chunk.model
|
||||
system_fingerprint = chunk.system_fingerprint
|
||||
completion += delta.delta.content or ""
|
||||
|
||||
yield LLMResultChunk(
|
||||
model=real_model,
|
||||
prompt_messages=prompt_messages,
|
||||
system_fingerprint=system_fingerprint,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=index,
|
||||
message=assistant_prompt_message,
|
||||
),
|
||||
)
|
||||
|
||||
index += 1
|
||||
|
||||
# calculate num tokens
|
||||
prompt_tokens = self._num_tokens_from_messages(credentials, prompt_messages, tools)
|
||||
|
||||
full_assistant_prompt_message = AssistantPromptMessage(content=completion)
|
||||
completion_tokens = self._num_tokens_from_messages(credentials, [full_assistant_prompt_message])
|
||||
|
||||
# transform usage
|
||||
usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
|
||||
|
||||
yield LLMResultChunk(
|
||||
model=real_model,
|
||||
prompt_messages=prompt_messages,
|
||||
system_fingerprint=system_fingerprint,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=index, message=AssistantPromptMessage(content=""), finish_reason="stop", usage=usage
|
||||
),
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _update_tool_calls(
|
||||
tool_calls: list[AssistantPromptMessage.ToolCall],
|
||||
tool_calls_response: Optional[Sequence[ChatCompletionMessageToolCall | ChoiceDeltaToolCall]],
|
||||
) -> None:
|
||||
if tool_calls_response:
|
||||
for response_tool_call in tool_calls_response:
|
||||
if isinstance(response_tool_call, ChatCompletionMessageToolCall):
|
||||
function = AssistantPromptMessage.ToolCall.ToolCallFunction(
|
||||
name=response_tool_call.function.name, arguments=response_tool_call.function.arguments
|
||||
)
|
||||
|
||||
tool_call = AssistantPromptMessage.ToolCall(
|
||||
id=response_tool_call.id, type=response_tool_call.type, function=function
|
||||
)
|
||||
tool_calls.append(tool_call)
|
||||
elif isinstance(response_tool_call, ChoiceDeltaToolCall):
|
||||
index = response_tool_call.index
|
||||
if index < len(tool_calls):
|
||||
tool_calls[index].id = response_tool_call.id or tool_calls[index].id
|
||||
tool_calls[index].type = response_tool_call.type or tool_calls[index].type
|
||||
if response_tool_call.function:
|
||||
tool_calls[index].function.name = (
|
||||
response_tool_call.function.name or tool_calls[index].function.name
|
||||
)
|
||||
tool_calls[index].function.arguments += response_tool_call.function.arguments or ""
|
||||
else:
|
||||
assert response_tool_call.id is not None
|
||||
assert response_tool_call.type is not None
|
||||
assert response_tool_call.function is not None
|
||||
assert response_tool_call.function.name is not None
|
||||
assert response_tool_call.function.arguments is not None
|
||||
|
||||
function = AssistantPromptMessage.ToolCall.ToolCallFunction(
|
||||
name=response_tool_call.function.name, arguments=response_tool_call.function.arguments
|
||||
)
|
||||
tool_call = AssistantPromptMessage.ToolCall(
|
||||
id=response_tool_call.id, type=response_tool_call.type, function=function
|
||||
)
|
||||
tool_calls.append(tool_call)
|
||||
|
||||
@staticmethod
|
||||
def _convert_prompt_message_to_dict(message: PromptMessage):
|
||||
if isinstance(message, UserPromptMessage):
|
||||
message = cast(UserPromptMessage, message)
|
||||
if isinstance(message.content, str):
|
||||
message_dict = {"role": "user", "content": message.content}
|
||||
else:
|
||||
sub_messages = []
|
||||
assert message.content is not None
|
||||
for message_content in message.content:
|
||||
if message_content.type == PromptMessageContentType.TEXT:
|
||||
message_content = cast(TextPromptMessageContent, message_content)
|
||||
sub_message_dict = {"type": "text", "text": message_content.data}
|
||||
sub_messages.append(sub_message_dict)
|
||||
elif message_content.type == PromptMessageContentType.IMAGE:
|
||||
message_content = cast(ImagePromptMessageContent, message_content)
|
||||
sub_message_dict = {
|
||||
"type": "image_url",
|
||||
"image_url": {"url": message_content.data, "detail": message_content.detail.value},
|
||||
}
|
||||
sub_messages.append(sub_message_dict)
|
||||
message_dict = {"role": "user", "content": sub_messages}
|
||||
elif isinstance(message, AssistantPromptMessage):
|
||||
# message = cast(AssistantPromptMessage, message)
|
||||
message_dict = {"role": "assistant", "content": message.content}
|
||||
if message.tool_calls:
|
||||
# fix azure when enable json schema cant process content = "" in assistant fix with None
|
||||
if not message.content:
|
||||
message_dict["content"] = None
|
||||
message_dict["tool_calls"] = [helper.dump_model(tool_call) for tool_call in message.tool_calls]
|
||||
elif isinstance(message, SystemPromptMessage):
|
||||
message = cast(SystemPromptMessage, message)
|
||||
message_dict = {"role": "system", "content": message.content}
|
||||
elif isinstance(message, ToolPromptMessage):
|
||||
message = cast(ToolPromptMessage, message)
|
||||
message_dict = {
|
||||
"role": "tool",
|
||||
"name": message.name,
|
||||
"content": message.content,
|
||||
"tool_call_id": message.tool_call_id,
|
||||
}
|
||||
else:
|
||||
raise ValueError(f"Got unknown type {message}")
|
||||
|
||||
if message.name:
|
||||
message_dict["name"] = message.name
|
||||
|
||||
return message_dict
|
||||
|
||||
def _num_tokens_from_string(
|
||||
self, credentials: dict, text: str, tools: Optional[list[PromptMessageTool]] = None
|
||||
) -> int:
|
||||
try:
|
||||
encoding = tiktoken.encoding_for_model(credentials["base_model_name"])
|
||||
except KeyError:
|
||||
encoding = tiktoken.get_encoding("cl100k_base")
|
||||
|
||||
num_tokens = len(encoding.encode(text))
|
||||
|
||||
if tools:
|
||||
num_tokens += self._num_tokens_for_tools(encoding, tools)
|
||||
|
||||
return num_tokens
|
||||
|
||||
def _num_tokens_from_messages(
|
||||
self, credentials: dict, messages: list[PromptMessage], tools: Optional[list[PromptMessageTool]] = None
|
||||
) -> int:
|
||||
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
|
||||
|
||||
Official documentation: https://github.com/openai/openai-cookbook/blob/
|
||||
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
|
||||
model = credentials["base_model_name"]
|
||||
try:
|
||||
encoding = tiktoken.encoding_for_model(model)
|
||||
except KeyError:
|
||||
logger.warning("Warning: model not found. Using cl100k_base encoding.")
|
||||
model = "cl100k_base"
|
||||
encoding = tiktoken.get_encoding(model)
|
||||
|
||||
if model.startswith("gpt-35-turbo-0301"):
|
||||
# every message follows <im_start>{role/name}\n{content}<im_end>\n
|
||||
tokens_per_message = 4
|
||||
# if there's a name, the role is omitted
|
||||
tokens_per_name = -1
|
||||
elif model.startswith("gpt-35-turbo") or model.startswith("gpt-4") or "o1" in model:
|
||||
tokens_per_message = 3
|
||||
tokens_per_name = 1
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"get_num_tokens_from_messages() is not presently implemented "
|
||||
f"for model {model}."
|
||||
"See https://github.com/openai/openai-python/blob/main/chatml.md for "
|
||||
"information on how messages are converted to tokens."
|
||||
)
|
||||
num_tokens = 0
|
||||
messages_dict = [self._convert_prompt_message_to_dict(m) for m in messages]
|
||||
for message in messages_dict:
|
||||
num_tokens += tokens_per_message
|
||||
for key, value in message.items():
|
||||
# Cast str(value) in case the message value is not a string
|
||||
# This occurs with function messages
|
||||
# TODO: The current token calculation method for the image type is not implemented,
|
||||
# which need to download the image and then get the resolution for calculation,
|
||||
# and will increase the request delay
|
||||
if isinstance(value, list):
|
||||
text = ""
|
||||
for item in value:
|
||||
if isinstance(item, dict) and item["type"] == "text":
|
||||
text += item["text"]
|
||||
|
||||
value = text
|
||||
|
||||
if key == "tool_calls":
|
||||
for tool_call in value:
|
||||
assert isinstance(tool_call, dict)
|
||||
for t_key, t_value in tool_call.items():
|
||||
num_tokens += len(encoding.encode(t_key))
|
||||
if t_key == "function":
|
||||
for f_key, f_value in t_value.items():
|
||||
num_tokens += len(encoding.encode(f_key))
|
||||
num_tokens += len(encoding.encode(f_value))
|
||||
else:
|
||||
num_tokens += len(encoding.encode(t_key))
|
||||
num_tokens += len(encoding.encode(t_value))
|
||||
else:
|
||||
num_tokens += len(encoding.encode(str(value)))
|
||||
|
||||
if key == "name":
|
||||
num_tokens += tokens_per_name
|
||||
|
||||
# every reply is primed with <im_start>assistant
|
||||
num_tokens += 3
|
||||
|
||||
if tools:
|
||||
num_tokens += self._num_tokens_for_tools(encoding, tools)
|
||||
|
||||
return num_tokens
|
||||
|
||||
@staticmethod
|
||||
def _num_tokens_for_tools(encoding: tiktoken.Encoding, tools: list[PromptMessageTool]) -> int:
|
||||
num_tokens = 0
|
||||
for tool in tools:
|
||||
num_tokens += len(encoding.encode("type"))
|
||||
num_tokens += len(encoding.encode("function"))
|
||||
|
||||
# calculate num tokens for function object
|
||||
num_tokens += len(encoding.encode("name"))
|
||||
num_tokens += len(encoding.encode(tool.name))
|
||||
num_tokens += len(encoding.encode("description"))
|
||||
num_tokens += len(encoding.encode(tool.description))
|
||||
parameters = tool.parameters
|
||||
num_tokens += len(encoding.encode("parameters"))
|
||||
if "title" in parameters:
|
||||
num_tokens += len(encoding.encode("title"))
|
||||
num_tokens += len(encoding.encode(parameters["title"]))
|
||||
num_tokens += len(encoding.encode("type"))
|
||||
num_tokens += len(encoding.encode(parameters["type"]))
|
||||
if "properties" in parameters:
|
||||
num_tokens += len(encoding.encode("properties"))
|
||||
for key, value in parameters["properties"].items():
|
||||
num_tokens += len(encoding.encode(key))
|
||||
for field_key, field_value in value.items():
|
||||
num_tokens += len(encoding.encode(field_key))
|
||||
if field_key == "enum":
|
||||
for enum_field in field_value:
|
||||
num_tokens += 3
|
||||
num_tokens += len(encoding.encode(enum_field))
|
||||
else:
|
||||
num_tokens += len(encoding.encode(field_key))
|
||||
num_tokens += len(encoding.encode(str(field_value)))
|
||||
if "required" in parameters:
|
||||
num_tokens += len(encoding.encode("required"))
|
||||
for required_field in parameters["required"]:
|
||||
num_tokens += 3
|
||||
num_tokens += len(encoding.encode(required_field))
|
||||
|
||||
return num_tokens
|
||||
|
||||
@staticmethod
|
||||
def _get_ai_model_entity(base_model_name: str, model: str):
|
||||
for ai_model_entity in LLM_BASE_MODELS:
|
||||
if ai_model_entity.base_model_name == base_model_name:
|
||||
ai_model_entity_copy = copy.deepcopy(ai_model_entity)
|
||||
ai_model_entity_copy.entity.model = model
|
||||
ai_model_entity_copy.entity.label.en_US = model
|
||||
ai_model_entity_copy.entity.label.zh_Hans = model
|
||||
return ai_model_entity_copy
|
||||
|
||||
def _get_base_model_name(self, credentials: dict) -> str:
|
||||
base_model_name = credentials.get("base_model_name")
|
||||
if not base_model_name:
|
||||
raise ValueError("Base Model Name is required")
|
||||
return base_model_name
|
||||
|
|
@ -9,6 +9,8 @@ from typing import Any, Optional, Union
|
|||
from uuid import UUID, uuid4
|
||||
|
||||
from flask import current_app
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from core.helper.encrypter import decrypt_token, encrypt_token, obfuscated_token
|
||||
from core.ops.entities.config_entity import (
|
||||
|
|
@ -329,15 +331,15 @@ class TraceTask:
|
|||
):
|
||||
self.trace_type = trace_type
|
||||
self.message_id = message_id
|
||||
self.workflow_run = workflow_run
|
||||
self.workflow_run_id = workflow_run.id if workflow_run else None
|
||||
self.conversation_id = conversation_id
|
||||
self.user_id = user_id
|
||||
self.timer = timer
|
||||
self.kwargs = kwargs
|
||||
self.file_base_url = os.getenv("FILES_URL", "http://127.0.0.1:5001")
|
||||
|
||||
self.app_id = None
|
||||
|
||||
self.kwargs = kwargs
|
||||
|
||||
def execute(self):
|
||||
return self.preprocess()
|
||||
|
||||
|
|
@ -345,19 +347,23 @@ class TraceTask:
|
|||
preprocess_map = {
|
||||
TraceTaskName.CONVERSATION_TRACE: lambda: self.conversation_trace(**self.kwargs),
|
||||
TraceTaskName.WORKFLOW_TRACE: lambda: self.workflow_trace(
|
||||
self.workflow_run, self.conversation_id, self.user_id
|
||||
workflow_run_id=self.workflow_run_id, conversation_id=self.conversation_id, user_id=self.user_id
|
||||
),
|
||||
TraceTaskName.MESSAGE_TRACE: lambda: self.message_trace(message_id=self.message_id),
|
||||
TraceTaskName.MODERATION_TRACE: lambda: self.moderation_trace(
|
||||
message_id=self.message_id, timer=self.timer, **self.kwargs
|
||||
),
|
||||
TraceTaskName.MESSAGE_TRACE: lambda: self.message_trace(self.message_id),
|
||||
TraceTaskName.MODERATION_TRACE: lambda: self.moderation_trace(self.message_id, self.timer, **self.kwargs),
|
||||
TraceTaskName.SUGGESTED_QUESTION_TRACE: lambda: self.suggested_question_trace(
|
||||
self.message_id, self.timer, **self.kwargs
|
||||
message_id=self.message_id, timer=self.timer, **self.kwargs
|
||||
),
|
||||
TraceTaskName.DATASET_RETRIEVAL_TRACE: lambda: self.dataset_retrieval_trace(
|
||||
self.message_id, self.timer, **self.kwargs
|
||||
message_id=self.message_id, timer=self.timer, **self.kwargs
|
||||
),
|
||||
TraceTaskName.TOOL_TRACE: lambda: self.tool_trace(
|
||||
message_id=self.message_id, timer=self.timer, **self.kwargs
|
||||
),
|
||||
TraceTaskName.TOOL_TRACE: lambda: self.tool_trace(self.message_id, self.timer, **self.kwargs),
|
||||
TraceTaskName.GENERATE_NAME_TRACE: lambda: self.generate_name_trace(
|
||||
self.conversation_id, self.timer, **self.kwargs
|
||||
conversation_id=self.conversation_id, timer=self.timer, **self.kwargs
|
||||
),
|
||||
}
|
||||
|
||||
|
|
@ -367,86 +373,100 @@ class TraceTask:
|
|||
def conversation_trace(self, **kwargs):
|
||||
return kwargs
|
||||
|
||||
def workflow_trace(self, workflow_run: WorkflowRun | None, conversation_id, user_id):
|
||||
if not workflow_run:
|
||||
raise ValueError("Workflow run not found")
|
||||
def workflow_trace(
|
||||
self,
|
||||
*,
|
||||
workflow_run_id: str | None,
|
||||
conversation_id: str | None,
|
||||
user_id: str | None,
|
||||
):
|
||||
if not workflow_run_id:
|
||||
return {}
|
||||
|
||||
db.session.merge(workflow_run)
|
||||
db.session.refresh(workflow_run)
|
||||
with Session(db.engine) as session:
|
||||
workflow_run_stmt = select(WorkflowRun).where(WorkflowRun.id == workflow_run_id)
|
||||
workflow_run = session.scalars(workflow_run_stmt).first()
|
||||
if not workflow_run:
|
||||
raise ValueError("Workflow run not found")
|
||||
|
||||
workflow_id = workflow_run.workflow_id
|
||||
tenant_id = workflow_run.tenant_id
|
||||
workflow_run_id = workflow_run.id
|
||||
workflow_run_elapsed_time = workflow_run.elapsed_time
|
||||
workflow_run_status = workflow_run.status
|
||||
workflow_run_inputs = workflow_run.inputs_dict
|
||||
workflow_run_outputs = workflow_run.outputs_dict
|
||||
workflow_run_version = workflow_run.version
|
||||
error = workflow_run.error or ""
|
||||
workflow_id = workflow_run.workflow_id
|
||||
tenant_id = workflow_run.tenant_id
|
||||
workflow_run_id = workflow_run.id
|
||||
workflow_run_elapsed_time = workflow_run.elapsed_time
|
||||
workflow_run_status = workflow_run.status
|
||||
workflow_run_inputs = workflow_run.inputs_dict
|
||||
workflow_run_outputs = workflow_run.outputs_dict
|
||||
workflow_run_version = workflow_run.version
|
||||
error = workflow_run.error or ""
|
||||
|
||||
total_tokens = workflow_run.total_tokens
|
||||
total_tokens = workflow_run.total_tokens
|
||||
|
||||
file_list = workflow_run_inputs.get("sys.file") or []
|
||||
query = workflow_run_inputs.get("query") or workflow_run_inputs.get("sys.query") or ""
|
||||
file_list = workflow_run_inputs.get("sys.file") or []
|
||||
query = workflow_run_inputs.get("query") or workflow_run_inputs.get("sys.query") or ""
|
||||
|
||||
# get workflow_app_log_id
|
||||
workflow_app_log_data = (
|
||||
db.session.query(WorkflowAppLog)
|
||||
.filter_by(tenant_id=tenant_id, app_id=workflow_run.app_id, workflow_run_id=workflow_run.id)
|
||||
.first()
|
||||
)
|
||||
workflow_app_log_id = str(workflow_app_log_data.id) if workflow_app_log_data else None
|
||||
# get message_id
|
||||
message_data = (
|
||||
db.session.query(Message.id)
|
||||
.filter_by(conversation_id=conversation_id, workflow_run_id=workflow_run_id)
|
||||
.first()
|
||||
)
|
||||
message_id = str(message_data.id) if message_data else None
|
||||
# get workflow_app_log_id
|
||||
workflow_app_log_data_stmt = select(WorkflowAppLog.id).where(
|
||||
WorkflowAppLog.tenant_id == tenant_id,
|
||||
WorkflowAppLog.app_id == workflow_run.app_id,
|
||||
WorkflowAppLog.workflow_run_id == workflow_run.id,
|
||||
)
|
||||
workflow_app_log_id = session.scalar(workflow_app_log_data_stmt)
|
||||
# get message_id
|
||||
message_id = None
|
||||
if conversation_id:
|
||||
message_data_stmt = select(Message.id).where(
|
||||
Message.conversation_id == conversation_id,
|
||||
Message.workflow_run_id == workflow_run_id,
|
||||
)
|
||||
message_id = session.scalar(message_data_stmt)
|
||||
|
||||
metadata = {
|
||||
"workflow_id": workflow_id,
|
||||
"conversation_id": conversation_id,
|
||||
"workflow_run_id": workflow_run_id,
|
||||
"tenant_id": tenant_id,
|
||||
"elapsed_time": workflow_run_elapsed_time,
|
||||
"status": workflow_run_status,
|
||||
"version": workflow_run_version,
|
||||
"total_tokens": total_tokens,
|
||||
"file_list": file_list,
|
||||
