mirror of https://github.com/langgenius/dify.git
update gen_ai semconv for aliyun trace (#26288)
Co-authored-by: autofix-ci[bot] <114827586+autofix-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
319ecdd312
commit
4da93ba579
|
|
@ -14,12 +14,12 @@ from core.ops.aliyun_trace.data_exporter.traceclient import (
|
|||
from core.ops.aliyun_trace.entities.aliyun_trace_entity import SpanData, TraceMetadata
|
||||
from core.ops.aliyun_trace.entities.semconv import (
|
||||
GEN_AI_COMPLETION,
|
||||
GEN_AI_MODEL_NAME,
|
||||
GEN_AI_INPUT_MESSAGE,
|
||||
GEN_AI_OUTPUT_MESSAGE,
|
||||
GEN_AI_PROMPT,
|
||||
GEN_AI_PROMPT_TEMPLATE_TEMPLATE,
|
||||
GEN_AI_PROMPT_TEMPLATE_VARIABLE,
|
||||
GEN_AI_PROVIDER_NAME,
|
||||
GEN_AI_REQUEST_MODEL,
|
||||
GEN_AI_RESPONSE_FINISH_REASON,
|
||||
GEN_AI_SYSTEM,
|
||||
GEN_AI_USAGE_INPUT_TOKENS,
|
||||
GEN_AI_USAGE_OUTPUT_TOKENS,
|
||||
GEN_AI_USAGE_TOTAL_TOKENS,
|
||||
|
|
@ -35,6 +35,9 @@ from core.ops.aliyun_trace.utils import (
|
|||
create_links_from_trace_id,
|
||||
create_status_from_error,
|
||||
extract_retrieval_documents,
|
||||
format_input_messages,
|
||||
format_output_messages,
|
||||
format_retrieval_documents,
|
||||
get_user_id_from_message_data,
|
||||
get_workflow_node_status,
|
||||
serialize_json_data,
|
||||
|
|
@ -151,10 +154,6 @@ class AliyunDataTrace(BaseTraceInstance):
|
|||
)
|
||||
self.trace_client.add_span(message_span)
|
||||
|
||||
app_model_config = getattr(message_data, "app_model_config", {})
|
||||
pre_prompt = getattr(app_model_config, "pre_prompt", "")
|
||||
inputs_data = getattr(message_data, "inputs", {})
|
||||
|
||||
llm_span = SpanData(
|
||||
trace_id=trace_metadata.trace_id,
|
||||
parent_span_id=message_span_id,
|
||||
|
|
@ -170,13 +169,11 @@ class AliyunDataTrace(BaseTraceInstance):
|
|||
inputs=inputs_json,
|
||||
outputs=outputs_str,
|
||||
),
|
||||
GEN_AI_MODEL_NAME: trace_info.metadata.get("ls_model_name") or "",
|
||||
GEN_AI_SYSTEM: trace_info.metadata.get("ls_provider") or "",
|
||||
GEN_AI_REQUEST_MODEL: trace_info.metadata.get("ls_model_name") or "",
|
||||
GEN_AI_PROVIDER_NAME: trace_info.metadata.get("ls_provider") or "",
|
||||
GEN_AI_USAGE_INPUT_TOKENS: str(trace_info.message_tokens),
|
||||
GEN_AI_USAGE_OUTPUT_TOKENS: str(trace_info.answer_tokens),
|
||||
GEN_AI_USAGE_TOTAL_TOKENS: str(trace_info.total_tokens),
|
||||
GEN_AI_PROMPT_TEMPLATE_VARIABLE: serialize_json_data(inputs_data),
|
||||
GEN_AI_PROMPT_TEMPLATE_TEMPLATE: pre_prompt,
|
||||
GEN_AI_PROMPT: inputs_json,
|
||||
GEN_AI_COMPLETION: outputs_str,
|
||||
},
|
||||
|
|
@ -364,6 +361,10 @@ class AliyunDataTrace(BaseTraceInstance):
|
|||
input_value = str(node_execution.inputs.get("query", "")) if node_execution.inputs else ""
|
||||
output_value = serialize_json_data(node_execution.outputs.get("result", [])) if node_execution.outputs else ""
|
||||
|
||||
retrieval_documents = node_execution.outputs.get("result", []) if node_execution.outputs else []
|
||||
semantic_retrieval_documents = format_retrieval_documents(retrieval_documents)
|
||||
semantic_retrieval_documents_json = serialize_json_data(semantic_retrieval_documents)
|
||||
|
||||
return SpanData(
|
||||
trace_id=trace_metadata.trace_id,
|
||||
parent_span_id=trace_metadata.workflow_span_id,
|
||||
|
|
@ -380,7 +381,7 @@ class AliyunDataTrace(BaseTraceInstance):
|
|||
outputs=output_value,
|
||||
),
|
||||
RETRIEVAL_QUERY: input_value,
