This commit is contained in:
qiuqiua 2025-12-29 03:08:10 +00:00 committed by GitHub
commit 5c958d461a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
44 changed files with 7880 additions and 128 deletions

View File

@ -1,9 +1,13 @@
import logging
from collections.abc import Sequence
from typing import Any
from flask_restx import Resource
from pydantic import BaseModel, Field
logger = logging.getLogger(__name__)
from controllers.console import console_ns
from controllers.console.app.error import (
CompletionRequestError,
@ -18,6 +22,7 @@ from core.helper.code_executor.javascript.javascript_code_provider import Javasc
from core.helper.code_executor.python3.python3_code_provider import Python3CodeProvider
from core.llm_generator.llm_generator import LLMGenerator
from core.model_runtime.errors.invoke import InvokeError
from core.workflow.generator import WorkflowGenerator
from extensions.ext_database import db
from libs.login import current_account_with_tenant, login_required
from models import App
@ -55,12 +60,34 @@ class InstructionTemplatePayload(BaseModel):
type: str = Field(..., description="Instruction template type")
class PreviousWorkflow(BaseModel):
"""Previous workflow attempt for regeneration context."""
nodes: list[dict[str, Any]] = Field(default_factory=list, description="Previously generated nodes")
edges: list[dict[str, Any]] = Field(default_factory=list, description="Previously generated edges")
warnings: list[str] = Field(default_factory=list, description="Warnings from previous generation")
class FlowchartGeneratePayload(BaseModel):
instruction: str = Field(..., description="Workflow flowchart generation instruction")
model_config_data: dict[str, Any] = Field(..., alias="model_config", description="Model configuration")
available_nodes: list[dict[str, Any]] = Field(default_factory=list, description="Available node types")
existing_nodes: list[dict[str, Any]] = Field(default_factory=list, description="Existing workflow nodes")
available_tools: list[dict[str, Any]] = Field(default_factory=list, description="Available tools")
selected_node_ids: list[str] = Field(default_factory=list, description="IDs of selected nodes for context")
previous_workflow: PreviousWorkflow | None = Field(default=None, description="Previous workflow for regeneration")
regenerate_mode: bool = Field(default=False, description="Whether this is a regeneration request")
# Language preference for generated content (node titles, descriptions)
language: str | None = Field(default=None, description="Preferred language for generated content")
# Available models that user has configured (for LLM/question-classifier nodes)
available_models: list[dict[str, Any]] = Field(default_factory=list, description="User's configured models")
# Validate-fix iteration loop configuration
max_fix_iterations: int = Field(
default=2,
ge=0,
le=5,
description="Maximum number of validate-fix iterations (0 to disable auto-fix)",
)
def reg(cls: type[BaseModel]):
@ -267,7 +294,7 @@ class InstructionGenerateApi(Resource):
@console_ns.route("/flowchart-generate")
class FlowchartGenerateApi(Resource):
@console_ns.doc("generate_workflow_flowchart")
@console_ns.doc(description="Generate workflow flowchart using LLM")
@console_ns.doc(description="Generate workflow flowchart using LLM with intent classification")
@console_ns.expect(console_ns.models[FlowchartGeneratePayload.__name__])
@console_ns.response(200, "Flowchart generated successfully")
@console_ns.response(400, "Invalid request parameters")
@ -280,14 +307,24 @@ class FlowchartGenerateApi(Resource):
_, current_tenant_id = current_account_with_tenant()
try:
result = LLMGenerator.generate_workflow_flowchart(
# Convert PreviousWorkflow to dict if present
previous_workflow_dict = args.previous_workflow.model_dump() if args.previous_workflow else None
result = WorkflowGenerator.generate_workflow_flowchart(
tenant_id=current_tenant_id,
instruction=args.instruction,
model_config=args.model_config_data,
available_nodes=args.available_nodes,
existing_nodes=args.existing_nodes,
available_tools=args.available_tools,
selected_node_ids=args.selected_node_ids,
previous_workflow=previous_workflow_dict,
regenerate_mode=args.regenerate_mode,
preferred_language=args.language,
available_models=args.available_models,
max_fix_iterations=args.max_fix_iterations,
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:

View File

@ -1,6 +1,5 @@
import json
import logging
import re
from collections.abc import Sequence
from typing import Protocol, cast
@ -12,13 +11,10 @@ from core.llm_generator.prompts import (
CONVERSATION_TITLE_PROMPT,
GENERATOR_QA_PROMPT,
JAVASCRIPT_CODE_GENERATOR_PROMPT_TEMPLATE,
LLM_MODIFY_CODE_SYSTEM,
LLM_MODIFY_PROMPT_SYSTEM,
PYTHON_CODE_GENERATOR_PROMPT_TEMPLATE,
SUGGESTED_QUESTIONS_MAX_TOKENS,
SUGGESTED_QUESTIONS_TEMPERATURE,
SYSTEM_STRUCTURED_OUTPUT_GENERATE,
WORKFLOW_FLOWCHART_PROMPT_TEMPLATE,
WORKFLOW_RULE_CONFIG_PROMPT_GENERATE_TEMPLATE,
)
from core.model_manager import ModelManager
@ -31,6 +27,7 @@ from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
from core.ops.utils import measure_time
from core.prompt.utils.prompt_template_parser import PromptTemplateParser
from core.workflow.entities.workflow_node_execution import WorkflowNodeExecutionMetadataKey
from core.workflow.generator import WorkflowGenerator
from extensions.ext_database import db
from extensions.ext_storage import storage
from models import App, Message, WorkflowNodeExecutionModel
@ -295,52 +292,29 @@ class LLMGenerator:
available_nodes: Sequence[dict[str, object]] | None = None,
existing_nodes: Sequence[dict[str, object]] | None = None,
available_tools: Sequence[dict[str, object]] | None = None,
selected_node_ids: Sequence[str] | None = None,
previous_workflow: dict[str, object] | None = None,
regenerate_mode: bool = False,
preferred_language: str | None = None,
available_models: Sequence[dict[str, object]] | None = None,
max_fix_iterations: int = 2,
):
model_parameters = model_config.get("completion_params", {})
prompt_template = PromptTemplateParser(WORKFLOW_FLOWCHART_PROMPT_TEMPLATE)
prompt_generate = prompt_template.format(
inputs={
"TASK_DESCRIPTION": instruction,
"AVAILABLE_NODES": json.dumps(available_nodes or [], ensure_ascii=False),
"EXISTING_NODES": json.dumps(existing_nodes or [], ensure_ascii=False),
"AVAILABLE_TOOLS": json.dumps(available_tools or [], ensure_ascii=False),
},
remove_template_variables=False,
)
prompt_messages = [UserPromptMessage(content=prompt_generate)]
model_manager = ModelManager()
model_instance = model_manager.get_model_instance(
return WorkflowGenerator.generate_workflow_flowchart(
tenant_id=tenant_id,
model_type=ModelType.LLM,
provider=model_config.get("provider", ""),
model=model_config.get("name", ""),
instruction=instruction,
model_config=model_config,
available_nodes=available_nodes,
existing_nodes=existing_nodes,
available_tools=available_tools,
selected_node_ids=selected_node_ids,
previous_workflow=previous_workflow,
regenerate_mode=regenerate_mode,
preferred_language=preferred_language,
available_models=available_models,
max_fix_iterations=max_fix_iterations,
)
flowchart = ""
error = ""
try:
response: LLMResult = model_instance.invoke_llm(
prompt_messages=list(prompt_messages),
model_parameters=model_parameters,
stream=False,
)
content = response.message.get_text_content()
if not isinstance(content, str):
raise ValueError("Flowchart response is not a string")
match = re.search(r"```(?:mermaid)?\s*([\s\S]+?)```", content, flags=re.IGNORECASE)
flowchart = (match.group(1) if match else content).strip()
except InvokeError as e:
error = str(e)
except Exception as e:
logger.exception("Failed to generate workflow flowchart, model: %s", model_config.get("name"))
error = str(e)
return {"flowchart": flowchart, "error": error}
@classmethod
def generate_code(cls, tenant_id: str, instruction: str, model_config: dict, code_language: str = "javascript"):
if code_language == "python":

View File

@ -147,6 +147,8 @@ WORKFLOW_FLOWCHART_PROMPT_TEMPLATE = """
You are an expert workflow designer. Generate a Mermaid flowchart based on the user's request.
Constraints:
- Detect the language of the user's request. Generate all node titles in the same language as the user's input.
- If the input language cannot be determined, use {{PREFERRED_LANGUAGE}} as the fallback language.
- Use only node types listed in <available_nodes>.
- Use only tools listed in <available_tools>. When using a tool node, set type=tool and tool=<tool_key>.
- Tools may include MCP providers (provider_type=mcp). Tool selection still uses tool_key.

View File

@ -0,0 +1 @@
from .runner import WorkflowGenerator

View File

@ -0,0 +1,29 @@
"""
Vibe Workflow Generator Configuration Module.
This module centralizes configuration for the Vibe workflow generation feature,
including node schemas, fallback rules, and response templates.
"""
from core.workflow.generator.config.node_schemas import (
BUILTIN_NODE_SCHEMAS,
FALLBACK_RULES,
FIELD_NAME_CORRECTIONS,
NODE_TYPE_ALIASES,
get_builtin_node_schemas,
get_corrected_field_name,
validate_node_schemas,
)
from core.workflow.generator.config.responses import DEFAULT_SUGGESTIONS, OFF_TOPIC_RESPONSES
__all__ = [
"BUILTIN_NODE_SCHEMAS",
"DEFAULT_SUGGESTIONS",
"FALLBACK_RULES",
"FIELD_NAME_CORRECTIONS",
"NODE_TYPE_ALIASES",
"OFF_TOPIC_RESPONSES",
"get_builtin_node_schemas",
"get_corrected_field_name",
"validate_node_schemas",
]

View File

@ -0,0 +1,501 @@
"""
Unified Node Configuration for Vibe Workflow Generation.
This module centralizes all node-related configuration:
- Node schemas (parameter definitions)
- Fallback rules (keyword-based node type inference)
- Node type aliases (natural language to canonical type mapping)
- Field name corrections (LLM output normalization)
- Validation utilities
Note: These definitions are the single source of truth.
Frontend has a mirrored copy at web/app/components/workflow/hooks/use-workflow-vibe-config.ts
"""
from typing import Any
# =============================================================================
# NODE SCHEMAS
# =============================================================================
# Built-in node schemas with parameter definitions
# These help the model understand what config each node type requires
_HARDCODED_SCHEMAS: dict[str, dict[str, Any]] = {
"http-request": {
"description": "Send HTTP requests to external APIs or fetch web content",
"required": ["url", "method"],
"parameters": {
"url": {
"type": "string",
"description": "Full URL including protocol (https://...)",
"example": "{{#start.url#}} or https://api.example.com/data",
},
"method": {
"type": "enum",
"options": ["GET", "POST", "PUT", "DELETE", "PATCH", "HEAD"],
"description": "HTTP method",
},
"headers": {
"type": "string",
"description": "HTTP headers as newline-separated 'Key: Value' pairs",
"example": "Content-Type: application/json\nAuthorization: Bearer {{#start.api_key#}}",
},
"params": {
"type": "string",
"description": "URL query parameters as newline-separated 'key: value' pairs",
},
"body": {
"type": "object",
"description": "Request body with type field required",
"example": {"type": "none", "data": []},
},
"authorization": {
"type": "object",
"description": "Authorization config",
"example": {"type": "no-auth"},
},
"timeout": {
"type": "number",
"description": "Request timeout in seconds",
"default": 60,
},
},
"outputs": ["body (response content)", "status_code", "headers"],
},
"code": {
"description": "Execute Python or JavaScript code for custom logic",
"required": ["code", "language"],
"parameters": {
"code": {
"type": "string",
"description": "Code to execute. Must define a main() function that returns a dict.",
},
"language": {
"type": "enum",
"options": ["python3", "javascript"],
},
"variables": {
"type": "array",
"description": "Input variables passed to the code",
"item_schema": {"variable": "string", "value_selector": "array"},
},
"outputs": {
"type": "object",
"description": "Output variable definitions",
},
},
"outputs": ["Variables defined in outputs schema"],
},
"llm": {
"description": "Call a large language model for text generation/processing",
"required": ["prompt_template"],
"parameters": {
"model": {
"type": "object",
"description": "Model configuration (provider, name, mode)",
},
"prompt_template": {
"type": "array",
"description": "Messages for the LLM",
"item_schema": {
"role": "enum: system, user, assistant",
"text": "string - message content, can include {{#node_id.field#}} references",
},
},
"context": {
"type": "object",
"description": "Optional context settings",
},
"memory": {
"type": "object",
"description": "Optional memory/conversation settings",
},
},
"outputs": ["text (generated response)"],
},
"if-else": {
"description": "Conditional branching based on conditions",
"required": ["cases"],
"parameters": {
"cases": {
"type": "array",
"description": "List of condition cases. Each case defines when 'true' branch is taken.",
"item_schema": {
"case_id": "string - unique case identifier (e.g., 'case_1')",
"logical_operator": "enum: and, or - how multiple conditions combine",
"conditions": {
"type": "array",
"item_schema": {
"variable_selector": "array of strings - path to variable, e.g. ['node_id', 'field']",
"comparison_operator": (
"enum: =, ≠, >, <, ≥, ≤, contains, not contains, is, is not, empty, not empty"
),
"value": "string or number - value to compare against",
},
},
},
},
},
"outputs": ["Branches: true (first case conditions met), false (else/no case matched)"],
},
"knowledge-retrieval": {
"description": "Query knowledge base for relevant content",
"required": ["query_variable_selector", "dataset_ids"],
"parameters": {
"query_variable_selector": {
"type": "array",
"description": "Path to query variable, e.g. ['start', 'query']",
},
"dataset_ids": {
"type": "array",
"description": "List of knowledge base IDs to search",
},
"retrieval_mode": {
"type": "enum",
"options": ["single", "multiple"],
},
},
"outputs": ["result (retrieved documents)"],
},
"template-transform": {
"description": "Transform data using Jinja2 templates",
"required": ["template", "variables"],
"parameters": {
"template": {
"type": "string",
"description": "Jinja2 template string. Use {{ variable_name }} to reference variables.",
},
"variables": {
"type": "array",
"description": "Input variables defined for the template",
"item_schema": {
"variable": "string - variable name to use in template",
"value_selector": "array - path to source value, e.g. ['start', 'user_input']",
},
},
},
"outputs": ["output (transformed string)"],
},
"variable-aggregator": {
"description": "Aggregate variables from multiple branches",
"required": ["variables"],
"parameters": {
"variables": {
"type": "array",
"description": "List of variable selectors to aggregate",
"item_schema": "array of strings - path to source variable, e.g. ['node_id', 'field']",
},
},
"outputs": ["output (aggregated value)"],
},
"iteration": {
"description": "Loop over array items",
"required": ["iterator_selector"],
"parameters": {
"iterator_selector": {
"type": "array",
"description": "Path to array variable to iterate",
},
},
"outputs": ["item (current iteration item)", "index (current index)"],
},
"parameter-extractor": {
"description": "Extract structured parameters from user input using LLM",
"required": ["query", "parameters"],
"parameters": {
"model": {
"type": "object",
"description": "Model configuration (provider, name, mode)",
},
"query": {
"type": "array",
"description": "Path to input text to extract parameters from, e.g. ['start', 'user_input']",
},
"parameters": {
"type": "array",
"description": "Parameters to extract from the input",
"item_schema": {
"name": "string - parameter name (required)",
"type": (
"enum: string, number, boolean, array[string], array[number], array[object], array[boolean]"
),
"description": "string - description of what to extract (required)",
"required": "boolean - whether this parameter is required (MUST be specified)",
"options": "array of strings (optional) - for enum-like selection",
},
},
"instruction": {
"type": "string",
"description": "Additional instructions for extraction",
},
"reasoning_mode": {
"type": "enum",
"options": ["function_call", "prompt"],
"description": "How to perform extraction (defaults to function_call)",
},
},
"outputs": ["Extracted parameters as defined in parameters array", "__is_success", "__reason"],
},
"question-classifier": {
"description": "Classify user input into predefined categories using LLM",
"required": ["query", "classes"],
"parameters": {
"model": {
"type": "object",
"description": "Model configuration (provider, name, mode)",
},
"query": {
"type": "array",
"description": "Path to input text to classify, e.g. ['start', 'user_input']",
},
"classes": {
"type": "array",
"description": "Classification categories",
"item_schema": {
"id": "string - unique class identifier",
"name": "string - class name/label",
},
},
"instruction": {
"type": "string",
"description": "Additional instructions for classification",
},
},
"outputs": ["class_name (selected class)"],
},
}
def _get_dynamic_schemas() -> dict[str, dict[str, Any]]:
"""
Dynamically load schemas from node classes.
Uses lazy import to avoid circular dependency.
"""
from core.workflow.nodes.node_mapping import LATEST_VERSION, NODE_TYPE_CLASSES_MAPPING
schemas = {}
for node_type, version_map in NODE_TYPE_CLASSES_MAPPING.items():
# Get the latest version class
node_cls = version_map.get(LATEST_VERSION)
if not node_cls:
continue
# Get schema from the class
schema = node_cls.get_default_config_schema()
if schema:
schemas[node_type.value] = schema
return schemas
# Cache for built-in schemas (populated on first access)
_builtin_schemas_cache: dict[str, dict[str, Any]] | None = None
def get_builtin_node_schemas() -> dict[str, dict[str, Any]]:
"""
Get the complete set of built-in node schemas.
Combines hardcoded schemas with dynamically loaded ones.
Results are cached after first call.
"""
global _builtin_schemas_cache
if _builtin_schemas_cache is None:
_builtin_schemas_cache = {**_HARDCODED_SCHEMAS, **_get_dynamic_schemas()}
return _builtin_schemas_cache
# For backward compatibility - but use get_builtin_node_schemas() for lazy loading
BUILTIN_NODE_SCHEMAS: dict[str, dict[str, Any]] = _HARDCODED_SCHEMAS.copy()
# =============================================================================
# FALLBACK RULES
# =============================================================================
# Keyword rules for smart fallback detection
# Maps node type to keywords that suggest using that node type as a fallback
FALLBACK_RULES: dict[str, list[str]] = {
"http-request": [
"http",
"url",
"web",
"scrape",
"scraper",
"fetch",
"api",
"request",
"download",
"upload",
"webhook",
"endpoint",
"rest",
"get",
"post",
],
"code": [
"code",
"script",
"calculate",
"compute",
"process",
"transform",
"parse",
"convert",
"format",
"filter",
"sort",
"math",
"logic",
],
"llm": [
"analyze",
"summarize",
"summary",
"extract",
"classify",
"translate",
"generate",
"write",
"rewrite",
"explain",
"answer",
"chat",
],
}
# =============================================================================
# NODE TYPE ALIASES
# =============================================================================
# Node type aliases for inference from natural language
# Maps common terms to canonical node type names
NODE_TYPE_ALIASES: dict[str, str] = {
# Start node aliases
"start": "start",
"begin": "start",
"input": "start",
# End node aliases
"end": "end",
"finish": "end",
"output": "end",
# LLM node aliases
"llm": "llm",
"ai": "llm",
"gpt": "llm",
"model": "llm",
"chat": "llm",
# Code node aliases
"code": "code",
"script": "code",
"python": "code",
"javascript": "code",
# HTTP request node aliases
"http-request": "http-request",
"http": "http-request",
"request": "http-request",
"api": "http-request",
"fetch": "http-request",
"webhook": "http-request",
# Conditional node aliases
"if-else": "if-else",
"condition": "if-else",
"branch": "if-else",
"switch": "if-else",
# Loop node aliases
"iteration": "iteration",
"loop": "loop",
"foreach": "iteration",
# Tool node alias
"tool": "tool",
}
# =============================================================================
# FIELD NAME CORRECTIONS
# =============================================================================
# Field name corrections for LLM-generated node configs
# Maps incorrect field names to correct ones for specific node types
FIELD_NAME_CORRECTIONS: dict[str, dict[str, str]] = {
"http-request": {
"text": "body", # LLM might use "text" instead of "body"
"content": "body",
"response": "body",
},
"code": {
"text": "result", # LLM might use "text" instead of "result"
"output": "result",
},
"llm": {
"response": "text",
"answer": "text",
},
}
def get_corrected_field_name(node_type: str, field: str) -> str:
"""
Get the corrected field name for a node type.
Args:
node_type: The type of the node (e.g., "http-request", "code")
field: The field name to correct
Returns:
The corrected field name, or the original if no correction needed
"""
corrections = FIELD_NAME_CORRECTIONS.get(node_type, {})
return corrections.get(field, field)
# =============================================================================
# VALIDATION UTILITIES
# =============================================================================
# Node types that are internal and don't need schemas for LLM generation
_INTERNAL_NODE_TYPES: set[str] = {
# Internal workflow nodes
"answer", # Internal to chatflow
"loop", # Uses iteration internally
"assigner", # Variable assignment utility
"variable-assigner", # Variable assignment utility
"agent", # Agent node (complex, handled separately)
"document-extractor", # Internal document processing
"list-operator", # Internal list operations
# Iteration internal nodes
"iteration-start", # Internal to iteration loop
"loop-start", # Internal to loop
"loop-end", # Internal to loop
# Trigger nodes (not user-creatable via LLM)
"trigger-plugin", # Plugin trigger
"trigger-schedule", # Scheduled trigger
"trigger-webhook", # Webhook trigger
# Other internal nodes
"datasource", # Data source configuration
"human-input", # Human-in-the-loop node
"knowledge-index", # Knowledge indexing node
}
def validate_node_schemas() -> list[str]:
"""
Validate that all registered node types have corresponding schemas.
This function checks if BUILTIN_NODE_SCHEMAS covers all node types
registered in NODE_TYPE_CLASSES_MAPPING, excluding internal node types.
Returns:
List of warning messages for missing schemas (empty if all valid)
"""
from core.workflow.nodes.node_mapping import NODE_TYPE_CLASSES_MAPPING
schemas = get_builtin_node_schemas()
warnings = []
for node_type in NODE_TYPE_CLASSES_MAPPING:
type_value = node_type.value
if type_value in _INTERNAL_NODE_TYPES:
continue
if type_value not in schemas:
warnings.append(f"Missing schema for node type: {type_value}")
return warnings

