mirror of https://github.com/langgenius/dify.git
add qdrant migrate to tidb
This commit is contained in:
parent
022cfbd186
commit
5ae1f62daf
|
|
@ -361,23 +361,27 @@ def migrate_knowledge_vector_database():
|
|||
else:
|
||||
raise ValueError(f"Vector store {vector_type} is not supported.")
|
||||
|
||||
index_struct_dict = {"type": vector_type, "vector_store": {"class_prefix": collection_name}}
|
||||
index_struct_dict = {
|
||||
"type": vector_type,
|
||||
"vector_store": {"class_prefix": collection_name},
|
||||
"original_type": dataset.index_struct_dict["type"],
|
||||
}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
vector = Vector(dataset)
|
||||
click.echo(f"Migrating dataset {dataset.id}.")
|
||||
|
||||
try:
|
||||
vector.delete()
|
||||
click.echo(
|
||||
click.style(f"Deleted vector index {collection_name} for dataset {dataset.id}.", fg="green")
|
||||
)
|
||||
except Exception as e:
|
||||
click.echo(
|
||||
click.style(
|
||||
f"Failed to delete vector index {collection_name} for dataset {dataset.id}.", fg="red"
|
||||
)
|
||||
)
|
||||
raise e
|
||||
# try:
|
||||
# vector.delete()
|
||||
# click.echo(
|
||||
# click.style(f"Deleted vector index {collection_name} for dataset {dataset.id}.", fg="green")
|
||||
# )
|
||||
# except Exception as e:
|
||||
# click.echo(
|
||||
# click.style(
|
||||
# f"Failed to delete vector index {collection_name} for dataset {dataset.id}.", fg="red"
|
||||
# )
|
||||
# )
|
||||
# raise e
|
||||
|
||||
dataset_documents = db.session.scalars(
|
||||
select(DatasetDocument).where(
|
||||
|
|
@ -391,6 +395,7 @@ def migrate_knowledge_vector_database():
|
|||
documents = []
|
||||
segments_count = 0
|
||||
for dataset_document in dataset_documents:
|
||||
|
||||
segments = db.session.scalars(
|
||||
select(DocumentSegment).where(
|
||||
DocumentSegment.document_id == dataset_document.id,
|
||||
|
|
|
|||
|
|
@ -283,6 +283,9 @@ class Vector:
|
|||
}
|
||||
)
|
||||
return self._vector_processor.search_by_vector(multimodal_vector, **kwargs)
|
||||
|
||||
def search_by_metadata_field(self, key: str, value: str, **kwargs: Any) -> list[Document]:
|
||||
return self._vector_processor.search_by_metadata_field(key, value, **kwargs)
|
||||
|
||||
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
|
||||
return self._vector_processor.search_by_full_text(query, **kwargs)
|
||||
|
|
|
|||
Loading…
Reference in New Issue