"triggered_form": workflow_run.triggered_from,
|
||||
"user_id": user_id,
|
||||
}
|
||||
|
||||
workflow_trace_info = WorkflowTraceInfo(
|
||||
workflow_data=workflow_run.to_dict(),
|
||||
conversation_id=conversation_id,
|
||||
workflow_id=workflow_id,
|
||||
tenant_id=tenant_id,
|
||||
workflow_run_id=workflow_run_id,
|
||||
workflow_run_elapsed_time=workflow_run_elapsed_time,
|
||||
workflow_run_status=workflow_run_status,
|
||||
workflow_run_inputs=workflow_run_inputs,
|
||||
workflow_run_outputs=workflow_run_outputs,
|
||||
workflow_run_version=workflow_run_version,
|
||||
error=error,
|
||||
total_tokens=total_tokens,
|
||||
file_list=file_list,
|
||||
query=query,
|
||||
metadata=metadata,
|
||||
workflow_app_log_id=workflow_app_log_id,
|
||||
message_id=message_id,
|
||||
start_time=workflow_run.created_at,
|
||||
end_time=workflow_run.finished_at,
|
||||
)
|
||||
metadata = {
|
||||
"workflow_id": workflow_id,
|
||||
"conversation_id": conversation_id,
|
||||
"workflow_run_id": workflow_run_id,
|
||||
"tenant_id": tenant_id,
|
||||
"elapsed_time": workflow_run_elapsed_time,
|
||||
"status": workflow_run_status,
|
||||
"version": workflow_run_version,
|
||||
"total_tokens": total_tokens,
|
||||
"file_list": file_list,
|
||||
"triggered_form": workflow_run.triggered_from,
|
||||
"user_id": user_id,
|
||||
}
|
||||
|
||||
workflow_trace_info = WorkflowTraceInfo(
|
||||
workflow_data=workflow_run.to_dict(),
|
||||
conversation_id=conversation_id,
|
||||
workflow_id=workflow_id,
|
||||
tenant_id=tenant_id,
|
||||
workflow_run_id=workflow_run_id,
|
||||
workflow_run_elapsed_time=workflow_run_elapsed_time,
|
||||
workflow_run_status=workflow_run_status,
|
||||
workflow_run_inputs=workflow_run_inputs,
|
||||
workflow_run_outputs=workflow_run_outputs,
|
||||
workflow_run_version=workflow_run_version,
|
||||
error=error,
|
||||
total_tokens=total_tokens,
|
||||
file_list=file_list,
|
||||
query=query,
|
||||
metadata=metadata,
|
||||
workflow_app_log_id=workflow_app_log_id,
|
||||
message_id=message_id,
|
||||
start_time=workflow_run.created_at,
|
||||
end_time=workflow_run.finished_at,
|
||||
)
|
||||
return workflow_trace_info
|
||||
|
||||
def message_trace(self, message_id):
|
||||
def message_trace(self, message_id: str | None):
|
||||
if not message_id:
|
||||
return {}
|
||||
message_data = get_message_data(message_id)
|
||||
if not message_data:
|
||||
return {}
|
||||
conversation_mode = db.session.query(Conversation.mode).filter_by(id=message_data.conversation_id).first()
|
||||
conversation_mode_stmt = select(Conversation.mode).where(Conversation.id == message_data.conversation_id)
|
||||
conversation_mode = db.session.scalars(conversation_mode_stmt).all()
|
||||
if not conversation_mode or len(conversation_mode) == 0:
|
||||
return {}
|
||||
conversation_mode = conversation_mode[0]
|
||||
created_at = message_data.created_at
|
||||
inputs = message_data.message
|
||||
|
|
|
|||
|
|
@ -18,7 +18,7 @@ def filter_none_values(data: dict):
|
|||
return new_data
|
||||
|
||||
|
||||
def get_message_data(message_id):
|
||||
def get_message_data(message_id: str):
|
||||
return db.session.query(Message).filter(Message.id == message_id).first()
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -6,11 +6,14 @@ from flask import Flask, current_app
|
|||
from core.rag.data_post_processor.data_post_processor import DataPostProcessor
|
||||
from core.rag.datasource.keyword.keyword_factory import Keyword
|
||||
from core.rag.datasource.vdb.vector_factory import Vector
|
||||
from core.rag.embedding.retrieval import RetrievalSegments
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.rerank.rerank_type import RerankMode
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import Dataset
|
||||
from models.dataset import ChildChunk, Dataset, DocumentSegment
|
||||
from models.dataset import Document as DatasetDocument
|
||||
from services.external_knowledge_service import ExternalDatasetService
|
||||
|
||||
default_retrieval_model = {
|
||||
|
|
@ -248,3 +251,89 @@ class RetrievalService:
|
|||
@staticmethod
|
||||
def escape_query_for_search(query: str) -> str:
|
||||
return query.replace('"', '\\"')
|
||||
|
||||
@staticmethod
|
||||
def format_retrieval_documents(documents: list[Document]) -> list[RetrievalSegments]:
|
||||
records = []
|
||||
include_segment_ids = []
|
||||
segment_child_map = {}
|
||||
for document in documents:
|
||||
document_id = document.metadata.get("document_id")
|
||||
dataset_document = db.session.query(DatasetDocument).filter(DatasetDocument.id == document_id).first()
|
||||
if dataset_document:
|
||||
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
child_index_node_id = document.metadata.get("doc_id")
|
||||
result = (
|
||||
db.session.query(ChildChunk, DocumentSegment)
|
||||
.join(DocumentSegment, ChildChunk.segment_id == DocumentSegment.id)
|
||||
.filter(
|
||||
ChildChunk.index_node_id == child_index_node_id,
|
||||
DocumentSegment.dataset_id == dataset_document.dataset_id,
|
||||
DocumentSegment.enabled == True,
|
||||
DocumentSegment.status == "completed",
|
||||
)
|
||||
.first()
|
||||
)
|
||||
if result:
|
||||
child_chunk, segment = result
|
||||
if not segment:
|
||||
continue
|
||||
if segment.id not in include_segment_ids:
|
||||
include_segment_ids.append(segment.id)
|
||||
child_chunk_detail = {
|
||||
"id": child_chunk.id,
|
||||
"content": child_chunk.content,
|
||||
"position": child_chunk.position,
|
||||
"score": document.metadata.get("score", 0.0),
|
||||
}
|
||||
map_detail = {
|
||||
"max_score": document.metadata.get("score", 0.0),
|
||||
"child_chunks": [child_chunk_detail],
|
||||
}
|
||||
segment_child_map[segment.id] = map_detail
|
||||
record = {
|
||||
"segment": segment,
|
||||
}
|
||||
records.append(record)
|
||||
else:
|
||||
child_chunk_detail = {
|
||||
"id": child_chunk.id,
|
||||
"content": child_chunk.content,
|
||||
"position": child_chunk.position,
|
||||
"score": document.metadata.get("score", 0.0),
|
||||
}
|
||||
segment_child_map[segment.id]["child_chunks"].append(child_chunk_detail)
|
||||
segment_child_map[segment.id]["max_score"] = max(
|
||||
segment_child_map[segment.id]["max_score"], document.metadata.get("score", 0.0)
|
||||
)
|
||||
else:
|
||||
continue
|
||||
else:
|
||||
index_node_id = document.metadata["doc_id"]
|
||||
|
||||
segment = (
|
||||
db.session.query(DocumentSegment)
|
||||
.filter(
|
||||
DocumentSegment.dataset_id == dataset_document.dataset_id,
|
||||
DocumentSegment.enabled == True,
|
||||
DocumentSegment.status == "completed",
|
||||
DocumentSegment.index_node_id == index_node_id,
|
||||
)
|
||||
.first()
|
||||
)
|
||||
|
||||
if not segment:
|
||||
continue
|
||||
include_segment_ids.append(segment.id)
|
||||
record = {
|
||||
"segment": segment,
|
||||
"score": document.metadata.get("score", None),
|
||||
}
|
||||
|
||||
records.append(record)
|
||||
for record in records:
|
||||
if record["segment"].id in segment_child_map:
|
||||
record["child_chunks"] = segment_child_map[record["segment"].id].get("child_chunks", None)
|
||||
record["score"] = segment_child_map[record["segment"].id]["max_score"]
|
||||
|
||||
return [RetrievalSegments(**record) for record in records]
|
||||
|
|
|
|||
|
|
@ -7,7 +7,7 @@ from core.model_manager import ModelManager
|
|||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import Dataset, DocumentSegment
|
||||
from models.dataset import ChildChunk, Dataset, DocumentSegment
|
||||
|
||||
|
||||
class DatasetDocumentStore:
|
||||
|
|
@ -60,7 +60,7 @@ class DatasetDocumentStore:
|
|||
|
||||
return output
|
||||
|
||||
def add_documents(self, docs: Sequence[Document], allow_update: bool = True) -> None:
|
||||
def add_documents(self, docs: Sequence[Document], allow_update: bool = True, save_child: bool = False) -> None:
|
||||
max_position = (
|
||||
db.session.query(func.max(DocumentSegment.position))
|
||||
.filter(DocumentSegment.document_id == self._document_id)
|
||||
|
|
@ -120,13 +120,55 @@ class DatasetDocumentStore:
|
|||
segment_document.answer = doc.metadata.pop("answer", "")
|
||||
|
||||
db.session.add(segment_document)
|
||||
db.session.flush()
|
||||
if save_child:
|
||||
if doc.children:
|
||||
for postion, child in enumerate(doc.children, start=1):
|
||||
child_segment = ChildChunk(
|
||||
tenant_id=self._dataset.tenant_id,
|
||||
dataset_id=self._dataset.id,
|
||||
document_id=self._document_id,
|
||||
segment_id=segment_document.id,
|
||||
position=postion,
|
||||
index_node_id=child.metadata.get("doc_id"),
|
||||
index_node_hash=child.metadata.get("doc_hash"),
|
||||
content=child.page_content,
|
||||
word_count=len(child.page_content),
|
||||
type="automatic",
|
||||
created_by=self._user_id,
|
||||
)
|
||||
db.session.add(child_segment)
|
||||
else:
|
||||
segment_document.content = doc.page_content
|
||||
if doc.metadata.get("answer"):
|
||||
segment_document.answer = doc.metadata.pop("answer", "")
|
||||
segment_document.index_node_hash = doc.metadata["doc_hash"]
|
||||
segment_document.index_node_hash = doc.metadata.get("doc_hash")
|
||||
segment_document.word_count = len(doc.page_content)
|
||||
segment_document.tokens = tokens
|
||||
if save_child and doc.children:
|
||||
# delete the existing child chunks
|
||||
db.session.query(ChildChunk).filter(
|
||||
ChildChunk.tenant_id == self._dataset.tenant_id,
|
||||
ChildChunk.dataset_id == self._dataset.id,
|
||||
ChildChunk.document_id == self._document_id,
|
||||
ChildChunk.segment_id == segment_document.id,
|
||||
).delete()
|
||||
# add new child chunks
|
||||
for position, child in enumerate(doc.children, start=1):
|
||||
child_segment = ChildChunk(
|
||||
tenant_id=self._dataset.tenant_id,
|
||||
dataset_id=self._dataset.id,
|
||||
document_id=self._document_id,
|
||||
segment_id=segment_document.id,
|
||||
position=position,
|
||||
index_node_id=child.metadata.get("doc_id"),
|
||||
index_node_hash=child.metadata.get("doc_hash"),
|
||||
content=child.page_content,
|
||||
word_count=len(child.page_content),
|
||||
type="automatic",
|
||||
created_by=self._user_id,
|
||||
)
|
||||
db.session.add(child_segment)
|
||||
|
||||
db.session.commit()
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,23 @@
|
|||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from models.dataset import DocumentSegment
|
||||
|
||||
|
||||
class RetrievalChildChunk(BaseModel):
|
||||
"""Retrieval segments."""
|
||||
|
||||
id: str
|
||||
content: str
|
||||
score: float
|
||||
position: int
|
||||
|
||||
|
||||
class RetrievalSegments(BaseModel):
|
||||
"""Retrieval segments."""
|
||||
|
||||
model_config = {"arbitrary_types_allowed": True}
|
||||
segment: DocumentSegment
|
||||
child_chunks: Optional[list[RetrievalChildChunk]] = None
|
||||
score: Optional[float] = None
|
||||
|
|
@ -4,7 +4,7 @@ import os
|
|||
from typing import Optional, cast
|
||||
|
||||
import pandas as pd
|
||||
from openpyxl import load_workbook
|
||||
from openpyxl import load_workbook # type: ignore
|
||||
|
||||
from core.rag.extractor.extractor_base import BaseExtractor
|
||||
from core.rag.models.document import Document
|
||||
|
|
|
|||
|
|
@ -24,7 +24,6 @@ from core.rag.extractor.unstructured.unstructured_markdown_extractor import Unst
|
|||
from core.rag.extractor.unstructured.unstructured_msg_extractor import UnstructuredMsgExtractor
|
||||
from core.rag.extractor.unstructured.unstructured_ppt_extractor import UnstructuredPPTExtractor
|
||||
from core.rag.extractor.unstructured.unstructured_pptx_extractor import UnstructuredPPTXExtractor
|
||||
from core.rag.extractor.unstructured.unstructured_text_extractor import UnstructuredTextExtractor
|
||||
from core.rag.extractor.unstructured.unstructured_xml_extractor import UnstructuredXmlExtractor
|
||||
from core.rag.extractor.word_extractor import WordExtractor
|
||||
from core.rag.models.document import Document
|
||||
|
|
@ -103,12 +102,11 @@ class ExtractProcessor:
|
|||
input_file = Path(file_path)
|
||||
file_extension = input_file.suffix.lower()
|
||||
etl_type = dify_config.ETL_TYPE
|
||||
unstructured_api_url = dify_config.UNSTRUCTURED_API_URL
|
||||
unstructured_api_key = dify_config.UNSTRUCTURED_API_KEY
|
||||
assert unstructured_api_url is not None, "unstructured_api_url is required"
|
||||
assert unstructured_api_key is not None, "unstructured_api_key is required"
|
||||
extractor: Optional[BaseExtractor] = None
|
||||
if etl_type == "Unstructured":
|
||||
unstructured_api_url = dify_config.UNSTRUCTURED_API_URL
|
||||
unstructured_api_key = dify_config.UNSTRUCTURED_API_KEY or ""
|
||||
|
||||
if file_extension in {".xlsx", ".xls"}:
|
||||
extractor = ExcelExtractor(file_path)
|
||||
elif file_extension == ".pdf":
|
||||
|
|
@ -141,11 +139,7 @@ class ExtractProcessor:
|
|||
extractor = UnstructuredEpubExtractor(file_path, unstructured_api_url, unstructured_api_key)
|
||||
else:
|
||||
# txt
|
||||
extractor = (
|
||||
UnstructuredTextExtractor(file_path, unstructured_api_url)
|
||||
if is_automatic
|
||||
else TextExtractor(file_path, autodetect_encoding=True)
|
||||
)
|
||||
extractor = TextExtractor(file_path, autodetect_encoding=True)
|
||||
else:
|
||||
if file_extension in {".xlsx", ".xls"}:
|
||||
extractor = ExcelExtractor(file_path)
|
||||
|
|
|
|||
|
|
@ -1,5 +1,6 @@
|
|||
import base64
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
from bs4 import BeautifulSoup # type: ignore
|
||||
|
||||
|
|
@ -15,7 +16,7 @@ class UnstructuredEmailExtractor(BaseExtractor):
|
|||
file_path: Path to the file to load.
|
||||
"""
|
||||
|
||||
def __init__(self, file_path: str, api_url: str, api_key: str):
|
||||
def __init__(self, file_path: str, api_url: Optional[str] = None, api_key: str = ""):
|
||||
"""Initialize with file path."""
|
||||
self._file_path = file_path
|
||||
self._api_url = api_url
|
||||
|
|
|
|||
|
|
@ -19,7 +19,7 @@ class UnstructuredEpubExtractor(BaseExtractor):
|
|||
self,
|
||||
file_path: str,
|
||||
api_url: Optional[str] = None,
|
||||
api_key: Optional[str] = None,
|
||||
api_key: str = "",
|
||||
):
|
||||
"""Initialize with file path."""
|
||||
self._file_path = file_path
|
||||
|
|
@ -30,9 +30,6 @@ class UnstructuredEpubExtractor(BaseExtractor):
|
|||
if self._api_url:
|
||||
from unstructured.partition.api import partition_via_api
|
||||
|
||||
if self._api_key is None:
|
||||
raise ValueError("api_key is required")
|
||||
|
||||
elements = partition_via_api(filename=self._file_path, api_url=self._api_url, api_key=self._api_key)
|
||||
else:
|
||||
from unstructured.partition.epub import partition_epub
|
||||
|
|
|
|||
|
|
@ -1,4 +1,5 @@
|
|||
import logging
|
||||
from typing import Optional
|
||||
|
||||
from core.rag.extractor.extractor_base import BaseExtractor
|
||||
from core.rag.models.document import Document
|
||||
|
|
@ -24,7 +25,7 @@ class UnstructuredMarkdownExtractor(BaseExtractor):
|
|||
if the specified encoding fails.
|
||||
"""
|
||||
|
||||
def __init__(self, file_path: str, api_url: str, api_key: str):
|
||||
def __init__(self, file_path: str, api_url: Optional[str] = None, api_key: str = ""):
|
||||
"""Initialize with file path."""
|
||||
self._file_path = file_path
|
||||
self._api_url = api_url
|
||||
|
|
|
|||
|
|
@ -1,4 +1,5 @@
|
|||
import logging
|
||||
from typing import Optional
|
||||
|
||||
from core.rag.extractor.extractor_base import BaseExtractor
|
||||
from core.rag.models.document import Document
|
||||
|
|
@ -14,7 +15,7 @@ class UnstructuredMsgExtractor(BaseExtractor):
|
|||
file_path: Path to the file to load.
|
||||
"""
|
||||
|
||||
def __init__(self, file_path: str, api_url: str, api_key: str):
|
||||
def __init__(self, file_path: str, api_url: Optional[str] = None, api_key: str = ""):
|
||||
"""Initialize with file path."""
|
||||
self._file_path = file_path
|
||||
self._api_url = api_url
|
||||
|
|
|
|||
|
|
@ -1,4 +1,5 @@
|
|||
import logging
|
||||
from typing import Optional
|
||||
|
||||
from core.rag.extractor.extractor_base import BaseExtractor
|
||||
from core.rag.models.document import Document
|
||||
|
|
@ -14,7 +15,7 @@ class UnstructuredPPTExtractor(BaseExtractor):
|
|||
file_path: Path to the file to load.
|
||||
"""
|
||||
|
||||
def __init__(self, file_path: str, api_url: str, api_key: str):
|
||||
def __init__(self, file_path: str, api_url: Optional[str] = None, api_key: str = ""):
|
||||
"""Initialize with file path."""
|
||||
self._file_path = file_path
|
||||
self._api_url = api_url
|
||||
|
|
|
|||
|
|
@ -1,4 +1,5 @@
|
|||
import logging
|
||||
from typing import Optional
|
||||
|
||||
from core.rag.extractor.extractor_base import BaseExtractor
|
||||
from core.rag.models.document import Document
|
||||
|
|
@ -14,7 +15,7 @@ class UnstructuredPPTXExtractor(BaseExtractor):
|
|||
file_path: Path to the file to load.
|
||||
"""
|
||||
|
||||
def __init__(self, file_path: str, api_url: str, api_key: str):
|
||||
def __init__(self, file_path: str, api_url: Optional[str] = None, api_key: str = ""):
|
||||
"""Initialize with file path."""
|
||||
self._file_path = file_path
|
||||
self._api_url = api_url
|
||||
|
|
|
|||
|
|
@ -1,4 +1,5 @@
|
|||
import logging
|
||||
from typing import Optional
|
||||
|
||||
from core.rag.extractor.extractor_base import BaseExtractor
|
||||
from core.rag.models.document import Document
|
||||
|
|
@ -14,7 +15,7 @@ class UnstructuredXmlExtractor(BaseExtractor):
|
|||
file_path: Path to the file to load.
|
||||
"""
|
||||
|
||||
def __init__(self, file_path: str, api_url: str, api_key: str):
|
||||
def __init__(self, file_path: str, api_url: Optional[str] = None, api_key: str = ""):
|
||||
"""Initialize with file path."""