View File

@ -0,0 +1,74 @@
"""
Response Templates for Vibe Workflow Generation.
This module defines templates for off-topic responses and default suggestions
to guide users back to workflow-related requests.
"""
# Off-topic response templates for different categories
# Each category has messages in multiple languages
OFF_TOPIC_RESPONSES: dict[str, dict[str, str]] = {
"weather": {
"en": (
"I'm the workflow design assistant - I can't check the weather, "
"but I can help you build AI workflows! For example, I could help you "
"create a workflow that fetches weather data from an API."
),
"zh": "我是工作流设计助手无法查询天气。但我可以帮你创建一个从API获取天气数据的工作流",
},
"math": {
"en": (
"I focus on workflow design rather than calculations. However, "
"if you need calculations in a workflow, I can help you add a Code node "
"that handles math operations!"
),
"zh": "我专注于工作流设计而非计算。但如果您需要在工作流中进行计算,我可以帮您添加一个处理数学运算的代码节点!",
},
"joke": {
"en": (
"While I'd love to share a laugh, I'm specialized in workflow design. "
"How about we create something fun instead - like a workflow that generates jokes using AI?"
),
"zh": "虽然我很想讲笑话但我专门从事工作流设计。不如我们创建一个有趣的东西——比如使用AI生成笑话的工作流",
},
"translation": {
"en": (
"I can't translate directly, but I can help you build a translation workflow! "
"Would you like to create one using an LLM node?"
),
"zh": "我不能直接翻译但我可以帮你构建一个翻译工作流要创建一个使用LLM节点的翻译流程吗",
},
"general_coding": {
"en": (
"I'm specialized in Dify workflow design rather than general coding help. "
"But if you want to add code logic to your workflow, I can help you configure a Code node!"
),
"zh": (
"我专注于Dify工作流设计而非通用编程帮助。"
"但如果您想在工作流中添加代码逻辑,我可以帮您配置一个代码节点!"
),
},
"default": {
"en": (
"I'm the Dify workflow design assistant. I help create AI automation workflows, "
"but I can't help with general questions. Would you like to create a workflow instead?"
),
"zh": "我是Dify工作流设计助手。我帮助创建AI自动化工作流但无法回答一般性问题。您想创建一个工作流吗",
},
}
# Default suggestions for off-topic requests
# These help guide users towards valid workflow requests
DEFAULT_SUGGESTIONS: dict[str, list[str]] = {
"en": [
"Create a chatbot workflow",
"Build a document summarization pipeline",
"Add email notification to workflow",
],
"zh": [
"创建一个聊天机器人工作流",
"构建文档摘要处理流程",
"添加邮件通知到工作流",
],
}

View File

@ -0,0 +1,354 @@
BUILDER_SYSTEM_PROMPT = """<role>
You are a Workflow Configuration Engineer.
Your goal is to implement the Architect's plan by generating a precise, runnable Dify Workflow JSON configuration.
</role>
<inputs>
<plan>
{plan_context}
</plan>
<tool_schemas>
{tool_schemas}
</tool_schemas>
<node_specs>
{builtin_node_specs}
</node_specs>
<available_models>
{available_models}
</available_models>
</inputs>
<rules>
1. **Configuration**:
- You MUST fill ALL required parameters for every node.
- Use `{{{{#node_id.field#}}}}` syntax to reference outputs from previous nodes in text fields.
- For 'start' node, define all necessary user inputs.
2. **Variable References**:
- For text fields (like prompts, queries): use string format `{{{{#node_id.field#}}}}`
- For 'end' node outputs: use `value_selector` array format `["node_id", "field"]`
- Example: to reference 'llm' node's 'text' output in end node, use `["llm", "text"]`
3. **Tools**:
- ONLY use the tools listed in `<tool_schemas>`.
- If a planned tool is missing from schemas, fallback to `http-request` or `code`.
4. **Model Selection** (CRITICAL):
- For LLM, question-classifier, and parameter-extractor nodes, you MUST include a "model" config.
- You MUST use ONLY models from the `<available_models>` section above.
- Copy the EXACT provider and name values from available_models.
- NEVER use openai/gpt-4o, gpt-3.5-turbo, gpt-4, or any other models unless they appear in available_models.
- If available_models is empty or shows "No models configured", omit the model config entirely.
5. **Node Specifics**:
- For `if-else` comparison_operator, use literal symbols: ``, ``, `=`, `` (NOT `>=` or `==`).
6. **Output**:
- Return ONLY the JSON object with `nodes` and `edges`.
- Do NOT generate Mermaid diagrams.
- Do NOT generate explanations.
</rules>
<edge_rules priority="critical">
**EDGES ARE CRITICAL** - Every node except 'end' MUST have at least one outgoing edge.
1. **Linear Flow**: Simple source -> target connection
```
{{"source": "node_a", "target": "node_b"}}
```
2. **question-classifier Branching**: Each class MUST have a separate edge with `sourceHandle` = class `id`
- If you define classes: [{{"id": "cls_refund", "name": "Refund"}}, {{"id": "cls_inquiry", "name": "Inquiry"}}]
- You MUST create edges:
- {{"source": "classifier", "sourceHandle": "cls_refund", "target": "refund_handler"}}
- {{"source": "classifier", "sourceHandle": "cls_inquiry", "target": "inquiry_handler"}}
3. **if-else Branching**: MUST have exactly TWO edges with sourceHandle "true" and "false"
- {{"source": "condition", "sourceHandle": "true", "target": "true_branch"}}
- {{"source": "condition", "sourceHandle": "false", "target": "false_branch"}}
4. **Branch Convergence**: Multiple branches can connect to same downstream node
- Both true_branch and false_branch can connect to the same 'end' node
5. **NEVER leave orphan nodes**: Every node must be connected in the graph
</edge_rules>
<examples>
<example name="simple_linear">
```json
{{
"nodes": [
{{
"id": "start",
"type": "start",
"title": "Start",
"config": {{
"variables": [{{"variable": "query", "label": "Query", "type": "text-input"}}]
}}
}},
{{
"id": "llm",
"type": "llm",
"title": "Generate Response",
"config": {{
"model": {{"provider": "openai", "name": "gpt-4o", "mode": "chat"}},
"prompt_template": [{{"role": "user", "text": "Answer: {{{{#start.query#}}}}"}}]
}}
}},
{{
"id": "end",
"type": "end",
"title": "End",
"config": {{
"outputs": [
{{"variable": "result", "value_selector": ["llm", "text"]}}
]
}}
}}
],
"edges": [
{{"source": "start", "target": "llm"}},
{{"source": "llm", "target": "end"}}
]
}}
```
</example>
<example name="question_classifier_branching" description="Customer service with intent classification">
```json
{{
"nodes": [
{{
"id": "start",
"type": "start",
"title": "Start",
"config": {{
"variables": [{{"variable": "user_input", "label": "User Message", "type": "text-input", "required": true}}]
}}
}},
{{
"id": "classifier",
"type": "question-classifier",
"title": "Classify Intent",
"config": {{
"model": {{"provider": "openai", "name": "gpt-4o", "mode": "chat"}},
"query_variable_selector": ["start", "user_input"],
"classes": [
{{"id": "cls_refund", "name": "Refund Request"}},
{{"id": "cls_inquiry", "name": "Product Inquiry"}},
{{"id": "cls_complaint", "name": "Complaint"}},
{{"id": "cls_other", "name": "Other"}}
],
"instruction": "Classify the user's intent"
}}
}},
{{
"id": "handle_refund",
"type": "llm",
"title": "Handle Refund",
"config": {{
"model": {{"provider": "openai", "name": "gpt-4o", "mode": "chat"}},
"prompt_template": [{{"role": "user", "text": "Extract order number and respond: {{{{#start.user_input#}}}}"}}]
}}
}},
{{
"id": "handle_inquiry",
"type": "llm",
"title": "Handle Inquiry",
"config": {{
"model": {{"provider": "openai", "name": "gpt-4o", "mode": "chat"}},
"prompt_template": [{{"role": "user", "text": "Answer product question: {{{{#start.user_input#}}}}"}}]
}}
}},
{{
"id": "handle_complaint",
"type": "llm",
"title": "Handle Complaint",
"config": {{
"model": {{"provider": "openai", "name": "gpt-4o", "mode": "chat"}},
"prompt_template": [{{"role": "user", "text": "Respond with empathy: {{{{#start.user_input#}}}}"}}]
}}
}},
{{
"id": "handle_other",
"type": "llm",
"title": "Handle Other",
"config": {{
"model": {{"provider": "openai", "name": "gpt-4o", "mode": "chat"}},
"prompt_template": [{{"role": "user", "text": "Provide general response: {{{{#start.user_input#}}}}"}}]
}}
}},
{{
"id": "end",
"type": "end",
"title": "End",
"config": {{
"outputs": [{{"variable": "response", "value_selector": ["handle_refund", "text"]}}]
}}
}}
],
"edges": [
{{"source": "start", "target": "classifier"}},
{{"source": "classifier", "sourceHandle": "cls_refund", "target": "handle_refund"}},
{{"source": "classifier", "sourceHandle": "cls_inquiry", "target": "handle_inquiry"}},
{{"source": "classifier", "sourceHandle": "cls_complaint", "target": "handle_complaint"}},
{{"source": "classifier", "sourceHandle": "cls_other", "target": "handle_other"}},
{{"source": "handle_refund", "target": "end"}},
{{"source": "handle_inquiry", "target": "end"}},
{{"source": "handle_complaint", "target": "end"}},
{{"source": "handle_other", "target": "end"}}
]
}}
```
CRITICAL: Notice that each class id (cls_refund, cls_inquiry, etc.) becomes a sourceHandle in the edges!
</example>
<example name="if_else_branching" description="Conditional logic with if-else">
```json
{{
"nodes": [
{{
"id": "start",
"type": "start",
"title": "Start",
"config": {{
"variables": [{{"variable": "years", "label": "Years of Experience", "type": "number", "required": true}}]
}}
}},
{{
"id": "check_experience",
"type": "if-else",
"title": "Check Experience",
"config": {{
"cases": [
{{
"case_id": "case_1",
"logical_operator": "and",
"conditions": [
{{
"variable_selector": ["start", "years"],
"comparison_operator": "",
"value": "3"
}}
]
}}
]
}}
}},
{{
"id": "qualified",
"type": "llm",
"title": "Qualified Response",
"config": {{
"model": {{"provider": "openai", "name": "gpt-4o", "mode": "chat"}},
"prompt_template": [{{"role": "user", "text": "Generate qualified candidate response"}}]
}}
}},
{{
"id": "not_qualified",
"type": "llm",
"title": "Not Qualified Response",
"config": {{
"model": {{"provider": "openai", "name": "gpt-4o", "mode": "chat"}},
"prompt_template": [{{"role": "user", "text": "Generate rejection response"}}]
}}
}},
{{
"id": "end",
"type": "end",
"title": "End",
"config": {{
"outputs": [{{"variable": "result", "value_selector": ["qualified", "text"]}}]
}}
}}
],
"edges": [
{{"source": "start", "target": "check_experience"}},
{{"source": "check_experience", "sourceHandle": "true", "target": "qualified"}},
{{"source": "check_experience", "sourceHandle": "false", "target": "not_qualified"}},
{{"source": "qualified", "target": "end"}},
{{"source": "not_qualified", "target": "end"}}
]
}}
```
CRITICAL: if-else MUST have exactly two edges with sourceHandle "true" and "false"!
</example>
<example name="parameter_extractor" description="Extract structured data from text">
```json
{{
"nodes": [
{{
"id": "start",
"type": "start",
"title": "Start",
"config": {{
"variables": [{{"variable": "resume", "label": "Resume Text", "type": "paragraph", "required": true}}]
}}
}},
{{
"id": "extract",
"type": "parameter-extractor",
"title": "Extract Info",
"config": {{
"model": {{"provider": "openai", "name": "gpt-4o", "mode": "chat"}},
"query": ["start", "resume"],
"parameters": [
{{"name": "name", "type": "string", "description": "Candidate name", "required": true}},
{{"name": "years", "type": "number", "description": "Years of experience", "required": true}},
{{"name": "skills", "type": "array[string]", "description": "List of skills", "required": true}}
],
"instruction": "Extract candidate information from resume"
}}
}},
{{
"id": "process",
"type": "llm",
"title": "Process Data",
"config": {{
"model": {{"provider": "openai", "name": "gpt-4o", "mode": "chat"}},
"prompt_template": [{{"role": "user", "text": "Name: {{{{#extract.name#}}}}, Years: {{{{#extract.years#}}}}"}}]
}}
}},
{{
"id": "end",
"type": "end",
"title": "End",
"config": {{
"outputs": [{{"variable": "result", "value_selector": ["process", "text"]}}]
}}
}}
],
"edges": [
{{"source": "start", "target": "extract"}},
{{"source": "extract", "target": "process"}},
{{"source": "process", "target": "end"}}
]
}}
```
</example>
</examples>
<edge_checklist>
Before finalizing, verify:
1. [ ] Every node (except 'end') has at least one outgoing edge
2. [ ] 'start' node has exactly one outgoing edge
3. [ ] 'question-classifier' has one edge per class, each with sourceHandle = class id
4. [ ] 'if-else' has exactly two edges: sourceHandle "true" and sourceHandle "false"
5. [ ] All branches eventually connect to 'end' (directly or through other nodes)
6. [ ] No orphan nodes exist (every node is reachable from 'start')
</edge_checklist>
"""
BUILDER_USER_PROMPT = """<instruction>
{instruction}
</instruction>
Generate the full workflow configuration now. Pay special attention to:
1. Creating edges for ALL branches of question-classifier and if-else nodes
2. Using correct sourceHandle values for branching nodes
3. Ensuring every node is connected in the graph
"""

View File

@ -0,0 +1,75 @@
PLANNER_SYSTEM_PROMPT = """<role>
You are an expert Workflow Architect.
Your job is to analyze user requests and plan a high-level automation workflow.
</role>
<task>
1. **Classify Intent**:
- Is the user asking to create an automation/workflow? -> Intent: "generate"
- Is it general chat/weather/jokes? -> Intent: "off_topic"
2. **Plan Steps** (if intent is "generate"):
- Break down the user's goal into logical steps.
- For each step, identify if a specific capability/tool is needed.
- Select the MOST RELEVANT tools from the available_tools list.
- DO NOT configure parameters yet. Just identify the tool.
3. **Output Format**:
Return a JSON object.
</task>
<available_tools>
{tools_summary}
</available_tools>
<response_format>
If intent is "generate":
```json
{{
"intent": "generate",
"plan_thought": "Brief explanation of the plan...",
"steps": [
{{ "step": 1, "description": "Fetch data from URL", "tool": "http-request" }},
{{ "step": 2, "description": "Summarize content", "tool": "llm" }},
{{ "step": 3, "description": "Search for info", "tool": "google_search" }}
],
"required_tool_keys": ["google_search"]
}}
```
(Note: 'http-request', 'llm', 'code' are built-in, you don't need to list them in required_tool_keys,
only external tools)
If intent is "off_topic":
```json
{{
"intent": "off_topic",
"message": "I can only help you build workflows. Try asking me to 'Create a workflow that...'",
"suggestions": ["Scrape a website", "Summarize a PDF"]
}}
```
</response_format>
"""
PLANNER_USER_PROMPT = """<user_request>
{instruction}
</user_request>
"""
def format_tools_for_planner(tools: list[dict]) -> str:
"""Format tools list for planner (Lightweight: Name + Description only)."""
if not tools:
return "No external tools available."
lines = []
for t in tools:
key = t.get("tool_key") or t.get("tool_name")
provider = t.get("provider_id") or t.get("provider", "")
desc = t.get("tool_description") or t.get("description", "")
label = t.get("tool_label") or key
# Format: - [provider/key] Label: Description
full_key = f"{provider}/{key}" if provider else key
lines.append(f"- [{full_key}] {label}: {desc}")
return "\n".join(lines)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,196 @@
import json
import logging
import re
from collections.abc import Sequence
import json_repair
from core.model_manager import ModelManager
from core.model_runtime.entities.message_entities import SystemPromptMessage, UserPromptMessage
from core.model_runtime.entities.model_entities import ModelType
from core.workflow.generator.prompts.builder_prompts import BUILDER_SYSTEM_PROMPT, BUILDER_USER_PROMPT
from core.workflow.generator.prompts.planner_prompts import (
PLANNER_SYSTEM_PROMPT,
PLANNER_USER_PROMPT,
format_tools_for_planner,
)
from core.workflow.generator.prompts.vibe_prompts import (
format_available_models,
format_available_nodes,
format_available_tools,
parse_vibe_response,
)
from core.workflow.generator.utils.edge_repair import EdgeRepair
from core.workflow.generator.utils.mermaid_generator import generate_mermaid
from core.workflow.generator.utils.node_repair import NodeRepair
from core.workflow.generator.utils.workflow_validator import WorkflowValidator
logger = logging.getLogger(__name__)
class WorkflowGenerator:
"""
Refactored Vibe Workflow Generator (Planner-Builder Architecture).
Extracts Vibe logic from the monolithic LLMGenerator.
"""
@classmethod
def generate_workflow_flowchart(
cls,
tenant_id: str,
instruction: str,
model_config: dict,
available_nodes: Sequence[dict[str, object]] | None = None,
existing_nodes: Sequence[dict[str, object]] | None = None,
available_tools: Sequence[dict[str, object]] | None = None,
selected_node_ids: Sequence[str] | None = None,
previous_workflow: dict[str, object] | None = None,
regenerate_mode: bool = False,
preferred_language: str | None = None,
available_models: Sequence[dict[str, object]] | None = None,
max_fix_iterations: int = 2,
):
"""
Generates a Dify Workflow Flowchart from natural language instruction.
Pipeline:
1. Planner: Analyze intent & select tools.
2. Context Filter: Filter relevant tools (reduce tokens).
3. Builder: Generate node configurations.
4. Repair: Fix common node/edge issues (NodeRepair, EdgeRepair).
5. Validator: Check for errors & generate friendly hints.
6. Renderer: Deterministic Mermaid generation.
"""
model_manager = ModelManager()
model_instance = model_manager.get_model_instance(
tenant_id=tenant_id,
model_type=ModelType.LLM,
provider=model_config.get("provider", ""),
model=model_config.get("name", ""),
)
model_parameters = model_config.get("completion_params", {})
available_tools_list = list(available_tools) if available_tools else []
# --- STEP 1: PLANNER ---
planner_tools_context = format_tools_for_planner(available_tools_list)
planner_system = PLANNER_SYSTEM_PROMPT.format(tools_summary=planner_tools_context)
planner_user = PLANNER_USER_PROMPT.format(instruction=instruction)
try:
response = model_instance.invoke_llm(
prompt_messages=[SystemPromptMessage(content=planner_system), UserPromptMessage(content=planner_user)],
model_parameters=model_parameters,
stream=False,
)
plan_content = response.message.content
# Reuse parse_vibe_response logic or simple load
plan_data = parse_vibe_response(plan_content)
except Exception as e:
logger.exception("Planner failed")
return {"intent": "error", "error": f"Planning failed: {str(e)}"}
if plan_data.get("intent") == "off_topic":
return {
"intent": "off_topic",
"message": plan_data.get("message", "I can only help with workflow creation."),
"suggestions": plan_data.get("suggestions", []),
}
# --- STEP 2: CONTEXT FILTERING ---
required_tools = plan_data.get("required_tool_keys", [])
filtered_tools = []
if required_tools:
# Simple linear search (optimized version would use a map)
for tool in available_tools_list:
t_key = tool.get("tool_key") or tool.get("tool_name")
provider = tool.get("provider_id") or tool.get("provider")
full_key = f"{provider}/{t_key}" if provider else t_key
# Check if this tool is in required list (match either full key or short name)
if t_key in required_tools or full_key in required_tools:
filtered_tools.append(tool)
else:
# If logic only, no tools needed
filtered_tools = []
# --- STEP 3: BUILDER ---
# Prepare context
tool_schemas = format_available_tools(filtered_tools)
# We need to construct a fake list structure for builtin nodes formatting if using format_available_nodes
# Actually format_available_nodes takes None to use defaults, or a list to add custom
# But we want to SHOW the builtins. format_available_nodes internally uses BUILTIN_NODE_SCHEMAS.
node_specs = format_available_nodes([])
builder_system = BUILDER_SYSTEM_PROMPT.format(
plan_context=json.dumps(plan_data.get("steps", []), indent=2),
tool_schemas=tool_schemas,
builtin_node_specs=node_specs,
available_models=format_available_models(list(available_models or [])),
)
builder_user = BUILDER_USER_PROMPT.format(instruction=instruction)
try:
build_res = model_instance.invoke_llm(
prompt_messages=[SystemPromptMessage(content=builder_system), UserPromptMessage(content=builder_user)],
model_parameters=model_parameters,
stream=False,
)
# Builder output is raw JSON nodes/edges
build_content = build_res.message.content
match = re.search(r"```(?:json)?\s*([\s\S]+?)```", build_content)
if match:
build_content = match.group(1)
workflow_data = json_repair.loads(build_content)
if "nodes" not in workflow_data:
workflow_data["nodes"] = []
if "edges" not in workflow_data:
workflow_data["edges"] = []
except Exception as e:
logger.exception("Builder failed")
return {"intent": "error", "error": f"Building failed: {str(e)}"}
# --- STEP 3.4: NODE REPAIR ---
node_repair_result = NodeRepair.repair(workflow_data["nodes"])
workflow_data["nodes"] = node_repair_result.nodes
# --- STEP 3.5: EDGE REPAIR ---
repair_result = EdgeRepair.repair(workflow_data)
workflow_data = {
"nodes": repair_result.nodes,
"edges": repair_result.edges,
}
# --- STEP 4: VALIDATOR ---
is_valid, hints = WorkflowValidator.validate(workflow_data, available_tools_list)
# --- STEP 5: RENDERER ---
mermaid_code = generate_mermaid(workflow_data)
# --- FINALIZE ---
# Combine validation hints with repair warnings
all_warnings = [h.message for h in hints] + repair_result.warnings + node_repair_result.warnings
# Add stability warning (as requested by user)
stability_warning = "The generated workflow may require debugging."
if preferred_language and preferred_language.startswith("zh"):
stability_warning = "生成的 Workflow 可能需要调试。"
all_warnings.append(stability_warning)
all_fixes = repair_result.repairs_made + node_repair_result.repairs_made
return {
"intent": "generate",
"flowchart": mermaid_code,
"nodes": workflow_data["nodes"],
"edges": workflow_data["edges"],
"message": plan_data.get("plan_thought", "Generated workflow based on your request."),
"warnings": all_warnings,
"tool_recommendations": [], # Legacy field
"error": "",
"fix_iterations": 0, # Legacy
"fixed_issues": all_fixes, # Track what was auto-fixed
}

