diff --git a/api/core/workflow/nodes/iteration/iteration_node.py b/api/core/workflow/nodes/iteration/iteration_node.py index a05a6b1b96..965e22b74c 100644 --- a/api/core/workflow/nodes/iteration/iteration_node.py +++ b/api/core/workflow/nodes/iteration/iteration_node.py @@ -342,10 +342,13 @@ class IterationNode(Node): iterator_list_value: Sequence[object], iter_run_map: dict[str, float], ) -> Generator[NodeEventBase, None, None]: + # Flatten the list of lists if all outputs are lists + flattened_outputs = self._flatten_outputs_if_needed(outputs) + yield IterationSucceededEvent( start_at=started_at, inputs=inputs, - outputs={"output": outputs}, + outputs={"output": flattened_outputs}, steps=len(iterator_list_value), metadata={ WorkflowNodeExecutionMetadataKey.TOTAL_TOKENS: self.graph_runtime_state.total_tokens, @@ -357,13 +360,39 @@ class IterationNode(Node): yield StreamCompletedEvent( node_run_result=NodeRunResult( status=WorkflowNodeExecutionStatus.SUCCEEDED, - outputs={"output": outputs}, + outputs={"output": flattened_outputs}, metadata={ WorkflowNodeExecutionMetadataKey.TOTAL_TOKENS: self.graph_runtime_state.total_tokens, }, ) ) + def _flatten_outputs_if_needed(self, outputs: list[object]) -> list[object]: + """ + Flatten the outputs list if all elements are lists. + This maintains backward compatibility with version 1.8.1 behavior. + """ + if not outputs: + return outputs + + # Check if all non-None outputs are lists + non_none_outputs = [output for output in outputs if output is not None] + if not non_none_outputs: + return outputs + + if all(isinstance(output, list) for output in non_none_outputs): + # Flatten the list of lists + flattened: list[Any] = [] + for output in outputs: + if isinstance(output, list): + flattened.extend(output) + elif output is not None: + # This shouldn't happen based on our check, but handle it gracefully + flattened.append(output) + return flattened + + return outputs + def _handle_iteration_failure( self, started_at: datetime, @@ -373,10 +402,13 @@ class IterationNode(Node): iter_run_map: dict[str, float], error: IterationNodeError, ) -> Generator[NodeEventBase, None, None]: + # Flatten the list of lists if all outputs are lists (even in failure case) + flattened_outputs = self._flatten_outputs_if_needed(outputs) + yield IterationFailedEvent( start_at=started_at, inputs=inputs, - outputs={"output": outputs}, + outputs={"output": flattened_outputs}, steps=len(iterator_list_value), metadata={ WorkflowNodeExecutionMetadataKey.TOTAL_TOKENS: self.graph_runtime_state.total_tokens,