mirror of https://github.com/langgenius/dify.git
feat(graph_engine): add abstract layer and dump / load methods for ready queue.
This commit is contained in:
parent
efa5f35277
commit
4cdc19fd05
|
|
@ -0,0 +1,114 @@
|
|||
# Workflow
|
||||
|
||||
## Project Overview
|
||||
|
||||
This is the workflow graph engine module of Dify, implementing a queue-based distributed workflow execution system. The engine handles agentic AI workflows with support for parallel execution, node iteration, conditional logic, and external command control.
|
||||
|
||||
## Architecture
|
||||
|
||||
### Core Components
|
||||
|
||||
The graph engine follows a layered architecture with strict dependency rules:
|
||||
|
||||
1. **Graph Engine** (`graph_engine/`) - Orchestrates workflow execution
|
||||
- **Manager** - External control interface for stop/pause/resume commands
|
||||
- **Worker** - Node execution runtime
|
||||
- **Command Processing** - Handles control commands (abort, pause, resume)
|
||||
- **Event Management** - Event propagation and layer notifications
|
||||
- **Graph Traversal** - Edge processing and skip propagation
|
||||
- **Response Coordinator** - Path tracking and session management
|
||||
- **Layers** - Pluggable middleware (debug logging, execution limits)
|
||||
- **Command Channels** - Communication channels (InMemory, Redis)
|
||||
|
||||
2. **Graph** (`graph/`) - Graph structure and runtime state
|
||||
- **Graph Template** - Workflow definition
|
||||
- **Edge** - Node connections with conditions
|
||||
- **Runtime State Protocol** - State management interface
|
||||
|
||||
3. **Nodes** (`nodes/`) - Node implementations
|
||||
- **Base** - Abstract node classes and variable parsing
|
||||
- **Specific Nodes** - LLM, Agent, Code, HTTP Request, Iteration, Loop, etc.
|
||||
|
||||
4. **Events** (`node_events/`) - Event system
|
||||
- **Base** - Event protocols
|
||||
- **Node Events** - Node lifecycle events
|
||||
|
||||
5. **Entities** (`entities/`) - Domain models
|
||||
- **Variable Pool** - Variable storage
|
||||
- **Graph Init Params** - Initialization configuration
|
||||
|
||||
## Key Design Patterns
|
||||
|
||||
### Command Channel Pattern
|
||||
External workflow control via Redis or in-memory channels:
|
||||
```python
|
||||
# Send stop command to running workflow
|
||||
channel = RedisChannel(redis_client, f"workflow:{task_id}:commands")
|
||||
channel.send_command(AbortCommand(reason="User requested"))
|
||||
```
|
||||
|
||||
### Layer System
|
||||
Extensible middleware for cross-cutting concerns:
|
||||
```python
|
||||
engine = GraphEngine(graph)
|
||||
engine.add_layer(DebugLoggingLayer(level="INFO"))
|
||||
engine.add_layer(ExecutionLimitsLayer(max_nodes=100))
|
||||
```
|
||||
|
||||
### Event-Driven Architecture
|
||||
All node executions emit events for monitoring and integration:
|
||||
- `NodeRunStartedEvent` - Node execution begins
|
||||
- `NodeRunSucceededEvent` - Node completes successfully
|
||||
- `NodeRunFailedEvent` - Node encounters error
|
||||
- `GraphRunStartedEvent/GraphRunCompletedEvent` - Workflow lifecycle
|
||||
|
||||
### Variable Pool
|
||||
Centralized variable storage with namespace isolation:
|
||||
```python
|
||||
# Variables scoped by node_id
|
||||
pool.add(["node1", "output"], value)
|
||||
result = pool.get(["node1", "output"])
|
||||
```
|
||||
|
||||
## Import Architecture Rules
|
||||
|
||||
The codebase enforces strict layering via import-linter:
|
||||
|
||||
1. **Workflow Layers** (top to bottom):
|
||||
- graph_engine → graph_events → graph → nodes → node_events → entities
|
||||
|
||||
2. **Graph Engine Internal Layers**:
|
||||
- orchestration → command_processing → event_management → graph_traversal → domain
|
||||
|
||||
3. **Domain Isolation**:
|
||||
- Domain models cannot import from infrastructure layers
|
||||
|
||||
4. **Command Channel Independence**:
|
||||
- InMemory and Redis channels must remain independent