View File

@ -0,0 +1,217 @@
"""
Type definitions for Vibe Workflow Generator.
This module provides:
- TypedDict classes for lightweight type hints (no runtime overhead)
- Pydantic models for runtime validation where needed
Usage:
# For type hints only (no runtime validation):
from core.workflow.generator.types import WorkflowNodeDict, WorkflowEdgeDict
# For runtime validation:
from core.workflow.generator.types import WorkflowNode, WorkflowEdge
"""
from typing import Any, TypedDict
from pydantic import BaseModel, Field
# ============================================================
# TypedDict definitions (lightweight, for type hints only)
# ============================================================
class WorkflowNodeDict(TypedDict, total=False):
"""
Workflow node structure (TypedDict for hints).
Attributes:
id: Unique node identifier
type: Node type (e.g., "start", "end", "llm", "if-else", "http-request")
title: Human-readable node title
config: Node-specific configuration
data: Additional node data
"""
id: str
type: str
title: str
config: dict[str, Any]
data: dict[str, Any]
class WorkflowEdgeDict(TypedDict, total=False):
"""
Workflow edge structure (TypedDict for hints).
Attributes:
source: Source node ID
target: Target node ID
sourceHandle: Branch handle for if-else/question-classifier nodes
"""
source: str
target: str
sourceHandle: str
class AvailableModelDict(TypedDict):
"""
Available model structure.
Attributes:
provider: Model provider (e.g., "openai", "anthropic")
model: Model name (e.g., "gpt-4", "claude-3")
"""
provider: str
model: str
class ToolParameterDict(TypedDict, total=False):
"""
Tool parameter structure.
Attributes:
name: Parameter name
type: Parameter type (e.g., "string", "number", "boolean")
required: Whether parameter is required
human_description: Human-readable description
llm_description: LLM-oriented description
options: Available options for enum-type parameters
"""
name: str
type: str
required: bool
human_description: str | dict[str, str]
llm_description: str
options: list[Any]
class AvailableToolDict(TypedDict, total=False):
"""
Available tool structure.
Attributes:
provider_id: Tool provider ID
provider: Tool provider name (alternative to provider_id)
tool_key: Unique tool key
tool_name: Tool name (alternative to tool_key)
tool_description: Tool description
description: Alternative description field
is_team_authorization: Whether tool is configured/authorized
parameters: List of tool parameters
"""
provider_id: str
provider: str
tool_key: str
tool_name: str
tool_description: str
description: str
is_team_authorization: bool
parameters: list[ToolParameterDict]
class WorkflowDataDict(TypedDict, total=False):
"""
Complete workflow data structure.
Attributes:
nodes: List of workflow nodes
edges: List of workflow edges
warnings: List of warning messages
"""
nodes: list[WorkflowNodeDict]
edges: list[WorkflowEdgeDict]
warnings: list[str]
# ============================================================
# Pydantic models (for runtime validation)
# ============================================================
class WorkflowNode(BaseModel):
"""
Workflow node with runtime validation.
Use this model when you need to validate node data at runtime.
For lightweight type hints without validation, use WorkflowNodeDict.
"""
id: str
type: str
title: str = ""
config: dict[str, Any] = Field(default_factory=dict)
data: dict[str, Any] = Field(default_factory=dict)
class WorkflowEdge(BaseModel):
"""
Workflow edge with runtime validation.
Use this model when you need to validate edge data at runtime.
For lightweight type hints without validation, use WorkflowEdgeDict.
"""
source: str
target: str
sourceHandle: str | None = None
class AvailableModel(BaseModel):
"""
Available model with runtime validation.
Use this model when you need to validate model data at runtime.
For lightweight type hints without validation, use AvailableModelDict.
"""
provider: str
model: str
class ToolParameter(BaseModel):
"""Tool parameter with runtime validation."""
name: str = ""
type: str = "string"
required: bool = False
human_description: str | dict[str, str] = ""
llm_description: str = ""
options: list[Any] = Field(default_factory=list)
class AvailableTool(BaseModel):
"""
Available tool with runtime validation.
Use this model when you need to validate tool data at runtime.
For lightweight type hints without validation, use AvailableToolDict.
"""
provider_id: str = ""
provider: str = ""
tool_key: str = ""
tool_name: str = ""
tool_description: str = ""
description: str = ""
is_team_authorization: bool = False
parameters: list[ToolParameter] = Field(default_factory=list)
class WorkflowData(BaseModel):
"""
Complete workflow data with runtime validation.
Use this model when you need to validate workflow data at runtime.
For lightweight type hints without validation, use WorkflowDataDict.
"""
nodes: list[WorkflowNode] = Field(default_factory=list)
edges: list[WorkflowEdge] = Field(default_factory=list)
warnings: list[str] = Field(default_factory=list)

View File

@ -0,0 +1,359 @@
"""
Edge Repair Utility for Vibe Workflow Generation.
This module provides intelligent edge repair capabilities for generated workflows.
It can detect and fix common edge issues:
- Missing edges between sequential nodes
- Incomplete branches for question-classifier and if-else nodes
- Orphaned nodes without connections
The repair logic is deterministic and doesn't require LLM calls.
"""
import logging
from dataclasses import dataclass, field
from core.workflow.generator.types import WorkflowDataDict, WorkflowEdgeDict, WorkflowNodeDict
logger = logging.getLogger(__name__)
@dataclass
class RepairResult:
"""Result of edge repair operation."""
nodes: list[WorkflowNodeDict]
edges: list[WorkflowEdgeDict]
repairs_made: list[str] = field(default_factory=list)
warnings: list[str] = field(default_factory=list)
@property
def was_repaired(self) -> bool:
"""Check if any repairs were made."""
return len(self.repairs_made) > 0
class EdgeRepair:
"""
Intelligent edge repair for workflow graphs.
Repairs are applied in order:
1. Infer linear connections from node order (if no edges exist)
2. Add missing branch edges for question-classifier
3. Add missing branch edges for if-else
4. Connect orphaned nodes
"""
@classmethod
def repair(cls, workflow_data: WorkflowDataDict) -> RepairResult:
"""
Repair edges in the workflow data.
Args:
workflow_data: Dict containing 'nodes' and 'edges'
Returns:
RepairResult with repaired nodes, edges, and repair logs
"""
nodes = list(workflow_data.get("nodes", []))
edges = list(workflow_data.get("edges", []))
repairs: list[str] = []
warnings: list[str] = []
# Build node lookup
node_map = {n.get("id"): n for n in nodes if n.get("id")}
node_ids = set(node_map.keys())
# 1. If no edges at all, infer linear chain
if not edges and len(nodes) > 1:
edges, inferred_repairs = cls._infer_linear_chain(nodes)
repairs.extend(inferred_repairs)
# 2. Build edge index for analysis
outgoing_edges: dict[str, list[WorkflowEdgeDict]] = {}
incoming_edges: dict[str, list[WorkflowEdgeDict]] = {}
for edge in edges:
src = edge.get("source")
tgt = edge.get("target")
if src:
outgoing_edges.setdefault(src, []).append(edge)
if tgt:
incoming_edges.setdefault(tgt, []).append(edge)
# 3. Repair question-classifier branches
for node in nodes:
if node.get("type") == "question-classifier":
new_edges, branch_repairs, branch_warnings = cls._repair_classifier_branches(
node, edges, outgoing_edges, node_ids
)
edges.extend(new_edges)
repairs.extend(branch_repairs)
warnings.extend(branch_warnings)
# Update outgoing index
for edge in new_edges:
outgoing_edges.setdefault(edge.get("source"), []).append(edge)
# 4. Repair if-else branches
for node in nodes:
if node.get("type") == "if-else":
new_edges, branch_repairs, branch_warnings = cls._repair_if_else_branches(
node, edges, outgoing_edges, node_ids
)
edges.extend(new_edges)
repairs.extend(branch_repairs)
warnings.extend(branch_warnings)
# Update outgoing index
for edge in new_edges:
outgoing_edges.setdefault(edge.get("source"), []).append(edge)
# 5. Connect orphaned nodes (nodes with no incoming edge, except start)
new_edges, orphan_repairs = cls._connect_orphaned_nodes(nodes, edges, outgoing_edges, incoming_edges)
edges.extend(new_edges)
repairs.extend(orphan_repairs)
# 6. Connect nodes with no outgoing edge to 'end' (except end nodes)
new_edges, terminal_repairs = cls._connect_terminal_nodes(nodes, edges, outgoing_edges)
edges.extend(new_edges)
repairs.extend(terminal_repairs)
return RepairResult(
nodes=nodes,
edges=edges,
repairs_made=repairs,
warnings=warnings,
)
@classmethod
def _infer_linear_chain(cls, nodes: list[WorkflowNodeDict]) -> tuple[list[WorkflowEdgeDict], list[str]]:
"""
Infer a linear chain of edges from node order.
This is used when no edges are provided at all.
"""
edges: list[WorkflowEdgeDict] = []
repairs: list[str] = []
# Filter to get ordered node IDs
node_ids = [n.get("id") for n in nodes if n.get("id")]
if len(node_ids) < 2:
return edges, repairs
# Create edges between consecutive nodes
for i in range(len(node_ids) - 1):
src = node_ids[i]
tgt = node_ids[i + 1]
edges.append({"source": src, "target": tgt})
repairs.append(f"Inferred edge: {src} -> {tgt}")
return edges, repairs
@classmethod
def _repair_classifier_branches(
cls,
node: WorkflowNodeDict,
edges: list[WorkflowEdgeDict],
outgoing_edges: dict[str, list[WorkflowEdgeDict]],
valid_node_ids: set[str],
) -> tuple[list[WorkflowEdgeDict], list[str], list[str]]:
"""
Repair missing branches for question-classifier nodes.
For each class that doesn't have an edge, create one pointing to 'end'.
"""
new_edges: list[WorkflowEdgeDict] = []
repairs: list[str] = []
warnings: list[str] = []
node_id = node.get("id")
if not node_id:
return new_edges, repairs, warnings
config = node.get("config", {})
classes = config.get("classes", [])
if not classes:
return new_edges, repairs, warnings
# Get existing sourceHandles for this node
existing_handles = set()
for edge in outgoing_edges.get(node_id, []):
handle = edge.get("sourceHandle")
if handle:
existing_handles.add(handle)
# Find 'end' node as default target
end_node_id = "end"
if "end" not in valid_node_ids:
# Try to find an end node
for nid in valid_node_ids:
if "end" in nid.lower():
end_node_id = nid
break
# Add missing branches
for cls_def in classes:
if not isinstance(cls_def, dict):
continue
cls_id = cls_def.get("id")
cls_name = cls_def.get("name", cls_id)
if cls_id and cls_id not in existing_handles:
new_edge = {
"source": node_id,
"sourceHandle": cls_id,
"target": end_node_id,
}
new_edges.append(new_edge)
repairs.append(f"Added missing branch edge for class '{cls_name}' -> {end_node_id}")
warnings.append(
f"Auto-connected question-classifier branch '{cls_name}' to '{end_node_id}'. "
"You may want to redirect this to a specific handler node."
)
return new_edges, repairs, warnings
@classmethod
def _repair_if_else_branches(
cls,
node: WorkflowNodeDict,
edges: list[WorkflowEdgeDict],
outgoing_edges: dict[str, list[WorkflowEdgeDict]],
valid_node_ids: set[str],
) -> tuple[list[WorkflowEdgeDict], list[str], list[str]]:
"""
Repair missing true/false branches for if-else nodes.
"""
new_edges: list[WorkflowEdgeDict] = []
repairs: list[str] = []
warnings: list[str] = []
node_id = node.get("id")
if not node_id:
return new_edges, repairs, warnings
# Get existing sourceHandles
existing_handles = set()
for edge in outgoing_edges.get(node_id, []):
handle = edge.get("sourceHandle")
if handle:
existing_handles.add(handle)
# Find 'end' node as default target
end_node_id = "end"
if "end" not in valid_node_ids:
for nid in valid_node_ids:
if "end" in nid.lower():
end_node_id = nid
break
# Add missing branches
required_branches = ["true", "false"]
for branch in required_branches:
if branch not in existing_handles:
new_edge = {
"source": node_id,
"sourceHandle": branch,
"target": end_node_id,
}
new_edges.append(new_edge)
repairs.append(f"Added missing if-else '{branch}' branch -> {end_node_id}")
warnings.append(
f"Auto-connected if-else '{branch}' branch to '{end_node_id}'. "
"You may want to redirect this to a specific handler node."
)
return new_edges, repairs, warnings
@classmethod
def _connect_orphaned_nodes(
cls,
nodes: list[WorkflowNodeDict],
edges: list[WorkflowEdgeDict],
outgoing_edges: dict[str, list[WorkflowEdgeDict]],
incoming_edges: dict[str, list[WorkflowEdgeDict]],
) -> tuple[list[WorkflowEdgeDict], list[str]]:
"""
Connect orphaned nodes to the previous node in sequence.
An orphaned node has no incoming edges and is not a 'start' node.
"""
new_edges: list[WorkflowEdgeDict] = []
repairs: list[str] = []
node_ids = [n.get("id") for n in nodes if n.get("id")]
node_types = {n.get("id"): n.get("type") for n in nodes}
for i, node_id in enumerate(node_ids):
node_type = node_types.get(node_id)
# Skip start nodes - they don't need incoming edges
if node_type == "start":
continue
# Check if node has incoming edges
if node_id not in incoming_edges or not incoming_edges[node_id]:
# Find previous node to connect from
if i > 0:
prev_node_id = node_ids[i - 1]
new_edge = {"source": prev_node_id, "target": node_id}
new_edges.append(new_edge)
repairs.append(f"Connected orphaned node: {prev_node_id} -> {node_id}")
# Update incoming_edges for subsequent checks
incoming_edges.setdefault(node_id, []).append(new_edge)
return new_edges, repairs
@classmethod
def _connect_terminal_nodes(
cls,
nodes: list[WorkflowNodeDict],
edges: list[WorkflowEdgeDict],
outgoing_edges: dict[str, list[WorkflowEdgeDict]],
) -> tuple[list[WorkflowEdgeDict], list[str]]:
"""
Connect terminal nodes (no outgoing edges) to 'end'.
A terminal node has no outgoing edges and is not an 'end' node.
This ensures all branches eventually reach 'end'.
"""
new_edges: list[WorkflowEdgeDict] = []
repairs: list[str] = []
# Find end node
end_node_id = None
node_ids = set()
for n in nodes:
nid = n.get("id")
ntype = n.get("type")
if nid:
node_ids.add(nid)
if ntype == "end":
end_node_id = nid
if not end_node_id:
# No end node found, can't connect
return new_edges, repairs
for node in nodes:
node_id = node.get("id")
node_type = node.get("type")
# Skip end nodes
if node_type == "end":
continue
# Skip nodes that already have outgoing edges
if outgoing_edges.get(node_id):
continue
# Connect to end
new_edge = {"source": node_id, "target": end_node_id}
new_edges.append(new_edge)
repairs.append(f"Connected terminal node to end: {node_id} -> {end_node_id}")
# Update for subsequent checks
outgoing_edges.setdefault(node_id, []).append(new_edge)
return new_edges, repairs

View File

@ -0,0 +1,113 @@
import logging
from core.workflow.generator.types import WorkflowDataDict
logger = logging.getLogger(__name__)
def generate_mermaid(workflow_data: WorkflowDataDict) -> str:
"""
Generate a Mermaid flowchart from workflow data consisting of nodes and edges.
Args:
workflow_data: Dict containing 'nodes' (list) and 'edges' (list)
Returns:
String containing the Mermaid flowchart syntax
"""
nodes = workflow_data.get("nodes", [])
edges = workflow_data.get("edges", [])
lines = ["flowchart TD"]
# 1. Define Nodes
# Format: node_id["title<br/>type"] or similar
# We will use the Vibe Workflow standard format: id["type=TYPE|title=TITLE"]
# Or specifically for tool nodes: id["type=tool|title=TITLE|tool=TOOL_KEY"]
# Map of original IDs to safe Mermaid IDs
id_map = {}
def get_safe_id(original_id: str) -> str:
if original_id == "end":
return "end_node"
if original_id == "subgraph":
return "subgraph_node"
# Mermaid IDs should be alphanumeric.
# If the ID has special chars, we might need to escape or hash, but Vibe usually generates simple IDs.
# We'll trust standard IDs but handle the reserved keyword 'end'.
return original_id
for node in nodes:
node_id = node.get("id")
if not node_id:
continue
safe_id = get_safe_id(node_id)
id_map[node_id] = safe_id
node_type = node.get("type", "unknown")
title = node.get("title", "Untitled")
# Escape quotes in title
safe_title = title.replace('"', "'")
if node_type == "tool":
config = node.get("config", {})
# Try multiple fields for tool reference
tool_ref = (
config.get("tool_key")
or config.get("tool")
or config.get("tool_name")
or node.get("tool_name")
or "unknown"
)
node_def = f'{safe_id}["type={node_type}|title={safe_title}|tool={tool_ref}"]'
else:
node_def = f'{safe_id}["type={node_type}|title={safe_title}"]'
lines.append(f" {node_def}")
# 2. Define Edges
# Format: source --> target
# Track defined nodes to avoid edge errors
defined_node_ids = {n.get("id") for n in nodes if n.get("id")}
for edge in edges:
source = edge.get("source")
target = edge.get("target")
# Skip invalid edges
if not source or not target:
continue
if source not in defined_node_ids or target not in defined_node_ids:
continue
safe_source = id_map.get(source, source)
safe_target = id_map.get(target, target)
# Handle conditional branches (true/false) if present
# In Dify workflow, sourceHandle is often used for this
source_handle = edge.get("sourceHandle")
label = ""
if source_handle == "true":
label = "|true|"
elif source_handle == "false":
label = "|false|"
elif source_handle and source_handle != "source":
# For question-classifier or other multi-path nodes
# Clean up handle for display if needed
safe_handle = str(source_handle).replace('"', "'")
label = f"|{safe_handle}|"
edge_line = f" {safe_source} -->{label} {safe_target}"
lines.append(edge_line)
# Start/End nodes are implicitly handled if they are in the 'nodes' list
# If not, we might need to add them, but usually the Builder should produce them.
result = "\n".join(lines)
return result

View File

@ -0,0 +1,155 @@
"""
Node Repair Utility for Vibe Workflow Generation.
This module provides intelligent node configuration repair capabilities.
It can detect and fix common node configuration issues:
- Invalid comparison operators in if-else nodes (e.g. '>=' -> '')
"""
import copy
import logging
from dataclasses import dataclass, field
from core.workflow.generator.types import WorkflowNodeDict
logger = logging.getLogger(__name__)
@dataclass
class NodeRepairResult:
"""Result of node repair operation."""
nodes: list[WorkflowNodeDict]
repairs_made: list[str] = field(default_factory=list)
warnings: list[str] = field(default_factory=list)
@property
def was_repaired(self) -> bool:
"""Check if any repairs were made."""
return len(self.repairs_made) > 0
class NodeRepair:
"""
Intelligent node configuration repair.
"""
OPERATOR_MAP = {
">=": "",
"<=": "",
"!=": "",
"==": "=",
}
@classmethod
def repair(cls, nodes: list[WorkflowNodeDict]) -> NodeRepairResult:
"""
Repair node configurations.
Args:
nodes: List of node dictionaries
Returns:
NodeRepairResult with repaired nodes and logs
"""
# Deep copy to avoid mutating original
nodes = copy.deepcopy(nodes)
repairs: list[str] = []
warnings: list[str] = []
for node in nodes:
node_type = node.get("type")
node_id = node.get("id", "unknown")
if node_type == "if-else":
cls._repair_if_else_operators(node, repairs)
if node_type == "variable-aggregator":
cls._repair_variable_aggregator_variables(node, repairs)
# Add other node type repairs here as needed
return NodeRepairResult(
nodes=nodes,
repairs_made=repairs,
warnings=warnings,
)
@classmethod
def _repair_if_else_operators(cls, node: WorkflowNodeDict, repairs: list[str]):
"""
Normalize comparison operators in if-else nodes.
"""
node_id = node.get("id", "unknown")
config = node.get("config", {})
cases = config.get("cases", [])
for case in cases:
conditions = case.get("conditions", [])
for condition in conditions:
op = condition.get("comparison_operator")
if op in cls.OPERATOR_MAP:
new_op = cls.OPERATOR_MAP[op]
condition["comparison_operator"] = new_op
repairs.append(f"Normalized operator '{op}' to '{new_op}' in node '{node_id}'")
@classmethod
def _repair_variable_aggregator_variables(cls, node: WorkflowNodeDict, repairs: list[str]):
"""
Repair variable-aggregator variables format.
Converts dict format to list[list[str]] format.
Expected: [["node_id", "field"], ["node_id2", "field2"]]
May receive: [{"name": "...", "value_selector": ["node_id", "field"]}, ...]
"""
node_id = node.get("id", "unknown")
config = node.get("config", {})
variables = config.get("variables", [])
if not variables:
return
repaired = False
repaired_variables = []
for var in variables:
if isinstance(var, dict):
# Convert dict format to array format
value_selector = var.get("value_selector") or var.get("selector") or var.get("path")
if isinstance(value_selector, list) and len(value_selector) > 0:
repaired_variables.append(value_selector)
repaired = True
else:
# Try to extract from name field - LLM may generate {"name": "node_id.field"}
name = var.get("name")
if isinstance(name, str) and "." in name:
# Try to parse "node_id.field" format
parts = name.split(".", 1)
if len(parts) == 2:
repaired_variables.append([parts[0], parts[1]])
repaired = True
else:
logger.warning(
"Variable aggregator node '%s' has invalid variable format: %s",
node_id,
var,
)
repaired_variables.append([]) # Empty array as fallback
else:
# If no valid selector or name, skip this variable
logger.warning(
"Variable aggregator node '%s' has invalid variable format: %s",
node_id,
var,
)
# Don't add empty array - skip invalid variables
elif isinstance(var, list):
# Already in correct format
repaired_variables.append(var)
else:
# Unknown format, skip
logger.warning("Variable aggregator node '%s' has unknown variable format: %s", node_id, var)
# Don't add empty array - skip invalid variables
if repaired:
config["variables"] = repaired_variables
repairs.append(f"Repaired variable-aggregator variables format in node '{node_id}'")