|
||||
self._file_path = file_path
|
||||
self._api_url = api_url
|
||||
|
|
|
|||
|
|
@ -267,8 +267,10 @@ class WordExtractor(BaseExtractor):
|
|||
if isinstance(element.tag, str) and element.tag.endswith("p"): # paragraph
|
||||
para = paragraphs.pop(0)
|
||||
parsed_paragraph = parse_paragraph(para)
|
||||
if parsed_paragraph:
|
||||
if parsed_paragraph.strip():
|
||||
content.append(parsed_paragraph)
|
||||
else:
|
||||
content.append("\n")
|
||||
elif isinstance(element.tag, str) and element.tag.endswith("tbl"): # table
|
||||
table = tables.pop(0)
|
||||
content.append(self._table_to_markdown(table, image_map))
|
||||
|
|
|
|||
|
|
@ -1,8 +1,7 @@
|
|||
from enum import Enum
|
||||
|
||||
|
||||
class IndexType(Enum):
|
||||
class IndexType(str, Enum):
|
||||
PARAGRAPH_INDEX = "text_model"
|
||||
QA_INDEX = "qa_model"
|
||||
PARENT_CHILD_INDEX = "parent_child_index"
|
||||
SUMMARY_INDEX = "summary_index"
|
||||
PARENT_CHILD_INDEX = "hierarchical_model"
|
||||
|
|
|
|||
|
|
@ -27,10 +27,10 @@ class BaseIndexProcessor(ABC):
|
|||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def load(self, dataset: Dataset, documents: list[Document], with_keywords: bool = True):
|
||||
def load(self, dataset: Dataset, documents: list[Document], with_keywords: bool = True, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
def clean(self, dataset: Dataset, node_ids: Optional[list[str]], with_keywords: bool = True):
|
||||
def clean(self, dataset: Dataset, node_ids: Optional[list[str]], with_keywords: bool = True, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
|
|
@ -45,26 +45,29 @@ class BaseIndexProcessor(ABC):
|
|||
) -> list[Document]:
|
||||
raise NotImplementedError
|
||||
|
||||
def _get_splitter(self, processing_rule: dict, embedding_model_instance: Optional[ModelInstance]) -> TextSplitter:
|
||||
def _get_splitter(
|
||||
self,
|
||||
processing_rule_mode: str,
|
||||
max_tokens: int,
|
||||
chunk_overlap: int,
|
||||
separator: str,
|
||||
embedding_model_instance: Optional[ModelInstance],
|
||||
) -> TextSplitter:
|
||||
"""
|
||||
Get the NodeParser object according to the processing rule.
|
||||
"""
|
||||
character_splitter: TextSplitter
|
||||
if processing_rule["mode"] == "custom":
|
||||
if processing_rule_mode in ["custom", "hierarchical"]:
|
||||
# The user-defined segmentation rule
|
||||
rules = processing_rule["rules"]
|
||||
segmentation = rules["segmentation"]
|
||||
max_segmentation_tokens_length = dify_config.INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH
|
||||
if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > max_segmentation_tokens_length:
|
||||
if max_tokens < 50 or max_tokens > max_segmentation_tokens_length:
|
||||
raise ValueError(f"Custom segment length should be between 50 and {max_segmentation_tokens_length}.")
|
||||
|
||||
separator = segmentation["separator"]
|
||||
if separator:
|
||||
separator = separator.replace("\\n", "\n")
|
||||
|
||||
character_splitter = FixedRecursiveCharacterTextSplitter.from_encoder(
|
||||
chunk_size=segmentation["max_tokens"],
|
||||
chunk_overlap=segmentation.get("chunk_overlap", 0) or 0,
|
||||
chunk_size=max_tokens,
|
||||
chunk_overlap=chunk_overlap,
|
||||
fixed_separator=separator,
|
||||
separators=["\n\n", "。", ". ", " ", ""],
|
||||
embedding_model_instance=embedding_model_instance,
|
||||
|
|
@ -78,4 +81,4 @@ class BaseIndexProcessor(ABC):
|
|||
embedding_model_instance=embedding_model_instance,
|
||||
)
|
||||
|
||||
return character_splitter
|
||||
return character_splitter # type: ignore
|
||||
|
|
|
|||
|
|
@ -3,6 +3,7 @@
|
|||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.index_processor_base import BaseIndexProcessor
|
||||
from core.rag.index_processor.processor.paragraph_index_processor import ParagraphIndexProcessor
|
||||
from core.rag.index_processor.processor.parent_child_index_processor import ParentChildIndexProcessor
|
||||
from core.rag.index_processor.processor.qa_index_processor import QAIndexProcessor
|
||||
|
||||
|
||||
|
|
@ -18,9 +19,11 @@ class IndexProcessorFactory:
|
|||
if not self._index_type:
|
||||
raise ValueError("Index type must be specified.")
|
||||
|
||||
if self._index_type == IndexType.PARAGRAPH_INDEX.value:
|
||||
if self._index_type == IndexType.PARAGRAPH_INDEX:
|
||||
return ParagraphIndexProcessor()
|
||||
elif self._index_type == IndexType.QA_INDEX.value:
|
||||
elif self._index_type == IndexType.QA_INDEX:
|
||||
return QAIndexProcessor()
|
||||
elif self._index_type == IndexType.PARENT_CHILD_INDEX:
|
||||
return ParentChildIndexProcessor()
|
||||
else:
|
||||
raise ValueError(f"Index type {self._index_type} is not supported.")
|
||||
|
|
|
|||
|
|
@ -13,21 +13,40 @@ from core.rag.index_processor.index_processor_base import BaseIndexProcessor
|
|||
from core.rag.models.document import Document
|
||||
from core.tools.utils.text_processing_utils import remove_leading_symbols
|
||||
from libs import helper
|
||||
from models.dataset import Dataset
|
||||
from models.dataset import Dataset, DatasetProcessRule
|
||||
from services.entities.knowledge_entities.knowledge_entities import Rule
|
||||
|
||||
|
||||
class ParagraphIndexProcessor(BaseIndexProcessor):
|
||||
def extract(self, extract_setting: ExtractSetting, **kwargs) -> list[Document]:
|
||||
text_docs = ExtractProcessor.extract(
|
||||
extract_setting=extract_setting, is_automatic=kwargs.get("process_rule_mode") == "automatic"
|
||||
extract_setting=extract_setting,
|
||||
is_automatic=(
|
||||
kwargs.get("process_rule_mode") == "automatic" or kwargs.get("process_rule_mode") == "hierarchical"
|
||||
),
|
||||
)
|
||||
|
||||
return text_docs
|
||||
|
||||
def transform(self, documents: list[Document], **kwargs) -> list[Document]:
|
||||
process_rule = kwargs.get("process_rule")
|
||||
if not process_rule:
|
||||
raise ValueError("No process rule found.")
|
||||
if process_rule.get("mode") == "automatic":
|
||||
automatic_rule = DatasetProcessRule.AUTOMATIC_RULES
|
||||
rules = Rule(**automatic_rule)
|
||||
else:
|
||||
if not process_rule.get("rules"):
|
||||
raise ValueError("No rules found in process rule.")
|
||||
rules = Rule(**process_rule.get("rules"))
|
||||
# Split the text documents into nodes.
|
||||
if not rules.segmentation:
|
||||
raise ValueError("No segmentation found in rules.")
|
||||
splitter = self._get_splitter(
|
||||
processing_rule=kwargs.get("process_rule", {}),
|
||||
processing_rule_mode=process_rule.get("mode"),
|
||||
max_tokens=rules.segmentation.max_tokens,
|
||||
chunk_overlap=rules.segmentation.chunk_overlap,
|
||||
separator=rules.segmentation.separator,
|
||||
embedding_model_instance=kwargs.get("embedding_model_instance"),
|
||||
)
|
||||
all_documents = []
|
||||
|
|
@ -53,15 +72,19 @@ class ParagraphIndexProcessor(BaseIndexProcessor):
|
|||
all_documents.extend(split_documents)
|
||||
return all_documents
|
||||
|
||||
def load(self, dataset: Dataset, documents: list[Document], with_keywords: bool = True):
|
||||
def load(self, dataset: Dataset, documents: list[Document], with_keywords: bool = True, **kwargs):
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
vector = Vector(dataset)
|
||||
vector.create(documents)
|
||||
if with_keywords:
|
||||
keywords_list = kwargs.get("keywords_list")
|
||||
keyword = Keyword(dataset)
|
||||
keyword.create(documents)
|
||||
if keywords_list and len(keywords_list) > 0:
|
||||
keyword.add_texts(documents, keywords_list=keywords_list)
|
||||
else:
|
||||
keyword.add_texts(documents)
|
||||
|
||||
def clean(self, dataset: Dataset, node_ids: Optional[list[str]], with_keywords: bool = True):
|
||||
def clean(self, dataset: Dataset, node_ids: Optional[list[str]], with_keywords: bool = True, **kwargs):
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
vector = Vector(dataset)
|
||||
if node_ids:
|
||||
|
|
|
|||
|
|
@ -0,0 +1,195 @@
|
|||
"""Paragraph index processor."""
|
||||
|
||||
import uuid
|
||||
from typing import Optional
|
||||
|
||||
from core.model_manager import ModelInstance
|
||||
from core.rag.cleaner.clean_processor import CleanProcessor
|
||||
from core.rag.datasource.retrieval_service import RetrievalService
|
||||
from core.rag.datasource.vdb.vector_factory import Vector
|
||||
from core.rag.extractor.entity.extract_setting import ExtractSetting
|
||||
from core.rag.extractor.extract_processor import ExtractProcessor
|
||||
from core.rag.index_processor.index_processor_base import BaseIndexProcessor
|
||||
from core.rag.models.document import ChildDocument, Document
|
||||
from extensions.ext_database import db
|
||||
from libs import helper
|
||||
from models.dataset import ChildChunk, Dataset, DocumentSegment
|
||||
from services.entities.knowledge_entities.knowledge_entities import ParentMode, Rule
|
||||
|
||||
|
||||
class ParentChildIndexProcessor(BaseIndexProcessor):
|
||||
def extract(self, extract_setting: ExtractSetting, **kwargs) -> list[Document]:
|
||||
text_docs = ExtractProcessor.extract(
|
||||
extract_setting=extract_setting,
|
||||
is_automatic=(
|
||||
kwargs.get("process_rule_mode") == "automatic" or kwargs.get("process_rule_mode") == "hierarchical"
|
||||
),
|
||||
)
|
||||
|
||||
return text_docs
|
||||
|
||||
def transform(self, documents: list[Document], **kwargs) -> list[Document]:
|
||||
process_rule = kwargs.get("process_rule")
|
||||
if not process_rule:
|
||||
raise ValueError("No process rule found.")
|
||||
if not process_rule.get("rules"):
|
||||
raise ValueError("No rules found in process rule.")
|
||||
rules = Rule(**process_rule.get("rules"))
|
||||
all_documents = [] # type: ignore
|
||||
if rules.parent_mode == ParentMode.PARAGRAPH:
|
||||
# Split the text documents into nodes.
|
||||
splitter = self._get_splitter(
|
||||
processing_rule_mode=process_rule.get("mode"),
|
||||
max_tokens=rules.segmentation.max_tokens,
|
||||
chunk_overlap=rules.segmentation.chunk_overlap,
|
||||
separator=rules.segmentation.separator,
|
||||
embedding_model_instance=kwargs.get("embedding_model_instance"),
|
||||
)
|
||||
for document in documents:
|
||||
# document clean
|
||||
document_text = CleanProcessor.clean(document.page_content, process_rule)
|
||||
document.page_content = document_text
|
||||
# parse document to nodes
|
||||
document_nodes = splitter.split_documents([document])
|
||||
split_documents = []
|
||||
for document_node in document_nodes:
|
||||
if document_node.page_content.strip():
|
||||
doc_id = str(uuid.uuid4())
|
||||
hash = helper.generate_text_hash(document_node.page_content)
|
||||
document_node.metadata["doc_id"] = doc_id
|
||||
document_node.metadata["doc_hash"] = hash
|
||||
# delete Splitter character
|
||||
page_content = document_node.page_content
|
||||
if page_content.startswith(".") or page_content.startswith("。"):
|
||||
page_content = page_content[1:].strip()
|
||||
else:
|
||||
page_content = page_content
|
||||
if len(page_content) > 0:
|
||||
document_node.page_content = page_content
|
||||
# parse document to child nodes
|
||||
child_nodes = self._split_child_nodes(
|
||||
document_node, rules, process_rule.get("mode"), kwargs.get("embedding_model_instance")
|
||||
)
|
||||
document_node.children = child_nodes
|
||||
split_documents.append(document_node)
|
||||
all_documents.extend(split_documents)
|
||||
elif rules.parent_mode == ParentMode.FULL_DOC:
|
||||
page_content = "\n".join([document.page_content for document in documents])
|
||||
document = Document(page_content=page_content, metadata=documents[0].metadata)
|
||||
# parse document to child nodes
|
||||
child_nodes = self._split_child_nodes(
|
||||
document, rules, process_rule.get("mode"), kwargs.get("embedding_model_instance")
|
||||
)
|
||||
document.children = child_nodes
|
||||
doc_id = str(uuid.uuid4())
|
||||
hash = helper.generate_text_hash(document.page_content)
|
||||
document.metadata["doc_id"] = doc_id
|
||||
document.metadata["doc_hash"] = hash
|
||||
all_documents.append(document)
|
||||
|
||||
return all_documents
|
||||
|
||||
def load(self, dataset: Dataset, documents: list[Document], with_keywords: bool = True, **kwargs):
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
vector = Vector(dataset)
|
||||
for document in documents:
|
||||
child_documents = document.children
|
||||
if child_documents:
|
||||
formatted_child_documents = [
|
||||
Document(**child_document.model_dump()) for child_document in child_documents
|
||||
]
|
||||
vector.create(formatted_child_documents)
|
||||
|
||||
def clean(self, dataset: Dataset, node_ids: Optional[list[str]], with_keywords: bool = True, **kwargs):
|
||||
# node_ids is segment's node_ids
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
delete_child_chunks = kwargs.get("delete_child_chunks") or False
|
||||
vector = Vector(dataset)
|
||||
if node_ids:
|
||||
child_node_ids = (
|
||||
db.session.query(ChildChunk.index_node_id)
|
||||
.join(DocumentSegment, ChildChunk.segment_id == DocumentSegment.id)
|
||||
.filter(
|
||||
DocumentSegment.dataset_id == dataset.id,
|
||||
DocumentSegment.index_node_id.in_(node_ids),
|
||||
ChildChunk.dataset_id == dataset.id,
|
||||
)
|
||||
.all()
|
||||
)
|
||||
child_node_ids = [child_node_id[0] for child_node_id in child_node_ids]
|
||||
vector.delete_by_ids(child_node_ids)
|
||||
if delete_child_chunks:
|
||||
db.session.query(ChildChunk).filter(
|
||||
ChildChunk.dataset_id == dataset.id, ChildChunk.index_node_id.in_(child_node_ids)
|
||||
).delete()
|
||||
db.session.commit()
|
||||
else:
|
||||
vector.delete()
|
||||
|
||||
if delete_child_chunks:
|
||||
db.session.query(ChildChunk).filter(ChildChunk.dataset_id == dataset.id).delete()
|
||||
db.session.commit()
|
||||
|
||||
def retrieve(
|
||||
self,
|
||||
retrieval_method: str,
|
||||
query: str,
|
||||
dataset: Dataset,
|
||||
top_k: int,
|
||||
score_threshold: float,
|
||||
reranking_model: dict,
|
||||
) -> list[Document]:
|
||||
# Set search parameters.
|
||||
results = RetrievalService.retrieve(
|
||||
retrieval_method=retrieval_method,
|
||||
dataset_id=dataset.id,
|
||||
query=query,
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
reranking_model=reranking_model,
|
||||
)
|
||||
# Organize results.
|
||||
docs = []
|
||||
for result in results:
|
||||
metadata = result.metadata
|
||||
metadata["score"] = result.score
|
||||
if result.score > score_threshold:
|
||||
doc = Document(page_content=result.page_content, metadata=metadata)
|
||||
docs.append(doc)
|
||||
return docs
|
||||
|
||||
def _split_child_nodes(
|
||||
self,
|
||||
document_node: Document,
|
||||
rules: Rule,
|
||||
process_rule_mode: str,
|
||||
embedding_model_instance: Optional[ModelInstance],
|
||||
) -> list[ChildDocument]:
|
||||
if not rules.subchunk_segmentation:
|
||||
raise ValueError("No subchunk segmentation found in rules.")
|
||||
child_splitter = self._get_splitter(
|
||||
processing_rule_mode=process_rule_mode,
|
||||
max_tokens=rules.subchunk_segmentation.max_tokens,
|
||||
chunk_overlap=rules.subchunk_segmentation.chunk_overlap,
|
||||
separator=rules.subchunk_segmentation.separator,
|
||||
embedding_model_instance=embedding_model_instance,
|
||||
)
|
||||
# parse document to child nodes
|
||||
child_nodes = []
|
||||
child_documents = child_splitter.split_documents([document_node])
|
||||
for child_document_node in child_documents:
|
||||
if child_document_node.page_content.strip():
|
||||
doc_id = str(uuid.uuid4())
|
||||
hash = helper.generate_text_hash(child_document_node.page_content)
|
||||
child_document = ChildDocument(
|
||||
page_content=child_document_node.page_content, metadata=document_node.metadata
|
||||
)
|
||||
child_document.metadata["doc_id"] = doc_id
|
||||
child_document.metadata["doc_hash"] = hash
|
||||
child_page_content = child_document.page_content
|
||||
if child_page_content.startswith(".") or child_page_content.startswith("。"):
|
||||
child_page_content = child_page_content[1:].strip()
|
||||
if len(child_page_content) > 0:
|
||||
child_document.page_content = child_page_content
|
||||
child_nodes.append(child_document)
|
||||
return child_nodes
|
||||
|
|
@ -21,18 +21,32 @@ from core.rag.models.document import Document
|
|||
from core.tools.utils.text_processing_utils import remove_leading_symbols
|
||||
from libs import helper
|
||||
from models.dataset import Dataset
|
||||
from services.entities.knowledge_entities.knowledge_entities import Rule
|
||||
|
||||
|
||||
class QAIndexProcessor(BaseIndexProcessor):
|
||||
def extract(self, extract_setting: ExtractSetting, **kwargs) -> list[Document]:
|
||||
text_docs = ExtractProcessor.extract(
|
||||
extract_setting=extract_setting, is_automatic=kwargs.get("process_rule_mode") == "automatic"
|
||||
extract_setting=extract_setting,
|
||||
is_automatic=(
|
||||
kwargs.get("process_rule_mode") == "automatic" or kwargs.get("process_rule_mode") == "hierarchical"
|
||||
),
|
||||
)
|
||||
return text_docs
|
||||
|
||||
def transform(self, documents: list[Document], **kwargs) -> list[Document]:
|
||||
preview = kwargs.get("preview")
|
||||
process_rule = kwargs.get("process_rule")
|
||||
if not process_rule:
|
||||
raise ValueError("No process rule found.")
|
||||
if not process_rule.get("rules"):
|
||||
raise ValueError("No rules found in process rule.")
|
||||
rules = Rule(**process_rule.get("rules"))
|
||||
splitter = self._get_splitter(
|
||||
processing_rule=kwargs.get("process_rule") or {},
|
||||
processing_rule_mode=process_rule.get("mode"),
|
||||
max_tokens=rules.segmentation.max_tokens if rules.segmentation else 0,
|
||||
chunk_overlap=rules.segmentation.chunk_overlap if rules.segmentation else 0,
|
||||
separator=rules.segmentation.separator if rules.segmentation else "",
|
||||
embedding_model_instance=kwargs.get("embedding_model_instance"),
|
||||
)
|
||||
|
||||
|
|
@ -59,24 +73,33 @@ class QAIndexProcessor(BaseIndexProcessor):
|
|||
document_node.page_content = remove_leading_symbols(page_content)
|
||||
split_documents.append(document_node)
|
||||
all_documents.extend(split_documents)
|
||||
for i in range(0, len(all_documents), 10):
|
||||
threads = []
|
||||
sub_documents = all_documents[i : i + 10]
|
||||
for doc in sub_documents:
|
||||
document_format_thread = threading.Thread(
|
||||
target=self._format_qa_document,
|
||||
kwargs={
|
||||
"flask_app": current_app._get_current_object(), # type: ignore
|
||||
"tenant_id": kwargs.get("tenant_id"),
|
||||
"document_node": doc,
|
||||
"all_qa_documents": all_qa_documents,
|
||||
"document_language": kwargs.get("doc_language", "English"),
|
||||
},
|
||||
)
|
||||
threads.append(document_format_thread)
|
||||
document_format_thread.start()
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
if preview:
|
||||
self._format_qa_document(
|
||||
current_app._get_current_object(), # type: ignore
|
||||
kwargs.get("tenant_id"), # type: ignore
|
||||
all_documents[0],
|
||||
all_qa_documents,
|
||||
kwargs.get("doc_language", "English"),
|
||||
)
|
||||
else:
|
||||
for i in range(0, len(all_documents), 10):
|
||||
threads = []
|
||||
sub_documents = all_documents[i : i + 10]
|
||||
for doc in sub_documents:
|
||||
document_format_thread = threading.Thread(
|
||||
target=self._format_qa_document,
|
||||
kwargs={
|
||||
"flask_app": current_app._get_current_object(), # type: ignore
|
||||
"tenant_id": kwargs.get("tenant_id"), # type: ignore
|
||||
"document_node": doc,
|
||||
"all_qa_documents": all_qa_documents,
|
||||
"document_language": kwargs.get("doc_language", "English"),
|
||||
},
|
||||
)
|
||||
threads.append(document_format_thread)
|
||||
document_format_thread.start()
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
return all_qa_documents
|
||||
|
||||
def format_by_template(self, file: FileStorage, **kwargs) -> list[Document]:
|
||||
|
|
@ -98,12 +121,12 @@ class QAIndexProcessor(BaseIndexProcessor):
|
|||
raise ValueError(str(e))
|
||||
return text_docs
|
||||
|
||||
def load(self, dataset: Dataset, documents: list[Document], with_keywords: bool = True):
|
||||
def load(self, dataset: Dataset, documents: list[Document], with_keywords: bool = True, **kwargs):
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
vector = Vector(dataset)
|
||||
vector.create(documents)
|
||||
|
||||
def clean(self, dataset: Dataset, node_ids: Optional[list[str]], with_keywords: bool = True):
|
||||
def clean(self, dataset: Dataset, node_ids: Optional[list[str]], with_keywords: bool = True, **kwargs):
|
||||
vector = Vector(dataset)
|
||||
if node_ids:
|
||||
vector.delete_by_ids(node_ids)
|
||||
|
|
|
|||
|
|
@ -2,7 +2,20 @@ from abc import ABC, abstractmethod
|
|||
from collections.abc import Sequence
|
||||
from typing import Any, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ChildDocument(BaseModel):
|
||||
"""Class for storing a piece of text and associated metadata."""