|
||||
|
||||
## Common Tasks
|
||||
|
||||
### Adding a New Node Type
|
||||
|
||||
1. Create node class in `nodes/<node_type>/`
|
||||
2. Inherit from `BaseNode` or appropriate base class
|
||||
3. Implement `_run()` method
|
||||
4. Register in `nodes/node_mapping.py`
|
||||
5. Add tests in `tests/unit_tests/core/workflow/nodes/`
|
||||
|
||||
### Implementing a Custom Layer
|
||||
|
||||
1. Create class inheriting from `Layer` base
|
||||
2. Override lifecycle methods: `on_graph_start()`, `on_event()`, `on_graph_end()`
|
||||
3. Add to engine via `engine.add_layer()`
|
||||
|
||||
### Debugging Workflow Execution
|
||||
|
||||
Enable debug logging layer:
|
||||
```python
|
||||
debug_layer = DebugLoggingLayer(
|
||||
level="DEBUG",
|
||||
include_inputs=True,
|
||||
include_outputs=True
|
||||
)
|
||||
```
|
||||
|
|
@ -38,6 +38,7 @@ from .graph_traversal import EdgeProcessor, SkipPropagator
|
|||
from .layers.base import GraphEngineLayer
|
||||
from .orchestration import Dispatcher, ExecutionCoordinator
|
||||
from .protocols.command_channel import CommandChannel
|
||||
from .ready_queue import InMemoryReadyQueue
|
||||
from .response_coordinator import ResponseStreamCoordinator
|
||||
from .worker_management import WorkerPool
|
||||
|
||||
|
|
@ -104,7 +105,7 @@ class GraphEngine:
|
|||
|
||||
# === Execution Queues ===
|
||||
# Queue for nodes ready to execute
|
||||
self._ready_queue: queue.Queue[str] = queue.Queue()
|
||||
self._ready_queue = InMemoryReadyQueue()
|
||||
# Queue for events generated during execution
|
||||
self._event_queue: queue.Queue[GraphNodeEventBase] = queue.Queue()
|
||||
|
||||
|
|
|
|||
|
|
@ -2,7 +2,6 @@
|
|||
Graph state manager that combines node, edge, and execution tracking.
|
||||
"""
|
||||
|
||||
import queue
|
||||
import threading
|
||||
from collections.abc import Sequence
|
||||
from typing import TypedDict, final
|
||||
|
|
@ -10,6 +9,8 @@ from typing import TypedDict, final
|
|||
from core.workflow.enums import NodeState
|
||||
from core.workflow.graph import Edge, Graph
|
||||
|
||||
from .ready_queue import ReadyQueue
|
||||
|
||||
|
||||
class EdgeStateAnalysis(TypedDict):
|
||||
"""Analysis result for edge states."""
|
||||
|
|
@ -21,7 +22,7 @@ class EdgeStateAnalysis(TypedDict):
|
|||
|
||||
@final
|
||||
class GraphStateManager:
|
||||
def __init__(self, graph: Graph, ready_queue: queue.Queue[str]) -> None:
|
||||
def __init__(self, graph: Graph, ready_queue: ReadyQueue) -> None:
|
||||
"""
|
||||
Initialize the state manager.
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,11 @@
|
|||
"""
|
||||
Ready queue implementations for GraphEngine.
|
||||
|
||||
This package contains the protocol and implementations for managing
|
||||
the queue of nodes ready for execution.
|
||||
"""
|
||||
|
||||
from .in_memory import InMemoryReadyQueue
|
||||
from .protocol import ReadyQueue
|
||||
|
||||
__all__ = ["InMemoryReadyQueue", "ReadyQueue"]
|
||||
|
|
@ -0,0 +1,142 @@
|
|||
"""
|
||||
In-memory implementation of the ReadyQueue protocol.
|
||||
|
||||
This implementation wraps Python's standard queue.Queue and adds
|
||||
serialization capabilities for state storage.
|
||||
"""
|
||||
|
||||
import queue
|
||||
from typing import final
|
||||
|
||||
|
||||
@final
|
||||
class InMemoryReadyQueue:
|
||||
"""
|
||||
In-memory ready queue implementation with serialization support.
|
||||
|
||||
This implementation uses Python's queue.Queue internally and provides
|
||||
methods to serialize and restore the queue state.
|
||||
"""
|
||||
|
||||
def __init__(self, maxsize: int = 0) -> None:
|
||||
"""
|
||||
Initialize the in-memory ready queue.
|
||||
|
||||
Args:
|
||||
maxsize: Maximum size of the queue (0 for unlimited)
|
||||
"""
|
||||
self._queue: queue.Queue[str] = queue.Queue(maxsize=maxsize)
|
||||
|
||||
def put(self, item: str) -> None:
|
||||
"""
|
||||
Add a node ID to the ready queue.
|
||||
|
||||
Args:
|
||||
item: The node ID to add to the queue
|
||||
"""
|
||||
self._queue.put(item)
|
||||
|
||||
def get(self, timeout: float | None = None) -> str:
|
||||
"""
|
||||
Retrieve and remove a node ID from the queue.
|
||||
|
||||
Args:
|
||||
timeout: Maximum time to wait for an item (None for blocking)
|
||||
|
||||
Returns:
|
||||
The node ID retrieved from the queue
|
||||
|
||||
Raises:
|
||||
queue.Empty: If timeout expires and no item is available
|
||||
"""
|
||||
if timeout is None:
|
||||
return self._queue.get(block=True)
|
||||
return self._queue.get(timeout=timeout)
|
||||
|
||||
def task_done(self) -> None:
|
||||
"""
|
||||
Indicate that a previously retrieved task is complete.
|
||||
|
||||
Used by worker threads to signal task completion for
|
||||
join() synchronization.
|
||||
"""
|
||||
self._queue.task_done()
|
||||
|
||||
def empty(self) -> bool:
|
||||
"""
|
||||
Check if the queue is empty.
|
||||
|
||||
Returns:
|
||||
True if the queue has no items, False otherwise
|
||||
"""
|
||||
return self._queue.empty()
|
||||
|
||||
def qsize(self) -> int:
|
||||
"""
|
||||
Get the approximate size of the queue.
|
||||
|
||||
Returns:
|
||||
The approximate number of items in the queue
|
||||
"""
|
||||
return self._queue.qsize()
|
||||
|
||||
def dumps(self) -> dict[str, object]:
|
||||
"""
|
||||
Serialize the queue state for storage.
|
||||
|
||||
Returns:
|
||||
A dictionary containing the serialized queue state
|
||||
"""
|
||||
# Extract all items from the queue without removing them
|
||||
items: list[str] = []
|
||||
temp_items: list[str] = []
|
||||
|
||||
# Drain the queue temporarily to get all items
|
||||
while not self._queue.empty():
|
||||
try:
|
||||
item = self._queue.get_nowait()
|
||||
temp_items.append(item)
|
||||
items.append(item)
|
||||
except queue.Empty:
|
||||
break
|
||||
|
||||
# Put items back in the same order
|
||||
for item in temp_items:
|
||||
self._queue.put(item)
|
||||
|
||||
return {
|
||||
"type": "InMemoryReadyQueue",
|
||||
"version": "1.0",
|
||||
"items": items,
|
||||
"maxsize": self._queue.maxsize,
|
||||
}
|
||||
|
||||
def loads(self, data: dict[str, object]) -> None:
|
||||
"""
|
||||
Restore the queue state from serialized data.
|
||||
|
||||
Args:
|
||||
data: The serialized queue state to restore
|
||||
"""
|
||||
if data.get("type") != "InMemoryReadyQueue":
|
||||
raise ValueError(f"Invalid serialized data type: {data.get('type')}")
|
||||
|
||||
if data.get("version") != "1.0":
|
||||
raise ValueError(f"Unsupported version: {data.get('version')}")
|
||||
|
||||
# Clear the current queue
|
||||
while not self._queue.empty():
|
||||
try:
|
||||
self._queue.get_nowait()
|
||||
except queue.Empty:
|
||||
break
|
||||
|
||||
# Restore items
|
||||
items = data.get("items", [])
|
||||
if not isinstance(items, list):
|
||||
raise ValueError("Invalid items data: expected list")
|
||||
|
||||
for item in items:
|
||||
if not isinstance(item, str):
|
||||
raise ValueError(f"Invalid item type: expected str, got {type(item).__name__}")
|
||||
self._queue.put(item)
|
||||
|
|
@ -0,0 +1,88 @@
|
|||
"""
|
||||
ReadyQueue protocol for GraphEngine node execution queue.
|
||||
|
||||
This protocol defines the interface for managing the queue of nodes ready
|
||||
for execution, supporting both in-memory and persistent storage scenarios.
|
||||
"""
|
||||
|
||||
from typing import Protocol
|
||||
|
||||
|
||||
class ReadyQueue(Protocol):
|
||||
"""
|
||||
Protocol for managing nodes ready for execution in GraphEngine.
|
||||
|
||||
This protocol defines the interface that any ready queue implementation
|
||||
must provide, enabling both in-memory queues and persistent queues
|
||||
that can be serialized for state storage.