|
||||
RETRIEVAL_DOCUMENT: output_value,
|
||||
RETRIEVAL_DOCUMENT: semantic_retrieval_documents_json,
|
||||
},
|
||||
status=get_workflow_node_status(node_execution),
|
||||
links=trace_metadata.links,
|
||||
|
|
@ -396,6 +397,9 @@ class AliyunDataTrace(BaseTraceInstance):
|
|||
prompts_json = serialize_json_data(process_data.get("prompts", []))
|
||||
text_output = str(outputs.get("text", ""))
|
||||
|
||||
gen_ai_input_message = format_input_messages(process_data)
|
||||
gen_ai_output_message = format_output_messages(outputs)
|
||||
|
||||
return SpanData(
|
||||
trace_id=trace_metadata.trace_id,
|
||||
parent_span_id=trace_metadata.workflow_span_id,
|
||||
|
|
@ -411,14 +415,16 @@ class AliyunDataTrace(BaseTraceInstance):
|
|||
inputs=prompts_json,
|
||||
outputs=text_output,
|
||||
),
|
||||
GEN_AI_MODEL_NAME: process_data.get("model_name") or "",
|
||||
GEN_AI_SYSTEM: process_data.get("model_provider") or "",
|
||||
GEN_AI_REQUEST_MODEL: process_data.get("model_name") or "",
|
||||
GEN_AI_PROVIDER_NAME: process_data.get("model_provider") or "",
|
||||
GEN_AI_USAGE_INPUT_TOKENS: str(usage_data.get("prompt_tokens", 0)),
|
||||
GEN_AI_USAGE_OUTPUT_TOKENS: str(usage_data.get("completion_tokens", 0)),
|
||||
GEN_AI_USAGE_TOTAL_TOKENS: str(usage_data.get("total_tokens", 0)),
|
||||
GEN_AI_PROMPT: prompts_json,
|
||||
GEN_AI_COMPLETION: text_output,
|
||||
GEN_AI_RESPONSE_FINISH_REASON: outputs.get("finish_reason") or "",
|
||||
GEN_AI_INPUT_MESSAGE: gen_ai_input_message,
|
||||
GEN_AI_OUTPUT_MESSAGE: gen_ai_output_message,
|
||||
},
|
||||
status=get_workflow_node_status(node_execution),
|
||||
links=trace_metadata.links,
|
||||
|
|
@ -502,8 +508,8 @@ class AliyunDataTrace(BaseTraceInstance):
|
|||
inputs=inputs_json,
|
||||
outputs=suggested_question_json,
|
||||
),
|
||||
GEN_AI_MODEL_NAME: trace_info.metadata.get("ls_model_name") or "",
|
||||
GEN_AI_SYSTEM: trace_info.metadata.get("ls_provider") or "",
|
||||
GEN_AI_REQUEST_MODEL: trace_info.metadata.get("ls_model_name") or "",
|
||||
GEN_AI_PROVIDER_NAME: trace_info.metadata.get("ls_provider") or "",
|
||||
GEN_AI_PROMPT: inputs_json,
|
||||
GEN_AI_COMPLETION: suggested_question_json,
|
||||
},
|
||||
|
|
|
|||
|
|
@ -17,17 +17,18 @@ RETRIEVAL_QUERY: Final[str] = "retrieval.query"
|
|||
RETRIEVAL_DOCUMENT: Final[str] = "retrieval.document"
|
||||
|
||||
# LLM attributes
|
||||
GEN_AI_MODEL_NAME: Final[str] = "gen_ai.model_name"
|
||||
GEN_AI_SYSTEM: Final[str] = "gen_ai.system"
|
||||
GEN_AI_REQUEST_MODEL: Final[str] = "gen_ai.request.model"
|
||||
GEN_AI_PROVIDER_NAME: Final[str] = "gen_ai.provider.name"
|
||||
GEN_AI_USAGE_INPUT_TOKENS: Final[str] = "gen_ai.usage.input_tokens"
|
||||
GEN_AI_USAGE_OUTPUT_TOKENS: Final[str] = "gen_ai.usage.output_tokens"
|
||||
GEN_AI_USAGE_TOTAL_TOKENS: Final[str] = "gen_ai.usage.total_tokens"
|
||||
GEN_AI_PROMPT_TEMPLATE_TEMPLATE: Final[str] = "gen_ai.prompt_template.template"
|
||||
GEN_AI_PROMPT_TEMPLATE_VARIABLE: Final[str] = "gen_ai.prompt_template.variable"
|
||||
GEN_AI_PROMPT: Final[str] = "gen_ai.prompt"
|
||||
GEN_AI_COMPLETION: Final[str] = "gen_ai.completion"
|
||||
GEN_AI_RESPONSE_FINISH_REASON: Final[str] = "gen_ai.response.finish_reason"
|
||||
|
||||
GEN_AI_INPUT_MESSAGE: Final[str] = "gen_ai.input.messages"
|
||||
GEN_AI_OUTPUT_MESSAGE: Final[str] = "gen_ai.output.messages"
|
||||
|
||||
# Tool attributes
|
||||