|
||||
|
||||
page_content: str
|
||||
|
||||
vector: Optional[list[float]] = None
|
||||
|
||||
"""Arbitrary metadata about the page content (e.g., source, relationships to other
|
||||
documents, etc.).
|
||||
"""
|
||||
metadata: dict = {}
|
||||
|
||||
|
||||
class Document(BaseModel):
|
||||
|
|
@ -15,10 +28,12 @@ class Document(BaseModel):
|
|||
"""Arbitrary metadata about the page content (e.g., source, relationships to other
|
||||
documents, etc.).
|
||||
"""
|
||||
metadata: Optional[dict] = Field(default_factory=dict)
|
||||
metadata: dict = {}
|
||||
|
||||
provider: Optional[str] = "dify"
|
||||
|
||||
children: Optional[list[ChildDocument]] = None
|
||||
|
||||
|
||||
class BaseDocumentTransformer(ABC):
|
||||
"""Abstract base class for document transformation systems.
|
||||
|
|
|
|||
|
|
@ -164,43 +164,29 @@ class DatasetRetrieval:
|
|||
"content": item.page_content,
|
||||
}
|
||||
retrieval_resource_list.append(source)
|
||||
document_score_list = {}
|
||||
# deal with dify documents
|
||||
if dify_documents:
|
||||
for item in dify_documents:
|
||||
if item.metadata.get("score"):
|
||||
document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
|
||||
|
||||
index_node_ids = [document.metadata["doc_id"] for document in dify_documents]
|
||||
segments = DocumentSegment.query.filter(
|
||||
DocumentSegment.dataset_id.in_(dataset_ids),
|
||||
DocumentSegment.status == "completed",
|
||||
DocumentSegment.enabled == True,
|
||||
DocumentSegment.index_node_id.in_(index_node_ids),
|
||||
).all()
|
||||
|
||||
if segments:
|
||||
index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
|
||||
sorted_segments = sorted(
|
||||
segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
|
||||
)
|
||||
for segment in sorted_segments:
|
||||
records = RetrievalService.format_retrieval_documents(dify_documents)
|
||||
if records:
|
||||
for record in records:
|
||||
segment = record.segment
|
||||
if segment.answer:
|
||||
document_context_list.append(
|
||||
DocumentContext(
|
||||
content=f"question:{segment.get_sign_content()} answer:{segment.answer}",
|
||||
score=document_score_list.get(segment.index_node_id, None),
|
||||
score=record.score,
|
||||
)
|
||||
)
|
||||
else:
|
||||
document_context_list.append(
|
||||
DocumentContext(
|
||||
content=segment.get_sign_content(),
|
||||
score=document_score_list.get(segment.index_node_id, None),
|
||||
score=record.score,
|
||||
)
|
||||
)
|
||||
if show_retrieve_source:
|
||||
for segment in sorted_segments:
|
||||
for record in records:
|
||||
segment = record.segment
|
||||
dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
|
||||
document = DatasetDocument.query.filter(
|
||||
DatasetDocument.id == segment.document_id,
|
||||
|
|
@ -216,7 +202,7 @@ class DatasetRetrieval:
|
|||
"data_source_type": document.data_source_type,
|
||||
"segment_id": segment.id,
|
||||
"retriever_from": invoke_from.to_source(),
|
||||
"score": document_score_list.get(segment.index_node_id, 0.0),
|
||||
"score": record.score or 0.0,
|
||||
}
|
||||
|
||||
if invoke_from.to_source() == "dev":
|
||||
|
|
|
|||
|
|
@ -267,6 +267,7 @@ class ToolParameter(PluginParameter):
|
|||
:param options: the options of the parameter
|
||||
"""
|
||||
# convert options to ToolParameterOption
|
||||
# FIXME fix the type error
|
||||
if options:
|
||||
option_objs = [
|
||||
PluginParameterOption(value=option, label=I18nObject(en_US=option, zh_Hans=option))
|
||||
|
|
|
|||
|
|
@ -0,0 +1,355 @@
|
|||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Mapping
|
||||
from copy import deepcopy
|
||||
from enum import Enum, StrEnum
|
||||
from typing import TYPE_CHECKING, Any, Optional, Union
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, field_validator
|
||||
from pydantic_core.core_schema import ValidationInfo
|
||||
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.tools.entities.tool_entities import (
|
||||
ToolDescription,
|
||||
ToolIdentity,
|
||||
ToolInvokeFrom,
|
||||
ToolInvokeMessage,
|
||||
ToolParameter,
|
||||
ToolProviderType,
|
||||
ToolRuntimeImageVariable,
|
||||
ToolRuntimeVariable,
|
||||
ToolRuntimeVariablePool,
|
||||
)
|
||||
from core.tools.tool_file_manager import ToolFileManager
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from core.file.models import File
|
||||
|
||||
|
||||
class Tool(BaseModel, ABC):
|
||||
identity: Optional[ToolIdentity] = None
|
||||
parameters: Optional[list[ToolParameter]] = None
|
||||
description: Optional[ToolDescription] = None
|
||||
is_team_authorization: bool = False
|
||||
|
||||
# pydantic configs
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
|
||||
@field_validator("parameters", mode="before")
|
||||
@classmethod
|
||||
def set_parameters(cls, v, validation_info: ValidationInfo) -> list[ToolParameter]:
|
||||
return v or []
|
||||
|
||||
class Runtime(BaseModel):
|
||||
"""
|
||||
Meta data of a tool call processing
|
||||
"""
|
||||
|
||||
def __init__(self, **data: Any):
|
||||
super().__init__(**data)
|
||||
if not self.runtime_parameters:
|
||||
self.runtime_parameters = {}
|
||||
|
||||
tenant_id: Optional[str] = None
|
||||
tool_id: Optional[str] = None
|
||||
invoke_from: Optional[InvokeFrom] = None
|
||||
tool_invoke_from: Optional[ToolInvokeFrom] = None
|
||||
credentials: Optional[dict[str, Any]] = None
|
||||
runtime_parameters: Optional[dict[str, Any]] = None
|
||||
|
||||
runtime: Optional[Runtime] = None
|
||||
variables: Optional[ToolRuntimeVariablePool] = None
|
||||
|
||||
def __init__(self, **data: Any):
|
||||
super().__init__(**data)
|
||||
|
||||
class VariableKey(StrEnum):
|
||||
IMAGE = "image"
|
||||
DOCUMENT = "document"
|
||||
VIDEO = "video"
|
||||
AUDIO = "audio"
|
||||
CUSTOM = "custom"
|
||||
|
||||
def fork_tool_runtime(self, runtime: dict[str, Any]) -> "Tool":
|
||||
"""
|
||||
fork a new tool with meta data
|
||||
|
||||
:param meta: the meta data of a tool call processing, tenant_id is required
|
||||
:return: the new tool
|
||||
"""
|
||||
return self.__class__(
|
||||
identity=self.identity.model_copy() if self.identity else None,
|
||||
parameters=self.parameters.copy() if self.parameters else None,
|
||||
description=self.description.model_copy() if self.description else None,
|
||||
runtime=Tool.Runtime(**runtime),
|
||||
)
|
||||
|
||||
@abstractmethod
|
||||
def tool_provider_type(self) -> ToolProviderType:
|
||||
"""
|
||||
get the tool provider type
|
||||
|
||||
:return: the tool provider type
|
||||
"""
|
||||
|
||||
def load_variables(self, variables: ToolRuntimeVariablePool | None) -> None:
|
||||
"""
|
||||
load variables from database
|
||||
|
||||
:param conversation_id: the conversation id
|
||||
"""
|
||||
self.variables = variables
|
||||
|
||||
def set_image_variable(self, variable_name: str, image_key: str) -> None:
|
||||
"""
|
||||
set an image variable
|
||||
"""
|
||||
if not self.variables:
|
||||
return
|
||||
if self.identity is None:
|
||||
return
|
||||
|
||||
self.variables.set_file(self.identity.name, variable_name, image_key)
|
||||
|
||||
def set_text_variable(self, variable_name: str, text: str) -> None:
|
||||
"""
|
||||
set a text variable
|
||||
"""
|
||||
if not self.variables:
|
||||
return
|
||||
if self.identity is None:
|
||||
return
|
||||
|
||||
self.variables.set_text(self.identity.name, variable_name, text)
|
||||
|
||||
def get_variable(self, name: Union[str, Enum]) -> Optional[ToolRuntimeVariable]:
|
||||
"""
|
||||
get a variable
|
||||
|
||||
:param name: the name of the variable
|
||||
:return: the variable
|
||||
"""
|
||||
if not self.variables:
|
||||
return None
|
||||
|
||||
if isinstance(name, Enum):
|
||||
name = name.value
|
||||
|
||||
for variable in self.variables.pool:
|
||||
if variable.name == name:
|
||||
return variable
|
||||
|
||||
return None
|
||||
|
||||
def get_default_image_variable(self) -> Optional[ToolRuntimeVariable]:
|
||||
"""
|
||||
get the default image variable
|
||||
|
||||
:return: the image variable
|
||||
"""
|
||||
if not self.variables:
|
||||
return None
|
||||
|
||||
return self.get_variable(self.VariableKey.IMAGE)
|
||||
|
||||
def get_variable_file(self, name: Union[str, Enum]) -> Optional[bytes]:
|
||||
"""
|
||||
get a variable file
|
||||
|
||||
:param name: the name of the variable
|
||||
:return: the variable file
|
||||
"""
|
||||
variable = self.get_variable(name)
|
||||
if not variable:
|
||||
return None
|
||||
|
||||
if not isinstance(variable, ToolRuntimeImageVariable):
|
||||
return None
|
||||
|
||||
message_file_id = variable.value
|
||||
# get file binary
|
||||
file_binary = ToolFileManager.get_file_binary_by_message_file_id(message_file_id)
|
||||
if not file_binary:
|
||||
return None
|
||||
|
||||
return file_binary[0]
|
||||
|
||||
def list_variables(self) -> list[ToolRuntimeVariable]:
|
||||
"""
|
||||
list all variables
|
||||
|
||||
:return: the variables
|
||||
"""
|
||||
if not self.variables:
|
||||
return []
|
||||
|
||||
return self.variables.pool
|
||||
|
||||
def list_default_image_variables(self) -> list[ToolRuntimeVariable]:
|
||||
"""
|
||||
list all image variables
|
||||
|
||||
:return: the image variables
|
||||
"""
|
||||
if not self.variables:
|
||||
return []
|
||||
|
||||
result = []
|
||||
|
||||
for variable in self.variables.pool:
|
||||
if variable.name.startswith(self.VariableKey.IMAGE.value):
|
||||
result.append(variable)
|
||||
|
||||
return result
|
||||
|
||||
def invoke(self, user_id: str, tool_parameters: Mapping[str, Any]) -> list[ToolInvokeMessage]:
|
||||
# update tool_parameters
|
||||
# TODO: Fix type error.
|
||||
if self.runtime is None:
|
||||
return []
|
||||
if self.runtime.runtime_parameters:
|
||||
# Convert Mapping to dict before updating
|
||||
tool_parameters = dict(tool_parameters)
|
||||
tool_parameters.update(self.runtime.runtime_parameters)
|
||||
|
||||
# try parse tool parameters into the correct type
|
||||
tool_parameters = self._transform_tool_parameters_type(tool_parameters)
|
||||
|
||||
result = self._invoke(
|
||||
user_id=user_id,
|
||||
tool_parameters=tool_parameters,
|
||||
)
|
||||
|
||||
if not isinstance(result, list):
|
||||
result = [result]
|
||||
|
||||
if not all(isinstance(message, ToolInvokeMessage) for message in result):
|
||||
raise ValueError(
|
||||
f"Invalid return type from {self.__class__.__name__}._invoke method. "
|
||||
"Expected ToolInvokeMessage or list of ToolInvokeMessage."
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
def _transform_tool_parameters_type(self, tool_parameters: Mapping[str, Any]) -> dict[str, Any]:
|
||||
"""
|
||||
Transform tool parameters type
|
||||
"""
|
||||
# Temp fix for the issue that the tool parameters will be converted to empty while validating the credentials
|
||||
result: dict[str, Any] = deepcopy(dict(tool_parameters))
|
||||
for parameter in self.parameters or []:
|
||||
if parameter.name in tool_parameters:
|
||||
result[parameter.name] = parameter.type.cast_value(tool_parameters[parameter.name])
|
||||
|
||||
return result
|
||||
|
||||
@abstractmethod
|
||||
def _invoke(
|
||||
self, user_id: str, tool_parameters: dict[str, Any]
|
||||
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
|
||||
pass
|
||||
|
||||
def validate_credentials(
|
||||
self, credentials: dict[str, Any], parameters: dict[str, Any], format_only: bool = False
|
||||
) -> str | None:
|
||||
"""
|
||||
validate the credentials
|
||||
|
||||
:param credentials: the credentials
|
||||
:param parameters: the parameters
|
||||
:param format_only: only return the formatted
|
||||
"""
|
||||
pass
|
||||
|
||||
def get_runtime_parameters(self) -> list[ToolParameter]:
|
||||
"""
|
||||
get the runtime parameters
|
||||
|
||||
interface for developer to dynamic change the parameters of a tool depends on the variables pool
|
||||
|
||||
:return: the runtime parameters
|
||||
"""
|
||||
return self.parameters or []
|
||||
|
||||
def get_all_runtime_parameters(self) -> list[ToolParameter]:
|
||||
"""
|
||||
get all runtime parameters
|
||||
|
||||
:return: all runtime parameters
|
||||
"""
|
||||
parameters = self.parameters or []
|
||||
parameters = parameters.copy()
|
||||
user_parameters = self.get_runtime_parameters()
|
||||
user_parameters = user_parameters.copy()
|
||||
|
||||
# override parameters
|
||||
for parameter in user_parameters:
|
||||
# check if parameter in tool parameters
|
||||
found = False
|
||||
for tool_parameter in parameters:
|
||||
if tool_parameter.name == parameter.name:
|
||||
found = True
|
||||
break
|
||||
|
||||
if found:
|
||||
# override parameter
|
||||
tool_parameter.type = parameter.type
|
||||
tool_parameter.form = parameter.form
|
||||
tool_parameter.required = parameter.required
|
||||
tool_parameter.default = parameter.default
|
||||
tool_parameter.options = parameter.options
|
||||
tool_parameter.llm_description = parameter.llm_description
|
||||
else:
|
||||
# add new parameter
|
||||
parameters.append(parameter)
|
||||
|
||||
return parameters
|
||||
|
||||
def create_image_message(self, image: str, save_as: str = "") -> ToolInvokeMessage:
|
||||
"""
|
||||
create an image message
|
||||
|
||||
:param image: the url of the image
|
||||
:return: the image message
|
||||
"""
|
||||
return ToolInvokeMessage(type=ToolInvokeMessage.MessageType.IMAGE, message=image, save_as=save_as)
|
||||
|
||||
def create_file_message(self, file: "File") -> ToolInvokeMessage:
|
||||
return ToolInvokeMessage(type=ToolInvokeMessage.MessageType.FILE, message="", meta={"file": file}, save_as="")
|
||||
|
||||
def create_link_message(self, link: str, save_as: str = "") -> ToolInvokeMessage:
|
||||
"""
|
||||
create a link message
|
||||
|
||||
:param link: the url of the link
|
||||
:return: the link message
|
||||
"""
|
||||
return ToolInvokeMessage(type=ToolInvokeMessage.MessageType.LINK, message=link, save_as=save_as)
|
||||
|
||||
def create_text_message(self, text: str, save_as: str = "") -> ToolInvokeMessage:
|
||||
"""
|
||||
create a text message
|
||||
|
||||
:param text: the text
|
||||
:return: the text message
|
||||
"""
|
||||
return ToolInvokeMessage(type=ToolInvokeMessage.MessageType.TEXT, message=text, save_as=save_as)
|
||||
|
||||
def create_blob_message(self, blob: bytes, meta: Optional[dict] = None, save_as: str = "") -> ToolInvokeMessage:
|
||||
"""
|
||||
create a blob message
|
||||
|
||||
:param blob: the blob
|
||||
:return: the blob message
|
||||
"""
|
||||
return ToolInvokeMessage(
|
||||
type=ToolInvokeMessage.MessageType.BLOB,
|
||||
message=blob,
|
||||
meta=meta or {},
|
||||
save_as=save_as,
|
||||
)
|
||||
|
||||
def create_json_message(self, object: dict) -> ToolInvokeMessage:
|
||||
"""
|
||||
create a json message
|
||||
"""
|
||||
return ToolInvokeMessage(type=ToolInvokeMessage.MessageType.JSON, message=object)
|
||||
|
|
@ -139,7 +139,7 @@ class ToolEngine:
|
|||
error_response = f"tool invoke error: {e}"
|
||||
agent_tool_callback.on_tool_error(e)
|
||||
except ToolEngineInvokeError as e:
|
||||
meta = e.args[0]
|
||||
meta = e.meta
|
||||
error_response = f"tool invoke error: {meta.error}"
|
||||
agent_tool_callback.on_tool_error(e)
|
||||
return error_response, [], meta
|
||||
|
|
|
|||
|
|
@ -12,5 +12,6 @@ def remove_leading_symbols(text: str) -> str:
|
|||
str: The text with leading punctuation or symbols removed.
|
||||
"""
|
||||
# Match Unicode ranges for punctuation and symbols
|
||||
pattern = r"^[\u2000-\u206F\u2E00-\u2E7F\u3000-\u303F!\"#$%&'()*+,\-./:;<=>?@\[\]^_`{|}~]+"
|
||||
# FIXME this pattern is confused quick fix for #11868 maybe refactor it later
|
||||
pattern = r"^[\u2000-\u206F\u2E00-\u2E7F\u3000-\u303F!\"#$%&'()*+,./:;<=>?@^_`~]+"
|
||||
return re.sub(pattern, "", text)
|
||||
|
|
|
|||
|
|
@ -48,9 +48,11 @@ class StreamProcessor(ABC):
|
|||
# we remove the node maybe shortcut the answer node, so comment this code for now
|
||||
# there is not effect on the answer node and the workflow, when we have a better solution
|
||||
# we can open this code. Issues: #11542 #9560 #10638 #10564
|
||||
|
||||
# reachable_node_ids.extend(self._fetch_node_ids_in_reachable_branch(edge.target_node_id))
|
||||
continue
|
||||
ids = self._fetch_node_ids_in_reachable_branch(edge.target_node_id)
|
||||
if "answer" in ids:
|
||||
continue
|
||||
else:
|
||||
reachable_node_ids.extend(ids)
|
||||
else:
|
||||
unreachable_first_node_ids.append(edge.target_node_id)
|
||||
|
||||
|
|
|
|||
|
|
@ -20,3 +20,7 @@ class ResponseSizeError(HttpRequestNodeError):
|
|||
|
||||
class RequestBodyError(HttpRequestNodeError):
|
||||
"""Raised when the request body is invalid."""