|
||||
"""
|
||||
|
||||
def put(self, item: str) -> None:
|
||||
"""
|
||||
Add a node ID to the ready queue.
|
||||
|
||||
Args:
|
||||
item: The node ID to add to the queue
|
||||
"""
|
||||
...
|
||||
|
||||
def get(self, timeout: float | None = None) -> str:
|
||||
"""
|
||||
Retrieve and remove a node ID from the queue.
|
||||
|
||||
Args:
|
||||
timeout: Maximum time to wait for an item (None for blocking)
|
||||
|
||||
Returns:
|
||||
The node ID retrieved from the queue
|
||||
|
||||
Raises:
|
||||
queue.Empty: If timeout expires and no item is available
|
||||
"""
|
||||
...
|
||||
|
||||
def task_done(self) -> None:
|
||||
"""
|
||||
Indicate that a previously retrieved task is complete.
|
||||
|
||||
Used by worker threads to signal task completion for
|
||||
join() synchronization.
|
||||
"""
|
||||
...
|
||||
|
||||
def empty(self) -> bool:
|
||||
"""
|
||||
Check if the queue is empty.
|
||||
|
||||
Returns:
|
||||
True if the queue has no items, False otherwise
|
||||
"""
|
||||
...
|
||||
|
||||
def qsize(self) -> int:
|
||||
"""
|
||||
Get the approximate size of the queue.
|
||||
|
||||
Returns:
|
||||
The approximate number of items in the queue
|
||||
"""
|
||||
...
|
||||
|
||||
def dumps(self) -> dict[str, object]:
|
||||
"""
|
||||
Serialize the queue state for storage.
|
||||
|
||||
Returns:
|
||||
A dictionary containing the serialized queue state
|
||||
that can be persisted and later restored
|
||||
"""
|
||||
...
|
||||
|
||||
def loads(self, data: dict[str, object]) -> None:
|
||||
"""
|
||||
Restore the queue state from serialized data.
|
||||
|
||||
Args:
|
||||
data: The serialized queue state to restore
|
||||
"""
|
||||
...
|
||||
|
|
@ -22,6 +22,8 @@ from core.workflow.graph_events import GraphNodeEventBase, NodeRunFailedEvent
|
|||
from core.workflow.nodes.base.node import Node
|
||||
from libs.flask_utils import preserve_flask_contexts
|
||||
|
||||
from .ready_queue import ReadyQueue
|
||||
|
||||
|
||||
@final
|
||||
class Worker(threading.Thread):
|
||||
|
|
@ -35,7 +37,7 @@ class Worker(threading.Thread):
|
|||
|
||||
def __init__(
|
||||
self,
|
||||
ready_queue: queue.Queue[str],
|
||||
ready_queue: ReadyQueue,
|
||||
event_queue: queue.Queue[GraphNodeEventBase],
|
||||
graph: Graph,
|
||||
worker_id: int = 0,
|
||||
|
|
@ -46,7 +48,7 @@ class Worker(threading.Thread):
|
|||
Initialize worker thread.
|
||||
|
||||
Args:
|
||||
ready_queue: Queue containing node IDs ready for execution
|
||||
ready_queue: Ready queue containing node IDs ready for execution
|
||||
event_queue: Queue for pushing execution events
|
||||
graph: Graph containing nodes to execute
|
||||
worker_id: Unique identifier for this worker
|
||||
|
|
|
|||
|
|
@ -14,6 +14,7 @@ from configs import dify_config
|
|||
from core.workflow.graph import Graph
|
||||
from core.workflow.graph_events import GraphNodeEventBase
|
||||
|
||||
from ..ready_queue import ReadyQueue
|
||||
from ..worker import Worker
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
|
@ -35,7 +36,7 @@ class WorkerPool:
|
|||
|
||||
def __init__(
|
||||
self,
|
||||
ready_queue: queue.Queue[str],
|
||||
ready_queue: ReadyQueue,
|
||||
event_queue: queue.Queue[GraphNodeEventBase],
|
||||
graph: Graph,
|
||||
flask_app: "Flask | None" = None,
|
||||
|
|
@ -49,7 +50,7 @@ class WorkerPool:
|
|||
Initialize the simple worker pool.
|
||||
|
||||
Args:
|
||||
ready_queue: Queue of nodes ready for execution
|
||||
ready_queue: Ready queue for nodes ready for execution
|
||||
event_queue: Queue for worker events
|
||||
graph: The workflow graph
|
||||
flask_app: Optional Flask app for context preservation
|
||||
|
|
|
|||
Loading…
Reference in New Issue