View File

@ -0,0 +1,96 @@
import logging
from dataclasses import dataclass
from core.workflow.generator.types import AvailableModelDict, AvailableToolDict, WorkflowDataDict
from core.workflow.generator.validation.context import ValidationContext
from core.workflow.generator.validation.engine import ValidationEngine
from core.workflow.generator.validation.rules import Severity
logger = logging.getLogger(__name__)
@dataclass
class ValidationHint:
"""Legacy compatibility class for validation hints."""
node_id: str
field: str
message: str
severity: str # 'error', 'warning'
suggestion: str = None
node_type: str = None # Added for test compatibility
# Alias for potential old code using 'type' instead of 'severity'
@property
def type(self) -> str:
return self.severity
@property
def element_id(self) -> str:
return self.node_id
FriendlyHint = ValidationHint # Alias for backward compatibility
class WorkflowValidator:
"""
Validates the generated workflow configuration (nodes and edges).
Wraps the new ValidationEngine for backward compatibility.
"""
@classmethod
def validate(
cls,
workflow_data: WorkflowDataDict,
available_tools: list[AvailableToolDict],
available_models: list[AvailableModelDict] | None = None,
) -> tuple[bool, list[ValidationHint]]:
"""
Validate workflow data and return validity status and hints.
Args:
workflow_data: Dict containing 'nodes' and 'edges'
available_tools: List of available tool configurations
available_models: List of available models (added for Vibe compat)
Returns:
Tuple(max_severity_is_not_error, list_of_hints)
"""
nodes = workflow_data.get("nodes", [])
edges = workflow_data.get("edges", [])
# Create context
context = ValidationContext(
nodes=nodes,
edges=edges,
available_models=available_models or [],
available_tools=available_tools or [],
)
# Run validation engine
engine = ValidationEngine()
result = engine.validate(context)
# Convert engine errors to legacy hints
hints: list[ValidationHint] = []
for error in result.all_errors:
# Map severity
severity = "error" if error.severity == Severity.ERROR else "warning"
# Map field from message or details if possible (heuristic)
field_name = error.details.get("field", "unknown")
hints.append(
ValidationHint(
node_id=error.node_id,
field=field_name,
message=error.message,
severity=severity,
suggestion=error.fix_hint,
node_type=error.node_type,
)
)
return result.is_valid, hints

View File

@ -0,0 +1,45 @@
"""
Validation Rule Engine for Vibe Workflow Generation.
This module provides a declarative, schema-based validation system for
generated workflow nodes. It classifies errors into fixable (LLM can auto-fix)
and user-required (needs manual intervention) categories.
Usage:
from core.workflow.generator.validation import ValidationEngine, ValidationContext
context = ValidationContext(
available_models=[...],
available_tools=[...],
nodes=[...],
edges=[...],
)
engine = ValidationEngine()
result = engine.validate(context)
# Access classified errors
fixable_errors = result.fixable_errors
user_required_errors = result.user_required_errors
"""
from core.workflow.generator.validation.context import ValidationContext
from core.workflow.generator.validation.engine import ValidationEngine, ValidationResult
from core.workflow.generator.validation.rules import (
RuleCategory,
Severity,
ValidationError,
ValidationRule,
)
__all__ = [
"RuleCategory",
"Severity",
"ValidationContext",
"ValidationEngine",
"ValidationError",
"ValidationResult",
"ValidationRule",
]

View File

@ -0,0 +1,115 @@
"""
Validation Context for the Rule Engine.
The ValidationContext holds all the data needed for validation:
- Generated nodes and edges
- Available models, tools, and datasets
- Node output schemas for variable reference validation
"""
from dataclasses import dataclass, field
from core.workflow.generator.types import (
AvailableModelDict,
AvailableToolDict,
WorkflowEdgeDict,
WorkflowNodeDict,
)
@dataclass
class ValidationContext:
"""
Context object containing all data needed for validation.
This is passed to each validation rule, providing access to:
- The nodes being validated
- Edge connections between nodes
- Available external resources (models, tools)
"""
# Generated workflow data
nodes: list[WorkflowNodeDict] = field(default_factory=list)
edges: list[WorkflowEdgeDict] = field(default_factory=list)
# Available external resources
available_models: list[AvailableModelDict] = field(default_factory=list)
available_tools: list[AvailableToolDict] = field(default_factory=list)
# Cached lookups (populated lazily)
_node_map: dict[str, WorkflowNodeDict] | None = field(default=None, repr=False)
_model_set: set[tuple[str, str]] | None = field(default=None, repr=False)
_tool_set: set[str] | None = field(default=None, repr=False)
_configured_tool_set: set[str] | None = field(default=None, repr=False)
@property
def node_map(self) -> dict[str, WorkflowNodeDict]:
"""Get a map of node_id -> node for quick lookup."""
if self._node_map is None:
self._node_map = {node.get("id", ""): node for node in self.nodes}
return self._node_map
@property
def model_set(self) -> set[tuple[str, str]]:
"""Get a set of (provider, model_name) tuples for quick lookup."""
if self._model_set is None:
self._model_set = {(m.get("provider", ""), m.get("model", "")) for m in self.available_models}
return self._model_set
@property
def tool_set(self) -> set[str]:
"""Get a set of all tool keys (both configured and unconfigured)."""
if self._tool_set is None:
self._tool_set = set()
for tool in self.available_tools:
provider = tool.get("provider_id") or tool.get("provider", "")
tool_key = tool.get("tool_key") or tool.get("tool_name", "")
if provider and tool_key:
self._tool_set.add(f"{provider}/{tool_key}")
if tool_key:
self._tool_set.add(tool_key)
return self._tool_set
@property
def configured_tool_set(self) -> set[str]:
"""Get a set of configured (authorized) tool keys."""
if self._configured_tool_set is None:
self._configured_tool_set = set()
for tool in self.available_tools:
if not tool.get("is_team_authorization", False):
continue
provider = tool.get("provider_id") or tool.get("provider", "")
tool_key = tool.get("tool_key") or tool.get("tool_name", "")
if provider and tool_key:
self._configured_tool_set.add(f"{provider}/{tool_key}")
if tool_key:
self._configured_tool_set.add(tool_key)
return self._configured_tool_set
def has_model(self, provider: str, model_name: str) -> bool:
"""Check if a model is available."""
return (provider, model_name) in self.model_set
def has_tool(self, tool_key: str) -> bool:
"""Check if a tool exists (configured or not)."""
return tool_key in self.tool_set
def is_tool_configured(self, tool_key: str) -> bool:
"""Check if a tool is configured and ready to use."""
return tool_key in self.configured_tool_set
def get_node(self, node_id: str) -> WorkflowNodeDict | None:
"""Get a node by its ID."""
return self.node_map.get(node_id)
def get_node_ids(self) -> set[str]:
"""Get all node IDs in the workflow."""
return set(self.node_map.keys())
def get_upstream_nodes(self, node_id: str) -> list[str]:
"""Get IDs of nodes that connect to this node (upstream)."""
return [edge.get("source", "") for edge in self.edges if edge.get("target") == node_id]
def get_downstream_nodes(self, node_id: str) -> list[str]:
"""Get IDs of nodes that this node connects to (downstream)."""
return [edge.get("target", "") for edge in self.edges if edge.get("source") == node_id]

View File

@ -0,0 +1,260 @@
"""
Validation Engine - Core validation logic.
The ValidationEngine orchestrates rule execution and aggregates results.
It provides a clean interface for validating workflow nodes.
"""
import logging
from dataclasses import dataclass, field
from typing import Any
from core.workflow.generator.types import (
AvailableModelDict,
AvailableToolDict,
WorkflowEdgeDict,
WorkflowNodeDict,
)
from core.workflow.generator.validation.context import ValidationContext
from core.workflow.generator.validation.rules import (
RuleCategory,
Severity,
ValidationError,
get_registry,
)
logger = logging.getLogger(__name__)
@dataclass
class ValidationResult:
"""
Result of validation containing all errors classified by fixability.
Attributes:
all_errors: All validation errors found
fixable_errors: Errors that LLM can automatically fix
user_required_errors: Errors that require user intervention
warnings: Non-blocking warnings
stats: Validation statistics
"""
all_errors: list[ValidationError] = field(default_factory=list)
fixable_errors: list[ValidationError] = field(default_factory=list)
user_required_errors: list[ValidationError] = field(default_factory=list)
warnings: list[ValidationError] = field(default_factory=list)
stats: dict[str, int] = field(default_factory=dict)
@property
def has_errors(self) -> bool:
"""Check if there are any errors (excluding warnings)."""
return len(self.fixable_errors) > 0 or len(self.user_required_errors) > 0
@property
def has_fixable_errors(self) -> bool:
"""Check if there are fixable errors."""
return len(self.fixable_errors) > 0
@property
def is_valid(self) -> bool:
"""Check if validation passed (no errors, warnings are OK)."""
return not self.has_errors
def to_dict(self) -> dict[str, Any]:
"""Convert to dictionary for API response."""
return {
"fixable": [e.to_dict() for e in self.fixable_errors],
"user_required": [e.to_dict() for e in self.user_required_errors],
"warnings": [e.to_dict() for e in self.warnings],
"all_warnings": [e.message for e in self.all_errors],
"stats": self.stats,
}
def get_error_messages(self) -> list[str]:
"""Get all error messages as strings."""
return [e.message for e in self.all_errors]
def get_fixable_by_node(self) -> dict[str, list[ValidationError]]:
"""Group fixable errors by node ID."""
result: dict[str, list[ValidationError]] = {}
for error in self.fixable_errors:
if error.node_id not in result:
result[error.node_id] = []
result[error.node_id].append(error)
return result
class ValidationEngine:
"""
The main validation engine.
Usage:
engine = ValidationEngine()
context = ValidationContext(nodes=[...], available_models=[...])
result = engine.validate(context)
"""
def __init__(self):
self._registry = get_registry()
def validate(self, context: ValidationContext) -> ValidationResult:
"""
Validate all nodes in the context.
Args:
context: ValidationContext with nodes, edges, and available resources
Returns:
ValidationResult with classified errors
"""
result = ValidationResult()
stats = {
"total_nodes": len(context.nodes),
"total_rules_checked": 0,
"total_errors": 0,
"fixable_count": 0,
"user_required_count": 0,
"warning_count": 0,
}
# Validate each node
for node in context.nodes:
node_type = node.get("type", "unknown")
node_id = node.get("id", "unknown")
# Get applicable rules for this node type
rules = self._registry.get_rules_for_node(node_type)
for rule in rules:
stats["total_rules_checked"] += 1
try:
errors = rule.check(node, context)
for error in errors:
result.all_errors.append(error)
stats["total_errors"] += 1
# Classify by severity and fixability
if error.severity == Severity.WARNING:
result.warnings.append(error)
stats["warning_count"] += 1
elif error.is_fixable:
result.fixable_errors.append(error)
stats["fixable_count"] += 1
else:
result.user_required_errors.append(error)
stats["user_required_count"] += 1
except Exception:
logger.exception(
"Rule '%s' failed for node '%s'",
rule.id,
node_id,
)
# Don't let a rule failure break the entire validation
continue
# Validate edges separately
edge_errors = self._validate_edges(context)
for error in edge_errors:
result.all_errors.append(error)
stats["total_errors"] += 1
if error.is_fixable:
result.fixable_errors.append(error)
stats["fixable_count"] += 1
else:
result.user_required_errors.append(error)
stats["user_required_count"] += 1
result.stats = stats
return result
def _validate_edges(self, context: ValidationContext) -> list[ValidationError]:
"""Validate edge connections."""
errors: list[ValidationError] = []
valid_node_ids = context.get_node_ids()
for edge in context.edges:
source = edge.get("source", "")
target = edge.get("target", "")
if source and source not in valid_node_ids:
errors.append(
ValidationError(
rule_id="edge.source.invalid",
node_id=source,
node_type="edge",
category=RuleCategory.SEMANTIC,
severity=Severity.ERROR,
is_fixable=True,
message=f"Edge source '{source}' does not exist",
fix_hint="Update edge to reference existing node",
)
)
if target and target not in valid_node_ids:
errors.append(
ValidationError(
rule_id="edge.target.invalid",
node_id=target,
node_type="edge",
category=RuleCategory.SEMANTIC,
severity=Severity.ERROR,
is_fixable=True,
message=f"Edge target '{target}' does not exist",
fix_hint="Update edge to reference existing node",
)
)
return errors
def validate_single_node(
self,
node: WorkflowNodeDict,
context: ValidationContext,
) -> list[ValidationError]:
"""
Validate a single node.
Useful for incremental validation when a node is added/modified.
"""
node_type = node.get("type", "unknown")
rules = self._registry.get_rules_for_node(node_type)
errors: list[ValidationError] = []
for rule in rules:
try:
errors.extend(rule.check(node, context))
except Exception:
logger.exception("Rule '%s' failed", rule.id)
return errors
def validate_nodes(
nodes: list[WorkflowNodeDict],
edges: list[WorkflowEdgeDict] | None = None,
available_models: list[AvailableModelDict] | None = None,
available_tools: list[AvailableToolDict] | None = None,
) -> ValidationResult:
"""
Convenience function to validate nodes without creating engine/context manually.
Args:
nodes: List of workflow nodes to validate
edges: Optional list of edges
available_models: Optional list of available models
available_tools: Optional list of available tools
Returns:
ValidationResult with classified errors
"""
context = ValidationContext(
nodes=nodes,
edges=edges or [],
available_models=available_models or [],
available_tools=available_tools or [],
)
engine = ValidationEngine()
return engine.validate(context)

File diff suppressed because it is too large Load Diff

View File

@ -197,6 +197,14 @@ class Node(Generic[NodeDataT]):
return None
@classmethod
def get_default_config_schema(cls) -> dict[str, Any] | None:
"""
Get the default configuration schema for the node.
Used for LLM generation.
"""
return None
# Global registry populated via __init_subclass__
_registry: ClassVar[dict["NodeType", dict[str, type["Node"]]]] = {}

View File

@ -1,3 +1,5 @@
from typing import Any
from core.workflow.enums import NodeExecutionType, NodeType, WorkflowNodeExecutionStatus
from core.workflow.node_events import NodeRunResult
from core.workflow.nodes.base.node import Node
@ -9,6 +11,24 @@ class EndNode(Node[EndNodeData]):
node_type = NodeType.END
execution_type = NodeExecutionType.RESPONSE
@classmethod
def get_default_config_schema(cls) -> dict[str, Any] | None:
return {
"description": "Workflow exit point - defines output variables",
"required": ["outputs"],
"parameters": {
"outputs": {
"type": "array",
"description": "Output variables to return",
"item_schema": {
"variable": "string - output variable name",
"type": "enum: string, number, object, array",
"value_selector": "array - path to source value, e.g. ['node_id', 'field']",
},
},
},
}
@classmethod
def version(cls) -> str:
return "1"

View File

@ -15,6 +15,27 @@ class StartNode(Node[StartNodeData]):
node_type = NodeType.START
execution_type = NodeExecutionType.ROOT
@classmethod
def get_default_config_schema(cls) -> dict[str, Any] | None:
return {
"description": "Workflow entry point - defines input variables",
"required": [],
"parameters": {
"variables": {
"type": "array",
"description": "Input variables for the workflow",
"item_schema": {
"variable": "string - variable name",
"label": "string - display label",
"type": "enum: text-input, paragraph, number, select, file, file-list",
"required": "boolean",
"max_length": "number (optional)",
},
},
},
"outputs": ["All defined variables are available as {{#start.variable_name#}}"],
}
@classmethod
def version(cls) -> str:
return "1"

View File

@ -50,6 +50,19 @@ class ToolNode(Node[ToolNodeData]):
def version(cls) -> str:
return "1"
@classmethod
def get_default_config_schema(cls) -> dict[str, Any] | None:
return {
"description": "Execute an external tool",
"required": ["provider_id", "tool_id", "tool_parameters"],
"parameters": {
"provider_id": {"type": "string"},
"provider_type": {"type": "string"},
"tool_id": {"type": "string"},
"tool_parameters": {"type": "object"},
},
}
def _run(self) -> Generator[NodeEventBase, None, None]:
"""
Run the tool node

View File

@ -0,0 +1,288 @@
"""
Unit tests for the Mermaid Generator.
Tests cover:
- Basic workflow rendering
- Reserved word handling ('end' 'end_node')
- Question classifier multi-branch edges
- If-else branch labels
- Edge validation and skipping
- Tool node formatting
"""
from core.workflow.generator.utils.mermaid_generator import generate_mermaid
class TestBasicWorkflow:
"""Tests for basic workflow Mermaid generation."""
def test_simple_start_end_workflow(self):
"""Test simple Start → End workflow."""
workflow_data = {
"nodes": [
{"id": "start", "type": "start", "title": "Start"},
{"id": "end", "type": "end", "title": "End"},
],
"edges": [{"source": "start", "target": "end"}],
}
result = generate_mermaid(workflow_data)
assert "flowchart TD" in result
assert 'start["type=start|title=Start"]' in result
assert 'end_node["type=end|title=End"]' in result
assert "start --> end_node" in result
def test_start_llm_end_workflow(self):
"""Test Start → LLM → End workflow."""
workflow_data = {
"nodes": [
{"id": "start", "type": "start", "title": "Start"},
{"id": "llm", "type": "llm", "title": "Generate"},
{"id": "end", "type": "end", "title": "End"},
],
"edges": [
{"source": "start", "target": "llm"},
{"source": "llm", "target": "end"},
],
}
result = generate_mermaid(workflow_data)
assert 'llm["type=llm|title=Generate"]' in result
assert "start --> llm" in result
assert "llm --> end_node" in result
def test_empty_workflow(self):
"""Test empty workflow returns minimal output."""
workflow_data = {"nodes": [], "edges": []}
result = generate_mermaid(workflow_data)
assert result == "flowchart TD"
def test_missing_keys_handled(self):
"""Test workflow with missing keys doesn't crash."""
workflow_data = {}
result = generate_mermaid(workflow_data)
assert "flowchart TD" in result
class TestReservedWords:
"""Tests for reserved word handling in node IDs."""
def test_end_node_id_is_replaced(self):
"""Test 'end' node ID is replaced with 'end_node'."""
workflow_data = {
"nodes": [{"id": "end", "type": "end", "title": "End"}],
"edges": [],
}
result = generate_mermaid(workflow_data)
# Should use end_node instead of end
assert "end_node[" in result
assert '"type=end|title=End"' in result
def test_subgraph_node_id_is_replaced(self):
"""Test 'subgraph' node ID is replaced with 'subgraph_node'."""
workflow_data = {
"nodes": [{"id": "subgraph", "type": "code", "title": "Process"}],
"edges": [],
}
result = generate_mermaid(workflow_data)
assert "subgraph_node[" in result
def test_edge_uses_safe_ids(self):
"""Test edges correctly reference safe IDs after replacement."""
workflow_data = {
"nodes": [
{"id": "start", "type": "start", "title": "Start"},
{"id": "end", "type": "end", "title": "End"},
],
"edges": [{"source": "start", "target": "end"}],
}
result = generate_mermaid(workflow_data)
# Edge should use end_node, not end
assert "start --> end_node" in result
assert "start --> end\n" not in result
class TestBranchEdges:
"""Tests for branching node edge labels."""
def test_question_classifier_source_handles(self):
"""Test question-classifier edges with sourceHandle labels."""
workflow_data = {
"nodes": [
{"id": "classifier", "type": "question-classifier", "title": "Classify"},
{"id": "refund", "type": "llm", "title": "Handle Refund"},
{"id": "inquiry", "type": "llm", "title": "Handle Inquiry"},
],
"edges": [
{"source": "classifier", "target": "refund", "sourceHandle": "refund"},
{"source": "classifier", "target": "inquiry", "sourceHandle": "inquiry"},
],
}
result = generate_mermaid(workflow_data)
assert "classifier -->|refund| refund" in result
assert "classifier -->|inquiry| inquiry" in result
def test_if_else_true_false_handles(self):
"""Test if-else edges with true/false labels."""
workflow_data = {
"nodes": [
{"id": "ifelse", "type": "if-else", "title": "Check"},
{"id": "yes_branch", "type": "llm", "title": "Yes"},
{"id": "no_branch", "type": "llm", "title": "No"},
],
"edges": [
{"source": "ifelse", "target": "yes_branch", "sourceHandle": "true"},
{"source": "ifelse", "target": "no_branch", "sourceHandle": "false"},
],
}
result = generate_mermaid(workflow_data)
assert "ifelse -->|true| yes_branch" in result
assert "ifelse -->|false| no_branch" in result
def test_source_handle_source_is_ignored(self):
"""Test sourceHandle='source' doesn't add label."""
workflow_data = {
"nodes": [
{"id": "llm1", "type": "llm", "title": "LLM 1"},
{"id": "llm2", "type": "llm", "title": "LLM 2"},
],
"edges": [{"source": "llm1", "target": "llm2", "sourceHandle": "source"}],
}
result = generate_mermaid(workflow_data)
# Should be plain arrow without label
assert "llm1 --> llm2" in result
assert "llm1 -->|source|" not in result
class TestEdgeValidation:
"""Tests for edge validation and error handling."""
def test_edge_with_missing_source_is_skipped(self):
"""Test edge with non-existent source node is skipped."""
workflow_data = {
"nodes": [{"id": "end", "type": "end", "title": "End"}],
"edges": [{"source": "nonexistent", "target": "end"}],
}
result = generate_mermaid(workflow_data)
# Should not contain the invalid edge
assert "nonexistent" not in result
assert "-->" not in result or "nonexistent" not in result
def test_edge_with_missing_target_is_skipped(self):
"""Test edge with non-existent target node is skipped."""
workflow_data = {
"nodes": [{"id": "start", "type": "start", "title": "Start"}],
"edges": [{"source": "start", "target": "nonexistent"}],
}
result = generate_mermaid(workflow_data)
# Edge should be skipped
assert "start --> nonexistent" not in result
def test_edge_without_source_or_target_is_skipped(self):
"""Test edge missing source or target is skipped."""
workflow_data = {
"nodes": [{"id": "start", "type": "start", "title": "Start"}],
"edges": [{"source": "start"}, {"target": "start"}, {}],
}
result = generate_mermaid(workflow_data)
# No edges should be rendered
assert result.count("-->") == 0
class TestToolNodes:
"""Tests for tool node formatting."""
def test_tool_node_includes_tool_key(self):
"""Test tool node includes tool_key in label."""
workflow_data = {
"nodes": [
{
"id": "search",
"type": "tool",
"title": "Search",
"config": {"tool_key": "google/search"},
}
],
"edges": [],
}
result = generate_mermaid(workflow_data)
assert 'search["type=tool|title=Search|tool=google/search"]' in result
def test_tool_node_with_tool_name_fallback(self):
"""Test tool node uses tool_name as fallback."""
workflow_data = {
"nodes": [
{
"id": "tool1",
"type": "tool",
"title": "My Tool",
"config": {"tool_name": "my_tool"},
}
],
"edges": [],
}
result = generate_mermaid(workflow_data)
assert "tool=my_tool" in result
def test_tool_node_missing_tool_key_shows_unknown(self):
"""Test tool node without tool_key shows 'unknown'."""
workflow_data = {
"nodes": [{"id": "tool1", "type": "tool", "title": "Tool", "config": {}}],
"edges": [],
}
result = generate_mermaid(workflow_data)
assert "tool=unknown" in result
class TestNodeFormatting:
"""Tests for node label formatting."""
def test_quotes_in_title_are_escaped(self):
"""Test double quotes in title are replaced with single quotes."""
workflow_data = {
"nodes": [{"id": "llm", "type": "llm", "title": 'Say "Hello"'}],
"edges": [],
}
result = generate_mermaid(workflow_data)
# Double quotes should be replaced
assert "Say 'Hello'" in result
assert 'Say "Hello"' not in result
def test_node_without_id_is_skipped(self):
"""Test node without id is skipped."""
workflow_data = {
"nodes": [{"type": "llm", "title": "No ID"}],
"edges": [],
}
result = generate_mermaid(workflow_data)
# Should only have flowchart header
lines = [line for line in result.split("\n") if line.strip()]
assert len(lines) == 1
def test_node_default_values(self):
"""Test node with missing type/title uses defaults."""
workflow_data = {
"nodes": [{"id": "node1"}],
"edges": [],
}
result = generate_mermaid(workflow_data)
assert "type=unknown" in result
assert "title=Untitled" in result

View File

@ -0,0 +1,81 @@
from core.workflow.generator.utils.node_repair import NodeRepair
class TestNodeRepair:
"""Tests for NodeRepair utility."""
def test_repair_if_else_valid_operators(self):
"""Test that valid operators remain unchanged."""
nodes = [
{
"id": "node1",
"type": "if-else",
"config": {
"cases": [
{
"conditions": [
{"comparison_operator": "", "value": "1"},
{"comparison_operator": "=", "value": "2"},
]
}
]
},
}
]
result = NodeRepair.repair(nodes)
assert result.was_repaired is False
assert result.nodes == nodes
def test_repair_if_else_invalid_operators(self):
"""Test that invalid operators are normalized."""
nodes = [
{
"id": "node1",
"type": "if-else",
"config": {
"cases": [
{
"conditions": [
{"comparison_operator": ">=", "value": "1"},
{"comparison_operator": "<=", "value": "2"},
{"comparison_operator": "!=", "value": "3"},
{"comparison_operator": "==", "value": "4"},
]
}
]
},
}
]
result = NodeRepair.repair(nodes)
assert result.was_repaired is True
assert len(result.repairs_made) == 4
conditions = result.nodes[0]["config"]["cases"][0]["conditions"]
assert conditions[0]["comparison_operator"] == ""
assert conditions[1]["comparison_operator"] == ""
assert conditions[2]["comparison_operator"] == ""
assert conditions[3]["comparison_operator"] == "="
def test_repair_ignores_other_nodes(self):
"""Test that other node types are ignored."""
nodes = [{"id": "node1", "type": "llm", "config": {"some_field": ">="}}]
result = NodeRepair.repair(nodes)
assert result.was_repaired is False
assert result.nodes[0]["config"]["some_field"] == ">="
def test_repair_handles_missing_config(self):
"""Test robustness against missing fields."""
nodes = [
{
"id": "node1",
"type": "if-else",
# Missing config
},
{
"id": "node2",
"type": "if-else",
"config": {}, # Missing cases
},
]
result = NodeRepair.repair(nodes)
assert result.was_repaired is False

View File

@ -0,0 +1,99 @@
"""
Tests for node schemas validation.
Ensures that the node configuration stays in sync with registered node types.
"""
from core.workflow.generator.config.node_schemas import (
get_builtin_node_schemas,
validate_node_schemas,
)
class TestNodeSchemasValidation:
"""Tests for node schema validation utilities."""
def test_validate_node_schemas_returns_no_warnings(self):
"""Ensure all registered node types have corresponding schemas."""
warnings = validate_node_schemas()
# If this test fails, it means a new node type was added but
# no schema was defined for it in node_schemas.py
assert len(warnings) == 0, (
f"Missing schemas for node types: {warnings}. "
"Please add schemas for these node types in node_schemas.py "
"or add them to _INTERNAL_NODE_TYPES if they don't need schemas."
)
def test_builtin_node_schemas_not_empty(self):
"""Ensure BUILTIN_NODE_SCHEMAS contains expected node types."""
# get_builtin_node_schemas() includes dynamic schemas
all_schemas = get_builtin_node_schemas()
assert len(all_schemas) > 0
# Core node types should always be present
expected_types = ["llm", "code", "http-request", "if-else"]
for node_type in expected_types:
assert node_type in all_schemas, f"Missing schema for core node type: {node_type}"
def test_schema_structure(self):
"""Ensure each schema has required fields."""
all_schemas = get_builtin_node_schemas()
for node_type, schema in all_schemas.items():
assert "description" in schema, f"Missing 'description' in schema for {node_type}"
# 'parameters' is optional but if present should be a dict
if "parameters" in schema:
assert isinstance(schema["parameters"], dict), (
f"'parameters' in schema for {node_type} should be a dict"
)
class TestNodeSchemasMerged:
"""Tests to verify the merged configuration works correctly."""
def test_fallback_rules_available(self):
"""Ensure FALLBACK_RULES is available from node_schemas."""
from core.workflow.generator.config.node_schemas import FALLBACK_RULES
assert len(FALLBACK_RULES) > 0
assert "http-request" in FALLBACK_RULES
assert "code" in FALLBACK_RULES
assert "llm" in FALLBACK_RULES
def test_node_type_aliases_available(self):
"""Ensure NODE_TYPE_ALIASES is available from node_schemas."""
from core.workflow.generator.config.node_schemas import NODE_TYPE_ALIASES
assert len(NODE_TYPE_ALIASES) > 0
assert NODE_TYPE_ALIASES.get("gpt") == "llm"
assert NODE_TYPE_ALIASES.get("api") == "http-request"
def test_field_name_corrections_available(self):
"""Ensure FIELD_NAME_CORRECTIONS is available from node_schemas."""
from core.workflow.generator.config.node_schemas import (
FIELD_NAME_CORRECTIONS,
get_corrected_field_name,
)
assert len(FIELD_NAME_CORRECTIONS) > 0
# Test the helper function
assert get_corrected_field_name("http-request", "text") == "body"
assert get_corrected_field_name("llm", "response") == "text"
assert get_corrected_field_name("code", "unknown") == "unknown"
def test_config_init_exports(self):
"""Ensure config __init__.py exports all needed symbols."""
from core.workflow.generator.config import (
BUILTIN_NODE_SCHEMAS,
FALLBACK_RULES,
FIELD_NAME_CORRECTIONS,
NODE_TYPE_ALIASES,
get_corrected_field_name,
validate_node_schemas,
)
# Just verify imports work
assert BUILTIN_NODE_SCHEMAS is not None
assert FALLBACK_RULES is not None
assert FIELD_NAME_CORRECTIONS is not None
assert NODE_TYPE_ALIASES is not None
assert callable(get_corrected_field_name)
assert callable(validate_node_schemas)

View File

@ -0,0 +1,173 @@
"""
Unit tests for the Planner Prompts.
Tests cover:
- Tool formatting for planner context
- Edge cases with missing fields
- Empty tool lists
"""
from core.workflow.generator.prompts.planner_prompts import format_tools_for_planner
class TestFormatToolsForPlanner:
"""Tests for format_tools_for_planner function."""
def test_empty_tools_returns_default_message(self):
"""Test empty tools list returns default message."""
result = format_tools_for_planner([])
assert result == "No external tools available."
def test_none_tools_returns_default_message(self):
"""Test None tools list returns default message."""
result = format_tools_for_planner(None)
assert result == "No external tools available."
def test_single_tool_formatting(self):
"""Test single tool is formatted correctly."""
tools = [
{
"provider_id": "google",
"tool_key": "search",
"tool_label": "Google Search",
"tool_description": "Search the web using Google",
}
]
result = format_tools_for_planner(tools)
assert "[google/search]" in result
assert "Google Search" in result
assert "Search the web using Google" in result
def test_multiple_tools_formatting(self):
"""Test multiple tools are formatted correctly."""
tools = [
{
"provider_id": "google",
"tool_key": "search",
"tool_label": "Search",
"tool_description": "Web search",
},
{
"provider_id": "slack",
"tool_key": "send_message",
"tool_label": "Send Message",
"tool_description": "Send a Slack message",
},
]
result = format_tools_for_planner(tools)
lines = result.strip().split("\n")
assert len(lines) == 2
assert "[google/search]" in result
assert "[slack/send_message]" in result
def test_tool_without_provider_uses_key_only(self):
"""Test tool without provider_id uses tool_key only."""
tools = [
{
"tool_key": "my_tool",
"tool_label": "My Tool",
"tool_description": "A custom tool",
}
]
result = format_tools_for_planner(tools)
# Should format as [my_tool] without provider prefix
assert "[my_tool]" in result
assert "My Tool" in result
def test_tool_with_tool_name_fallback(self):
"""Test tool uses tool_name when tool_key is missing."""
tools = [
{
"tool_name": "fallback_tool",
"description": "Fallback description",
}
]
result = format_tools_for_planner(tools)
assert "fallback_tool" in result
assert "Fallback description" in result
def test_tool_with_missing_description(self):
"""Test tool with missing description doesn't crash."""
tools = [
{
"provider_id": "test",
"tool_key": "tool1",
"tool_label": "Tool 1",
}
]
result = format_tools_for_planner(tools)
assert "[test/tool1]" in result
assert "Tool 1" in result
def test_tool_with_all_missing_fields(self):
"""Test tool with all fields missing uses defaults."""
tools = [{}]
result = format_tools_for_planner(tools)
# Should not crash, may produce minimal output
assert isinstance(result, str)
def test_tool_uses_provider_fallback(self):
"""Test tool uses 'provider' when 'provider_id' is missing."""
tools = [
{
"provider": "openai",
"tool_key": "dalle",
"tool_label": "DALL-E",
"tool_description": "Generate images",
}
]
result = format_tools_for_planner(tools)
assert "[openai/dalle]" in result
def test_tool_label_fallback_to_key(self):
"""Test tool_label falls back to tool_key when missing."""
tools = [
{
"provider_id": "test",
"tool_key": "my_key",
"tool_description": "Description here",
}
]
result = format_tools_for_planner(tools)
# Label should fallback to key
assert "my_key" in result
assert "Description here" in result
class TestPlannerPromptConstants:
"""Tests for planner prompt constant availability."""
def test_planner_system_prompt_exists(self):
"""Test PLANNER_SYSTEM_PROMPT is defined."""
from core.workflow.generator.prompts.planner_prompts import PLANNER_SYSTEM_PROMPT
assert PLANNER_SYSTEM_PROMPT is not None
assert len(PLANNER_SYSTEM_PROMPT) > 0
assert "{tools_summary}" in PLANNER_SYSTEM_PROMPT
def test_planner_user_prompt_exists(self):
"""Test PLANNER_USER_PROMPT is defined."""
from core.workflow.generator.prompts.planner_prompts import PLANNER_USER_PROMPT
assert PLANNER_USER_PROMPT is not None
assert "{instruction}" in PLANNER_USER_PROMPT
def test_planner_system_prompt_has_required_sections(self):
"""Test PLANNER_SYSTEM_PROMPT has required XML sections."""
from core.workflow.generator.prompts.planner_prompts import PLANNER_SYSTEM_PROMPT
assert "<role>" in PLANNER_SYSTEM_PROMPT
assert "<task>" in PLANNER_SYSTEM_PROMPT
assert "<available_tools>" in PLANNER_SYSTEM_PROMPT
assert "<response_format>" in PLANNER_SYSTEM_PROMPT

View File

@ -0,0 +1,536 @@
"""
Unit tests for the Validation Rule Engine.
Tests cover:
- Structure rules (required fields, types, formats)
- Semantic rules (variable references, edge connections)
- Reference rules (model exists, tool configured, dataset valid)
- ValidationEngine integration
"""
from core.workflow.generator.validation import (
ValidationContext,
ValidationEngine,
)
from core.workflow.generator.validation.rules import (
extract_variable_refs,
is_placeholder,
)
class TestPlaceholderDetection:
"""Tests for placeholder detection utility."""
def test_detects_please_select(self):
assert is_placeholder("PLEASE_SELECT_YOUR_MODEL") is True
def test_detects_your_prefix(self):
assert is_placeholder("YOUR_API_KEY") is True
def test_detects_todo(self):
assert is_placeholder("TODO: fill this in") is True
def test_detects_placeholder(self):
assert is_placeholder("PLACEHOLDER_VALUE") is True
def test_detects_example_prefix(self):
assert is_placeholder("EXAMPLE_URL") is True
def test_detects_replace_prefix(self):
assert is_placeholder("REPLACE_WITH_ACTUAL") is True
def test_case_insensitive(self):
assert is_placeholder("please_select") is True
assert is_placeholder("Please_Select") is True
def test_valid_values_not_detected(self):
assert is_placeholder("https://api.example.com") is False
assert is_placeholder("gpt-4") is False
assert is_placeholder("my_variable") is False
def test_non_string_returns_false(self):
assert is_placeholder(123) is False
assert is_placeholder(None) is False
assert is_placeholder(["list"]) is False
class TestVariableRefExtraction:
"""Tests for variable reference extraction."""
def test_extracts_simple_ref(self):
refs = extract_variable_refs("Hello {{#start.query#}}")
assert refs == [("start", "query")]
def test_extracts_multiple_refs(self):
refs = extract_variable_refs("{{#node1.output#}} and {{#node2.text#}}")
assert refs == [("node1", "output"), ("node2", "text")]
def test_extracts_nested_field(self):
refs = extract_variable_refs("{{#http_request.body#}}")
assert refs == [("http_request", "body")]
def test_no_refs_returns_empty(self):
refs = extract_variable_refs("No references here")
assert refs == []
def test_handles_malformed_refs(self):
refs = extract_variable_refs("{{#invalid}} and {{incomplete#}}")
assert refs == []
class TestValidationContext:
"""Tests for ValidationContext."""
def test_node_map_lookup(self):
ctx = ValidationContext(
nodes=[
{"id": "start", "type": "start"},
{"id": "llm_1", "type": "llm"},
]
)
assert ctx.get_node("start") == {"id": "start", "type": "start"}
assert ctx.get_node("nonexistent") is None
def test_model_set(self):
ctx = ValidationContext(
available_models=[
{"provider": "openai", "model": "gpt-4"},
{"provider": "anthropic", "model": "claude-3"},
]
)
assert ctx.has_model("openai", "gpt-4") is True
assert ctx.has_model("anthropic", "claude-3") is True
assert ctx.has_model("openai", "gpt-3.5") is False
def test_tool_set(self):
ctx = ValidationContext(
available_tools=[
{"provider_id": "google", "tool_key": "search", "is_team_authorization": True},
{"provider_id": "slack", "tool_key": "send_message", "is_team_authorization": False},
]
)
assert ctx.has_tool("google/search") is True
assert ctx.has_tool("search") is True
assert ctx.is_tool_configured("google/search") is True
assert ctx.is_tool_configured("slack/send_message") is False
def test_upstream_downstream_nodes(self):
ctx = ValidationContext(
nodes=[
{"id": "start", "type": "start"},
{"id": "llm", "type": "llm"},
{"id": "end", "type": "end"},
],
edges=[
{"source": "start", "target": "llm"},
{"source": "llm", "target": "end"},
],
)
assert ctx.get_upstream_nodes("llm") == ["start"]
assert ctx.get_downstream_nodes("llm") == ["end"]
class TestStructureRules:
"""Tests for structure validation rules."""
def test_llm_missing_prompt_template(self):
ctx = ValidationContext(
nodes=[{"id": "llm_1", "type": "llm", "config": {}}]
)
engine = ValidationEngine()
result = engine.validate(ctx)
assert result.has_errors
errors = [e for e in result.all_errors if e.rule_id == "llm.prompt_template.required"]
assert len(errors) == 1
assert errors[0].is_fixable is True
def test_llm_with_prompt_template_passes(self):
ctx = ValidationContext(
nodes=[
{
"id": "llm_1",
"type": "llm",
"config": {
"prompt_template": [
{"role": "system", "text": "You are helpful"},
{"role": "user", "text": "Hello"},
]
},
}
]
)
engine = ValidationEngine()
result = engine.validate(ctx)
# No prompt_template errors
errors = [e for e in result.all_errors if "prompt_template" in e.rule_id]
assert len(errors) == 0
def test_http_request_missing_url(self):
ctx = ValidationContext(
nodes=[{"id": "http_1", "type": "http-request", "config": {}}]
)
engine = ValidationEngine()
result = engine.validate(ctx)
errors = [e for e in result.all_errors if "http.url" in e.rule_id]
assert len(errors) == 1
assert errors[0].is_fixable is True
def test_http_request_placeholder_url(self):
ctx = ValidationContext(
nodes=[
{
"id": "http_1",
"type": "http-request",
"config": {"url": "PLEASE_SELECT_YOUR_URL", "method": "GET"},
}
]
)
engine = ValidationEngine()
result = engine.validate(ctx)
errors = [e for e in result.all_errors if "placeholder" in e.rule_id]
assert len(errors) == 1
def test_code_node_missing_fields(self):
ctx = ValidationContext(
nodes=[{"id": "code_1", "type": "code", "config": {}}]
)
engine = ValidationEngine()
result = engine.validate(ctx)
error_rules = {e.rule_id for e in result.all_errors}
assert "code.code.required" in error_rules
assert "code.language.required" in error_rules
def test_knowledge_retrieval_missing_dataset(self):
ctx = ValidationContext(
nodes=[{"id": "kb_1", "type": "knowledge-retrieval", "config": {}}]
)
engine = ValidationEngine()
result = engine.validate(ctx)
errors = [e for e in result.all_errors if "knowledge.dataset" in e.rule_id]
assert len(errors) == 1
assert errors[0].is_fixable is False # User must configure
class TestSemanticRules:
"""Tests for semantic validation rules."""
def test_valid_variable_reference(self):
ctx = ValidationContext(
nodes=[
{"id": "start", "type": "start", "config": {}},
{
"id": "llm_1",
"type": "llm",
"config": {
"prompt_template": [
{"role": "user", "text": "Process: {{#start.query#}}"}
]
},
},
]
)
engine = ValidationEngine()
result = engine.validate(ctx)
# No variable reference errors
errors = [e for e in result.all_errors if "variable.ref" in e.rule_id]
assert len(errors) == 0
def test_invalid_variable_reference(self):
ctx = ValidationContext(
nodes=[
{"id": "start", "type": "start", "config": {}},
{
"id": "llm_1",
"type": "llm",
"config": {
"prompt_template": [
{"role": "user", "text": "Process: {{#nonexistent.field#}}"}
]
},
},
]
)
engine = ValidationEngine()
result = engine.validate(ctx)
errors = [e for e in result.all_errors if "variable.ref" in e.rule_id]
assert len(errors) == 1
assert "nonexistent" in errors[0].message
def test_edge_validation(self):
ctx = ValidationContext(
nodes=[
{"id": "start", "type": "start", "config": {}},
{"id": "end", "type": "end", "config": {}},
],
edges=[
{"source": "start", "target": "end"},
{"source": "nonexistent", "target": "end"},
],
)
engine = ValidationEngine()
result = engine.validate(ctx)
errors = [e for e in result.all_errors if "edge" in e.rule_id]
assert len(errors) == 1
assert "nonexistent" in errors[0].message
class TestReferenceRules:
"""Tests for reference validation rules (models, tools)."""
def test_llm_missing_model_with_available(self):
ctx = ValidationContext(
nodes=[
{
"id": "llm_1",
"type": "llm",
"config": {"prompt_template": [{"role": "user", "text": "Hi"}]},
}
],
available_models=[{"provider": "openai", "model": "gpt-4"}],
)
engine = ValidationEngine()
result = engine.validate(ctx)
errors = [e for e in result.all_errors if e.rule_id == "model.required"]
assert len(errors) == 1
assert errors[0].is_fixable is True
def test_llm_missing_model_no_available(self):
ctx = ValidationContext(
nodes=[
{
"id": "llm_1",
"type": "llm",
"config": {"prompt_template": [{"role": "user", "text": "Hi"}]},
}
],
available_models=[], # No models available
)
engine = ValidationEngine()
result = engine.validate(ctx)
errors = [e for e in result.all_errors if e.rule_id == "model.no_available"]
assert len(errors) == 1
assert errors[0].is_fixable is False
def test_llm_with_valid_model(self):
ctx = ValidationContext(
nodes=[
{
"id": "llm_1",
"type": "llm",
"config": {
"prompt_template": [{"role": "user", "text": "Hi"}],
"model": {"provider": "openai", "name": "gpt-4"},
},
}
],
available_models=[{"provider": "openai", "model": "gpt-4"}],
)
engine = ValidationEngine()
result = engine.validate(ctx)
errors = [e for e in result.all_errors if "model" in e.rule_id]
assert len(errors) == 0
def test_llm_with_invalid_model(self):
ctx = ValidationContext(
nodes=[
{
"id": "llm_1",
"type": "llm",
"config": {
"prompt_template": [{"role": "user", "text": "Hi"}],
"model": {"provider": "openai", "name": "gpt-99"},
},
}
],
available_models=[{"provider": "openai", "model": "gpt-4"}],
)
engine = ValidationEngine()
result = engine.validate(ctx)
errors = [e for e in result.all_errors if e.rule_id == "model.not_found"]
assert len(errors) == 1
assert errors[0].is_fixable is True
def test_tool_node_not_found(self):
ctx = ValidationContext(
nodes=[
{
"id": "tool_1",
"type": "tool",
"config": {"tool_key": "nonexistent/tool"},
}
],
available_tools=[],
)
engine = ValidationEngine()
result = engine.validate(ctx)
errors = [e for e in result.all_errors if e.rule_id == "tool.not_found"]
assert len(errors) == 1
def test_tool_node_not_configured(self):
ctx = ValidationContext(
nodes=[
{
"id": "tool_1",
"type": "tool",
"config": {"tool_key": "google/search"},
}
],
available_tools=[
{"provider_id": "google", "tool_key": "search", "is_team_authorization": False}
],
)
engine = ValidationEngine()
result = engine.validate(ctx)
errors = [e for e in result.all_errors if e.rule_id == "tool.not_configured"]
assert len(errors) == 1
assert errors[0].is_fixable is False
class TestValidationResult:
"""Tests for ValidationResult classification."""
def test_has_errors(self):
ctx = ValidationContext(
nodes=[{"id": "llm_1", "type": "llm", "config": {}}]
)
engine = ValidationEngine()
result = engine.validate(ctx)
assert result.has_errors is True
assert result.is_valid is False
def test_has_fixable_errors(self):
ctx = ValidationContext(
nodes=[
{
"id": "llm_1",
"type": "llm",
"config": {"prompt_template": [{"role": "user", "text": "Hi"}]},
}
],
available_models=[{"provider": "openai", "model": "gpt-4"}],
)
engine = ValidationEngine()
result = engine.validate(ctx)
assert result.has_fixable_errors is True
assert len(result.fixable_errors) > 0
def test_get_fixable_by_node(self):
ctx = ValidationContext(
nodes=[
{"id": "llm_1", "type": "llm", "config": {}},
{"id": "http_1", "type": "http-request", "config": {}},
]
)
engine = ValidationEngine()
result = engine.validate(ctx)
by_node = result.get_fixable_by_node()
assert "llm_1" in by_node
assert "http_1" in by_node
def test_to_dict(self):
ctx = ValidationContext(
nodes=[{"id": "llm_1", "type": "llm", "config": {}}]
)
engine = ValidationEngine()
result = engine.validate(ctx)
d = result.to_dict()
assert "fixable" in d
assert "user_required" in d
assert "warnings" in d
assert "all_warnings" in d
assert "stats" in d
class TestIntegration:
"""Integration tests for the full validation pipeline."""
def test_complete_workflow_validation(self):
"""Test validation of a complete workflow."""
ctx = ValidationContext(
nodes=[
{
"id": "start",
"type": "start",
"config": {"variables": [{"variable": "query", "type": "text-input"}]},
},
{
"id": "llm_1",
"type": "llm",
"config": {
"model": {"provider": "openai", "name": "gpt-4"},
"prompt_template": [{"role": "user", "text": "{{#start.query#}}"}],
},
},
{
"id": "end",
"type": "end",
"config": {"outputs": [{"variable": "result", "value_selector": ["llm_1", "text"]}]},
},
],
edges=[
{"source": "start", "target": "llm_1"},
{"source": "llm_1", "target": "end"},
],
available_models=[{"provider": "openai", "model": "gpt-4"}],
)
engine = ValidationEngine()
result = engine.validate(ctx)
# Should have no errors
assert result.is_valid is True
assert len(result.fixable_errors) == 0
assert len(result.user_required_errors) == 0
def test_workflow_with_multiple_errors(self):
"""Test workflow with multiple types of errors."""
ctx = ValidationContext(
nodes=[
{"id": "start", "type": "start", "config": {}},
{
"id": "llm_1",
"type": "llm",
"config": {}, # Missing prompt_template and model
},
{
"id": "kb_1",
"type": "knowledge-retrieval",
"config": {"dataset_ids": ["PLEASE_SELECT_YOUR_DATASET"]},
},
{"id": "end", "type": "end", "config": {}},
],
available_models=[{"provider": "openai", "model": "gpt-4"}],
)
engine = ValidationEngine()
result = engine.validate(ctx)
# Should have multiple errors
assert result.has_errors is True
assert len(result.fixable_errors) >= 2 # model, prompt_template
assert len(result.user_required_errors) >= 1 # dataset placeholder
# Check stats
assert result.stats["total_nodes"] == 4
assert result.stats["total_errors"] >= 3