|
||||
|
||||
|
||||
class InvalidURLError(HttpRequestNodeError):
|
||||
"""Raised when the URL is invalid."""
|
||||
|
|
|
|||
|
|
@ -23,6 +23,7 @@ from .exc import (
|
|||
FileFetchError,
|
||||
HttpRequestNodeError,
|
||||
InvalidHttpMethodError,
|
||||
InvalidURLError,
|
||||
RequestBodyError,
|
||||
ResponseSizeError,
|
||||
)
|
||||
|
|
@ -66,6 +67,12 @@ class Executor:
|
|||
node_data.authorization.config.api_key
|
||||
).text
|
||||
|
||||
# check if node_data.url is a valid URL
|
||||
if not node_data.url:
|
||||
raise InvalidURLError("url is required")
|
||||
if not node_data.url.startswith(("http://", "https://")):
|
||||
raise InvalidURLError("url should start with http:// or https://")
|
||||
|
||||
self.url: str = node_data.url
|
||||
self.method = node_data.method
|
||||
self.auth = node_data.authorization
|
||||
|
|
|
|||
|
|
@ -11,6 +11,7 @@ from core.entities.model_entities import ModelStatus
|
|||
from core.model_manager import ModelInstance, ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.rag.datasource.retrieval_service import RetrievalService
|
||||
from core.rag.retrieval.dataset_retrieval import DatasetRetrieval
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
from core.variables import StringSegment
|
||||
|
|
@ -18,7 +19,7 @@ from core.workflow.entities.node_entities import NodeRunResult
|
|||
from core.workflow.nodes.base import BaseNode
|
||||
from core.workflow.nodes.enums import NodeType
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import Dataset, Document, DocumentSegment
|
||||
from models.dataset import Dataset, Document
|
||||
from models.workflow import WorkflowNodeExecutionStatus
|
||||
|
||||
from .entities import KnowledgeRetrievalNodeData
|
||||
|
|
@ -211,29 +212,12 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
|
|||
"content": item.page_content,
|
||||
}
|
||||
retrieval_resource_list.append(source)
|
||||
document_score_list: dict[str, float] = {}
|
||||
# deal with dify documents
|
||||
if dify_documents:
|
||||
document_score_list = {}
|
||||
for item in dify_documents:
|
||||
if item.metadata.get("score"):
|
||||
document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
|
||||
|
||||
index_node_ids = [document.metadata["doc_id"] for document in dify_documents]
|
||||
segments = DocumentSegment.query.filter(
|
||||
DocumentSegment.dataset_id.in_(dataset_ids),
|
||||
DocumentSegment.completed_at.isnot(None),
|
||||
DocumentSegment.status == "completed",
|
||||
DocumentSegment.enabled == True,
|
||||
DocumentSegment.index_node_id.in_(index_node_ids),
|
||||
).all()
|
||||
if segments:
|
||||
index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
|
||||
sorted_segments = sorted(
|
||||
segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
|
||||
)
|
||||
|
||||
for segment in sorted_segments:
|
||||
records = RetrievalService.format_retrieval_documents(dify_documents)
|
||||
if records:
|
||||
for record in records:
|
||||
segment = record.segment
|
||||
dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
|
||||
document = Document.query.filter(
|
||||
Document.id == segment.document_id,
|
||||
|
|
@ -251,7 +235,7 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
|
|||
"document_data_source_type": document.data_source_type,
|
||||
"segment_id": segment.id,
|
||||
"retriever_from": "workflow",
|
||||
"score": document_score_list.get(segment.index_node_id, None),
|
||||
"score": record.score or 0.0,
|
||||
"segment_hit_count": segment.hit_count,
|
||||
"segment_word_count": segment.word_count,
|
||||
"segment_position": segment.position,
|
||||
|
|
@ -270,10 +254,8 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
|
|||
key=lambda x: x["metadata"]["score"] if x["metadata"].get("score") is not None else 0.0,
|
||||
reverse=True,
|
||||
)
|
||||
position = 1
|
||||
for item in retrieval_resource_list:
|
||||
for position, item in enumerate(retrieval_resource_list, start=1):
|
||||
item["metadata"]["position"] = position
|
||||
position += 1
|
||||
return retrieval_resource_list
|
||||
|
||||
@classmethod
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@ from dify_app import DifyApp
|
|||
def init_app(app: DifyApp):
|
||||
# register blueprint routers
|
||||
|
||||
from flask_cors import CORS
|
||||
from flask_cors import CORS # type: ignore
|
||||
|
||||
from controllers.console import bp as console_app_bp
|
||||
from controllers.files import bp as files_bp
|
||||
|
|
|
|||
|
|
@ -1,4 +1,5 @@
|
|||
import mimetypes
|
||||
import uuid
|
||||
from collections.abc import Callable, Mapping, Sequence
|
||||
from typing import Any, cast
|
||||
|
||||
|
|
@ -119,6 +120,11 @@ def _build_from_local_file(
|
|||
upload_file_id = mapping.get("upload_file_id")
|
||||
if not upload_file_id:
|
||||
raise ValueError("Invalid upload file id")
|
||||
# check if upload_file_id is a valid uuid
|
||||
try:
|
||||
uuid.UUID(upload_file_id)
|
||||
except ValueError:
|
||||
raise ValueError("Invalid upload file id format")
|
||||
stmt = select(UploadFile).where(
|
||||
UploadFile.id == upload_file_id,
|
||||
UploadFile.tenant_id == tenant_id,
|
||||
|
|
|
|||
|
|
@ -73,6 +73,7 @@ dataset_detail_fields = {
|
|||
"embedding_available": fields.Boolean,
|
||||
"retrieval_model_dict": fields.Nested(dataset_retrieval_model_fields),
|
||||
"tags": fields.List(fields.Nested(tag_fields)),
|
||||
"doc_form": fields.String,
|
||||
"external_knowledge_info": fields.Nested(external_knowledge_info_fields),
|
||||
"external_retrieval_model": fields.Nested(external_retrieval_model_fields, allow_null=True),
|
||||
}
|
||||
|
|
|
|||
|
|
@ -34,6 +34,7 @@ document_with_segments_fields = {
|
|||
"data_source_info": fields.Raw(attribute="data_source_info_dict"),
|
||||
"data_source_detail_dict": fields.Raw(attribute="data_source_detail_dict"),
|
||||
"dataset_process_rule_id": fields.String,
|
||||
"process_rule_dict": fields.Raw(attribute="process_rule_dict"),
|
||||
"name": fields.String,
|
||||
"created_from": fields.String,
|
||||
"created_by": fields.String,
|
||||
|
|
|
|||
|
|
@ -34,8 +34,16 @@ segment_fields = {
|
|||
"document": fields.Nested(document_fields),
|
||||
}
|
||||
|
||||
child_chunk_fields = {
|
||||
"id": fields.String,
|
||||
"content": fields.String,
|
||||
"position": fields.Integer,
|
||||
"score": fields.Float,
|
||||
}
|
||||
|
||||
hit_testing_record_fields = {
|
||||
"segment": fields.Nested(segment_fields),
|
||||
"child_chunks": fields.List(fields.Nested(child_chunk_fields)),
|
||||
"score": fields.Float,
|
||||
"tsne_position": fields.Raw,
|
||||
}
|
||||
|
|
|
|||
|
|
@ -2,6 +2,17 @@ from flask_restful import fields # type: ignore
|
|||
|
||||
from libs.helper import TimestampField
|
||||
|
||||
child_chunk_fields = {
|
||||
"id": fields.String,
|
||||
"segment_id": fields.String,
|
||||
"content": fields.String,
|
||||
"position": fields.Integer,
|
||||
"word_count": fields.Integer,
|
||||
"type": fields.String,
|
||||
"created_at": TimestampField,
|
||||
"updated_at": TimestampField,
|
||||
}
|
||||
|
||||
segment_fields = {
|
||||
"id": fields.String,
|
||||
"position": fields.Integer,
|
||||
|
|
@ -20,10 +31,13 @@ segment_fields = {
|
|||
"status": fields.String,
|
||||
"created_by": fields.String,
|
||||
"created_at": TimestampField,
|
||||
"updated_at": TimestampField,
|
||||
"updated_by": fields.String,
|
||||
"indexing_at": TimestampField,
|
||||
"completed_at": TimestampField,
|
||||
"error": fields.String,
|
||||
"stopped_at": TimestampField,
|
||||
"child_chunks": fields.List(fields.Nested(child_chunk_fields)),
|
||||
}
|
||||
|
||||
segment_list_response = {
|
||||
|
|
|
|||
|
|
@ -0,0 +1,55 @@
|
|||
"""parent-child-index
|
||||
|
||||
Revision ID: e19037032219
|
||||
Revises: 01d6889832f7
|
||||
Create Date: 2024-11-22 07:01:17.550037
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import models as models
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = 'e19037032219'
|
||||
down_revision = 'd7999dfa4aae'
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
op.create_table('child_chunks',
|
||||
sa.Column('id', models.types.StringUUID(), server_default=sa.text('uuid_generate_v4()'), nullable=False),
|
||||
sa.Column('tenant_id', models.types.StringUUID(), nullable=False),
|
||||
sa.Column('dataset_id', models.types.StringUUID(), nullable=False),
|
||||
sa.Column('document_id', models.types.StringUUID(), nullable=False),
|
||||
sa.Column('segment_id', models.types.StringUUID(), nullable=False),
|
||||
sa.Column('position', sa.Integer(), nullable=False),
|
||||
sa.Column('content', sa.Text(), nullable=False),
|
||||
sa.Column('word_count', sa.Integer(), nullable=False),
|
||||
sa.Column('index_node_id', sa.String(length=255), nullable=True),
|
||||
sa.Column('index_node_hash', sa.String(length=255), nullable=True),
|
||||
sa.Column('type', sa.String(length=255), server_default=sa.text("'automatic'::character varying"), nullable=False),
|
||||
sa.Column('created_by', models.types.StringUUID(), nullable=False),
|
||||
sa.Column('created_at', sa.DateTime(), server_default=sa.text('CURRENT_TIMESTAMP(0)'), nullable=False),
|
||||
sa.Column('updated_by', models.types.StringUUID(), nullable=True),
|
||||
sa.Column('updated_at', sa.DateTime(), server_default=sa.text('CURRENT_TIMESTAMP(0)'), nullable=False),
|
||||
sa.Column('indexing_at', sa.DateTime(), nullable=True),
|
||||
sa.Column('completed_at', sa.DateTime(), nullable=True),
|
||||
sa.Column('error', sa.Text(), nullable=True),
|
||||
sa.PrimaryKeyConstraint('id', name='child_chunk_pkey')
|
||||
)
|
||||
with op.batch_alter_table('child_chunks', schema=None) as batch_op:
|
||||
batch_op.create_index('child_chunk_dataset_id_idx', ['tenant_id', 'dataset_id', 'document_id', 'segment_id', 'index_node_id'], unique=False)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table('child_chunks', schema=None) as batch_op:
|
||||
batch_op.drop_index('child_chunk_dataset_id_idx')
|
||||
|
||||
op.drop_table('child_chunks')
|
||||
# ### end Alembic commands ###
|
||||
|
|
@ -0,0 +1,47 @@
|
|||
"""add_auto_disabled_dataset_logs
|
||||
|
||||
Revision ID: 923752d42eb6
|
||||
Revises: e19037032219
|
||||
Create Date: 2024-12-25 11:37:55.467101
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import models as models
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = '923752d42eb6'
|
||||
down_revision = 'e19037032219'
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
op.create_table('dataset_auto_disable_logs',
|
||||
sa.Column('id', models.types.StringUUID(), server_default=sa.text('uuid_generate_v4()'), nullable=False),
|
||||
sa.Column('tenant_id', models.types.StringUUID(), nullable=False),
|
||||
sa.Column('dataset_id', models.types.StringUUID(), nullable=False),
|
||||
sa.Column('document_id', models.types.StringUUID(), nullable=False),
|
||||
sa.Column('notified', sa.Boolean(), server_default=sa.text('false'), nullable=False),
|
||||
sa.Column('created_at', sa.DateTime(), server_default=sa.text('CURRENT_TIMESTAMP(0)'), nullable=False),
|
||||
sa.PrimaryKeyConstraint('id', name='dataset_auto_disable_log_pkey')
|
||||
)
|
||||
with op.batch_alter_table('dataset_auto_disable_logs', schema=None) as batch_op:
|
||||
batch_op.create_index('dataset_auto_disable_log_created_atx', ['created_at'], unique=False)
|
||||
batch_op.create_index('dataset_auto_disable_log_dataset_idx', ['dataset_id'], unique=False)
|
||||
batch_op.create_index('dataset_auto_disable_log_tenant_idx', ['tenant_id'], unique=False)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table('dataset_auto_disable_logs', schema=None) as batch_op:
|
||||
batch_op.drop_index('dataset_auto_disable_log_tenant_idx')
|
||||
batch_op.drop_index('dataset_auto_disable_log_dataset_idx')
|
||||
batch_op.drop_index('dataset_auto_disable_log_created_atx')
|
||||
|
||||
op.drop_table('dataset_auto_disable_logs')
|
||||
# ### end Alembic commands ###
|
||||
|
|
@ -23,7 +23,7 @@ class Account(UserMixin, Base):
|
|||
__tablename__ = "accounts"
|
||||
__table_args__ = (db.PrimaryKeyConstraint("id", name="account_pkey"), db.Index("account_email_idx", "email"))
|
||||
|
||||
id = db.Column(StringUUID, server_default=db.text("uuid_generate_v4()"))
|
||||
id: Mapped[str] = mapped_column(StringUUID, server_default=db.text("uuid_generate_v4()"))
|
||||
name = db.Column(db.String(255), nullable=False)
|
||||
email = db.Column(db.String(255), nullable=False)
|
||||
password = db.Column(db.String(255), nullable=True)
|
||||
|
|
|
|||
|
|
@ -17,6 +17,7 @@ from sqlalchemy.dialects.postgresql import JSONB
|
|||
from configs import dify_config
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
from extensions.ext_storage import storage
|
||||
from services.entities.knowledge_entities.knowledge_entities import ParentMode, Rule
|
||||
|
||||
from .account import Account
|
||||
from .engine import db
|
||||
|
|
@ -215,7 +216,7 @@ class DatasetProcessRule(db.Model): # type: ignore[name-defined]
|
|||
created_by = db.Column(StringUUID, nullable=False)
|
||||
created_at = db.Column(db.DateTime, nullable=False, server_default=func.current_timestamp())
|
||||
|
||||
MODES = ["automatic", "custom"]
|
||||
MODES = ["automatic", "custom", "hierarchical"]
|
||||
PRE_PROCESSING_RULES = ["remove_stopwords", "remove_extra_spaces", "remove_urls_emails"]
|
||||
AUTOMATIC_RULES: dict[str, Any] = {
|
||||
"pre_processing_rules": [
|
||||
|
|
@ -231,8 +232,6 @@ class DatasetProcessRule(db.Model): # type: ignore[name-defined]
|
|||
"dataset_id": self.dataset_id,
|
||||
"mode": self.mode,
|
||||
"rules": self.rules_dict,
|
||||
"created_by": self.created_by,
|
||||
"created_at": self.created_at,
|
||||
}
|
||||
|
||||
@property
|
||||
|
|
@ -396,6 +395,12 @@ class Document(db.Model): # type: ignore[name-defined]
|
|||
.scalar()
|
||||
)
|
||||
|
||||
@property
|
||||
def process_rule_dict(self):
|
||||
if self.dataset_process_rule_id:
|
||||
return self.dataset_process_rule.to_dict()
|
||||
return None
|
||||
|
||||
def to_dict(self):
|
||||
return {
|
||||
"id": self.id,
|
||||
|
|
@ -560,6 +565,24 @@ class DocumentSegment(db.Model): # type: ignore[name-defined]
|
|||
.first()
|
||||
)
|
||||
|
||||
@property
|
||||
def child_chunks(self):
|
||||
process_rule = self.document.dataset_process_rule
|
||||
if process_rule.mode == "hierarchical":
|
||||
rules = Rule(**process_rule.rules_dict)
|
||||
if rules.parent_mode and rules.parent_mode != ParentMode.FULL_DOC:
|
||||
child_chunks = (
|
||||
db.session.query(ChildChunk)
|
||||
.filter(ChildChunk.segment_id == self.id)
|
||||
.order_by(ChildChunk.position.asc())
|
||||
.all()
|
||||
)
|
||||
return child_chunks or []
|
||||
else:
|
||||
return []
|
||||
else:
|
||||
return []
|
||||
|
||||
def get_sign_content(self):
|
||||
signed_urls = []
|
||||
text = self.content
|
||||
|
|
@ -605,6 +628,47 @@ class DocumentSegment(db.Model): # type: ignore[name-defined]
|
|||
return text
|
||||
|
||||
|
||||
class ChildChunk(db.Model): # type: ignore[name-defined]
|
||||
__tablename__ = "child_chunks"
|
||||
__table_args__ = (
|
||||
db.PrimaryKeyConstraint("id", name="child_chunk_pkey"),
|
||||
db.Index("child_chunk_dataset_id_idx", "tenant_id", "dataset_id", "document_id", "segment_id", "index_node_id"),
|
||||
)
|
||||
|
||||
# initial fields
|
||||
id = db.Column(StringUUID, nullable=False, server_default=db.text("uuid_generate_v4()"))
|
||||
tenant_id = db.Column(StringUUID, nullable=False)
|
||||
dataset_id = db.Column(StringUUID, nullable=False)
|
||||
document_id = db.Column(StringUUID, nullable=False)
|
||||
segment_id = db.Column(StringUUID, nullable=False)
|
||||
position = db.Column(db.Integer, nullable=False)
|
||||
content = db.Column(db.Text, nullable=False)
|
||||
word_count = db.Column(db.Integer, nullable=False)
|
||||
# indexing fields
|
||||
index_node_id = db.Column(db.String(255), nullable=True)
|
||||
index_node_hash = db.Column(db.String(255), nullable=True)
|
||||
type = db.Column(db.String(255), nullable=False, server_default=db.text("'automatic'::character varying"))
|
||||
created_by = db.Column(StringUUID, nullable=False)
|
||||
created_at = db.Column(db.DateTime, nullable=False, server_default=db.text("CURRENT_TIMESTAMP(0)"))
|
||||
updated_by = db.Column(StringUUID, nullable=True)
|
||||
updated_at = db.Column(db.DateTime, nullable=False, server_default=db.text("CURRENT_TIMESTAMP(0)"))
|
||||
indexing_at = db.Column(db.DateTime, nullable=True)
|
||||
completed_at = db.Column(db.DateTime, nullable=True)
|
||||
error = db.Column(db.Text, nullable=True)
|
||||
|
||||
@property
|
||||
def dataset(self):
|
||||
return db.session.query(Dataset).filter(Dataset.id == self.dataset_id).first()
|
||||
|
||||
@property
|
||||
def document(self):
|
||||
return db.session.query(Document).filter(Document.id == self.document_id).first()
|
||||
|
||||
@property
|
||||
def segment(self):
|
||||
return db.session.query(DocumentSegment).filter(DocumentSegment.id == self.segment_id).first()
|
||||
|
||||
|
||||
class AppDatasetJoin(db.Model): # type: ignore[name-defined]
|
||||
__tablename__ = "app_dataset_joins"
|
||||
__table_args__ = (
|
||||
|
|
@ -844,3 +908,20 @@ class ExternalKnowledgeBindings(db.Model): # type: ignore[name-defined]
|
|||
created_at = db.Column(db.DateTime, nullable=False, server_default=func.current_timestamp())
|
||||
updated_by = db.Column(StringUUID, nullable=True)
|
||||
updated_at = db.Column(db.DateTime, nullable=False, server_default=func.current_timestamp())
|
||||
|
||||
|
||||
class DatasetAutoDisableLog(db.Model): # type: ignore[name-defined]
|
||||
__tablename__ = "dataset_auto_disable_logs"
|
||||
__table_args__ = (
|
||||
db.PrimaryKeyConstraint("id", name="dataset_auto_disable_log_pkey"),
|
||||
db.Index("dataset_auto_disable_log_tenant_idx", "tenant_id"),
|