TOOL_NAME: Final[str] = "tool.name"
|
||||
TOOL_DESCRIPTION: Final[str] = "tool.description"
|
||||
|
|
|
|||
|
|
@ -1,4 +1,5 @@
|
|||
import json
|
||||
from collections.abc import Mapping
|
||||
from typing import Any
|
||||
|
||||
from opentelemetry.trace import Link, Status, StatusCode
|
||||
|
|
@ -93,3 +94,97 @@ def create_common_span_attributes(
|
|||
INPUT_VALUE: inputs,
|
||||
OUTPUT_VALUE: outputs,
|
||||
}
|
||||
|
||||
|
||||
def format_retrieval_documents(retrieval_documents: list) -> list:
|
||||
try:
|
||||
if not isinstance(retrieval_documents, list):
|
||||
return []
|
||||
|
||||
semantic_documents = []
|
||||
for doc in retrieval_documents:
|
||||
if not isinstance(doc, dict):
|
||||
continue
|
||||
|
||||
metadata = doc.get("metadata", {})
|
||||
content = doc.get("content", "")
|
||||
title = doc.get("title", "")
|
||||
score = metadata.get("score", 0.0)
|
||||
document_id = metadata.get("document_id", "")
|
||||
|
||||
semantic_metadata = {}
|
||||
if title:
|
||||
semantic_metadata["title"] = title
|
||||
if metadata.get("source"):
|
||||
semantic_metadata["source"] = metadata["source"]
|
||||
elif metadata.get("_source"):
|
||||
semantic_metadata["source"] = metadata["_source"]
|
||||
if metadata.get("doc_metadata"):
|
||||
doc_metadata = metadata["doc_metadata"]
|
||||
if isinstance(doc_metadata, dict):
|
||||
semantic_metadata.update(doc_metadata)
|
||||
|
||||
semantic_doc = {
|
||||
"document": {"content": content, "metadata": semantic_metadata, "score": score, "id": document_id}
|
||||
}
|
||||
semantic_documents.append(semantic_doc)
|
||||
|
||||
return semantic_documents
|
||||
except Exception:
|
||||
return []
|
||||
|
||||
|
||||
def format_input_messages(process_data: Mapping[str, Any]) -> str:
|
||||
try:
|
||||
if not isinstance(process_data, dict):
|
||||
return serialize_json_data([])
|
||||
|
||||
prompts = process_data.get("prompts", [])
|
||||
if not prompts:
|
||||
return serialize_json_data([])
|
||||
|
||||
valid_roles = {"system", "user", "assistant", "tool"}
|
||||
input_messages = []
|
||||
for prompt in prompts:
|
||||
if not isinstance(prompt, dict):
|
||||
continue
|
||||
|
||||
role = prompt.get("role", "")
|
||||
text = prompt.get("text", "")
|
||||
|
||||
if not role or role not in valid_roles:
|
||||
continue
|
||||
|
||||
if text:
|
||||
message = {"role": role, "parts": [{"type": "text", "content": text}]}
|
||||
input_messages.append(message)
|
||||
|
||||
return serialize_json_data(input_messages)
|
||||
except Exception:
|
||||
return serialize_json_data([])
|
||||
|
||||
|
||||
def format_output_messages(outputs: Mapping[str, Any]) -> str:
|
||||
try:
|
||||
if not isinstance(outputs, dict):
|
||||
return serialize_json_data([])
|
||||
|
||||
text = outputs.get("text", "")
|
||||
finish_reason = outputs.get("finish_reason", "")
|
||||
|
||||
if not text:
|
||||
return serialize_json_data([])
|
||||
|
||||
valid_finish_reasons = {"stop", "length", "content_filter", "tool_call", "error"}
|
||||
if finish_reason not in valid_finish_reasons:
|
||||
finish_reason = "stop"
|
||||
|
||||
output_message = {
|
||||
"role": "assistant",
|
||||
"parts": [{"type": "text", "content": text}],
|
||||
"finish_reason": finish_reason,
|
||||
}
|
||||
|
||||
return serialize_json_data([output_message])
|
||||
except Exception:
|
||||
return serialize_json_data([])
|
||||
|
|
|
|||
Loading…
Reference in New Issue