View File

@ -0,0 +1,435 @@
"""
Unit tests for the Vibe Workflow Validator.
Tests cover:
- Basic validation function
- User-friendly validation hints
- Edge cases and error handling
"""
from core.workflow.generator.utils.workflow_validator import ValidationHint, WorkflowValidator
class TestValidationHint:
"""Tests for ValidationHint dataclass."""
def test_hint_creation(self):
"""Test creating a validation hint."""
hint = ValidationHint(
node_id="llm_1",
field="model",
message="Model is not configured",
severity="error",
)
assert hint.node_id == "llm_1"
assert hint.field == "model"
assert hint.message == "Model is not configured"
assert hint.severity == "error"
def test_hint_with_suggestion(self):
"""Test hint with suggestion."""
hint = ValidationHint(
node_id="http_1",
field="url",
message="URL is required",
severity="error",
suggestion="Add a valid URL like https://api.example.com",
)
assert hint.suggestion is not None
class TestWorkflowValidatorBasic:
"""Tests for basic validation scenarios."""
def test_empty_workflow_is_valid(self):
"""Test empty workflow passes validation."""
workflow_data = {"nodes": [], "edges": []}
is_valid, hints = WorkflowValidator.validate(workflow_data, [])
# Empty but valid structure
assert is_valid is True
assert len(hints) == 0
def test_minimal_valid_workflow(self):
"""Test minimal Start → End workflow."""
workflow_data = {
"nodes": [
{"id": "start", "type": "start", "config": {}},
{"id": "end", "type": "end", "config": {}},
],
"edges": [{"source": "start", "target": "end"}],
}
is_valid, hints = WorkflowValidator.validate(workflow_data, [])
assert is_valid is True
def test_complete_workflow_with_llm(self):
"""Test complete workflow with LLM node."""
workflow_data = {
"nodes": [
{"id": "start", "type": "start", "config": {"variables": []}},
{
"id": "llm",
"type": "llm",
"config": {
"model": {"provider": "openai", "name": "gpt-4"},
"prompt_template": [{"role": "user", "text": "Hello"}],
},
},
{"id": "end", "type": "end", "config": {"outputs": []}},
],
"edges": [
{"source": "start", "target": "llm"},
{"source": "llm", "target": "end"},
],
}
is_valid, hints = WorkflowValidator.validate(workflow_data, [])
# Should pass with no critical errors
errors = [h for h in hints if h.severity == "error"]
assert len(errors) == 0
class TestVariableReferenceValidation:
"""Tests for variable reference validation."""
def test_valid_variable_reference(self):
"""Test valid variable reference passes."""
workflow_data = {
"nodes": [
{"id": "start", "type": "start", "config": {}},
{
"id": "llm",
"type": "llm",
"config": {"prompt_template": [{"role": "user", "text": "Query: {{#start.query#}}"}]},
},
],
"edges": [{"source": "start", "target": "llm"}],
}
is_valid, hints = WorkflowValidator.validate(workflow_data, [])
ref_errors = [h for h in hints if "reference" in h.message.lower()]
assert len(ref_errors) == 0
def test_invalid_variable_reference(self):
"""Test invalid variable reference generates hint."""
workflow_data = {
"nodes": [
{"id": "start", "type": "start", "config": {}},
{
"id": "llm",
"type": "llm",
"config": {"prompt_template": [{"role": "user", "text": "{{#nonexistent.field#}}"}]},
},
],
"edges": [{"source": "start", "target": "llm"}],
}
is_valid, hints = WorkflowValidator.validate(workflow_data, [])
# Should have a hint about invalid reference
ref_hints = [h for h in hints if "nonexistent" in h.message or "reference" in h.message.lower()]
assert len(ref_hints) >= 1
class TestEdgeValidation:
"""Tests for edge validation."""
def test_edge_with_invalid_source(self):
"""Test edge with non-existent source generates hint."""
workflow_data = {
"nodes": [{"id": "end", "type": "end", "config": {}}],
"edges": [{"source": "nonexistent", "target": "end"}],
}
is_valid, hints = WorkflowValidator.validate(workflow_data, [])
# Should have hint about invalid edge
edge_hints = [h for h in hints if "edge" in h.message.lower() or "source" in h.message.lower()]
assert len(edge_hints) >= 1
def test_edge_with_invalid_target(self):
"""Test edge with non-existent target generates hint."""
workflow_data = {
"nodes": [{"id": "start", "type": "start", "config": {}}],
"edges": [{"source": "start", "target": "nonexistent"}],
}
is_valid, hints = WorkflowValidator.validate(workflow_data, [])
edge_hints = [h for h in hints if "edge" in h.message.lower() or "target" in h.message.lower()]
assert len(edge_hints) >= 1
class TestToolValidation:
"""Tests for tool node validation."""
def test_tool_node_found_in_available(self):
"""Test tool node that exists in available tools."""
workflow_data = {
"nodes": [
{"id": "start", "type": "start", "config": {}},
{
"id": "tool1",
"type": "tool",
"config": {"tool_key": "google/search"},
},
{"id": "end", "type": "end", "config": {}},
],
"edges": [{"source": "start", "target": "tool1"}, {"source": "tool1", "target": "end"}],
}
available_tools = [{"provider_id": "google", "tool_key": "search", "is_team_authorization": True}]
is_valid, hints = WorkflowValidator.validate(workflow_data, available_tools)
tool_errors = [h for h in hints if h.severity == "error" and "tool" in h.message.lower()]
assert len(tool_errors) == 0
def test_tool_node_not_found(self):
"""Test tool node not in available tools generates hint."""
workflow_data = {
"nodes": [
{
"id": "tool1",
"type": "tool",
"config": {"tool_key": "unknown/tool"},
}
],
"edges": [],
}
available_tools = []
is_valid, hints = WorkflowValidator.validate(workflow_data, available_tools)
tool_hints = [h for h in hints if "tool" in h.message.lower()]
assert len(tool_hints) >= 1
class TestQuestionClassifierValidation:
"""Tests for question-classifier node validation."""
def test_question_classifier_with_classes(self):
"""Test question-classifier with valid classes."""
workflow_data = {
"nodes": [
{"id": "start", "type": "start", "config": {}},
{
"id": "classifier",
"type": "question-classifier",
"config": {
"classes": [
{"id": "class1", "name": "Class 1"},
{"id": "class2", "name": "Class 2"},
],
"model": {"provider": "openai", "name": "gpt-4", "mode": "chat"},
},
},
{"id": "h1", "type": "llm", "config": {}},
{"id": "h2", "type": "llm", "config": {}},
{"id": "end", "type": "end", "config": {}},
],
"edges": [
{"source": "start", "target": "classifier"},
{"source": "classifier", "sourceHandle": "class1", "target": "h1"},
{"source": "classifier", "sourceHandle": "class2", "target": "h2"},
{"source": "h1", "target": "end"},
{"source": "h2", "target": "end"},
],
}
available_models = [{"provider": "openai", "model": "gpt-4", "mode": "chat"}]
is_valid, hints = WorkflowValidator.validate(workflow_data, [], available_models=available_models)
class_errors = [h for h in hints if "class" in h.message.lower() and h.severity == "error"]
assert len(class_errors) == 0
def test_question_classifier_missing_classes(self):
"""Test question-classifier without classes generates hint."""
workflow_data = {
"nodes": [
{
"id": "classifier",
"type": "question-classifier",
"config": {"model": {"provider": "openai", "name": "gpt-4", "mode": "chat"}},
}
],
"edges": [],
}
available_models = [{"provider": "openai", "model": "gpt-4", "mode": "chat"}]
is_valid, hints = WorkflowValidator.validate(workflow_data, [], available_models=available_models)
# Should have hint about missing classes
class_hints = [h for h in hints if "class" in h.message.lower()]
assert len(class_hints) >= 1
class TestHttpRequestValidation:
"""Tests for HTTP request node validation."""
def test_http_request_with_url(self):
"""Test HTTP request with valid URL."""
workflow_data = {
"nodes": [
{"id": "start", "type": "start", "config": {}},
{
"id": "http",
"type": "http-request",
"config": {"url": "https://api.example.com", "method": "GET"},
},
{"id": "end", "type": "end", "config": {}},
],
"edges": [{"source": "start", "target": "http"}, {"source": "http", "target": "end"}],
}
is_valid, hints = WorkflowValidator.validate(workflow_data, [])
url_errors = [h for h in hints if "url" in h.message.lower() and h.severity == "error"]
assert len(url_errors) == 0
def test_http_request_missing_url(self):
"""Test HTTP request without URL generates hint."""
workflow_data = {
"nodes": [
{
"id": "http",
"type": "http-request",
"config": {"method": "GET"},
}
],
"edges": [],
}
is_valid, hints = WorkflowValidator.validate(workflow_data, [])
url_hints = [h for h in hints if "url" in h.message.lower()]
assert len(url_hints) >= 1
class TestParameterExtractorValidation:
"""Tests for parameter-extractor node validation."""
def test_parameter_extractor_valid_params(self):
"""Test parameter-extractor with valid parameters."""
workflow_data = {
"nodes": [
{"id": "start", "type": "start", "config": {}},
{
"id": "extractor",
"type": "parameter-extractor",
"config": {
"instruction": "Extract info",
"parameters": [
{
"name": "name",
"type": "string",
"description": "Name",
"required": True,
}
],
"model": {"provider": "openai", "name": "gpt-4", "mode": "chat"},
},
},
{"id": "end", "type": "end", "config": {}},
],
"edges": [{"source": "start", "target": "extractor"}, {"source": "extractor", "target": "end"}],
}
available_models = [{"provider": "openai", "model": "gpt-4", "mode": "chat"}]
is_valid, hints = WorkflowValidator.validate(workflow_data, [], available_models=available_models)
errors = [h for h in hints if h.severity == "error"]
assert len(errors) == 0
def test_parameter_extractor_missing_required_field(self):
"""Test parameter-extractor missing 'required' field in parameter item."""
workflow_data = {
"nodes": [
{
"id": "extractor",
"type": "parameter-extractor",
"config": {
"instruction": "Extract info",
"parameters": [
{
"name": "name",
"type": "string",
"description": "Name",
# Missing 'required'
}
],
"model": {"provider": "openai", "name": "gpt-4", "mode": "chat"},
},
}
],
"edges": [],
}
available_models = [{"provider": "openai", "model": "gpt-4", "mode": "chat"}]
is_valid, hints = WorkflowValidator.validate(workflow_data, [], available_models=available_models)
errors = [h for h in hints if "required" in h.message and h.severity == "error"]
assert len(errors) >= 1
assert "parameter-extractor" in errors[0].node_type
class TestIfElseValidation:
"""Tests for if-else node validation."""
def test_if_else_valid_operators(self):
"""Test if-else with valid operators."""
workflow_data = {
"nodes": [
{"id": "start", "type": "start", "config": {}},
{
"id": "ifelse",
"type": "if-else",
"config": {
"cases": [{"case_id": "c1", "conditions": [{"comparison_operator": "", "value": "1"}]}]
},
},
{"id": "t", "type": "llm", "config": {}},
{"id": "f", "type": "llm", "config": {}},
{"id": "end", "type": "end", "config": {}},
],
"edges": [
{"source": "start", "target": "ifelse"},
{"source": "ifelse", "sourceHandle": "true", "target": "t"},
{"source": "ifelse", "sourceHandle": "false", "target": "f"},
{"source": "t", "target": "end"},
{"source": "f", "target": "end"},
],
}
is_valid, hints = WorkflowValidator.validate(workflow_data, [])
errors = [h for h in hints if h.severity == "error"]
# Filter out LLM model errors if any (available tools/models check might trigger)
# (actually available_models empty list might trigger model error?
# No, model config validation skips if model field not present? No, LLM has model config.
# But logic skips check if key missing? Let's check logic.
# _check_model_config checks if provider/name match available. If available is empty, it fails.
# But wait, validate default available_models is None?
# I should provide mock available_models or ignore model errors.
# Actually LLM node "config": {} implies missing model config. Rules check if config structure is valid?
# Let's filter specifically for operator errors.
operator_errors = [h for h in errors if "operator" in h.message]
assert len(operator_errors) == 0
def test_if_else_invalid_operators(self):
"""Test if-else with invalid operators."""
workflow_data = {
"nodes": [
{"id": "start", "type": "start", "config": {}},
{
"id": "ifelse",
"type": "if-else",
"config": {
"cases": [{"case_id": "c1", "conditions": [{"comparison_operator": ">=", "value": "1"}]}]
},
},
{"id": "t", "type": "llm", "config": {}},
{"id": "f", "type": "llm", "config": {}},
{"id": "end", "type": "end", "config": {}},
],
"edges": [
{"source": "start", "target": "ifelse"},
{"source": "ifelse", "sourceHandle": "true", "target": "t"},
{"source": "ifelse", "sourceHandle": "false", "target": "f"},
{"source": "t", "target": "end"},
{"source": "f", "target": "end"},
],
}
is_valid, hints = WorkflowValidator.validate(workflow_data, [])
operator_errors = [h for h in hints if "operator" in h.message and h.severity == "error"]
assert len(operator_errors) > 0
assert "" in operator_errors[0].suggestion

View File

@ -0,0 +1,87 @@
import type { CommandSearchResult, SearchResult } from './types'
import { isInWorkflowPage } from '@/app/components/workflow/constants'
import i18n from '@/i18n-config/i18next-config'
import { bananaAction } from './banana'
vi.mock('@/i18n-config/i18next-config', () => ({
default: {
t: vi.fn((key: string, options?: Record<string, unknown>) => {
if (!options)
return key
return `${key}:${JSON.stringify(options)}`
}),
},
}))
vi.mock('@/app/components/workflow/constants', async () => {
const actual = await vi.importActual<typeof import('@/app/components/workflow/constants')>(
'@/app/components/workflow/constants',
)
return {
...actual,
isInWorkflowPage: vi.fn(),
}
})
const mockedIsInWorkflowPage = vi.mocked(isInWorkflowPage)
const mockedT = vi.mocked(i18n.t)
const getCommandResult = (item: SearchResult): CommandSearchResult => {
expect(item.type).toBe('command')
return item as CommandSearchResult
}
beforeEach(() => {
vi.clearAllMocks()
})
// Search behavior for the banana action.
describe('bananaAction', () => {
// Search results depend on workflow context and input content.
describe('search', () => {
it('should return no results when not on workflow page', async () => {
// Arrange
mockedIsInWorkflowPage.mockReturnValue(false)
// Act
const result = await bananaAction.search('', '', 'en')
// Assert
expect(result).toEqual([])
})
it('should return hint description when input is blank', async () => {
// Arrange
mockedIsInWorkflowPage.mockReturnValue(true)
// Act
const result = await bananaAction.search('', ' ', 'en')
// Assert
expect(result).toHaveLength(1)
const [item] = result
const commandItem = getCommandResult(item)
expect(item.description).toContain('app.gotoAnything.actions.vibeHint')
expect(commandItem.data.args?.dsl).toBe('')
expect(mockedT).toHaveBeenCalledWith(
'app.gotoAnything.actions.vibeHint',
expect.objectContaining({ prompt: expect.any(String), lng: 'en' }),
)
})
it('should return default description when input is provided', async () => {
// Arrange
mockedIsInWorkflowPage.mockReturnValue(true)
// Act
const result = await bananaAction.search('', ' build a flow ', 'en')
// Assert
expect(result).toHaveLength(1)
const [item] = result
const commandItem = getCommandResult(item)
expect(item.description).toContain('app.gotoAnything.actions.vibeDesc')
expect(commandItem.data.args?.dsl).toBe('build a flow')
})
})
})

View File

@ -0,0 +1,82 @@
import { describe, it, expect } from 'vitest'
import { replaceVariableReferences } from '../use-workflow-vibe'
import { BlockEnum } from '@/app/components/workflow/types'
// Mock types needed for the test
interface NodeData {
title: string
[key: string]: any
}
describe('use-workflow-vibe', () => {
describe('replaceVariableReferences', () => {
it('should replace variable references in strings', () => {
const data = {
title: 'Test Node',
prompt: 'Hello {{#old_id.query#}}',
}
const nodeIdMap = new Map<string, any>()
nodeIdMap.set('old_id', { id: 'new_uuid', data: { type: 'llm' } })
const result = replaceVariableReferences(data, nodeIdMap) as NodeData
expect(result.prompt).toBe('Hello {{#new_uuid.query#}}')
})
it('should handle multiple references in one string', () => {
const data = {
title: 'Test Node',
text: '{{#node1.out#}} and {{#node2.out#}}',
}
const nodeIdMap = new Map<string, any>()
nodeIdMap.set('node1', { id: 'uuid1', data: { type: 'llm' } })
nodeIdMap.set('node2', { id: 'uuid2', data: { type: 'llm' } })
const result = replaceVariableReferences(data, nodeIdMap) as NodeData
expect(result.text).toBe('{{#uuid1.out#}} and {{#uuid2.out#}}')
})
it('should replace variable references in value_selector arrays', () => {
const data = {
title: 'End Node',
outputs: [
{
variable: 'result',
value_selector: ['old_id', 'text'],
},
],
}
const nodeIdMap = new Map<string, any>()
nodeIdMap.set('old_id', { id: 'new_uuid', data: { type: 'llm' } })
const result = replaceVariableReferences(data, nodeIdMap) as NodeData
expect(result.outputs[0].value_selector).toEqual(['new_uuid', 'text'])
})
it('should handle nested objects recursively', () => {
const data = {
config: {
model: {
prompt: '{{#old_id.text#}}',
},
},
}
const nodeIdMap = new Map<string, any>()
nodeIdMap.set('old_id', { id: 'new_uuid', data: { type: 'llm' } })
const result = replaceVariableReferences(data, nodeIdMap) as any
expect(result.config.model.prompt).toBe('{{#new_uuid.text#}}')
})
it('should ignoring missing node mappings', () => {
const data = {
text: '{{#missing_id.text#}}',
}
const nodeIdMap = new Map<string, any>()
// missing_id is not in map
const result = replaceVariableReferences(data, nodeIdMap) as NodeData
expect(result.text).toBe('{{#missing_id.text#}}')
})
})
})

View File

@ -25,3 +25,4 @@ export * from './use-workflow-search'
export * from './use-workflow-start-run'
export * from './use-workflow-variables'
export * from './use-workflow-vibe'
export * from './use-workflow-vibe-config'

View File

@ -159,7 +159,7 @@ export const useChecklist = (nodes: Node[], edges: Edge[]) => {
}
}
else {
usedVars = getNodeUsedVars(node).filter(v => v.length > 0)
usedVars = getNodeUsedVars(node).filter(v => v && v.length > 0)
}
if (node.type === CUSTOM_NODE) {
@ -355,7 +355,7 @@ export const useChecklistBeforePublish = () => {
}
}
else {
usedVars = getNodeUsedVars(node).filter(v => v.length > 0)
usedVars = getNodeUsedVars(node).filter(v => v && v.length > 0)
}
const checkData = getCheckData(node.data, datasets)
const { errorMessage } = nodesExtraData![node.data.type as BlockEnum].checkValid(checkData, t, moreDataForCheckValid)

View File

@ -0,0 +1,99 @@
/**
* Vibe Workflow Generator Configuration
*
* This module centralizes configuration for the Vibe workflow generation feature,
* including node type aliases and field name corrections.
*
* Note: These definitions are mirrored in the backend at:
* api/core/workflow/generator/config/node_schemas.py
* When updating these values, also update the backend file.
*/
/**
* Node type aliases for inference from natural language.
* Maps common terms to canonical node type names.
*/
export const NODE_TYPE_ALIASES: Record<string, string> = {
// Start node aliases
'start': 'start',
'begin': 'start',
'input': 'start',
// End node aliases
'end': 'end',
'finish': 'end',
'output': 'end',
// LLM node aliases
'llm': 'llm',
'ai': 'llm',
'gpt': 'llm',
'model': 'llm',
'chat': 'llm',
// Code node aliases
'code': 'code',
'script': 'code',
'python': 'code',
'javascript': 'code',
// HTTP request node aliases
'http-request': 'http-request',
'http': 'http-request',
'request': 'http-request',
'api': 'http-request',
'fetch': 'http-request',
'webhook': 'http-request',
// Conditional node aliases
'if-else': 'if-else',
'condition': 'if-else',
'branch': 'if-else',
'switch': 'if-else',
// Loop node aliases
'iteration': 'iteration',
'loop': 'loop',
'foreach': 'iteration',
// Tool node alias
'tool': 'tool',
}
/**
* Field name corrections for LLM-generated node configs.
* Maps incorrect field names to correct ones for specific node types.
*/
export const FIELD_NAME_CORRECTIONS: Record<string, Record<string, string>> = {
'http-request': {
text: 'body', // LLM might use "text" instead of "body"
content: 'body',
response: 'body',
},
'code': {
text: 'result', // LLM might use "text" instead of "result"
output: 'result',
},
'llm': {
response: 'text',
answer: 'text',
},
}
/**
* Correct field names based on node type.
* LLM sometimes generates wrong field names (e.g., "text" instead of "body" for HTTP nodes).
*
* @param field - The field name to correct
* @param nodeType - The type of the node
* @returns The corrected field name, or the original if no correction needed
*/
export const correctFieldName = (field: string, nodeType: string): string => {
const corrections = FIELD_NAME_CORRECTIONS[nodeType]
if (corrections && corrections[field])
return corrections[field]
return field
}
/**
* Get the canonical node type from an alias.
*
* @param alias - The alias to look up
* @returns The canonical node type, or undefined if not found
*/
export const getCanonicalNodeType = (alias: string): string | undefined => {
return NODE_TYPE_ALIASES[alias.toLowerCase()]
}

View File

@ -3,6 +3,7 @@
import type { ToolDefaultValue } from '../block-selector/types'
import type { Edge, Node, ToolWithProvider } from '../types'
import type { Tool } from '@/app/components/tools/types'
import type { BackendEdgeSpec, BackendNodeSpec } from '@/service/debug'
import type { Model } from '@/types/app'
import { useSessionStorageState } from 'ahooks'
import { useCallback, useEffect, useMemo, useRef, useState } from 'react'
@ -38,10 +39,12 @@ import {
getNodeCustomTypeByNodeDataType,
getNodesConnectedSourceOrTargetHandleIdsMap,
} from '../utils'
import { initialNodes as initializeNodeData } from '../utils/workflow-init'
import { useNodesMetaData } from './use-nodes-meta-data'
import { useNodesSyncDraft } from './use-nodes-sync-draft'
import { useNodesReadOnly } from './use-workflow'
import { useWorkflowHistory, WorkflowHistoryEvent } from './use-workflow-history'
import { correctFieldName, NODE_TYPE_ALIASES } from './use-workflow-vibe-config'
type VibeCommandDetail = {
dsl?: string
@ -105,6 +108,79 @@ const normalizeProviderIcon = (icon?: ToolWithProvider['icon']) => {
return icon
}
/**
* Replace variable references in node data using the nodeIdMap.
* Handles:
* - String templates: {{#old_id.field#}} {{#new_id.field#}}
* - Value selectors: ["old_id", "field"] ["new_id", "field"]
* - Mixed content objects: {type: "mixed", value: "..."} normalized to string
* - Field name correction based on node type
*/
export const replaceVariableReferences = (
data: unknown,
nodeIdMap: Map<string, Node>,
parentKey?: string,
): unknown => {
if (typeof data === 'string') {
// Replace {{#old_id.field#}} patterns and correct field names
return data.replace(/\{\{#([^.#]+)\.([^#]+)#\}\}/g, (match, oldId, field) => {
const newNode = nodeIdMap.get(oldId)
if (newNode) {
const nodeType = newNode.data?.type as string || ''
const correctedField = correctFieldName(field, nodeType)
return `{{#${newNode.id}.${correctedField}#}}`
}
return match // Keep original if no mapping found
})
}
if (Array.isArray(data)) {
// Check if this is a value_selector array: ["node_id", "field", ...]
if (data.length >= 2 && typeof data[0] === 'string' && typeof data[1] === 'string') {
const potentialNodeId = data[0]
const newNode = nodeIdMap.get(potentialNodeId)
// #region agent log
if (!newNode && !['sys', 'env', 'conversation'].includes(potentialNodeId)) {
console.warn(`[VIBE DEBUG] replaceVariableReferences: No mapping for "${potentialNodeId}" in selector [${data.join(', ')}]`)
}
// #endregion
if (newNode) {
const nodeType = newNode.data?.type as string || ''
const correctedField = correctFieldName(data[1], nodeType)
// Replace the node ID and correct field name in value_selector
return [newNode.id, correctedField, ...data.slice(2)]
}
}
// Recursively process array elements
return data.map(item => replaceVariableReferences(item, nodeIdMap))
}
if (data !== null && typeof data === 'object') {
const obj = data as Record<string, unknown>
// Handle "mixed content" objects like {type: "mixed", value: "{{#...#}}"}
// These should be normalized to plain strings for fields like 'url'
if (obj.type === 'mixed' && typeof obj.value === 'string') {
const processedValue = replaceVariableReferences(obj.value, nodeIdMap) as string
// For certain fields (url, headers, params), return just the string value
if (parentKey && ['url', 'headers', 'params'].includes(parentKey)) {
return processedValue
}
// Otherwise keep the object structure but update the value
return { ...obj, value: processedValue }
}
// Recursively process object properties
const result: Record<string, unknown> = {}
for (const [key, value] of Object.entries(obj)) {
result[key] = replaceVariableReferences(value, nodeIdMap, key)
}
return result
}
return data // Return primitives as-is
}
const parseNodeLabel = (label: string) => {
const tokens = label.split('|').map(token => token.trim()).filter(Boolean)
const info: Record<string, string> = {}
@ -116,8 +192,17 @@ const parseNodeLabel = (label: string) => {
info[rawKey.trim().toLowerCase()] = rest.join('=').trim()
})
// Fallback: if no type= found, try to infer from label text
if (!info.type && tokens.length === 1 && !tokens[0].includes('=')) {
info.type = tokens[0]
const labelLower = tokens[0].toLowerCase()
// Check if label matches a known node type alias
if (NODE_TYPE_ALIASES[labelLower]) {
info.type = NODE_TYPE_ALIASES[labelLower]
info.title = tokens[0] // Use original label as title
}
else {
info.type = tokens[0]
}
}
if (!info.tool && info.tool_key)
@ -345,6 +430,28 @@ export const useVibeFlowData = ({ storageKey }: UseVibeFlowDataParams) => {
}
}
const buildEdge = (
source: Node,
target: Node,
sourceHandle = 'source',
targetHandle = 'target',
): Edge => ({
id: `${source.id}-${sourceHandle}-${target.id}-${targetHandle}`,
type: CUSTOM_EDGE,
source: source.id,
sourceHandle,
target: target.id,
targetHandle,
data: {
sourceType: source.data.type,
targetType: target.data.type,
isInIteration: false,
isInLoop: false,
_connectedNodeIsSelected: false,
},
zIndex: 0,
})
export const useWorkflowVibe = () => {
const { t } = useTranslation()
const store = useStoreApi()
@ -356,7 +463,7 @@ export const useWorkflowVibe = () => {
const { handleSyncWorkflowDraft } = useNodesSyncDraft()
const { getNodesReadOnly } = useNodesReadOnly()
const { saveStateToHistory } = useWorkflowHistory()
const { defaultModel } = useModelListAndDefaultModelAndCurrentProviderAndModel(ModelTypeEnum.textGeneration)
const { defaultModel, modelList } = useModelListAndDefaultModelAndCurrentProviderAndModel(ModelTypeEnum.textGeneration)
const { data: buildInTools } = useAllBuiltInTools()
const { data: customTools } = useAllCustomTools()
@ -476,14 +583,24 @@ export const useWorkflowVibe = () => {
const toolLookup = useMemo(() => {
const map = new Map<string, ToolDefaultValue>()
toolOptions.forEach((tool) => {
// Primary key: provider_id/tool_name (e.g., "google/google_search")
const primaryKey = normalizeKey(`${tool.provider_id}/${tool.tool_name}`)
map.set(primaryKey, tool)
// Fallback 1: provider_name/tool_name (e.g., "Google/google_search")
const providerNameKey = normalizeKey(`${tool.provider_name}/${tool.tool_name}`)
map.set(providerNameKey, tool)
// Fallback 2: tool_label (display name)
const labelKey = normalizeKey(tool.tool_label)
map.set(labelKey, tool)
// Fallback 3: tool_name alone (for partial matching when model omits provider)
const toolNameKey = normalizeKey(tool.tool_name)
if (!map.has(toolNameKey)) {
// Only set if not already taken (avoid collisions between providers)
map.set(toolNameKey, tool)
}
})
return map
}, [toolOptions])
@ -502,6 +619,409 @@ export const useWorkflowVibe = () => {
return map
}, [nodesMetaDataMap])
const createGraphFromBackendNodes = useCallback(async (
backendNodes: BackendNodeSpec[],
backendEdges: BackendEdgeSpec[],
): Promise<FlowGraph> => {
const { getNodes } = store.getState()
const nodes = getNodes()
if (!nodesMetaDataMap) {
Toast.notify({ type: 'error', message: t('workflow.vibe.nodesUnavailable') })
return { nodes: [], edges: [] }
}
const existingStartNode = nodes.find(node => node.data.type === BlockEnum.Start)
const newNodes: Node[] = []
const nodeIdMap = new Map<string, Node>()
for (const nodeSpec of backendNodes) {
// Map string type to BlockEnum
const typeKey = normalizeKey(nodeSpec.type)
const nodeType = nodeTypeLookup.get(typeKey)
if (!nodeType) {
// Skip unknown node types
continue
}
if (nodeType === BlockEnum.Start && existingStartNode) {
// Merge backend variables into existing Start node
const backendVariables = (nodeSpec.config?.variables as Array<Record<string, unknown>>) || []
if (backendVariables.length > 0) {
const existingVariables = (existingStartNode.data.variables as Array<Record<string, unknown>>) || []
// Add new variables that don't already exist
for (const backendVar of backendVariables) {
const varName = backendVar.variable as string
const exists = existingVariables.some(v => v.variable === varName)
if (!exists) {
existingVariables.push(backendVar)
}
}
// Note: we don't mutate existingStartNode directly here for the return value,
// but we should probably include it in the graph if we want it to be part of the preview?
// Actually, existingStartNode is already in 'nodes'.
// The preview usually shows ONLY new nodes + maybe start node?
// User's code applied changes to existingStartNode directly.
// For preview, we might want to clone it.
// For now, we just map it.
}
nodeIdMap.set(nodeSpec.id, existingStartNode)
continue
}
const nodeDefault = nodesMetaDataMap[nodeType]
if (!nodeDefault)
continue
const defaultValue = nodeDefault.defaultValue || {}
const title = nodeSpec.title?.trim() || nodeDefault.metaData.title || defaultValue.title || nodeSpec.type
// For tool nodes, try to get tool default value from config
let toolDefaultValue: ToolDefaultValue | undefined
if (nodeType === BlockEnum.Tool && nodeSpec.config) {
const toolName = nodeSpec.config.tool_name as string | undefined
const providerId = nodeSpec.config.provider_id as string | undefined
if (toolName && providerId) {
const toolKey = normalizeKey(`${providerId}/${toolName}`)
toolDefaultValue = toolLookup.get(toolKey) || toolLookup.get(normalizeKey(toolName))
}
}
const desc = (toolDefaultValue?.tool_description || (defaultValue as { desc?: string }).desc || '') as string
// Merge backend config into node data
// Backend provides: { url: "{{#start.url#}}", method: "GET", ... }
const backendConfig = nodeSpec.config || {}
// Deep merge for nested objects (e.g., body, authorization) to preserve required fields
const mergedConfig: Record<string, unknown> = { ...backendConfig }
const defaultValueRecord = defaultValue as Record<string, unknown>
// For http-request nodes, ensure body has all required fields
if (nodeType === BlockEnum.HttpRequest) {
const defaultBody = defaultValueRecord.body as Record<string, unknown> | undefined
const backendBody = backendConfig.body as Record<string, unknown> | undefined
if (defaultBody || backendBody) {
mergedConfig.body = {
type: 'none',
data: [],
...(defaultBody || {}),
...(backendBody || {}),
}
// Ensure data is always an array
if (!Array.isArray((mergedConfig.body as Record<string, unknown>).data)) {
(mergedConfig.body as Record<string, unknown>).data = []
}
}
// Ensure authorization has type
const defaultAuth = defaultValueRecord.authorization as Record<string, unknown> | undefined
const backendAuth = backendConfig.authorization as Record<string, unknown> | undefined
if (defaultAuth || backendAuth) {
mergedConfig.authorization = {
type: 'no-auth',
...(defaultAuth || {}),
...(backendAuth || {}),
}
}
}
// For End nodes, ensure outputs have value_selector format
// New format (preferred): {"outputs": [{"variable": "name", "value_selector": ["nodeId", "field"]}]}
// Legacy format (fallback): {"outputs": [{"variable": "name", "value": "{{#nodeId.field#}}"}]}
if (nodeType === BlockEnum.End && backendConfig.outputs) {
const outputs = backendConfig.outputs as Array<{ variable?: string, value?: string, value_selector?: string[] }>
mergedConfig.outputs = outputs.map((output) => {
// Preferred: value_selector array format (new LLM output format)
if (output.value_selector && Array.isArray(output.value_selector)) {
return output
}
// Parse value like "{{#nodeId.field#}}" into ["nodeId", "field"]
if (output.value) {
const match = output.value.match(/\{\{#([^.]+)\.([^#]+)#\}\}/)
if (match) {
return {
variable: output.variable,
value_selector: [match[1], match[2]],
}
}
}
// Fallback: return with empty value_selector to prevent crash
return {
variable: output.variable || 'output',
value_selector: [],
}
})
}
// For Parameter Extractor nodes, ensure each parameter has a 'required' field
// Backend may omit this field, but Dify's Pydantic model requires it
if (nodeType === BlockEnum.ParameterExtractor) {
// Fix: If backend returns query as null, use default empty array instead
if (backendConfig.query === null || backendConfig.query === undefined) {
mergedConfig.query = []
}
if (backendConfig.parameters) {
const parameters = backendConfig.parameters as Array<{ name?: string, type?: string, description?: string, required?: boolean }>
mergedConfig.parameters = parameters.map(param => ({
...param,
required: param.required ?? true, // Default to required if not specified
}))
}
}
// For Question Classifier nodes, ensure query_variable_selector is not null
// Backend may return null, but Dify's Pydantic model requires an array
// Note: question-classifier uses 'query' field in backend config, but 'query_variable_selector' in frontend
if (nodeType === BlockEnum.QuestionClassifier) {
// Fix: If backend returns query as null, use default empty array instead
const backendQuery = backendConfig.query
if (backendQuery === null || backendQuery === undefined) {
mergedConfig.query_variable_selector = []
}
else if (Array.isArray(backendQuery)) {
// Map backend 'query' field to frontend 'query_variable_selector' field
mergedConfig.query_variable_selector = backendQuery
// Remove the 'query' field to avoid confusion
delete mergedConfig.query
}
}
// For Variable Aggregator nodes, ensure variables format is correct
// Backend expects list[list[str]], but LLM may generate dict format
if (nodeType === BlockEnum.VariableAggregator && backendConfig.variables) {
const backendVariables = backendConfig.variables as Array<any>
const repairedVariables: string[][] = []
let repaired = false
for (const varItem of backendVariables) {
if (Array.isArray(varItem)) {
// Already in correct format
repairedVariables.push(varItem)
}
else if (typeof varItem === 'object' && varItem !== null) {
// Convert dict format to array format
const valueSelector = varItem.value_selector || varItem.selector || varItem.path
if (Array.isArray(valueSelector) && valueSelector.length > 0) {
repairedVariables.push(valueSelector)
repaired = true
}
else {
// Try to extract from name field - LLM may generate {"name": "node_id.field"}
const name = varItem.name
if (typeof name === 'string' && name.includes('.')) {
const parts = name.split('.', 2)
if (parts.length === 2) {
repairedVariables.push([parts[0], parts[1]])
repaired = true
}
}
// If still can't parse, skip this variable (don't add empty array)
}
}
}
if (repaired || repairedVariables.length !== backendVariables.length) {
mergedConfig.variables = repairedVariables
}
}
// For any node with model config, ALWAYS use user's configured model
// This prevents "Model not exist" errors when LLM generates models the user doesn't have configured
// Applies to: LLM, QuestionClassifier, ParameterExtractor, and any future model-dependent nodes
if (backendConfig.model) {
// Try to use defaultModel first, fallback to first available model from modelList
const fallbackModel = modelList?.[0]?.models?.[0]
const modelProvider = defaultModel?.provider?.provider || modelList?.[0]?.provider
const modelName = defaultModel?.model || fallbackModel?.model
if (modelProvider && modelName) {
mergedConfig.model = {
provider: modelProvider,
name: modelName,
mode: 'chat',
}
}
}
const data = {
...(defaultValue as Record<string, unknown>),
title,
desc,
type: nodeType,
selected: false,
...(toolDefaultValue || {}),
// Apply backend-generated config (url, method, headers, etc.)
...mergedConfig,
}
const newNode = generateNewNode({
id: uuid4(),
type: getNodeCustomTypeByNodeDataType(nodeType),
data,
position: nodeSpec.position || { x: 0, y: 0 },
}).newNode
newNodes.push(newNode)
nodeIdMap.set(nodeSpec.id, newNode)
}
// Replace variable references in all node configs using the nodeIdMap
// This converts {{#old_id.field#}} to {{#new_uuid.field#}}
for (const node of newNodes) {
node.data = replaceVariableReferences(node.data, nodeIdMap) as typeof node.data
}
// Use Dify's standard node initialization to handle all node types generically
// This sets up _targetBranches for question-classifier/if-else, _children for iteration/loop, etc.
const initializedNodes = initializeNodeData(newNodes, [])
// Update newNodes with initialized data
newNodes.splice(0, newNodes.length, ...initializedNodes)
if (!newNodes.length) {
Toast.notify({ type: 'error', message: t('workflow.vibe.invalidFlowchart') })
return { nodes: [], edges: [] }
}
const newEdges: Edge[] = []
for (const edgeSpec of backendEdges) {
const sourceNode = nodeIdMap.get(edgeSpec.source)
const targetNode = nodeIdMap.get(edgeSpec.target)
if (!sourceNode || !targetNode) {
console.warn(`[VIBE] Edge skipped: source=${edgeSpec.source} (found=${!!sourceNode}), target=${edgeSpec.target} (found=${!!targetNode})`)
continue
}
let sourceHandle = edgeSpec.sourceHandle || 'source'
// Handle IfElse branch handles
if (sourceNode.data.type === BlockEnum.IfElse && !edgeSpec.sourceHandle) {
sourceHandle = 'source'
}
newEdges.push(buildEdge(sourceNode, targetNode, sourceHandle, edgeSpec.targetHandle || 'target'))
}
// Layout nodes
const bounds = nodes.reduce(
(acc, node) => {
const width = node.width ?? NODE_WIDTH
acc.maxX = Math.max(acc.maxX, node.position.x + width)
acc.minY = Math.min(acc.minY, node.position.y)
return acc
},
{ maxX: 0, minY: 0 },
)
const baseX = nodes.length ? bounds.maxX + NODE_WIDTH_X_OFFSET : 0
const baseY = Number.isFinite(bounds.minY) ? bounds.minY : 0
const branchOffset = Math.max(120, NODE_WIDTH_X_OFFSET / 2)
const layoutNodeIds = new Set(newNodes.map(node => node.id))
const layoutEdges = newEdges.filter(edge =>
layoutNodeIds.has(edge.source) && layoutNodeIds.has(edge.target),
)
try {
const layout = await getLayoutByDagre(newNodes, layoutEdges)
const layoutedNodes = newNodes.map((node) => {
const info = layout.nodes.get(node.id)
if (!info)
return node
return {
...node,
position: {
x: baseX + info.x,
y: baseY + info.y,
},
}
})
newNodes.splice(0, newNodes.length, ...layoutedNodes)
}
catch {
newNodes.forEach((node, index) => {
const row = Math.floor(index / 4)
const col = index % 4
node.position = {
x: baseX + col * NODE_WIDTH_X_OFFSET,
y: baseY + row * branchOffset,
}
})
}
return {
nodes: newNodes,
edges: newEdges,
}
}, [
defaultModel,
nodeTypeLookup,
nodesMetaDataMap,
store,
t,
toolLookup,
])
// Apply backend-provided nodes directly (bypasses mermaid parsing)
const applyBackendNodesToWorkflow = useCallback(async (
backendNodes: BackendNodeSpec[],
backendEdges: BackendEdgeSpec[],
) => {
const { getNodes, setNodes, edges, setEdges } = store.getState()
const nodes = getNodes()
const {
setShowVibePanel,
} = workflowStore.getState()
const { nodes: newNodes, edges: newEdges } = await createGraphFromBackendNodes(backendNodes, backendEdges)
if (newNodes.length === 0) {
setShowVibePanel(false)
return
}
const allNodes = [...nodes, ...newNodes]
const nodesConnectedMap = getNodesConnectedSourceOrTargetHandleIdsMap(
newEdges.map(edge => ({ type: 'add', edge })),
allNodes,
)
const updatedNodes = allNodes.map((node) => {
const connected = nodesConnectedMap[node.id]
if (!connected)
return node
return {
...node,
data: {
...node.data,
...connected,
_connectedSourceHandleIds: dedupeHandles(connected._connectedSourceHandleIds),
_connectedTargetHandleIds: dedupeHandles(connected._connectedTargetHandleIds),
},
}
})
setNodes(updatedNodes)
setEdges([...edges, ...newEdges])
saveStateToHistory(WorkflowHistoryEvent.NodeAdd, { nodeId: newNodes[0].id })
handleSyncWorkflowDraft()
workflowStore.setState(state => ({
...state,
showVibePanel: false,
vibePanelMermaidCode: '',
}))
}, [
createGraphFromBackendNodes,
handleSyncWorkflowDraft,
saveStateToHistory,
store,
])
const flowchartToWorkflowGraph = useCallback(async (mermaidCode: string): Promise<FlowGraph> => {
const { getNodes } = store.getState()
const nodes = getNodes()
@ -585,28 +1105,6 @@ export const useWorkflowVibe = () => {
return emptyGraph
}
const buildEdge = (
source: Node,
target: Node,
sourceHandle = 'source',
targetHandle = 'target',
): Edge => ({
id: `${source.id}-${sourceHandle}-${target.id}-${targetHandle}`,
type: CUSTOM_EDGE,
source: source.id,
sourceHandle,
target: target.id,
targetHandle,
data: {
sourceType: source.data.type,
targetType: target.data.type,
isInIteration: false,
isInLoop: false,
_connectedNodeIsSelected: false,
},
zIndex: 0,
})
const newEdges: Edge[] = []
for (const edgeSpec of parseResultToUse.edges) {
const sourceNode = nodeIdMap.get(edgeSpec.sourceId)
@ -699,7 +1197,7 @@ export const useWorkflowVibe = () => {
nodes: updatedNodes,
edges: newEdges,
}
}, [nodeTypeLookup, toolLookup])
}, [nodeTypeLookup, nodesMetaDataMap, store, t, toolLookup])
const applyFlowchartToWorkflow = useCallback(() => {
if (!currentFlowGraph || !currentFlowGraph.nodes || currentFlowGraph.nodes.length === 0) {
@ -724,15 +1222,16 @@ export const useWorkflowVibe = () => {
}, [
currentFlowGraph,
handleSyncWorkflowDraft,
nodeTypeLookup,
nodesMetaDataMap,
saveStateToHistory,
store,
t,
toolLookup,
])
const handleVibeCommand = useCallback(async (dsl?: string, skipPanelPreview = false) => {
const handleVibeCommand = useCallback(async (
dsl?: string,
skipPanelPreview = false,
regenerateMode = false,
) => {
if (getNodesReadOnly()) {
Toast.notify({ type: 'error', message: t('workflow.vibe.readOnly') })
return
@ -768,6 +1267,9 @@ export const useWorkflowVibe = () => {
isVibeGenerating: true,
vibePanelMermaidCode: '',
vibePanelInstruction: trimmed,
vibePanelIntent: '',
vibePanelMessage: '',
vibePanelSuggestions: [],
}))
try {
@ -790,6 +1292,11 @@ export const useWorkflowVibe = () => {
tool_name: tool.tool_name,
tool_label: tool.tool_label,
tool_key: `${tool.provider_id}/${tool.tool_name}`,
tool_description: tool.tool_description,
is_team_authorization: tool.is_team_authorization,
// Include parameter schemas so backend can inform model how to use tools
parameters: tool.paramSchemas,
output_schema: tool.output_schema,
}))
const availableNodesPayload = availableNodesList.map(node => ({
@ -798,15 +1305,68 @@ export const useWorkflowVibe = () => {
description: node.description,
}))
let mermaidCode = trimmed
let mermaidCode = ''
let backendNodes: BackendNodeSpec[] | undefined
let backendEdges: BackendEdgeSpec[] | undefined
if (!isMermaidFlowchart(trimmed)) {
const { error, flowchart } = await generateFlowchart({
// Build previous workflow context if regenerating
const { vibePanelBackendNodes, vibePanelBackendEdges, vibePanelLastWarnings } = workflowStore.getState()
const previousWorkflow = regenerateMode && vibePanelBackendNodes && vibePanelBackendNodes.length > 0
? {
nodes: vibePanelBackendNodes,
edges: vibePanelBackendEdges || [],
warnings: vibePanelLastWarnings || [],
}
: undefined
// Map language code to human-readable language name for LLM
const languageNameMap: Record<string, string> = {
en_US: 'English',
zh_Hans: 'Chinese',
zh_Hant: 'Traditional Chinese',
ja_JP: 'Japanese',
ko_KR: 'Korean',
pt_BR: 'Portuguese',
es_ES: 'Spanish',
fr_FR: 'French',
de_DE: 'German',
it_IT: 'Italian',
ru_RU: 'Russian',
uk_UA: 'Ukrainian',
vi_VN: 'Vietnamese',
pl_PL: 'Polish',
ro_RO: 'Romanian',
tr_TR: 'Turkish',
fa_IR: 'Persian',
hi_IN: 'Hindi',
}
const preferredLanguage = languageNameMap[language] || 'English'
// Extract available models from user's configured model providers
const availableModelsPayload = modelList?.flatMap(provider =>
provider.models.map(model => ({
provider: provider.provider,
model: model.model,
})),
) || []
const requestPayload = {
instruction: trimmed,
model_config: latestModelConfig,
available_nodes: availableNodesPayload,
existing_nodes: existingNodesPayload,
available_tools: toolsPayload,
})
selected_node_ids: [],
previous_workflow: previousWorkflow,
regenerate_mode: regenerateMode,
language: preferredLanguage,
available_models: availableModelsPayload,
}
const response = await generateFlowchart(requestPayload)
const { error, flowchart, nodes, edges, intent, message, warnings, suggestions } = response
if (error) {
Toast.notify({ type: 'error', message: error })
@ -814,47 +1374,134 @@ export const useWorkflowVibe = () => {
return
}
// Handle off_topic intent - show rejection message and suggestions
if (intent === 'off_topic') {
workflowStore.setState(state => ({
...state,
vibePanelMermaidCode: '',
vibePanelMessage: message || t('workflow.vibe.offTopicDefault'),
vibePanelSuggestions: suggestions || [],
vibePanelIntent: 'off_topic',
isVibeGenerating: false,
}))
return
}
if (!flowchart) {
Toast.notify({ type: 'error', message: t('workflow.vibe.missingFlowchart') })
setIsVibeGenerating(false)
return
}
// Show warnings if any (includes tool sanitization warnings)
const responseWarnings = warnings || []
if (responseWarnings.length > 0) {
responseWarnings.forEach((warning) => {
Toast.notify({ type: 'warning', message: warning })
})
}
mermaidCode = flowchart
// Store backend nodes/edges for direct use (bypasses mermaid re-parsing)
backendNodes = nodes
backendEdges = edges
// Store warnings for regeneration context
workflowStore.setState(state => ({
...state,
vibePanelLastWarnings: responseWarnings,
}))
workflowStore.setState(state => ({
...state,
vibePanelMermaidCode: mermaidCode,
vibePanelBackendNodes: backendNodes,
vibePanelBackendEdges: backendEdges,
vibePanelMessage: '',
vibePanelSuggestions: [],
vibePanelIntent: 'generate',
isVibeGenerating: false,
}))
}
workflowStore.setState(state => ({
...state,
vibePanelMermaidCode: mermaidCode,
isVibeGenerating: false,
}))
setIsVibeGenerating(false)
const workflowGraph = await flowchartToWorkflowGraph(mermaidCode)
addVersion(workflowGraph)
// Add version for preview
if (backendNodes && backendNodes.length > 0 && backendEdges) {
const graph = await createGraphFromBackendNodes(backendNodes, backendEdges)
addVersion(graph)
}
else if (mermaidCode) {
const graph = await flowchartToWorkflowGraph(mermaidCode)
addVersion(graph)
}
if (skipPanelPreview)
applyFlowchartToWorkflow()
if (skipPanelPreview) {
// Prefer backend nodes (already sanitized) over mermaid re-parsing
if (backendNodes && backendNodes.length > 0 && backendEdges) {
console.log('[VIBE] Applying backend nodes directly to workflow')
console.log('[VIBE] Backend nodes:', backendNodes.length)
console.log('[VIBE] Backend edges:', backendEdges.length)
await applyBackendNodesToWorkflow(backendNodes, backendEdges)
console.log('[VIBE] Backend nodes applied successfully')
}
else {
console.log('[VIBE] Applying mermaid flowchart to workflow')
await applyFlowchartToWorkflow()
console.log('[VIBE] Mermaid flowchart applied successfully')
}
}
}
catch (error: unknown) {
// Handle API errors (e.g., network errors, server errors)
const { setIsVibeGenerating } = workflowStore.getState()
setIsVibeGenerating(false)
// Extract error message from Response object or Error
let errorMessage = t('workflow.vibe.generateError')
if (error instanceof Response) {
try {
const errorData = await error.json()
errorMessage = errorData?.message || errorMessage
}
catch {
// If we can't parse the response, use the default error message
}
}
else if (error instanceof Error) {
errorMessage = error.message || errorMessage
}
Toast.notify({ type: 'error', message: errorMessage })
}
finally {
isGeneratingRef.current = false
}
}, [
availableNodesList,
addVersion,
applyBackendNodesToWorkflow,
applyFlowchartToWorkflow,
createGraphFromBackendNodes,
flowchartToWorkflowGraph,
getLatestModelConfig,
getNodesReadOnly,
handleSyncWorkflowDraft,
nodeTypeLookup,
nodesMetaDataMap,
saveStateToHistory,
store,
t,
toolLookup,
toolOptions,
getLatestModelConfig,
])
const handleAccept = useCallback(() => {
applyFlowchartToWorkflow()
}, [applyFlowchartToWorkflow])
const handleAccept = useCallback(async () => {
// Prefer backend nodes (already sanitized) over mermaid re-parsing
const { vibePanelBackendNodes, vibePanelBackendEdges } = workflowStore.getState()
if (vibePanelBackendNodes && vibePanelBackendNodes.length > 0 && vibePanelBackendEdges) {
await applyBackendNodesToWorkflow(vibePanelBackendNodes, vibePanelBackendEdges)
}
else {
// Use applyFlowchartToWorkflow which uses currentFlowGraph (populated by addVersion)
applyFlowchartToWorkflow()
}
}, [applyBackendNodesToWorkflow, applyFlowchartToWorkflow])
useEffect(() => {
const handler = (event: CustomEvent<VibeCommandDetail>) => {