||||
db.Index("dataset_auto_disable_log_dataset_idx", "dataset_id"),
|
||||
db.Index("dataset_auto_disable_log_created_atx", "created_at"),
|
||||
)
|
||||
|
||||
id = db.Column(StringUUID, server_default=db.text("uuid_generate_v4()"))
|
||||
tenant_id = db.Column(StringUUID, nullable=False)
|
||||
dataset_id = db.Column(StringUUID, nullable=False)
|
||||
document_id = db.Column(StringUUID, nullable=False)
|
||||
notified = db.Column(db.Boolean, nullable=False, server_default=db.text("false"))
|
||||
created_at = db.Column(db.DateTime, nullable=False, server_default=db.text("CURRENT_TIMESTAMP(0)"))
|
||||
|
|
|
|||
|
|
@ -611,13 +611,13 @@ class Conversation(Base):
|
|||
db.Index("conversation_app_from_user_idx", "app_id", "from_source", "from_end_user_id"),
|
||||
)
|
||||
|
||||
id = db.Column(StringUUID, server_default=db.text("uuid_generate_v4()"))
|
||||
id: Mapped[str] = mapped_column(StringUUID, server_default=db.text("uuid_generate_v4()"))
|
||||
app_id = db.Column(StringUUID, nullable=False)
|
||||
app_model_config_id = db.Column(StringUUID, nullable=True)
|
||||
model_provider = db.Column(db.String(255), nullable=True)
|
||||
override_model_configs = db.Column(db.Text)
|
||||
model_id = db.Column(db.String(255), nullable=True)
|
||||
mode = db.Column(db.String(255), nullable=False)
|
||||
mode: Mapped[str] = mapped_column(db.String(255))
|
||||
name = db.Column(db.String(255), nullable=False)
|
||||
summary = db.Column(db.Text)
|
||||
_inputs: Mapped[dict] = mapped_column("inputs", db.JSON)
|
||||
|
|
@ -851,7 +851,7 @@ class Message(Base):
|
|||
Index("message_created_at_idx", "created_at"),
|
||||
)
|
||||
|
||||
id = db.Column(StringUUID, server_default=db.text("uuid_generate_v4()"))
|
||||
id: Mapped[str] = mapped_column(StringUUID, server_default=db.text("uuid_generate_v4()"))
|
||||
app_id = db.Column(StringUUID, nullable=False)
|
||||
model_provider = db.Column(db.String(255), nullable=True)
|
||||
model_id = db.Column(db.String(255), nullable=True)
|
||||
|
|
@ -878,7 +878,7 @@ class Message(Base):
|
|||
from_source = db.Column(db.String(255), nullable=False)
|
||||
from_end_user_id: Mapped[Optional[str]] = db.Column(StringUUID)
|
||||
from_account_id: Mapped[Optional[str]] = db.Column(StringUUID)
|
||||
created_at = db.Column(db.DateTime, nullable=False, server_default=func.current_timestamp())
|
||||
created_at: Mapped[datetime] = mapped_column(db.DateTime, server_default=func.current_timestamp())
|
||||
updated_at = db.Column(db.DateTime, nullable=False, server_default=func.current_timestamp())
|
||||
agent_based = db.Column(db.Boolean, nullable=False, server_default=db.text("false"))
|
||||
workflow_run_id = db.Column(StringUUID)
|
||||
|
|
@ -1403,7 +1403,7 @@ class EndUser(Base, UserMixin):
|
|||
external_user_id = db.Column(db.String(255), nullable=True)
|
||||
name = db.Column(db.String(255))
|
||||
is_anonymous = db.Column(db.Boolean, nullable=False, server_default=db.text("true"))
|
||||
session_id = db.Column(db.String(255), nullable=False)
|
||||
session_id: Mapped[str] = mapped_column()
|
||||
created_at = db.Column(db.DateTime, nullable=False, server_default=func.current_timestamp())
|
||||
updated_at = db.Column(db.DateTime, nullable=False, server_default=func.current_timestamp())
|
||||
|
||||
|
|
|
|||
|
|
@ -256,8 +256,8 @@ class ToolConversationVariables(Base):
|
|||
updated_at = db.Column(db.DateTime, nullable=False, server_default=func.current_timestamp())
|
||||
|
||||
@property
|
||||
def variables(self) -> dict:
|
||||
return dict(json.loads(self.variables_str))
|
||||
def variables(self) -> Any:
|
||||
return json.loads(self.variables_str)
|
||||
|
||||
|
||||
class ToolFile(Base):
|
||||
|
|
|
|||
|
|
@ -402,40 +402,28 @@ class WorkflowRun(Base):
|
|||
db.Index("workflow_run_tenant_app_sequence_idx", "tenant_id", "app_id", "sequence_number"),
|
||||
)
|
||||
|
||||
id = db.Column(StringUUID, server_default=db.text("uuid_generate_v4()"))
|
||||
tenant_id = db.Column(StringUUID, nullable=False)
|
||||
app_id = db.Column(StringUUID, nullable=False)
|
||||
sequence_number = db.Column(db.Integer, nullable=False)
|
||||
workflow_id = db.Column(StringUUID, nullable=False)
|
||||
type = db.Column(db.String(255), nullable=False)
|
||||
triggered_from = db.Column(db.String(255), nullable=False)
|
||||
version = db.Column(db.String(255), nullable=False)
|
||||
graph = db.Column(db.Text)
|
||||
inputs = db.Column(db.Text)
|
||||
status = db.Column(db.String(255), nullable=False) # running, succeeded, failed, stopped, partial-succeeded
|
||||
id: Mapped[str] = mapped_column(StringUUID, server_default=db.text("uuid_generate_v4()"))
|
||||
tenant_id: Mapped[str] = mapped_column(StringUUID)
|
||||
app_id: Mapped[str] = mapped_column(StringUUID)
|
||||
sequence_number: Mapped[int] = mapped_column()
|
||||
workflow_id: Mapped[str] = mapped_column(StringUUID)
|
||||
type: Mapped[str] = mapped_column(db.String(255))
|
||||
triggered_from: Mapped[str] = mapped_column(db.String(255))
|
||||
version: Mapped[str] = mapped_column(db.String(255))
|
||||
graph: Mapped[Optional[str]] = mapped_column(db.Text)
|
||||
inputs: Mapped[Optional[str]] = mapped_column(db.Text)
|
||||
status: Mapped[str] = mapped_column(db.String(255)) # running, succeeded, failed, stopped, partial-succeeded
|
||||
outputs: Mapped[Optional[str]] = mapped_column(sa.Text, default="{}")
|
||||
error = db.Column(db.Text)
|
||||
error: Mapped[Optional[str]] = mapped_column(db.Text)
|
||||
elapsed_time = db.Column(db.Float, nullable=False, server_default=db.text("0"))
|
||||
total_tokens = db.Column(db.Integer, nullable=False, server_default=db.text("0"))
|
||||
total_tokens: Mapped[int] = mapped_column(server_default=db.text("0"))
|
||||
total_steps = db.Column(db.Integer, server_default=db.text("0"))
|
||||
created_by_role = db.Column(db.String(255), nullable=False) # account, end_user
|
||||
created_by_role: Mapped[str] = mapped_column(db.String(255)) # account, end_user
|
||||
created_by = db.Column(StringUUID, nullable=False)
|
||||
created_at = db.Column(db.DateTime, nullable=False, server_default=func.current_timestamp())
|
||||
finished_at = db.Column(db.DateTime)
|
||||
exceptions_count = db.Column(db.Integer, server_default=db.text("0"))
|
||||
|
||||
@property
|
||||
def created_by_account(self):
|
||||
created_by_role = CreatedByRole(self.created_by_role)
|
||||
return db.session.get(Account, self.created_by) if created_by_role == CreatedByRole.ACCOUNT else None
|
||||
|
||||
@property
|
||||
def created_by_end_user(self):
|
||||
from models.model import EndUser
|
||||
|
||||
created_by_role = CreatedByRole(self.created_by_role)
|
||||
return db.session.get(EndUser, self.created_by) if created_by_role == CreatedByRole.END_USER else None
|
||||
|
||||
@property
|
||||
def graph_dict(self):
|
||||
return json.loads(self.graph) if self.graph else {}
|
||||
|
|
@ -631,29 +619,29 @@ class WorkflowNodeExecution(Base):
|
|||
),
|
||||
)
|
||||
|
||||
id = db.Column(StringUUID, server_default=db.text("uuid_generate_v4()"))
|
||||
tenant_id = db.Column(StringUUID, nullable=False)
|
||||
app_id = db.Column(StringUUID, nullable=False)
|
||||
workflow_id = db.Column(StringUUID, nullable=False)
|
||||
triggered_from = db.Column(db.String(255), nullable=False)
|
||||
workflow_run_id = db.Column(StringUUID)
|
||||
index = db.Column(db.Integer, nullable=False)
|
||||
predecessor_node_id = db.Column(db.String(255))
|
||||
node_execution_id = db.Column(db.String(255), nullable=True)
|
||||
node_id = db.Column(db.String(255), nullable=False)
|
||||
node_type = db.Column(db.String(255), nullable=False)
|
||||
title = db.Column(db.String(255), nullable=False)
|
||||
inputs = db.Column(db.Text)
|
||||
process_data = db.Column(db.Text)
|
||||
outputs = db.Column(db.Text)
|
||||
status = db.Column(db.String(255), nullable=False)
|
||||
error = db.Column(db.Text)
|
||||
elapsed_time = db.Column(db.Float, nullable=False, server_default=db.text("0"))
|
||||
execution_metadata = db.Column(db.Text)
|
||||
created_at = db.Column(db.DateTime, nullable=False, server_default=func.current_timestamp())
|
||||
created_by_role = db.Column(db.String(255), nullable=False)
|
||||
created_by = db.Column(StringUUID, nullable=False)
|
||||
finished_at = db.Column(db.DateTime)
|
||||
id: Mapped[str] = mapped_column(StringUUID, server_default=db.text("uuid_generate_v4()"))
|
||||
tenant_id: Mapped[str] = mapped_column(StringUUID)
|
||||
app_id: Mapped[str] = mapped_column(StringUUID)
|
||||
workflow_id: Mapped[str] = mapped_column(StringUUID)
|
||||
triggered_from: Mapped[str] = mapped_column(db.String(255))
|
||||
workflow_run_id: Mapped[Optional[str]] = mapped_column(StringUUID)
|
||||
index: Mapped[int] = mapped_column(db.Integer)
|
||||
predecessor_node_id: Mapped[Optional[str]] = mapped_column(db.String(255))
|
||||
node_execution_id: Mapped[Optional[str]] = mapped_column(db.String(255))
|
||||
node_id: Mapped[str] = mapped_column(db.String(255))
|
||||
node_type: Mapped[str] = mapped_column(db.String(255))
|
||||
title: Mapped[str] = mapped_column(db.String(255))
|
||||
inputs: Mapped[Optional[str]] = mapped_column(db.Text)
|
||||
process_data: Mapped[Optional[str]] = mapped_column(db.Text)
|
||||
outputs: Mapped[Optional[str]] = mapped_column(db.Text)
|
||||
status: Mapped[str] = mapped_column(db.String(255))
|
||||
error: Mapped[Optional[str]] = mapped_column(db.Text)
|
||||
elapsed_time: Mapped[float] = mapped_column(db.Float, server_default=db.text("0"))
|
||||
execution_metadata: Mapped[Optional[str]] = mapped_column(db.Text)
|
||||
created_at: Mapped[datetime] = mapped_column(db.DateTime, server_default=func.current_timestamp())
|
||||
created_by_role: Mapped[str] = mapped_column(db.String(255))
|
||||
created_by: Mapped[str] = mapped_column(StringUUID)
|
||||
finished_at: Mapped[Optional[datetime]] = mapped_column(db.DateTime)
|
||||
|
||||
@property
|
||||
def created_by_account(self):
|
||||
|
|
@ -760,11 +748,11 @@ class WorkflowAppLog(Base):
|
|||
db.Index("workflow_app_log_app_idx", "tenant_id", "app_id"),
|
||||
)
|
||||
|
||||
id = db.Column(StringUUID, server_default=db.text("uuid_generate_v4()"))
|
||||
tenant_id = db.Column(StringUUID, nullable=False)
|
||||
app_id = db.Column(StringUUID, nullable=False)
|
||||
id: Mapped[str] = mapped_column(StringUUID, server_default=db.text("uuid_generate_v4()"))
|
||||
tenant_id: Mapped[str] = mapped_column(StringUUID)
|
||||
app_id: Mapped[str] = mapped_column(StringUUID)
|
||||
workflow_id = db.Column(StringUUID, nullable=False)
|
||||
workflow_run_id = db.Column(StringUUID, nullable=False)
|
||||
workflow_run_id: Mapped[str] = mapped_column(StringUUID)
|
||||
created_from = db.Column(db.String(255), nullable=False)
|
||||
created_by_role = db.Column(db.String(255), nullable=False)
|
||||
created_by = db.Column(StringUUID, nullable=False)
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ from configs import dify_config
|
|||
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset, DatasetQuery, Document
|
||||
from models.dataset import Dataset, DatasetAutoDisableLog, DatasetQuery, Document
|
||||
from services.feature_service import FeatureService
|
||||
|
||||
|
||||
|
|
@ -75,6 +75,23 @@ def clean_unused_datasets_task():
|
|||
)
|
||||
if not dataset_query or len(dataset_query) == 0:
|
||||
try:
|
||||
# add auto disable log
|
||||
documents = (
|
||||
db.session.query(Document)
|
||||
.filter(
|
||||
Document.dataset_id == dataset.id,
|
||||
Document.enabled == True,
|
||||
Document.archived == False,
|
||||
)
|
||||
.all()
|
||||
)
|
||||
for document in documents:
|
||||
dataset_auto_disable_log = DatasetAutoDisableLog(
|
||||
tenant_id=dataset.tenant_id,
|
||||
dataset_id=dataset.id,
|
||||
document_id=document.id,
|
||||
)
|
||||
db.session.add(dataset_auto_disable_log)
|
||||
# remove index
|
||||
index_processor = IndexProcessorFactory(dataset.doc_form).init_index_processor()
|
||||
index_processor.clean(dataset, None)
|
||||
|
|
@ -151,6 +168,23 @@ def clean_unused_datasets_task():
|
|||
else:
|
||||
plan = plan_cache.decode()
|
||||
if plan == "sandbox":
|
||||
# add auto disable log
|
||||
documents = (
|
||||
db.session.query(Document)
|
||||
.filter(
|
||||
Document.dataset_id == dataset.id,
|
||||
Document.enabled == True,
|
||||
Document.archived == False,
|
||||
)
|
||||
.all()
|
||||
)
|
||||
for document in documents:
|
||||
dataset_auto_disable_log = DatasetAutoDisableLog(
|
||||
tenant_id=dataset.tenant_id,
|
||||
dataset_id=dataset.id,
|
||||
document_id=document.id,
|
||||
)
|
||||
db.session.add(dataset_auto_disable_log)
|
||||
# remove index
|
||||
index_processor = IndexProcessorFactory(dataset.doc_form).init_index_processor()
|
||||
index_processor.clean(dataset, None)
|
||||
|
|
|
|||
|
|
@ -0,0 +1,63 @@
|
|||
import logging
|
||||
import time
|
||||
from collections import defaultdict
|
||||
|
||||
import click
|
||||
from celery import shared_task # type: ignore
|
||||
|
||||
from extensions.ext_mail import mail
|
||||
from models.account import Account, Tenant, TenantAccountJoin
|
||||
from models.dataset import Dataset, DatasetAutoDisableLog
|
||||
|
||||
|
||||
@shared_task(queue="mail")
|
||||
def send_document_clean_notify_task():
|
||||
"""
|
||||
Async Send document clean notify mail
|
||||
|
||||
Usage: send_document_clean_notify_task.delay()
|
||||
"""
|
||||
if not mail.is_inited():
|
||||
return
|
||||
|
||||
logging.info(click.style("Start send document clean notify mail", fg="green"))
|
||||
start_at = time.perf_counter()
|
||||
|
||||
# send document clean notify mail
|
||||
try:
|
||||
dataset_auto_disable_logs = DatasetAutoDisableLog.query.filter(DatasetAutoDisableLog.notified == False).all()
|
||||
# group by tenant_id
|
||||
dataset_auto_disable_logs_map: dict[str, list[DatasetAutoDisableLog]] = defaultdict(list)
|
||||
for dataset_auto_disable_log in dataset_auto_disable_logs:
|
||||
dataset_auto_disable_logs_map[dataset_auto_disable_log.tenant_id].append(dataset_auto_disable_log)
|
||||
|
||||
for tenant_id, tenant_dataset_auto_disable_logs in dataset_auto_disable_logs_map.items():
|
||||
knowledge_details = []
|
||||
tenant = Tenant.query.filter(Tenant.id == tenant_id).first()
|
||||
if not tenant:
|
||||
continue
|
||||
current_owner_join = TenantAccountJoin.query.filter_by(tenant_id=tenant.id, role="owner").first()
|
||||
if not current_owner_join:
|
||||
continue
|
||||
account = Account.query.filter(Account.id == current_owner_join.account_id).first()
|
||||
if not account:
|
||||
continue
|
||||
|
||||
dataset_auto_dataset_map = {} # type: ignore
|
||||
for dataset_auto_disable_log in tenant_dataset_auto_disable_logs:
|
||||
dataset_auto_dataset_map[dataset_auto_disable_log.dataset_id].append(
|
||||
dataset_auto_disable_log.document_id
|
||||
)
|
||||
|
||||
for dataset_id, document_ids in dataset_auto_dataset_map.items():
|
||||
dataset = Dataset.query.filter(Dataset.id == dataset_id).first()
|
||||
if dataset:
|
||||
document_count = len(document_ids)
|
||||
knowledge_details.append(f"<li>Knowledge base {dataset.name}: {document_count} documents</li>")
|
||||
|
||||
end_at = time.perf_counter()
|
||||
logging.info(
|
||||
click.style("Send document clean notify mail succeeded: latency: {}".format(end_at - start_at), fg="green")
|
||||
)
|
||||
except Exception:
|
||||
logging.exception("Send invite member mail to failed")
|
||||
|
|
@ -820,6 +820,7 @@ class RegisterService:
|
|||
language: Optional[str] = None,
|
||||
status: Optional[AccountStatus] = None,
|
||||
is_setup: Optional[bool] = False,
|
||||
create_workspace_required: Optional[bool] = True,
|
||||
) -> Account:
|
||||
db.session.begin_nested()
|
||||
"""Register account"""
|
||||
|
|
@ -837,7 +838,7 @@ class RegisterService:
|
|||
if open_id is not None and provider is not None:
|
||||
AccountService.link_account_integrate(provider, open_id, account)
|
||||
|
||||
if FeatureService.get_system_features().is_allow_create_workspace:
|
||||
if FeatureService.get_system_features().is_allow_create_workspace and create_workspace_required:
|
||||
tenant = TenantService.create_tenant(f"{account.name}'s Workspace")
|
||||
TenantService.create_tenant_member(tenant, account, role="owner")
|
||||
account.current_tenant = tenant
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@ from enum import StrEnum
|
|||
from typing import Optional, cast
|
||||
from uuid import uuid4
|
||||
|
||||
import yaml
|
||||
import yaml # type: ignore
|
||||
from packaging import version
|
||||
from pydantic import BaseModel, Field
|
||||
from sqlalchemy import select
|
||||
|
|
@ -524,7 +524,7 @@ class AppDslService:
|
|||
else:
|
||||
cls._append_model_config_export_data(export_data, app_model)
|
||||
|
||||
return yaml.dump(export_data, allow_unicode=True)
|
||||
return yaml.dump(export_data, allow_unicode=True) # type: ignore
|
||||
|
||||
@classmethod
|
||||
def _append_workflow_export_data(cls, *, export_data: dict, app_model: App, include_secret: bool) -> None:
|
||||
|
|
|
|||
|
|
@ -1,5 +1,6 @@
|
|||
import io
|
||||
import logging
|
||||
import uuid
|
||||
from typing import Optional
|
||||
|
||||
from werkzeug.datastructures import FileStorage
|
||||
|
|
@ -122,6 +123,10 @@ class AudioService:
|
|||
raise e
|
||||
|
||||
if message_id:
|
||||
try:
|
||||
uuid.UUID(message_id)
|
||||
except ValueError:
|
||||
return None
|
||||
message = db.session.query(Message).filter(Message.id == message_id).first()
|
||||
if message is None:
|
||||
return None
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@ import os
|
|||
from typing import Optional
|
||||
|
||||
import httpx
|
||||
from tenacity import retry, retry_if_not_exception_type, stop_before_delay, wait_fixed
|
||||
