mirror of https://github.com/langgenius/dify.git
add qdrant to tidb
This commit is contained in:
parent
1baca71e37
commit
396a790c6d
|
|
@ -313,7 +313,7 @@ class Vector:
|
|||
}
|
||||
)
|
||||
return self._vector_processor.search_by_vector(multimodal_vector, **kwargs)
|
||||
|
||||
|
||||
def search_by_metadata_field(self, key: str, value: str, **kwargs: Any) -> list[Document]:
|
||||
return self._vector_processor.search_by_metadata_field(key, value, **kwargs)
|
||||
|
||||
|
|
@ -327,7 +327,7 @@ class Vector:
|
|||
collection_exist_cache_key = f"vector_indexing_{self._vector_processor.collection_name}"
|
||||
redis_client.delete(collection_exist_cache_key)
|
||||
|
||||
def _get_embeddings(self) -> Embeddings | None:
|
||||
def _get_embeddings(self) -> Embeddings:
|
||||
model_manager = ModelManager()
|
||||
try:
|
||||
embedding_model = model_manager.get_model_instance(
|
||||
|
|
@ -339,21 +339,16 @@ class Vector:
|
|||
return CacheEmbedding(embedding_model)
|
||||
except Exception as e:
|
||||
logger.exception("Error getting embeddings: %s", e)
|
||||
# return a fake embeddings
|
||||
return CacheEmbedding(model_instance=ModelInstance(
|
||||
provider_model_bundle=ProviderModelBundle(
|
||||
configuration=ProviderConfiguration(
|
||||
provider=ProviderEntity(
|
||||
provider="openai",
|
||||
label=I18nObject(en_US="OpenAI", zh_Hans="OpenAI"),
|
||||
description=I18nObject(en_US="OpenAI provider", zh_Hans="OpenAI 提供商"),
|
||||
icon_small=I18nObject(en_US="icon.png", zh_Hans="icon.png"),
|
||||
icon_large=I18nObject(en_US="icon.png", zh_Hans="icon.png"),
|
||||
background="background.png",
|
||||
help=None,
|
||||
supported_model_types=[ModelType.TEXT_EMBEDDING],
|
||||
configurate_methods=[ConfigurateMethod.PREDEFINED_MODEL],
|
||||
provider_credential_schema=None, model_credential_schema=None)), model="text-embedding-ada-002")))
|
||||
# return default embeddings
|
||||
try:
|
||||
default_embeddings = model_manager.get_default_model_instance(
|
||||
tenant_id=self._dataset.tenant_id,
|
||||
model_type=ModelType.TEXT_EMBEDDING,
|
||||
)
|
||||
return CacheEmbedding(default_embeddings)
|
||||
except Exception as e:
|
||||
logger.exception("Error getting default embeddings: %s", e)
|
||||
raise e
|
||||
|
||||
def _filter_duplicate_texts(self, texts: list[Document]) -> list[Document]:
|
||||
for text in texts.copy():
|
||||
|
|
|
|||
Loading…
Reference in New Issue