View File

@ -1390,9 +1390,9 @@ export const getNodeUsedVars = (node: Node): ValueSelector[] => {
payload.url,
payload.headers,
payload.params,
typeof payload.body.data === 'string'
typeof payload.body?.data === 'string'
? payload.body.data
: payload.body.data.map(d => d.value).join(''),
: (payload.body?.data?.map(d => d.value).join('') ?? ''),
])
break
}

View File

@ -5,6 +5,9 @@ import { useCallback, useEffect, useState } from 'react'
const UNIQUE_ID_PREFIX = 'key-value-'
const strToKeyValueList = (value: string) => {
if (typeof value !== 'string' || !value)
return []
return value.split('\n').map((item) => {
const [key, ...others] = item.split(':')
return {
@ -16,7 +19,7 @@ const strToKeyValueList = (value: string) => {
}
const useKeyValueList = (value: string, onChange: (value: string) => void, noFilter?: boolean) => {
const [list, doSetList] = useState<KeyValue[]>(() => value ? strToKeyValueList(value) : [])
const [list, doSetList] = useState<KeyValue[]>(() => typeof value === 'string' && value ? strToKeyValueList(value) : [])
const setList = (l: KeyValue[]) => {
doSetList(l.map((item) => {
return {

View File

@ -127,23 +127,30 @@ const NodeGroupItem = ({
!!item.variables.length && (
<div className="space-y-0.5">
{
item.variables.map((variable = [], index) => {
const isSystem = isSystemVar(variable)
item.variables
.map((variable = [], index) => {
// Ensure variable is an array
const safeVariable = Array.isArray(variable) ? variable : []
if (!safeVariable.length)
return null
const node = isSystem ? nodes.find(node => node.data.type === BlockEnum.Start) : nodes.find(node => node.id === variable[0])
const varName = isSystem ? `sys.${variable[variable.length - 1]}` : variable.slice(1).join('.')
const isException = isExceptionVariable(varName, node?.data.type)
const isSystem = isSystemVar(safeVariable)
return (
<VariableLabelInNode
key={index}
variables={variable}
nodeType={node?.data.type}
nodeTitle={node?.data.title}
isExceptionVariable={isException}
/>
)
})
const node = isSystem ? nodes.find(node => node.data.type === BlockEnum.Start) : nodes.find(node => node.id === safeVariable[0])
const varName = isSystem ? `sys.${safeVariable[safeVariable.length - 1]}` : safeVariable.slice(1).join('.')
const isException = isExceptionVariable(varName, node?.data.type)
return (
<VariableLabelInNode
key={index}
variables={safeVariable}
nodeType={node?.data.type}
nodeTitle={node?.data.title}
isExceptionVariable={isException}
/>
)
})
.filter(Boolean)
}
</div>
)

View File

@ -3,7 +3,7 @@
import type { FC } from 'react'
import type { FormValue } from '@/app/components/header/account-setting/model-provider-page/declarations'
import type { CompletionParams, Model } from '@/types/app'
import { RiClipboardLine } from '@remixicon/react'
import { RiClipboardLine, RiInformation2Line } from '@remixicon/react'
import copy from 'copy-to-clipboard'
import { useCallback, useEffect, useState } from 'react'
import { useTranslation } from 'react-i18next'
@ -29,8 +29,12 @@ const VibePanel: FC = () => {
const { t } = useTranslation()
const workflowStore = useWorkflowStore()
const showVibePanel = useStore(s => s.showVibePanel)
const setShowVibePanel = useStore(s => s.setShowVibePanel)
const isVibeGenerating = useStore(s => s.isVibeGenerating)
const setIsVibeGenerating = useStore(s => s.setIsVibeGenerating)
const vibePanelInstruction = useStore(s => s.vibePanelInstruction)
const vibePanelMermaidCode = useStore(s => s.vibePanelMermaidCode)
const setVibePanelMermaidCode = useStore(s => s.setVibePanelMermaidCode)
const configsMap = useHooksStore(s => s.configsMap)
const { current: currentFlowGraph, versions, currentVersionIndex, setCurrentVersionIndex } = useVibeFlowData({
@ -40,6 +44,14 @@ const VibePanel: FC = () => {
const vibePanelPreviewNodes = currentFlowGraph?.nodes || []
const vibePanelPreviewEdges = currentFlowGraph?.edges || []
const setVibePanelInstruction = useStore(s => s.setVibePanelInstruction)
const vibePanelIntent = useStore(s => s.vibePanelIntent)
const setVibePanelIntent = useStore(s => s.setVibePanelIntent)
const vibePanelMessage = useStore(s => s.vibePanelMessage)
const setVibePanelMessage = useStore(s => s.setVibePanelMessage)
const vibePanelSuggestions = useStore(s => s.vibePanelSuggestions)
const setVibePanelSuggestions = useStore(s => s.setVibePanelSuggestions)
const localModel = localStorage.getItem('auto-gen-model')
? JSON.parse(localStorage.getItem('auto-gen-model') as string) as Model
: null
@ -97,13 +109,13 @@ const VibePanel: FC = () => {
}, [workflowStore])
const handleClose = useCallback(() => {
workflowStore.setState(state => ({
...state,
showVibePanel: false,
vibePanelMermaidCode: '',
isVibeGenerating: false,
}))
}, [workflowStore])
setShowVibePanel(false)
setVibePanelMermaidCode('')
setIsVibeGenerating(false)
setVibePanelIntent('')
setVibePanelMessage('')
setVibePanelSuggestions([])
}, [setShowVibePanel, setVibePanelMermaidCode, setIsVibeGenerating, setVibePanelIntent, setVibePanelMessage, setVibePanelSuggestions])
const handleGenerate = useCallback(() => {
const event = new CustomEvent(VIBE_COMMAND_EVENT, {
@ -119,10 +131,18 @@ const VibePanel: FC = () => {
}, [handleClose])
const handleCopyMermaid = useCallback(() => {
const { vibePanelMermaidCode } = workflowStore.getState()
copy(vibePanelMermaidCode)
Toast.notify({ type: 'success', message: t('common.actionMsg.copySuccessfully') })
}, [workflowStore, t])
}, [vibePanelMermaidCode, t])
const handleSuggestionClick = useCallback((suggestion: string) => {
setVibePanelInstruction(suggestion)
// Trigger generation with the suggestion
const event = new CustomEvent(VIBE_COMMAND_EVENT, {
detail: { dsl: suggestion },
})
document.dispatchEvent(event)
}, [setVibePanelInstruction])
if (!showVibePanel)
return null
@ -134,6 +154,40 @@ const VibePanel: FC = () => {
</div>
)
const renderOffTopic = (
<div className="flex h-full w-0 grow flex-col items-center justify-center bg-background-default-subtle p-6">
<div className="flex max-w-[400px] flex-col items-center text-center">
<div className="mb-4 flex h-12 w-12 items-center justify-center rounded-full bg-state-warning-hover">
<RiInformation2Line className="h-6 w-6 text-text-warning" />
</div>
<div className="mb-2 text-base font-semibold text-text-primary">
{t('workflow.vibe.offTopicTitle')}
</div>
<div className="mb-6 text-sm text-text-secondary">
{vibePanelMessage || t('workflow.vibe.offTopicDefault')}
</div>
{vibePanelSuggestions.length > 0 && (
<div className="w-full">
<div className="mb-3 text-xs font-medium text-text-tertiary">
{t('workflow.vibe.trySuggestion')}
</div>
<div className="flex flex-col gap-2">
{vibePanelSuggestions.map((suggestion, index) => (
<button
key={index}
onClick={() => handleSuggestionClick(suggestion)}
className="w-full rounded-lg border border-divider-regular bg-components-panel-bg px-4 py-2.5 text-left text-sm text-text-secondary transition-colors hover:border-components-button-primary-border hover:bg-state-accent-hover"
>
{suggestion}
</button>
))}
</div>
</div>
)}
</div>
</div>
)
return (
<Modal
isShow={showVibePanel}
@ -184,7 +238,8 @@ const VibePanel: FC = () => {
</div>
</div>
{!isVibeGenerating && vibePanelPreviewNodes.length > 0 && (
{!isVibeGenerating && vibePanelIntent === 'off_topic' && renderOffTopic}
{!isVibeGenerating && vibePanelIntent !== 'off_topic' && (vibePanelPreviewNodes.length > 0 || vibePanelMermaidCode) && (
<div className="h-full w-0 grow bg-background-default-subtle p-6 pb-0">
<div className="flex h-full flex-col">
<div className="mb-3 flex shrink-0 items-center justify-between">
@ -226,7 +281,7 @@ const VibePanel: FC = () => {
</div>
)}
{isVibeGenerating && renderLoading}
{!isVibeGenerating && vibePanelPreviewNodes.length === 0 && <ResPlaceholder />}
{!isVibeGenerating && vibePanelIntent !== 'off_topic' && vibePanelPreviewNodes.length === 0 && !vibePanelMermaidCode && <ResPlaceholder />}
</div>
</Modal>
)

View File

@ -1,5 +1,8 @@
import type { BackendEdgeSpec, BackendNodeSpec } from '@/service/debug'
import type { StateCreator } from 'zustand'
export type VibeIntent = 'generate' | 'off_topic' | 'error' | ''
export type PanelSliceShape = {
panelWidth: number
showFeaturesPanel: boolean
@ -26,6 +29,24 @@ export type PanelSliceShape = {
setInitShowLastRunTab: (initShowLastRunTab: boolean) => void
showVibePanel: boolean
setShowVibePanel: (showVibePanel: boolean) => void
vibePanelMermaidCode: string
setVibePanelMermaidCode: (vibePanelMermaidCode: string) => void
vibePanelBackendNodes?: BackendNodeSpec[]
setVibePanelBackendNodes: (nodes?: BackendNodeSpec[]) => void
vibePanelBackendEdges?: BackendEdgeSpec[]
setVibePanelBackendEdges: (edges?: BackendEdgeSpec[]) => void
isVibeGenerating: boolean
setIsVibeGenerating: (isVibeGenerating: boolean) => void
vibePanelInstruction: string
setVibePanelInstruction: (vibePanelInstruction: string) => void
vibePanelIntent: VibeIntent
setVibePanelIntent: (vibePanelIntent: VibeIntent) => void
vibePanelMessage: string
setVibePanelMessage: (vibePanelMessage: string) => void
vibePanelSuggestions: string[]
setVibePanelSuggestions: (vibePanelSuggestions: string[]) => void
vibePanelLastWarnings: string[]
setVibePanelLastWarnings: (vibePanelLastWarnings: string[]) => void
}
export const createPanelSlice: StateCreator<PanelSliceShape> = set => ({
@ -48,4 +69,22 @@ export const createPanelSlice: StateCreator<PanelSliceShape> = set => ({
setInitShowLastRunTab: initShowLastRunTab => set(() => ({ initShowLastRunTab })),
showVibePanel: false,
setShowVibePanel: showVibePanel => set(() => ({ showVibePanel })),
vibePanelMermaidCode: '',
setVibePanelMermaidCode: vibePanelMermaidCode => set(() => ({ vibePanelMermaidCode })),
vibePanelBackendNodes: undefined,
setVibePanelBackendNodes: vibePanelBackendNodes => set(() => ({ vibePanelBackendNodes })),
vibePanelBackendEdges: undefined,
setVibePanelBackendEdges: vibePanelBackendEdges => set(() => ({ vibePanelBackendEdges })),
isVibeGenerating: false,
setIsVibeGenerating: isVibeGenerating => set(() => ({ isVibeGenerating })),
vibePanelInstruction: '',
setVibePanelInstruction: vibePanelInstruction => set(() => ({ vibePanelInstruction })),
vibePanelIntent: '',
setVibePanelIntent: vibePanelIntent => set(() => ({ vibePanelIntent })),
vibePanelMessage: '',
setVibePanelMessage: vibePanelMessage => set(() => ({ vibePanelMessage })),
vibePanelSuggestions: [],
setVibePanelSuggestions: vibePanelSuggestions => set(() => ({ vibePanelSuggestions })),
vibePanelLastWarnings: [],
setVibePanelLastWarnings: vibePanelLastWarnings => set(() => ({ vibePanelLastWarnings })),
})

View File

@ -140,6 +140,10 @@ const translation = {
regenerate: 'Regenerate',
apply: 'Apply',
noFlowchart: 'No flowchart provided',
offTopicDefault: 'I\'m the Dify workflow design assistant. I can help you create AI automation workflows, but I can\'t answer general questions. Would you like to create a workflow instead?',
offTopicTitle: 'Off-Topic Request',
trySuggestion: 'Try one of these suggestions:',
generateError: 'Failed to generate workflow. Please try again.',
},
publishLimit: {
startNodeTitlePrefix: 'Upgrade to',

View File

@ -19,8 +19,45 @@ export type GenRes = {
error?: string
}
export type ToolRecommendation = {
requested_capability: string
unconfigured_tools: Array<{
provider_id: string
tool_name: string
description: string
}>
configured_alternatives: Array<{
provider_id: string
tool_name: string
description: string
}>
recommendation: string
}
export type BackendNodeSpec = {
id: string
type: string
title?: string
config?: Record<string, any>
position?: { x: number; y: number }
}
export type BackendEdgeSpec = {
source: string
target: string
sourceHandle?: string
targetHandle?: string
}
export type FlowchartGenRes = {
intent?: 'generate' | 'off_topic' | 'error'
flowchart: string
nodes?: BackendNodeSpec[]
edges?: BackendEdgeSpec[]
message?: string
warnings?: string[]
suggestions?: string[]
tool_recommendations?: ToolRecommendation[]
error?: string
}