from tenacity import retry, retry_if_exception_type, stop_before_delay, wait_fixed
|
||||
|
||||
from extensions.ext_database import db
|
||||
from models.account import TenantAccountJoin, TenantAccountRole
|
||||
|
|
@ -44,7 +44,7 @@ class BillingService:
|
|||
@retry(
|
||||
wait=wait_fixed(2),
|
||||
stop=stop_before_delay(10),
|
||||
retry=retry_if_not_exception_type(httpx.RequestError),
|
||||
retry=retry_if_exception_type(httpx.RequestError),
|
||||
reraise=True,
|
||||
)
|
||||
def _send_request(cls, method, endpoint, json=None, params=None):
|
||||
|
|
|
|||
File diff suppressed because it is too large
Load Diff
|
|
@ -1,4 +1,5 @@
|
|||
from typing import Optional
|
||||
from enum import Enum
|
||||
from typing import Literal, Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
|
@ -8,3 +9,112 @@ class SegmentUpdateEntity(BaseModel):
|
|||
answer: Optional[str] = None
|
||||
keywords: Optional[list[str]] = None
|
||||
enabled: Optional[bool] = None
|
||||
|
||||
|
||||
class ParentMode(str, Enum):
|
||||
FULL_DOC = "full-doc"
|
||||
PARAGRAPH = "paragraph"
|
||||
|
||||
|
||||
class NotionIcon(BaseModel):
|
||||
type: str
|
||||
url: Optional[str] = None
|
||||
emoji: Optional[str] = None
|
||||
|
||||
|
||||
class NotionPage(BaseModel):
|
||||
page_id: str
|
||||
page_name: str
|
||||
page_icon: Optional[NotionIcon] = None
|
||||
type: str
|
||||
|
||||
|
||||
class NotionInfo(BaseModel):
|
||||
workspace_id: str
|
||||
pages: list[NotionPage]
|
||||
|
||||
|
||||
class WebsiteInfo(BaseModel):
|
||||
provider: str
|
||||
job_id: str
|
||||
urls: list[str]
|
||||
only_main_content: bool = True
|
||||
|
||||
|
||||
class FileInfo(BaseModel):
|
||||
file_ids: list[str]
|
||||
|
||||
|
||||
class InfoList(BaseModel):
|
||||
data_source_type: Literal["upload_file", "notion_import", "website_crawl"]
|
||||
notion_info_list: Optional[list[NotionInfo]] = None
|
||||
file_info_list: Optional[FileInfo] = None
|
||||
website_info_list: Optional[WebsiteInfo] = None
|
||||
|
||||
|
||||
class DataSource(BaseModel):
|
||||
info_list: InfoList
|
||||
|
||||
|
||||
class PreProcessingRule(BaseModel):
|
||||
id: str
|
||||
enabled: bool
|
||||
|
||||
|
||||
class Segmentation(BaseModel):
|
||||
separator: str = "\n"
|
||||
max_tokens: int
|
||||
chunk_overlap: int = 0
|
||||
|
||||
|
||||
class Rule(BaseModel):
|
||||
pre_processing_rules: Optional[list[PreProcessingRule]] = None
|
||||
segmentation: Optional[Segmentation] = None
|
||||
parent_mode: Optional[Literal["full-doc", "paragraph"]] = None
|
||||
subchunk_segmentation: Optional[Segmentation] = None
|
||||
|
||||
|
||||
class ProcessRule(BaseModel):
|
||||
mode: Literal["automatic", "custom", "hierarchical"]
|
||||
rules: Optional[Rule] = None
|
||||
|
||||
|
||||
class RerankingModel(BaseModel):
|
||||
reranking_provider_name: Optional[str] = None
|
||||
reranking_model_name: Optional[str] = None
|
||||
|
||||
|
||||
class RetrievalModel(BaseModel):
|
||||
search_method: Literal["hybrid_search", "semantic_search", "full_text_search"]
|
||||
reranking_enable: bool
|
||||
reranking_model: Optional[RerankingModel] = None
|
||||
top_k: int
|
||||
score_threshold_enabled: bool
|
||||
score_threshold: Optional[float] = None
|
||||
|
||||
|
||||
class KnowledgeConfig(BaseModel):
|
||||
original_document_id: Optional[str] = None
|
||||
duplicate: bool = True
|
||||
indexing_technique: Literal["high_quality", "economy"]
|
||||
data_source: DataSource
|
||||
process_rule: Optional[ProcessRule] = None
|
||||
retrieval_model: Optional[RetrievalModel] = None
|
||||
doc_form: str = "text_model"
|
||||
doc_language: str = "English"
|
||||
embedding_model: Optional[str] = None
|
||||
embedding_model_provider: Optional[str] = None
|
||||
name: Optional[str] = None
|
||||
|
||||
|
||||
class SegmentUpdateArgs(BaseModel):
|
||||
content: Optional[str] = None
|
||||
answer: Optional[str] = None
|
||||
keywords: Optional[list[str]] = None
|
||||
regenerate_child_chunks: bool = False
|
||||
enabled: Optional[bool] = None
|
||||
|
||||
|
||||
class ChildChunkUpdateArgs(BaseModel):
|
||||
id: Optional[str] = None
|
||||
content: str
|
||||
|
|
|
|||
|
|
@ -0,0 +1,9 @@
|
|||
from services.errors.base import BaseServiceError
|
||||
|
||||
|
||||
class ChildChunkIndexingError(BaseServiceError):
|
||||
description = "{message}"
|
||||
|
||||
|
||||
class ChildChunkDeleteIndexError(BaseServiceError):
|
||||
description = "{message}"
|
||||
|
|
@ -76,7 +76,7 @@ class FeatureService:
|
|||
|
||||
cls._fulfill_params_from_env(features)
|
||||
|
||||
if dify_config.BILLING_ENABLED:
|
||||
if dify_config.BILLING_ENABLED and tenant_id:
|
||||
cls._fulfill_params_from_billing_api(features, tenant_id)
|
||||
|
||||
return features
|
||||
|
|
|
|||
|
|
@ -7,7 +7,7 @@ from core.rag.models.document import Document
|
|||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
from extensions.ext_database import db
|
||||
from models.account import Account
|
||||
from models.dataset import Dataset, DatasetQuery, DocumentSegment
|
||||
from models.dataset import Dataset, DatasetQuery
|
||||
|
||||
default_retrieval_model = {
|
||||
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
|
||||
|
|
@ -69,7 +69,7 @@ class HitTestingService:
|
|||
db.session.add(dataset_query)
|
||||
db.session.commit()
|
||||
|
||||
return dict(cls.compact_retrieve_response(dataset, query, all_documents))
|
||||
return cls.compact_retrieve_response(query, all_documents) # type: ignore
|
||||
|
||||
@classmethod
|
||||
def external_retrieve(
|
||||
|
|
@ -106,41 +106,14 @@ class HitTestingService:
|
|||
return dict(cls.compact_external_retrieve_response(dataset, query, all_documents))
|
||||
|
||||
@classmethod
|
||||
def compact_retrieve_response(cls, dataset: Dataset, query: str, documents: list[Document]):
|
||||
records = []
|
||||
|
||||
for document in documents:
|
||||
if document.metadata is None:
|
||||
continue
|
||||
|
||||
index_node_id = document.metadata["doc_id"]
|
||||
|
||||
segment = (
|
||||
db.session.query(DocumentSegment)
|
||||
.filter(
|
||||
DocumentSegment.dataset_id == dataset.id,
|
||||
DocumentSegment.enabled == True,
|
||||
DocumentSegment.status == "completed",
|
||||
DocumentSegment.index_node_id == index_node_id,
|
||||
)
|
||||
.first()
|
||||
)
|
||||
|
||||
if not segment:
|
||||
continue
|
||||
|
||||
record = {
|
||||
"segment": segment,
|
||||
"score": document.metadata.get("score", None),
|
||||
}
|
||||
|
||||
records.append(record)
|
||||
def compact_retrieve_response(cls, query: str, documents: list[Document]):
|
||||
records = RetrievalService.format_retrieval_documents(documents)
|
||||
|
||||
return {
|
||||
"query": {
|
||||
"content": query,
|
||||
},
|
||||
"records": records,
|
||||
"records": [record.model_dump() for record in records],
|
||||
}
|
||||
|
||||
@classmethod
|
||||
|
|
|
|||
|
|
@ -1,40 +1,70 @@
|
|||
from typing import Optional
|
||||
|
||||
from core.model_manager import ModelInstance, ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.rag.datasource.keyword.keyword_factory import Keyword
|
||||
from core.rag.datasource.vdb.vector_factory import Vector
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
||||
from core.rag.models.document import Document
|
||||
from models.dataset import Dataset, DocumentSegment
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import ChildChunk, Dataset, DatasetProcessRule, DocumentSegment
|
||||
from models.dataset import Document as DatasetDocument
|
||||
from services.entities.knowledge_entities.knowledge_entities import ParentMode
|
||||
|
||||
|
||||
class VectorService:
|
||||
@classmethod
|
||||
def create_segments_vector(
|
||||
cls, keywords_list: Optional[list[list[str]]], segments: list[DocumentSegment], dataset: Dataset
|
||||
cls, keywords_list: Optional[list[list[str]]], segments: list[DocumentSegment], dataset: Dataset, doc_form: str
|
||||
):
|
||||
documents = []
|
||||
|
||||
for segment in segments:
|
||||
document = Document(
|
||||
page_content=segment.content,
|
||||
metadata={
|
||||
"doc_id": segment.index_node_id,
|
||||
"doc_hash": segment.index_node_hash,
|
||||
"document_id": segment.document_id,
|
||||
"dataset_id": segment.dataset_id,
|
||||
},
|
||||
)
|
||||
documents.append(document)
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
# save vector index
|
||||
vector = Vector(dataset=dataset)
|
||||
vector.add_texts(documents, duplicate_check=True)
|
||||
if doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
document = DatasetDocument.query.filter_by(id=segment.document_id).first()
|
||||
# get the process rule
|
||||
processing_rule = (
|
||||
db.session.query(DatasetProcessRule)
|
||||
.filter(DatasetProcessRule.id == document.dataset_process_rule_id)
|
||||
.first()
|
||||
)
|
||||
if not processing_rule:
|
||||
raise ValueError("No processing rule found.")
|
||||
# get embedding model instance
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
# check embedding model setting
|
||||
model_manager = ModelManager()
|
||||
|
||||
# save keyword index
|
||||
keyword = Keyword(dataset)
|
||||
|
||||
if keywords_list and len(keywords_list) > 0:
|
||||
keyword.add_texts(documents, keywords_list=keywords_list)
|
||||
else:
|
||||
keyword.add_texts(documents)
|
||||
if dataset.embedding_model_provider:
|
||||
embedding_model_instance = model_manager.get_model_instance(
|
||||
tenant_id=dataset.tenant_id,
|
||||
provider=dataset.embedding_model_provider,
|
||||
model_type=ModelType.TEXT_EMBEDDING,
|
||||
model=dataset.embedding_model,
|
||||
)
|
||||
else:
|
||||
embedding_model_instance = model_manager.get_default_model_instance(
|
||||
tenant_id=dataset.tenant_id,
|
||||
model_type=ModelType.TEXT_EMBEDDING,
|
||||
)
|
||||
else:
|
||||
raise ValueError("The knowledge base index technique is not high quality!")
|
||||
cls.generate_child_chunks(segment, document, dataset, embedding_model_instance, processing_rule, False)
|
||||
else:
|
||||
document = Document(
|
||||
page_content=segment.content,
|
||||
metadata={
|
||||
"doc_id": segment.index_node_id,
|
||||
"doc_hash": segment.index_node_hash,
|
||||
"document_id": segment.document_id,
|
||||
"dataset_id": segment.dataset_id,
|
||||
},
|
||||
)
|
||||
documents.append(document)
|
||||
if len(documents) > 0:
|
||||
index_processor = IndexProcessorFactory(doc_form).init_index_processor()
|
||||
index_processor.load(dataset, documents, with_keywords=True, keywords_list=keywords_list)
|
||||
|
||||
@classmethod
|
||||
def update_segment_vector(cls, keywords: Optional[list[str]], segment: DocumentSegment, dataset: Dataset):
|
||||
|
|
@ -65,3 +95,123 @@ class VectorService:
|
|||
keyword.add_texts([document], keywords_list=[keywords])
|
||||
else:
|
||||
keyword.add_texts([document])
|
||||
|
||||
@classmethod
|
||||
def generate_child_chunks(
|
||||
cls,
|
||||
segment: DocumentSegment,
|
||||
dataset_document: DatasetDocument,
|
||||
dataset: Dataset,
|
||||
embedding_model_instance: ModelInstance,
|
||||
processing_rule: DatasetProcessRule,
|
||||
regenerate: bool = False,
|
||||
):
|
||||
index_processor = IndexProcessorFactory(dataset.doc_form).init_index_processor()
|
||||
if regenerate:
|
||||
# delete child chunks
|
||||
index_processor.clean(dataset, [segment.index_node_id], with_keywords=True, delete_child_chunks=True)
|
||||
|
||||
# generate child chunks
|
||||
document = Document(
|
||||
page_content=segment.content,
|
||||
metadata={
|
||||
"doc_id": segment.index_node_id,
|
||||
"doc_hash": segment.index_node_hash,
|
||||
"document_id": segment.document_id,
|
||||
"dataset_id": segment.dataset_id,
|
||||
},
|
||||
)
|
||||
# use full doc mode to generate segment's child chunk
|
||||
processing_rule_dict = processing_rule.to_dict()
|
||||
processing_rule_dict["rules"]["parent_mode"] = ParentMode.FULL_DOC.value
|
||||
documents = index_processor.transform(
|
||||
[document],
|
||||
embedding_model_instance=embedding_model_instance,
|
||||
process_rule=processing_rule_dict,
|
||||
tenant_id=dataset.tenant_id,
|
||||
doc_language=dataset_document.doc_language,
|
||||
)
|
||||
# save child chunks
|
||||
if documents and documents[0].children:
|
||||
index_processor.load(dataset, documents)
|
||||
|
||||
for position, child_chunk in enumerate(documents[0].children, start=1):
|
||||
child_segment = ChildChunk(
|
||||
tenant_id=dataset.tenant_id,
|
||||
dataset_id=dataset.id,
|
||||
document_id=dataset_document.id,
|
||||
segment_id=segment.id,
|
||||
position=position,
|
||||
index_node_id=child_chunk.metadata["doc_id"],
|
||||
index_node_hash=child_chunk.metadata["doc_hash"],
|
||||
content=child_chunk.page_content,
|
||||
word_count=len(child_chunk.page_content),
|
||||
type="automatic",
|
||||
created_by=dataset_document.created_by,
|
||||
)
|
||||
db.session.add(child_segment)
|
||||
db.session.commit()
|
||||
|
||||
@classmethod
|
||||
def create_child_chunk_vector(cls, child_segment: ChildChunk, dataset: Dataset):
|
||||
child_document = Document(
|
||||
page_content=child_segment.content,
|
||||
metadata={
|
||||
"doc_id": child_segment.index_node_id,
|
||||
"doc_hash": child_segment.index_node_hash,
|
||||
"document_id": child_segment.document_id,
|
||||
"dataset_id": child_segment.dataset_id,
|
||||
},
|
||||
)
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
# save vector index
|
||||
vector = Vector(dataset=dataset)
|
||||
vector.add_texts([child_document], duplicate_check=True)
|
||||
|
||||
@classmethod
|
||||
def update_child_chunk_vector(
|
||||
cls,
|
||||
new_child_chunks: list[ChildChunk],
|
||||
update_child_chunks: list[ChildChunk],
|
||||
delete_child_chunks: list[ChildChunk],
|
||||
dataset: Dataset,
|
||||
):
|
||||
documents = []
|
||||
delete_node_ids = []
|
||||
for new_child_chunk in new_child_chunks:
|
||||
new_child_document = Document(
|
||||
page_content=new_child_chunk.content,
|
||||
metadata={
|
||||
"doc_id": new_child_chunk.index_node_id,
|
||||
"doc_hash": new_child_chunk.index_node_hash,
|
||||
"document_id": new_child_chunk.document_id,
|
||||
"dataset_id": new_child_chunk.dataset_id,
|
||||
},
|
||||
)
|
||||
documents.append(new_child_document)
|
||||
for update_child_chunk in update_child_chunks:
|
||||
child_document = Document(
|
||||
page_content=update_child_chunk.content,
|
||||
metadata={
|
||||
"doc_id": update_child_chunk.index_node_id,
|
||||
"doc_hash": update_child_chunk.index_node_hash,
|
||||
"document_id": update_child_chunk.document_id,
|
||||
"dataset_id": update_child_chunk.dataset_id,
|
||||
},
|
||||
)
|
||||
documents.append(child_document)
|
||||
delete_node_ids.append(update_child_chunk.index_node_id)
|
||||
for delete_child_chunk in delete_child_chunks:
|
||||
delete_node_ids.append(delete_child_chunk.index_node_id)
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
# update vector index
|
||||
vector = Vector(dataset=dataset)
|
||||
if delete_node_ids:
|
||||
vector.delete_by_ids(delete_node_ids)
|
||||
if documents:
|
||||
vector.add_texts(documents, duplicate_check=True)
|
||||
|
||||
@classmethod
|
||||
def delete_child_chunk_vector(cls, child_chunk: ChildChunk, dataset: Dataset):
|
||||
vector = Vector(dataset=dataset)
|
||||
vector.delete_by_ids([child_chunk.index_node_id])
|
||||
|
|
|
|||
|
|
@ -6,12 +6,13 @@ import click
|
|||
from celery import shared_task # type: ignore
|
||||
from werkzeug.exceptions import NotFound
|
||||
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.models.document import ChildDocument, Document
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import DatasetAutoDisableLog, DocumentSegment
|
||||
from models.dataset import Document as DatasetDocument
|
||||
from models.dataset import DocumentSegment
|
||||
|
||||
|
||||
@shared_task(queue="dataset")
|
||||
|
|
@ -53,7 +54,22 @@ def add_document_to_index_task(dataset_document_id: str):
|
|||
"dataset_id": segment.dataset_id,
|
||||
},
|
||||
)
|
||||
|
||||
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
child_chunks = segment.child_chunks
|
||||
if child_chunks:
|
||||
child_documents = []
|
||||
for child_chunk in child_chunks:
|
||||
child_document = ChildDocument(
|
||||
page_content=child_chunk.content,
|
||||
metadata={
|
||||
"doc_id": child_chunk.index_node_id,
|
||||
"doc_hash": child_chunk.index_node_hash,
|
||||
"document_id": segment.document_id,
|
||||
"dataset_id": segment.dataset_id,
|
||||
},
|
||||
)
|
||||
child_documents.append(child_document)
|
||||
document.children = child_documents
|
||||
documents.append(document)
|
||||
|
||||
dataset = dataset_document.dataset
|
||||
|
|
@ -65,6 +81,12 @@ def add_document_to_index_task(dataset_document_id: str):
|
|||
index_processor = IndexProcessorFactory(index_type).init_index_processor()
|
||||
index_processor.load(dataset, documents)
|
||||
|
||||
# delete auto disable log
|
||||
db.session.query(DatasetAutoDisableLog).filter(
|
||||
DatasetAutoDisableLog.document_id == dataset_document.id
|
||||
).delete()
|
||||
db.session.commit()
|
||||
|
||||
end_at = time.perf_counter()
|
||||
logging.info(
|
||||
click.style(
|
||||
|
|
|
|||
|
|
@ -0,0 +1,76 @@
|
|||
import logging
|
||||
import time
|
||||
|
||||
import click
|
||||
from celery import shared_task # type: ignore
|
||||
|
||||
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
||||
from core.tools.utils.web_reader_tool import get_image_upload_file_ids
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_storage import storage
|
||||
from models.dataset import Dataset, DocumentSegment
|
||||
from models.model import UploadFile
|
||||
|
||||
|
||||
@shared_task(queue="dataset")
|
||||
def batch_clean_document_task(document_ids: list[str], dataset_id: str, doc_form: str, file_ids: list[str]):
|
||||
"""
|
||||
Clean document when document deleted.
