feat(graph_engine): add abstract layer and dump / load methods for ready queue.

This commit is contained in:
-LAN- 2025-09-14 04:19:24 +08:00
parent efa5f35277
commit 4cdc19fd05
No known key found for this signature in database
GPG Key ID: 6BA0D108DED011FF
8 changed files with 367 additions and 7 deletions

114
api/core/workflow/README.md Normal file
View File

@ -0,0 +1,114 @@
# Workflow
## Project Overview
This is the workflow graph engine module of Dify, implementing a queue-based distributed workflow execution system. The engine handles agentic AI workflows with support for parallel execution, node iteration, conditional logic, and external command control.
## Architecture
### Core Components
The graph engine follows a layered architecture with strict dependency rules:
1. **Graph Engine** (`graph_engine/`) - Orchestrates workflow execution
- **Manager** - External control interface for stop/pause/resume commands
- **Worker** - Node execution runtime
- **Command Processing** - Handles control commands (abort, pause, resume)
- **Event Management** - Event propagation and layer notifications
- **Graph Traversal** - Edge processing and skip propagation
- **Response Coordinator** - Path tracking and session management
- **Layers** - Pluggable middleware (debug logging, execution limits)
- **Command Channels** - Communication channels (InMemory, Redis)
2. **Graph** (`graph/`) - Graph structure and runtime state
- **Graph Template** - Workflow definition
- **Edge** - Node connections with conditions
- **Runtime State Protocol** - State management interface
3. **Nodes** (`nodes/`) - Node implementations
- **Base** - Abstract node classes and variable parsing
- **Specific Nodes** - LLM, Agent, Code, HTTP Request, Iteration, Loop, etc.
4. **Events** (`node_events/`) - Event system
- **Base** - Event protocols
- **Node Events** - Node lifecycle events
5. **Entities** (`entities/`) - Domain models
- **Variable Pool** - Variable storage
- **Graph Init Params** - Initialization configuration
## Key Design Patterns
### Command Channel Pattern
External workflow control via Redis or in-memory channels:
```python
# Send stop command to running workflow
channel = RedisChannel(redis_client, f"workflow:{task_id}:commands")
channel.send_command(AbortCommand(reason="User requested"))
```
### Layer System
Extensible middleware for cross-cutting concerns:
```python
engine = GraphEngine(graph)
engine.add_layer(DebugLoggingLayer(level="INFO"))
engine.add_layer(ExecutionLimitsLayer(max_nodes=100))
```
### Event-Driven Architecture
All node executions emit events for monitoring and integration:
- `NodeRunStartedEvent` - Node execution begins
- `NodeRunSucceededEvent` - Node completes successfully
- `NodeRunFailedEvent` - Node encounters error
- `GraphRunStartedEvent/GraphRunCompletedEvent` - Workflow lifecycle
### Variable Pool
Centralized variable storage with namespace isolation:
```python
# Variables scoped by node_id
pool.add(["node1", "output"], value)
result = pool.get(["node1", "output"])
```
## Import Architecture Rules
The codebase enforces strict layering via import-linter:
1. **Workflow Layers** (top to bottom):
- graph_engine → graph_events → graph → nodes → node_events → entities
2. **Graph Engine Internal Layers**:
- orchestration → command_processing → event_management → graph_traversal → domain
3. **Domain Isolation**:
- Domain models cannot import from infrastructure layers
4. **Command Channel Independence**:
- InMemory and Redis channels must remain independent
## Common Tasks
### Adding a New Node Type
1. Create node class in `nodes/<node_type>/`
2. Inherit from `BaseNode` or appropriate base class
3. Implement `_run()` method
4. Register in `nodes/node_mapping.py`
5. Add tests in `tests/unit_tests/core/workflow/nodes/`
### Implementing a Custom Layer
1. Create class inheriting from `Layer` base
2. Override lifecycle methods: `on_graph_start()`, `on_event()`, `on_graph_end()`
3. Add to engine via `engine.add_layer()`
### Debugging Workflow Execution
Enable debug logging layer:
```python
debug_layer = DebugLoggingLayer(
level="DEBUG",
include_inputs=True,
include_outputs=True
)
```

View File

@ -38,6 +38,7 @@ from .graph_traversal import EdgeProcessor, SkipPropagator
from .layers.base import GraphEngineLayer
from .orchestration import Dispatcher, ExecutionCoordinator
from .protocols.command_channel import CommandChannel
from .ready_queue import InMemoryReadyQueue
from .response_coordinator import ResponseStreamCoordinator
from .worker_management import WorkerPool
@ -104,7 +105,7 @@ class GraphEngine:
# === Execution Queues ===
# Queue for nodes ready to execute
self._ready_queue: queue.Queue[str] = queue.Queue()
self._ready_queue = InMemoryReadyQueue()
# Queue for events generated during execution
self._event_queue: queue.Queue[GraphNodeEventBase] = queue.Queue()

View File

@ -2,7 +2,6 @@
Graph state manager that combines node, edge, and execution tracking.
"""
import queue
import threading
from collections.abc import Sequence
from typing import TypedDict, final
@ -10,6 +9,8 @@ from typing import TypedDict, final
from core.workflow.enums import NodeState
from core.workflow.graph import Edge, Graph
from .ready_queue import ReadyQueue
class EdgeStateAnalysis(TypedDict):
"""Analysis result for edge states."""
@ -21,7 +22,7 @@ class EdgeStateAnalysis(TypedDict):
@final
class GraphStateManager:
def __init__(self, graph: Graph, ready_queue: queue.Queue[str]) -> None:
def __init__(self, graph: Graph, ready_queue: ReadyQueue) -> None:
"""
Initialize the state manager.

View File

@ -0,0 +1,11 @@
"""
Ready queue implementations for GraphEngine.
This package contains the protocol and implementations for managing
the queue of nodes ready for execution.
"""
from .in_memory import InMemoryReadyQueue
from .protocol import ReadyQueue
__all__ = ["InMemoryReadyQueue", "ReadyQueue"]

View File

@ -0,0 +1,142 @@
"""
In-memory implementation of the ReadyQueue protocol.
This implementation wraps Python's standard queue.Queue and adds
serialization capabilities for state storage.
"""
import queue
from typing import final
@final
class InMemoryReadyQueue:
"""
In-memory ready queue implementation with serialization support.
This implementation uses Python's queue.Queue internally and provides
methods to serialize and restore the queue state.
"""
def __init__(self, maxsize: int = 0) -> None:
"""
Initialize the in-memory ready queue.
Args:
maxsize: Maximum size of the queue (0 for unlimited)
"""
self._queue: queue.Queue[str] = queue.Queue(maxsize=maxsize)
def put(self, item: str) -> None:
"""
Add a node ID to the ready queue.
Args:
item: The node ID to add to the queue
"""
self._queue.put(item)
def get(self, timeout: float | None = None) -> str:
"""
Retrieve and remove a node ID from the queue.
Args:
timeout: Maximum time to wait for an item (None for blocking)
Returns:
The node ID retrieved from the queue
Raises:
queue.Empty: If timeout expires and no item is available
"""
if timeout is None:
return self._queue.get(block=True)
return self._queue.get(timeout=timeout)
def task_done(self) -> None:
"""
Indicate that a previously retrieved task is complete.
Used by worker threads to signal task completion for
join() synchronization.
"""
self._queue.task_done()
def empty(self) -> bool:
"""
Check if the queue is empty.
Returns:
True if the queue has no items, False otherwise
"""
return self._queue.empty()
def qsize(self) -> int:
"""
Get the approximate size of the queue.
Returns:
The approximate number of items in the queue
"""
return self._queue.qsize()
def dumps(self) -> dict[str, object]:
"""
Serialize the queue state for storage.
Returns:
A dictionary containing the serialized queue state
"""
# Extract all items from the queue without removing them
items: list[str] = []
temp_items: list[str] = []
# Drain the queue temporarily to get all items
while not self._queue.empty():
try:
item = self._queue.get_nowait()
temp_items.append(item)
items.append(item)
except queue.Empty:
break
# Put items back in the same order
for item in temp_items:
self._queue.put(item)
return {
"type": "InMemoryReadyQueue",
"version": "1.0",
"items": items,
"maxsize": self._queue.maxsize,
}
def loads(self, data: dict[str, object]) -> None:
"""
Restore the queue state from serialized data.
Args:
data: The serialized queue state to restore
"""
if data.get("type") != "InMemoryReadyQueue":
raise ValueError(f"Invalid serialized data type: {data.get('type')}")
if data.get("version") != "1.0":
raise ValueError(f"Unsupported version: {data.get('version')}")
# Clear the current queue
while not self._queue.empty():
try:
self._queue.get_nowait()
except queue.Empty:
break
# Restore items
items = data.get("items", [])
if not isinstance(items, list):
raise ValueError("Invalid items data: expected list")
for item in items:
if not isinstance(item, str):
raise ValueError(f"Invalid item type: expected str, got {type(item).__name__}")
self._queue.put(item)

View File

@ -0,0 +1,88 @@
"""
ReadyQueue protocol for GraphEngine node execution queue.
This protocol defines the interface for managing the queue of nodes ready
for execution, supporting both in-memory and persistent storage scenarios.
"""
from typing import Protocol
class ReadyQueue(Protocol):
"""
Protocol for managing nodes ready for execution in GraphEngine.
This protocol defines the interface that any ready queue implementation
must provide, enabling both in-memory queues and persistent queues
that can be serialized for state storage.
"""
def put(self, item: str) -> None:
"""
Add a node ID to the ready queue.
Args:
item: The node ID to add to the queue
"""
...
def get(self, timeout: float | None = None) -> str:
"""
Retrieve and remove a node ID from the queue.
Args:
timeout: Maximum time to wait for an item (None for blocking)
Returns:
The node ID retrieved from the queue
Raises:
queue.Empty: If timeout expires and no item is available
"""
...
def task_done(self) -> None:
"""
Indicate that a previously retrieved task is complete.
Used by worker threads to signal task completion for
join() synchronization.
"""
...
def empty(self) -> bool:
"""
Check if the queue is empty.
Returns:
True if the queue has no items, False otherwise
"""
...
def qsize(self) -> int:
"""
Get the approximate size of the queue.
Returns:
The approximate number of items in the queue
"""
...
def dumps(self) -> dict[str, object]:
"""
Serialize the queue state for storage.
Returns:
A dictionary containing the serialized queue state
that can be persisted and later restored
"""
...
def loads(self, data: dict[str, object]) -> None:
"""
Restore the queue state from serialized data.
Args:
data: The serialized queue state to restore
"""
...

View File

@ -22,6 +22,8 @@ from core.workflow.graph_events import GraphNodeEventBase, NodeRunFailedEvent
from core.workflow.nodes.base.node import Node
from libs.flask_utils import preserve_flask_contexts
from .ready_queue import ReadyQueue
@final
class Worker(threading.Thread):
@ -35,7 +37,7 @@ class Worker(threading.Thread):
def __init__(
self,
ready_queue: queue.Queue[str],
ready_queue: ReadyQueue,
event_queue: queue.Queue[GraphNodeEventBase],
graph: Graph,
worker_id: int = 0,
@ -46,7 +48,7 @@ class Worker(threading.Thread):
Initialize worker thread.
Args:
ready_queue: Queue containing node IDs ready for execution
ready_queue: Ready queue containing node IDs ready for execution
event_queue: Queue for pushing execution events
graph: Graph containing nodes to execute
worker_id: Unique identifier for this worker

View File

@ -14,6 +14,7 @@ from configs import dify_config
from core.workflow.graph import Graph
from core.workflow.graph_events import GraphNodeEventBase
from ..ready_queue import ReadyQueue
from ..worker import Worker
logger = logging.getLogger(__name__)
@ -35,7 +36,7 @@ class WorkerPool:
def __init__(
self,
ready_queue: queue.Queue[str],
ready_queue: ReadyQueue,
event_queue: queue.Queue[GraphNodeEventBase],
graph: Graph,
flask_app: "Flask | None" = None,
@ -49,7 +50,7 @@ class WorkerPool:
Initialize the simple worker pool.
Args:
ready_queue: Queue of nodes ready for execution
ready_queue: Ready queue for nodes ready for execution
event_queue: Queue for worker events
graph: The workflow graph
flask_app: Optional Flask app for context preservation