|
||||
:param document_ids: document ids
|
||||
:param dataset_id: dataset id
|
||||
:param doc_form: doc_form
|
||||
:param file_ids: file ids
|
||||
|
||||
Usage: clean_document_task.delay(document_id, dataset_id)
|
||||
"""
|
||||
logging.info(click.style("Start batch clean documents when documents deleted", fg="green"))
|
||||
start_at = time.perf_counter()
|
||||
|
||||
try:
|
||||
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
||||
|
||||
if not dataset:
|
||||
raise Exception("Document has no dataset")
|
||||
|
||||
segments = db.session.query(DocumentSegment).filter(DocumentSegment.document_id.in_(document_ids)).all()
|
||||
# check segment is exist
|
||||
if segments:
|
||||
index_node_ids = [segment.index_node_id for segment in segments]
|
||||
index_processor = IndexProcessorFactory(doc_form).init_index_processor()
|
||||
index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=True)
|
||||
|
||||
for segment in segments:
|
||||
image_upload_file_ids = get_image_upload_file_ids(segment.content)
|
||||
for upload_file_id in image_upload_file_ids:
|
||||
image_file = db.session.query(UploadFile).filter(UploadFile.id == upload_file_id).first()
|
||||
try:
|
||||
if image_file and image_file.key:
|
||||
storage.delete(image_file.key)
|
||||
except Exception:
|
||||
logging.exception(
|
||||
"Delete image_files failed when storage deleted, \
|
||||
image_upload_file_is: {}".format(upload_file_id)
|
||||
)
|
||||
db.session.delete(image_file)
|
||||
db.session.delete(segment)
|
||||
|
||||
db.session.commit()
|
||||
if file_ids:
|
||||
files = db.session.query(UploadFile).filter(UploadFile.id.in_(file_ids)).all()
|
||||
for file in files:
|
||||
try:
|
||||
storage.delete(file.key)
|
||||
except Exception:
|
||||
logging.exception("Delete file failed when document deleted, file_id: {}".format(file.id))
|
||||
db.session.delete(file)
|
||||
db.session.commit()
|
||||
|
||||
end_at = time.perf_counter()
|
||||
logging.info(
|
||||
click.style(
|
||||
"Cleaned documents when documents deleted latency: {}".format(end_at - start_at),
|
||||
fg="green",
|
||||
)
|
||||
)
|
||||
except Exception:
|
||||
logging.exception("Cleaned documents when documents deleted failed")
|
||||
|
|
@ -7,13 +7,13 @@ import click
|
|||
from celery import shared_task # type: ignore
|
||||
from sqlalchemy import func
|
||||
|
||||
from core.indexing_runner import IndexingRunner
|
||||
from core.model_manager import ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from libs import helper
|
||||
from models.dataset import Dataset, Document, DocumentSegment
|
||||
from services.vector_service import VectorService
|
||||
|
||||
|
||||
@shared_task(queue="dataset")
|
||||
|
|
@ -98,8 +98,7 @@ def batch_create_segment_to_index_task(
|
|||
dataset_document.word_count += word_count_change
|
||||
db.session.add(dataset_document)
|
||||
# add index to db
|
||||
indexing_runner = IndexingRunner()
|
||||
indexing_runner.batch_add_segments(document_segments, dataset)
|
||||
VectorService.create_segments_vector(None, document_segments, dataset, dataset_document.doc_form)
|
||||
db.session.commit()
|
||||
redis_client.setex(indexing_cache_key, 600, "completed")
|
||||
end_at = time.perf_counter()
|
||||
|
|
|
|||
|
|
@ -62,7 +62,7 @@ def clean_dataset_task(
|
|||
if doc_form is None:
|
||||
raise ValueError("Index type must be specified.")
|
||||
index_processor = IndexProcessorFactory(doc_form).init_index_processor()
|
||||
index_processor.clean(dataset, None)
|
||||
index_processor.clean(dataset, None, with_keywords=True, delete_child_chunks=True)
|
||||
|
||||
for document in documents:
|
||||
db.session.delete(document)
|
||||
|
|
|
|||
|
|
@ -38,7 +38,7 @@ def clean_document_task(document_id: str, dataset_id: str, doc_form: str, file_i
|
|||
if segments:
|
||||
index_node_ids = [segment.index_node_id for segment in segments]
|
||||
index_processor = IndexProcessorFactory(doc_form).init_index_processor()
|
||||
index_processor.clean(dataset, index_node_ids)
|
||||
index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=True)
|
||||
|
||||
for segment in segments:
|
||||
image_upload_file_ids = get_image_upload_file_ids(segment.content)
|
||||
|
|
|
|||
|
|
@ -37,7 +37,7 @@ def clean_notion_document_task(document_ids: list[str], dataset_id: str):
|
|||
segments = db.session.query(DocumentSegment).filter(DocumentSegment.document_id == document_id).all()
|
||||
index_node_ids = [segment.index_node_id for segment in segments]
|
||||
|
||||
index_processor.clean(dataset, index_node_ids)
|
||||
index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=True)
|
||||
|
||||
for segment in segments:
|
||||
db.session.delete(segment)
|
||||
|
|
|
|||
|
|
@ -4,8 +4,9 @@ import time
|
|||
import click
|
||||
from celery import shared_task # type: ignore
|
||||
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.models.document import ChildDocument, Document
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import Dataset, DocumentSegment
|
||||
from models.dataset import Document as DatasetDocument
|
||||
|
|
@ -105,7 +106,7 @@ def deal_dataset_vector_index_task(dataset_id: str, action: str):
|
|||
db.session.commit()
|
||||
|
||||
# clean index
|
||||
index_processor.clean(dataset, None, with_keywords=False)
|
||||
index_processor.clean(dataset, None, with_keywords=False, delete_child_chunks=False)
|
||||
|
||||
for dataset_document in dataset_documents:
|
||||
# update from vector index
|
||||
|
|
@ -128,7 +129,22 @@ def deal_dataset_vector_index_task(dataset_id: str, action: str):
|
|||
"dataset_id": segment.dataset_id,
|
||||
},
|
||||
)
|
||||
|
||||
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
child_chunks = segment.child_chunks
|
||||
if child_chunks:
|
||||
child_documents = []
|
||||
for child_chunk in child_chunks:
|
||||
child_document = ChildDocument(
|
||||
page_content=child_chunk.content,
|
||||
metadata={
|
||||
"doc_id": child_chunk.index_node_id,
|
||||
"doc_hash": child_chunk.index_node_hash,
|
||||
"document_id": segment.document_id,
|
||||
"dataset_id": segment.dataset_id,
|
||||
},
|
||||
)
|
||||
child_documents.append(child_document)
|
||||
document.children = child_documents
|
||||
documents.append(document)
|
||||
# save vector index
|
||||
index_processor.load(dataset, documents, with_keywords=False)
|
||||
|
|
|
|||
|
|
@ -6,48 +6,38 @@ from celery import shared_task # type: ignore
|
|||
|
||||
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset, Document
|
||||
|
||||
|
||||
@shared_task(queue="dataset")
|
||||
def delete_segment_from_index_task(segment_id: str, index_node_id: str, dataset_id: str, document_id: str):
|
||||
def delete_segment_from_index_task(index_node_ids: list, dataset_id: str, document_id: str):
|
||||
"""
|
||||
Async Remove segment from index
|
||||
:param segment_id:
|
||||
:param index_node_id:
|
||||
:param index_node_ids:
|
||||
:param dataset_id:
|
||||
:param document_id:
|
||||
|
||||
Usage: delete_segment_from_index_task.delay(segment_id)
|
||||
Usage: delete_segment_from_index_task.delay(segment_ids)
|
||||
"""
|
||||
logging.info(click.style("Start delete segment from index: {}".format(segment_id), fg="green"))
|
||||
logging.info(click.style("Start delete segment from index", fg="green"))
|
||||
start_at = time.perf_counter()
|
||||
indexing_cache_key = "segment_{}_delete_indexing".format(segment_id)
|
||||
try:
|
||||
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
||||
if not dataset:
|
||||
logging.info(click.style("Segment {} has no dataset, pass.".format(segment_id), fg="cyan"))
|
||||
return
|
||||
|
||||
dataset_document = db.session.query(Document).filter(Document.id == document_id).first()
|
||||
if not dataset_document:
|
||||
logging.info(click.style("Segment {} has no document, pass.".format(segment_id), fg="cyan"))
|
||||
return
|
||||
|
||||
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != "completed":
|
||||
logging.info(click.style("Segment {} document status is invalid, pass.".format(segment_id), fg="cyan"))
|
||||
return
|
||||
|
||||
index_type = dataset_document.doc_form
|
||||
index_processor = IndexProcessorFactory(index_type).init_index_processor()
|
||||
index_processor.clean(dataset, [index_node_id])
|
||||
index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=True)
|
||||
|
||||
end_at = time.perf_counter()
|
||||
logging.info(
|
||||
click.style("Segment deleted from index: {} latency: {}".format(segment_id, end_at - start_at), fg="green")
|
||||
)
|
||||
logging.info(click.style("Segment deleted from index latency: {}".format(end_at - start_at), fg="green"))
|
||||
except Exception:
|
||||
logging.exception("delete segment from index failed")
|
||||
finally:
|
||||
redis_client.delete(indexing_cache_key)
|
||||
|
|
|
|||
|
|
@ -0,0 +1,76 @@
|
|||
import logging
|
||||
import time
|
||||
|
||||
import click
|
||||
from celery import shared_task # type: ignore
|
||||
|
||||
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset, DocumentSegment
|
||||
from models.dataset import Document as DatasetDocument
|
||||
|
||||
|
||||
@shared_task(queue="dataset")
|
||||
def disable_segments_from_index_task(segment_ids: list, dataset_id: str, document_id: str):
|
||||
"""
|
||||
Async disable segments from index
|
||||
:param segment_ids:
|
||||
|
||||
Usage: disable_segments_from_index_task.delay(segment_ids, dataset_id, document_id)
|
||||
"""
|
||||
start_at = time.perf_counter()
|
||||
|
||||
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
||||
if not dataset:
|
||||
logging.info(click.style("Dataset {} not found, pass.".format(dataset_id), fg="cyan"))
|
||||
return
|
||||
|
||||
dataset_document = db.session.query(DatasetDocument).filter(DatasetDocument.id == document_id).first()
|
||||
|
||||
if not dataset_document:
|
||||
logging.info(click.style("Document {} not found, pass.".format(document_id), fg="cyan"))
|
||||
return
|
||||
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != "completed":
|
||||
logging.info(click.style("Document {} status is invalid, pass.".format(document_id), fg="cyan"))
|
||||
return
|
||||
# sync index processor
|
||||
index_processor = IndexProcessorFactory(dataset_document.doc_form).init_index_processor()
|
||||
|
||||
segments = (
|
||||
db.session.query(DocumentSegment)
|
||||
.filter(
|
||||
DocumentSegment.id.in_(segment_ids),
|
||||
DocumentSegment.dataset_id == dataset_id,
|
||||
DocumentSegment.document_id == document_id,
|
||||
)
|
||||
.all()
|
||||
)
|
||||
|
||||
if not segments:
|
||||
return
|
||||
|
||||
try:
|
||||
index_node_ids = [segment.index_node_id for segment in segments]
|
||||
index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=False)
|
||||
|
||||
end_at = time.perf_counter()
|
||||
logging.info(click.style("Segments removed from index latency: {}".format(end_at - start_at), fg="green"))
|
||||
except Exception:
|
||||
# update segment error msg
|
||||
db.session.query(DocumentSegment).filter(
|
||||
DocumentSegment.id.in_(segment_ids),
|
||||
DocumentSegment.dataset_id == dataset_id,
|
||||
DocumentSegment.document_id == document_id,
|
||||
).update(
|
||||
{
|
||||
"disabled_at": None,
|
||||
"disabled_by": None,
|
||||
"enabled": True,
|
||||
}
|
||||
)
|
||||
db.session.commit()
|
||||
finally:
|
||||
for segment in segments:
|
||||
indexing_cache_key = "segment_{}_indexing".format(segment.id)
|
||||
redis_client.delete(indexing_cache_key)
|
||||
|
|
@ -82,7 +82,7 @@ def document_indexing_sync_task(dataset_id: str, document_id: str):
|
|||
index_node_ids = [segment.index_node_id for segment in segments]
|
||||
|
||||
# delete from vector index
|
||||
index_processor.clean(dataset, index_node_ids)
|
||||
index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=True)
|
||||
|
||||
for segment in segments:
|
||||
db.session.delete(segment)
|
||||
|
|
|
|||
|
|
@ -47,7 +47,7 @@ def document_indexing_update_task(dataset_id: str, document_id: str):
|
|||
index_node_ids = [segment.index_node_id for segment in segments]
|
||||
|
||||
# delete from vector index
|
||||
index_processor.clean(dataset, index_node_ids)
|
||||
index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=True)
|
||||
|
||||
for segment in segments:
|
||||
db.session.delete(segment)
|
||||
|
|
|
|||
|
|
@ -51,7 +51,7 @@ def duplicate_document_indexing_task(dataset_id: str, document_ids: list):
|
|||
if document:
|
||||
document.indexing_status = "error"
|
||||
document.error = str(e)
|
||||
document.stopped_at = datetime.datetime.utcnow()
|
||||
document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
||||
db.session.add(document)
|
||||
db.session.commit()
|
||||
return
|
||||
|
|
@ -73,14 +73,14 @@ def duplicate_document_indexing_task(dataset_id: str, document_ids: list):
|
|||
index_node_ids = [segment.index_node_id for segment in segments]
|
||||
|
||||
# delete from vector index
|
||||
index_processor.clean(dataset, index_node_ids)
|
||||
index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=True)
|
||||
|
||||
for segment in segments:
|
||||
db.session.delete(segment)
|
||||
db.session.commit()
|
||||
|
||||
document.indexing_status = "parsing"
|
||||
document.processing_started_at = datetime.datetime.utcnow()
|
||||
document.processing_started_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
||||
documents.append(document)
|
||||
db.session.add(document)
|
||||
db.session.commit()
|
||||
|
|
|
|||
|
|
@ -6,8 +6,9 @@ import click
|
|||
from celery import shared_task # type: ignore
|
||||
from werkzeug.exceptions import NotFound
|
||||
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.models.document import ChildDocument, Document
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import DocumentSegment
|
||||
|
|
@ -61,6 +62,22 @@ def enable_segment_to_index_task(segment_id: str):
|
|||
return
|
||||
|
||||
index_processor = IndexProcessorFactory(dataset_document.doc_form).init_index_processor()
|
||||
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
child_chunks = segment.child_chunks
|
||||
if child_chunks:
|
||||
child_documents = []
|
||||
for child_chunk in child_chunks:
|
||||
child_document = ChildDocument(
|
||||
page_content=child_chunk.content,
|
||||
metadata={
|
||||
"doc_id": child_chunk.index_node_id,
|
||||
"doc_hash": child_chunk.index_node_hash,
|
||||
"document_id": segment.document_id,
|
||||
"dataset_id": segment.dataset_id,
|
||||
},
|
||||
)
|
||||
child_documents.append(child_document)
|
||||
document.children = child_documents
|
||||
# save vector index
|
||||
index_processor.load(dataset, [document])
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,108 @@
|
|||
import datetime
|
||||
import logging
|
||||
import time
|
||||
|
||||
import click
|
||||
from celery import shared_task # type: ignore
|
||||
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
||||
from core.rag.models.document import ChildDocument, Document
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset, DocumentSegment
|
||||
from models.dataset import Document as DatasetDocument
|
||||
|
||||
|
||||
@shared_task(queue="dataset")
|
||||
def enable_segments_to_index_task(segment_ids: list, dataset_id: str, document_id: str):
|
||||
"""
|
||||
Async enable segments to index
|
||||
:param segment_ids:
|
||||
|
||||
Usage: enable_segments_to_index_task.delay(segment_ids)
|
||||
"""
|
||||
start_at = time.perf_counter()
|
||||
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
||||
if not dataset:
|
||||
logging.info(click.style("Dataset {} not found, pass.".format(dataset_id), fg="cyan"))
|
||||
return
|
||||
|
||||
dataset_document = db.session.query(DatasetDocument).filter(DatasetDocument.id == document_id).first()
|
||||
|
||||
if not dataset_document:
|
||||
logging.info(click.style("Document {} not found, pass.".format(document_id), fg="cyan"))
|
||||
return
|
||||
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != "completed":
|
||||
logging.info(click.style("Document {} status is invalid, pass.".format(document_id), fg="cyan"))
|
||||
return
|
||||
# sync index processor
|
||||
index_processor = IndexProcessorFactory(dataset_document.doc_form).init_index_processor()
|
||||
|
||||
segments = (
|
||||
db.session.query(DocumentSegment)
|
||||
.filter(
|
||||
DocumentSegment.id.in_(segment_ids),
|
||||
DocumentSegment.dataset_id == dataset_id,
|
||||
DocumentSegment.document_id == document_id,
|
||||
)
|
||||
.all()
|
||||
)
|
||||
if not segments:
|
||||
return
|
||||
|
||||
try:
|
||||
documents = []
|
||||
for segment in segments:
|
||||
document = Document(
|
||||
page_content=segment.content,
|
||||
metadata={
|
||||
"doc_id": segment.index_node_id,
|
||||
"doc_hash": segment.index_node_hash,
|
||||
"document_id": document_id,
|
||||
"dataset_id": dataset_id,
|
||||
},
|
||||
)
|
||||
|
||||
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
child_chunks = segment.child_chunks
|
||||
if child_chunks:
|
||||
child_documents = []
|
||||
for child_chunk in child_chunks:
|
||||
child_document = ChildDocument(
|
||||
page_content=child_chunk.content,
|
||||
metadata={
|
||||
"doc_id": child_chunk.index_node_id,
|
||||
"doc_hash": child_chunk.index_node_hash,
|
||||
"document_id": document_id,
|
||||
"dataset_id": dataset_id,
|
||||
},
|
||||
)
|
||||
child_documents.append(child_document)
|
||||
document.children = child_documents
|
||||
documents.append(document)
|
||||
# save vector index
|
||||
index_processor.load(dataset, documents)
|
||||
|
||||
end_at = time.perf_counter()
|
||||
logging.info(click.style("Segments enabled to index latency: {}".format(end_at - start_at), fg="green"))
|
||||
except Exception as e:
|
||||
logging.exception("enable segments to index failed")
|
||||
# update segment error msg
|
||||
db.session.query(DocumentSegment).filter(
|
||||
DocumentSegment.id.in_(segment_ids),
|
||||
DocumentSegment.dataset_id == dataset_id,
|
||||
DocumentSegment.document_id == document_id,
|
||||
).update(
|
||||
{
|
||||
"error": str(e),
|
||||
"status": "error",
|
||||
"disabled_at": datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
|
||||
"enabled": False,
|
||||
}
|
||||
)
|
||||
db.session.commit()
|
||||
finally:
|
||||
for segment in segments:
|
||||
indexing_cache_key = "segment_{}_indexing".format(segment.id)
|
||||
redis_client.delete(indexing_cache_key)
|
||||
|
|
@ -43,7 +43,7 @@ def remove_document_from_index_task(document_id: str):
|
|||
index_node_ids = [segment.index_node_id for segment in segments]
|
||||
if index_node_ids:
|
||||
try:
|
||||
index_processor.clean(dataset, index_node_ids)
|
||||
index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=False)
|
||||
except Exception:
|
||||
logging.exception(f"clean dataset {dataset.id} from index failed")
|
||||
|
||||
|
|
|
|||
|
|
@ -48,7 +48,7 @@ def retry_document_indexing_task(dataset_id: str, document_ids: list[str]):
|
|||
if document:
|
||||
document.indexing_status = "error"
|
||||
document.error = str(e)
|
||||
document.stopped_at = datetime.datetime.utcnow()
|
||||
document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
||||
db.session.add(document)
|
||||
db.session.commit()
|
||||
redis_client.delete(retry_indexing_cache_key)
|
||||
|
|
@ -69,14 +69,14 @@ def retry_document_indexing_task(dataset_id: str, document_ids: list[str]):
|
|||
if segments:
|
||||
index_node_ids = [segment.index_node_id for segment in segments]
|
||||
# delete from vector index
|
||||
index_processor.clean(dataset, index_node_ids)
|
||||
index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=True)
|
||||
|
||||
for segment in segments:
|
||||
db.session.delete(segment)
|
||||
db.session.commit()
|
||||
for segment in segments:
|
||||
db.session.delete(segment)
|
||||
db.session.commit()
|
||||
|
||||
document.indexing_status = "parsing"
|
||||
document.processing_started_at = datetime.datetime.utcnow()
|
||||
document.processing_started_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
||||
db.session.add(document)
|
||||
db.session.commit()
|
||||
|
||||
|
|
@ -86,7 +86,7 @@ def retry_document_indexing_task(dataset_id: str, document_ids: list[str]):
|
|||
except Exception as ex:
|
||||
document.indexing_status = "error"
|
||||
document.error = str(ex)
|
||||
document.stopped_at = datetime.datetime.utcnow()
|
||||
document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
||||
db.session.add(document)
|
||||
db.session.commit()
|
||||
logging.info(click.style(str(ex), fg="yellow"))
|
||||
|
|
|
|||
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue