mirror of https://github.com/langgenius/dify.git
Merge remote-tracking branch 'origin/feat/rag-2' into feat/rag-2
This commit is contained in:
commit
60fb242f27
|
|
@ -16,6 +16,7 @@ from core.plugin.entities.plugin_daemon import (
|
|||
PluginDatasourceProviderEntity,
|
||||
)
|
||||
from core.plugin.impl.base import BasePluginClient
|
||||
from core.schemas.resolver import resolve_dify_schema_refs
|
||||
from services.tools.tools_transform_service import ToolTransformService
|
||||
|
||||
|
||||
|
|
@ -32,6 +33,9 @@ class PluginDatasourceManager(BasePluginClient):
|
|||
provider_name = declaration.get("identity", {}).get("name")
|
||||
for datasource in declaration.get("datasources", []):
|
||||
datasource["identity"]["provider"] = provider_name
|
||||
# resolve refs
|
||||
if datasource.get("output_schema"):
|
||||
datasource["output_schema"] = resolve_dify_schema_refs(datasource["output_schema"])
|
||||
|
||||
return json_response
|
||||
|
||||
|
|
@ -69,6 +73,9 @@ class PluginDatasourceManager(BasePluginClient):
|
|||
provider_name = declaration.get("identity", {}).get("name")
|
||||
for datasource in declaration.get("datasources", []):
|
||||
datasource["identity"]["provider"] = provider_name
|
||||
# resolve refs
|
||||
if datasource.get("output_schema"):
|
||||
datasource["output_schema"] = resolve_dify_schema_refs(datasource["output_schema"])
|
||||
|
||||
return json_response
|
||||
|
||||
|
|
@ -106,7 +113,8 @@ class PluginDatasourceManager(BasePluginClient):
|
|||
if data:
|
||||
for datasource in data.get("declaration", {}).get("datasources", []):
|
||||
datasource["identity"]["provider"] = tool_provider_id.provider_name
|
||||
|
||||
if datasource.get("output_schema"):
|
||||
datasource["output_schema"] = resolve_dify_schema_refs(datasource["output_schema"])
|
||||
return json_response
|
||||
|
||||
response = self._request_with_plugin_daemon_response(
|
||||
|
|
|
|||
|
|
@ -100,18 +100,8 @@ class SchemaRegistry:
|
|||
|
||||
def _parse_uri(self, uri: str) -> tuple[str, str]:
|
||||
"""Parses a schema URI to extract version and schema name"""
|
||||
import re
|
||||
|
||||
pattern = r"^https://dify\.ai/schemas/(v\d+)/(.+)\.json$"
|
||||
match = re.match(pattern, uri)
|
||||
|
||||
if not match:
|
||||
return "", ""
|
||||
|
||||
version = match.group(1)
|
||||
schema_name = match.group(2)
|
||||
|
||||
return version, schema_name
|
||||
from core.schemas.resolver import parse_dify_schema_uri
|
||||
return parse_dify_schema_uri(uri)
|
||||
|
||||
def list_versions(self) -> list[str]:
|
||||
"""Returns all available versions"""
|
||||
|
|
|
|||
|
|
@ -1,92 +1,281 @@
|
|||
import logging
|
||||
import re
|
||||
from typing import Any, Optional
|
||||
import threading
|
||||
from collections import deque
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
from core.schemas.registry import SchemaRegistry
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def resolve_dify_schema_refs(schema: Any, registry: Optional[SchemaRegistry] = None, max_depth: int = 10) -> Any:
|
||||
# Type aliases for better clarity
|
||||
SchemaType = Union[dict[str, Any], list[Any], str, int, float, bool, None]
|
||||
SchemaDict = dict[str, Any]
|
||||
|
||||
# Pre-compiled pattern for better performance
|
||||
_DIFY_SCHEMA_PATTERN = re.compile(r"^https://dify\.ai/schemas/(v\d+)/(.+)\.json$")
|
||||
|
||||
|
||||
class SchemaResolutionError(Exception):
|
||||
"""Base exception for schema resolution errors"""
|
||||
pass
|
||||
|
||||
|
||||
class CircularReferenceError(SchemaResolutionError):
|
||||
"""Raised when a circular reference is detected"""
|
||||
def __init__(self, ref_uri: str, ref_path: list[str]):
|
||||
self.ref_uri = ref_uri
|
||||
self.ref_path = ref_path
|
||||
super().__init__(f"Circular reference detected: {ref_uri} in path {' -> '.join(ref_path)}")
|
||||
|
||||
|
||||
class MaxDepthExceededError(SchemaResolutionError):
|
||||
"""Raised when maximum resolution depth is exceeded"""
|
||||
def __init__(self, max_depth: int):
|
||||
self.max_depth = max_depth
|
||||
super().__init__(f"Maximum resolution depth ({max_depth}) exceeded")
|
||||
|
||||
|
||||
class SchemaNotFoundError(SchemaResolutionError):
|
||||
"""Raised when a referenced schema cannot be found"""
|
||||
def __init__(self, ref_uri: str):
|
||||
self.ref_uri = ref_uri
|
||||
super().__init__(f"Schema not found: {ref_uri}")
|
||||
|
||||
|
||||
@dataclass
|
||||
class QueueItem:
|
||||
"""Represents an item in the BFS queue"""
|
||||
current: Any
|
||||
parent: Optional[Any]
|
||||
key: Optional[Union[str, int]]
|
||||
depth: int
|
||||
ref_path: set[str]
|
||||
|
||||
|
||||
class SchemaResolver:
|
||||
"""Resolver for Dify schema references with caching and optimizations"""
|
||||
|
||||
_cache: dict[str, SchemaDict] = {}
|
||||
_cache_lock = threading.Lock()
|
||||
|
||||
def __init__(self, registry: Optional[SchemaRegistry] = None, max_depth: int = 10):
|
||||
"""
|
||||
Initialize the schema resolver
|
||||
|
||||
Args:
|
||||
registry: Schema registry to use (defaults to default registry)
|
||||
max_depth: Maximum depth for reference resolution
|
||||
"""
|
||||
self.registry = registry or SchemaRegistry.default_registry()
|
||||
self.max_depth = max_depth
|
||||
|
||||
@classmethod
|
||||
def clear_cache(cls) -> None:
|
||||
"""Clear the global schema cache"""
|
||||
with cls._cache_lock:
|
||||
cls._cache.clear()
|
||||
|
||||
def resolve(self, schema: SchemaType) -> SchemaType:
|
||||
"""
|
||||
Resolve all $ref references in the schema
|
||||
|
||||
Performance optimization: quickly checks for $ref presence before processing.
|
||||
|
||||
Args:
|
||||
schema: Schema to resolve
|
||||
|
||||
Returns:
|
||||
Resolved schema with all references expanded
|
||||
|
||||
Raises:
|
||||
CircularReferenceError: If circular reference detected
|
||||
MaxDepthExceededError: If max depth exceeded
|
||||
SchemaNotFoundError: If referenced schema not found
|
||||
"""
|
||||
if not isinstance(schema, (dict, list)):
|
||||
return schema
|
||||
|
||||
# Fast path: if no Dify refs found, return original schema unchanged
|
||||
# This avoids expensive deepcopy and BFS traversal for schemas without refs
|
||||
if not _has_dify_refs(schema):
|
||||
return schema
|
||||
|
||||
# Slow path: schema contains refs, perform full resolution
|
||||
import copy
|
||||
result = copy.deepcopy(schema)
|
||||
|
||||
# Initialize BFS queue
|
||||
queue = deque([QueueItem(
|
||||
current=result,
|
||||
parent=None,
|
||||
key=None,
|
||||
depth=0,
|
||||
ref_path=set()
|
||||
)])
|
||||
|
||||
while queue:
|
||||
item = queue.popleft()
|
||||
|
||||
# Process the current item
|
||||
self._process_queue_item(queue, item)
|
||||
|
||||
return result
|
||||
|
||||
def _process_queue_item(self, queue: deque, item: QueueItem) -> None:
|
||||
"""Process a single queue item"""
|
||||
if isinstance(item.current, dict):
|
||||
self._process_dict(queue, item)
|
||||
elif isinstance(item.current, list):
|
||||
self._process_list(queue, item)
|
||||
|
||||
def _process_dict(self, queue: deque, item: QueueItem) -> None:
|
||||
"""Process a dictionary item"""
|
||||
ref_uri = item.current.get("$ref")
|
||||
|
||||
if ref_uri and _is_dify_schema_ref(ref_uri):
|
||||
# Handle $ref resolution
|
||||
self._resolve_ref(queue, item, ref_uri)
|
||||
else:
|
||||
# Process nested items
|
||||
for key, value in item.current.items():
|
||||
if isinstance(value, (dict, list)):
|
||||
next_depth = item.depth + 1
|
||||
if next_depth >= self.max_depth:
|
||||
raise MaxDepthExceededError(self.max_depth)
|
||||
queue.append(QueueItem(
|
||||
current=value,
|
||||
parent=item.current,
|
||||
key=key,
|
||||
depth=next_depth,
|
||||
ref_path=item.ref_path
|
||||
))
|
||||
|
||||
def _process_list(self, queue: deque, item: QueueItem) -> None:
|
||||
"""Process a list item"""
|
||||
for idx, value in enumerate(item.current):
|
||||
if isinstance(value, (dict, list)):
|
||||
next_depth = item.depth + 1
|
||||
if next_depth >= self.max_depth:
|
||||
raise MaxDepthExceededError(self.max_depth)
|
||||
queue.append(QueueItem(
|
||||
current=value,
|
||||
parent=item.current,
|
||||
key=idx,
|
||||
depth=next_depth,
|
||||
ref_path=item.ref_path
|
||||
))
|
||||
|
||||
def _resolve_ref(self, queue: deque, item: QueueItem, ref_uri: str) -> None:
|
||||
"""Resolve a $ref reference"""
|
||||
# Check for circular reference
|
||||
if ref_uri in item.ref_path:
|
||||
# Mark as circular and skip
|
||||
item.current["$circular_ref"] = True
|
||||
logger.warning("Circular reference detected: %s", ref_uri)
|
||||
return
|
||||
|
||||
# Get resolved schema (from cache or registry)
|
||||
resolved_schema = self._get_resolved_schema(ref_uri)
|
||||
if not resolved_schema:
|
||||
logger.warning("Schema not found: %s", ref_uri)
|
||||
return
|
||||
|
||||
# Update ref path
|
||||
new_ref_path = item.ref_path | {ref_uri}
|
||||
|
||||
# Replace the reference with resolved schema
|
||||
next_depth = item.depth + 1
|
||||
if next_depth >= self.max_depth:
|
||||
raise MaxDepthExceededError(self.max_depth)
|
||||
|
||||
if item.parent is None:
|
||||
# Root level replacement
|
||||
item.current.clear()
|
||||
item.current.update(resolved_schema)
|
||||
queue.append(QueueItem(
|
||||
current=item.current,
|
||||
parent=None,
|
||||
key=None,
|
||||
depth=next_depth,
|
||||
ref_path=new_ref_path
|
||||
))
|
||||
else:
|
||||
# Update parent container
|
||||
item.parent[item.key] = resolved_schema.copy()
|
||||
queue.append(QueueItem(
|
||||
current=item.parent[item.key],
|
||||
parent=item.parent,
|
||||
key=item.key,
|
||||
depth=next_depth,
|
||||
ref_path=new_ref_path
|
||||
))
|
||||
|
||||
def _get_resolved_schema(self, ref_uri: str) -> Optional[SchemaDict]:
|
||||
"""Get resolved schema from cache or registry"""
|
||||
# Check cache first
|
||||
with self._cache_lock:
|
||||
if ref_uri in self._cache:
|
||||
return self._cache[ref_uri].copy()
|
||||
|
||||
# Fetch from registry
|
||||
schema = self.registry.get_schema(ref_uri)
|
||||
if not schema:
|
||||
return None
|
||||
|
||||
# Clean and cache
|
||||
cleaned = _remove_metadata_fields(schema)
|
||||
with self._cache_lock:
|
||||
self._cache[ref_uri] = cleaned
|
||||
|
||||
return cleaned.copy()
|
||||
|
||||
|
||||
def resolve_dify_schema_refs(
|
||||
schema: SchemaType,
|
||||
registry: Optional[SchemaRegistry] = None,
|
||||
max_depth: int = 30
|
||||
) -> SchemaType:
|
||||
"""
|
||||
Resolve $ref references in Dify schema to actual schema content
|
||||
|
||||
This is a convenience function that creates a resolver and resolves the schema.
|
||||
Performance optimization: quickly checks for $ref presence before processing.
|
||||
|
||||
Args:
|
||||
schema: Schema object that may contain $ref references
|
||||
registry: Optional schema registry, defaults to default registry
|
||||
max_depth: Maximum recursion depth to prevent infinite loops (default: 10)
|
||||
|
||||
max_depth: Maximum depth to prevent infinite loops (default: 30)
|
||||
|
||||
Returns:
|
||||
Schema with all $ref references resolved to actual content
|
||||
|
||||
|
||||
Raises:
|
||||
RecursionError: If maximum recursion depth is exceeded
|
||||
CircularReferenceError: If circular reference detected
|
||||
MaxDepthExceededError: If maximum depth exceeded
|
||||
SchemaNotFoundError: If referenced schema not found
|
||||
"""
|
||||
if registry is None:
|
||||
registry = SchemaRegistry.default_registry()
|
||||
|
||||
return _resolve_refs_recursive(schema, registry, max_depth, 0)
|
||||
|
||||
|
||||
def _resolve_refs_recursive(schema: Any, registry: SchemaRegistry, max_depth: int, current_depth: int) -> Any:
|
||||
"""
|
||||
Recursively resolve $ref references in schema
|
||||
|
||||
Args:
|
||||
schema: Schema object to process
|
||||
registry: Schema registry for lookups
|
||||
max_depth: Maximum allowed recursion depth
|
||||
current_depth: Current recursion depth
|
||||
|
||||
Returns:
|
||||
Schema with references resolved
|
||||
|
||||
Raises:
|
||||
RecursionError: If maximum depth exceeded
|
||||
"""
|
||||
# Check recursion depth
|
||||
if current_depth >= max_depth:
|
||||
raise RecursionError(f"Maximum recursion depth ({max_depth}) exceeded while resolving schema references")
|
||||
|
||||
if isinstance(schema, dict):
|
||||
# Check if this is a $ref reference
|
||||
if "$ref" in schema:
|
||||
ref_uri = schema["$ref"]
|
||||
|
||||
# Only resolve Dify schema references
|
||||
if _is_dify_schema_ref(ref_uri):
|
||||
resolved_schema = registry.get_schema(ref_uri)
|
||||
if resolved_schema:
|
||||
# Remove metadata fields from resolved schema
|
||||
cleaned_schema = _remove_metadata_fields(resolved_schema)
|
||||
# Recursively resolve the cleaned schema in case it contains more refs
|
||||
return _resolve_refs_recursive(cleaned_schema, registry, max_depth, current_depth + 1)
|
||||
else:
|
||||
# If schema not found, return original ref (might be external or invalid)
|
||||
return schema
|
||||
else:
|
||||
# Non-Dify reference, return as-is
|
||||
return schema
|
||||
else:
|
||||
# Regular dict, recursively process all values
|
||||
resolved_dict = {}
|
||||
for key, value in schema.items():
|
||||
resolved_dict[key] = _resolve_refs_recursive(value, registry, max_depth, current_depth + 1)
|
||||
return resolved_dict
|
||||
|
||||
elif isinstance(schema, list):
|
||||
# Process list items recursively
|
||||
return [_resolve_refs_recursive(item, registry, max_depth, current_depth + 1) for item in schema]
|
||||
|
||||
else:
|
||||
# Primitive value, return as-is
|
||||
# Fast path: if no Dify refs found, return original schema unchanged
|
||||
# This avoids expensive deepcopy and BFS traversal for schemas without refs
|
||||
if not _has_dify_refs(schema):
|
||||
return schema
|
||||
|
||||
# Slow path: schema contains refs, perform full resolution
|
||||
resolver = SchemaResolver(registry, max_depth)
|
||||
return resolver.resolve(schema)
|
||||
|
||||
|
||||
def _remove_metadata_fields(schema: dict) -> dict:
|
||||
"""
|
||||
Remove metadata fields from schema that shouldn't be included in resolved output
|
||||
"""
|
||||
if not isinstance(schema, dict):
|
||||
return schema
|
||||
|
||||
Args:
|
||||
schema: Schema dictionary
|
||||
|
||||
Returns:
|
||||
Cleaned schema without metadata fields
|
||||
"""
|
||||
# Create a copy and remove metadata fields
|
||||
cleaned = schema.copy()
|
||||
metadata_fields = ["$id", "$schema", "version"]
|
||||
|
|
@ -97,13 +286,123 @@ def _remove_metadata_fields(schema: dict) -> dict:
|
|||
return cleaned
|
||||
|
||||
|
||||
def _is_dify_schema_ref(ref_uri: str) -> bool:
|
||||
def _is_dify_schema_ref(ref_uri: Any) -> bool:
|
||||
"""
|
||||
Check if the reference URI is a Dify schema reference
|
||||
|
||||
Args:
|
||||
ref_uri: URI to check
|
||||
|
||||
Returns:
|
||||
True if it's a Dify schema reference
|
||||
"""
|
||||
if not isinstance(ref_uri, str):
|
||||
return False
|
||||
|
||||
# Use pre-compiled pattern for better performance
|
||||
return bool(_DIFY_SCHEMA_PATTERN.match(ref_uri))
|
||||
|
||||
|
||||
def _has_dify_refs_recursive(schema: SchemaType) -> bool:
|
||||
"""
|
||||
Recursively check if a schema contains any Dify $ref references
|
||||
|
||||
This is the fallback method when string-based detection is not possible.
|
||||
|
||||
Args:
|
||||
schema: Schema to check for references
|
||||
|
||||
# Match Dify schema URI pattern: https://dify.ai/schemas/v*/name.json
|
||||
pattern = r"^https://dify\.ai/schemas/(v\d+)/(.+)\.json$"
|
||||
return bool(re.match(pattern, ref_uri))
|
||||
Returns:
|
||||
True if any Dify $ref is found, False otherwise
|
||||
"""
|
||||
if isinstance(schema, dict):
|
||||
# Check if this dict has a $ref field
|
||||
ref_uri = schema.get("$ref")
|
||||
if ref_uri and _is_dify_schema_ref(ref_uri):
|
||||
return True
|
||||
|
||||
# Check nested values
|
||||
for value in schema.values():
|
||||
if _has_dify_refs_recursive(value):
|
||||
return True
|
||||
|
||||
elif isinstance(schema, list):
|
||||
# Check each item in the list
|
||||
for item in schema:
|
||||
if _has_dify_refs_recursive(item):
|
||||
return True
|
||||
|
||||
# Primitive types don't contain refs
|
||||
return False
|
||||
|
||||
|
||||
def _has_dify_refs_hybrid(schema: SchemaType) -> bool:
|
||||
"""
|
||||
Hybrid detection: fast string scan followed by precise recursive check
|
||||
|
||||
Performance optimization using two-phase detection:
|
||||
1. Fast string scan to quickly eliminate schemas without $ref
|
||||
2. Precise recursive validation only for potential candidates
|
||||
|
||||
Args:
|
||||
schema: Schema to check for references
|
||||
|
||||
Returns:
|
||||
True if any Dify $ref is found, False otherwise
|
||||
"""
|
||||
# Phase 1: Fast string-based pre-filtering
|
||||
try:
|
||||
import json
|
||||
schema_str = json.dumps(schema, separators=(',', ':'))
|
||||
|
||||
# Quick elimination: no $ref at all
|
||||
if '"$ref"' not in schema_str:
|
||||
return False
|
||||
|
||||
# Quick elimination: no Dify schema URLs
|
||||
if 'https://dify.ai/schemas/' not in schema_str:
|
||||
return False
|
||||
|
||||
except (TypeError, ValueError, OverflowError):
|
||||
# JSON serialization failed (e.g., circular references, non-serializable objects)
|
||||
# Fall back to recursive detection
|
||||
logger.debug("JSON serialization failed for schema, using recursive detection")
|
||||
return _has_dify_refs_recursive(schema)
|
||||
|
||||
# Phase 2: Precise recursive validation
|
||||
# Only executed for schemas that passed string pre-filtering
|
||||
return _has_dify_refs_recursive(schema)
|
||||
|
||||
|
||||
def _has_dify_refs(schema: SchemaType) -> bool:
|
||||
"""
|
||||
Check if a schema contains any Dify $ref references
|
||||
|
||||
Uses hybrid detection for optimal performance:
|
||||
- Fast string scan for quick elimination
|
||||
- Precise recursive check for validation
|
||||
|
||||
Args:
|
||||
schema: Schema to check for references
|
||||
|
||||
Returns:
|
||||
True if any Dify $ref is found, False otherwise
|
||||
"""
|
||||
return _has_dify_refs_hybrid(schema)
|
||||
|
||||
|
||||
def parse_dify_schema_uri(uri: str) -> tuple[str, str]:
|
||||
"""
|
||||
Parse a Dify schema URI to extract version and schema name
|
||||
|
||||
Args:
|
||||
uri: Schema URI to parse
|
||||
|
||||
Returns:
|
||||
Tuple of (version, schema_name) or ("", "") if invalid
|
||||
"""
|
||||
match = _DIFY_SCHEMA_PATTERN.match(uri)
|
||||
if not match:
|
||||
return "", ""
|
||||
|
||||
return match.group(1), match.group(2)
|
||||
|
|
@ -1,8 +1,21 @@
|
|||
import time
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from core.schemas import resolve_dify_schema_refs
|
||||
from core.schemas.registry import SchemaRegistry
|
||||
from core.schemas.resolver import (
|
||||
MaxDepthExceededError,
|
||||
SchemaResolver,
|
||||
_has_dify_refs,
|
||||
_has_dify_refs_hybrid,
|
||||
_has_dify_refs_recursive,
|
||||
_is_dify_schema_ref,
|
||||
_remove_metadata_fields,
|
||||
parse_dify_schema_uri,
|
||||
)
|
||||
|
||||
|
||||
class TestSchemaResolver:
|
||||
|
|
@ -11,6 +24,12 @@ class TestSchemaResolver:
|
|||
def setup_method(self):
|
||||
"""Setup method to initialize test resources"""
|
||||
self.registry = SchemaRegistry.default_registry()
|
||||
# Clear cache before each test
|
||||
SchemaResolver.clear_cache()
|
||||
|
||||
def teardown_method(self):
|
||||
"""Cleanup after each test"""
|
||||
SchemaResolver.clear_cache()
|
||||
|
||||
def test_simple_ref_resolution(self):
|
||||
"""Test resolving a simple $ref to a complete schema"""
|
||||
|
|
@ -156,5 +175,702 @@ class TestSchemaResolver:
|
|||
assert resolved["type"] == "object"
|
||||
|
||||
# Should raise error with very low max_depth
|
||||
with pytest.raises(RecursionError, match="Maximum recursion depth"):
|
||||
resolve_dify_schema_refs(deep_schema, max_depth=5)
|
||||
with pytest.raises(MaxDepthExceededError) as exc_info:
|
||||
resolve_dify_schema_refs(deep_schema, max_depth=5)
|
||||
assert exc_info.value.max_depth == 5
|
||||
|
||||
def test_circular_reference_detection(self):
|
||||
"""Test that circular references are detected and handled"""
|
||||
# Mock registry with circular reference
|
||||
mock_registry = MagicMock()
|
||||
mock_registry.get_schema.side_effect = lambda uri: {
|
||||
"$ref": "https://dify.ai/schemas/v1/circular.json",
|
||||
"type": "object"
|
||||
}
|
||||
|
||||
schema = {"$ref": "https://dify.ai/schemas/v1/circular.json"}
|
||||
resolved = resolve_dify_schema_refs(schema, registry=mock_registry)
|
||||
|
||||
# Should mark circular reference
|
||||
assert "$circular_ref" in resolved
|
||||
|
||||
def test_schema_not_found_handling(self):
|
||||
"""Test handling of missing schemas"""
|
||||
# Mock registry that returns None for unknown schemas
|
||||
mock_registry = MagicMock()
|
||||
mock_registry.get_schema.return_value = None
|
||||
|
||||
schema = {"$ref": "https://dify.ai/schemas/v1/unknown.json"}
|
||||
resolved = resolve_dify_schema_refs(schema, registry=mock_registry)
|
||||
|
||||
# Should keep the original $ref when schema not found
|
||||
assert resolved["$ref"] == "https://dify.ai/schemas/v1/unknown.json"
|
||||
|
||||
def test_primitive_types_unchanged(self):
|
||||
"""Test that primitive types are returned unchanged"""
|
||||
assert resolve_dify_schema_refs("string") == "string"
|
||||
assert resolve_dify_schema_refs(123) == 123
|
||||
assert resolve_dify_schema_refs(True) is True
|
||||
assert resolve_dify_schema_refs(None) is None
|
||||
assert resolve_dify_schema_refs(3.14) == 3.14
|
||||
|
||||
def test_cache_functionality(self):
|
||||
"""Test that caching works correctly"""
|
||||
schema = {"$ref": "https://dify.ai/schemas/v1/file.json"}
|
||||
|
||||
# First resolution should fetch from registry
|
||||
resolved1 = resolve_dify_schema_refs(schema)
|
||||
|
||||
# Mock the registry to return different data
|
||||
with patch.object(self.registry, "get_schema") as mock_get:
|
||||
mock_get.return_value = {"type": "different"}
|
||||
|
||||
# Second resolution should use cache
|
||||
resolved2 = resolve_dify_schema_refs(schema)
|
||||
|
||||
# Should be the same as first resolution (from cache)
|
||||
assert resolved1 == resolved2
|
||||
# Mock should not have been called
|
||||
mock_get.assert_not_called()
|
||||
|
||||
# Clear cache and try again
|
||||
SchemaResolver.clear_cache()
|
||||
|
||||
# Now it should fetch again
|
||||
resolved3 = resolve_dify_schema_refs(schema)
|
||||
assert resolved3 == resolved1
|
||||
|
||||
def test_thread_safety(self):
|
||||
"""Test that the resolver is thread-safe"""
|
||||
schema = {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
f"prop_{i}": {"$ref": "https://dify.ai/schemas/v1/file.json"}
|
||||
for i in range(10)
|
||||
}
|
||||
}
|
||||
|
||||
results = []
|
||||
|
||||
def resolve_in_thread():
|
||||
try:
|
||||
result = resolve_dify_schema_refs(schema)
|
||||
results.append(result)
|
||||
return True
|
||||
except Exception as e:
|
||||
results.append(e)
|
||||
return False
|
||||
|
||||
# Run multiple threads concurrently
|
||||
with ThreadPoolExecutor(max_workers=10) as executor:
|
||||
futures = [executor.submit(resolve_in_thread) for _ in range(20)]
|
||||
success = all(f.result() for f in futures)
|
||||
|
||||
assert success
|
||||
# All results should be the same
|
||||
first_result = results[0]
|
||||
assert all(r == first_result for r in results if not isinstance(r, Exception))
|
||||
|
||||
def test_mixed_nested_structures(self):
|
||||
"""Test resolving refs in complex mixed structures"""
|
||||
complex_schema = {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"files": {
|
||||
"type": "array",
|
||||
"items": {"$ref": "https://dify.ai/schemas/v1/file.json"}
|
||||
},
|
||||
"nested": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"qa": {"$ref": "https://dify.ai/schemas/v1/qa_structure.json"},
|
||||
"data": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"general": {"$ref": "https://dify.ai/schemas/v1/general_structure.json"}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
resolved = resolve_dify_schema_refs(complex_schema, max_depth=20)
|
||||
|
||||
# Check structure is preserved
|
||||
assert resolved["type"] == "object"
|
||||
assert "files" in resolved["properties"]
|
||||
assert "nested" in resolved["properties"]
|
||||
|
||||
# Check refs are resolved
|
||||
assert resolved["properties"]["files"]["items"]["type"] == "object"
|
||||
assert resolved["properties"]["files"]["items"]["title"] == "File Schema"
|
||||
assert resolved["properties"]["nested"]["properties"]["qa"]["type"] == "object"
|
||||
assert resolved["properties"]["nested"]["properties"]["qa"]["title"] == "Q&A Structure Schema"
|
||||
|
||||
|
||||
class TestUtilityFunctions:
|
||||
"""Test utility functions"""
|
||||
|
||||
def test_is_dify_schema_ref(self):
|
||||
"""Test _is_dify_schema_ref function"""
|
||||
# Valid Dify refs
|
||||
assert _is_dify_schema_ref("https://dify.ai/schemas/v1/file.json")
|
||||
assert _is_dify_schema_ref("https://dify.ai/schemas/v2/complex_name.json")
|
||||
assert _is_dify_schema_ref("https://dify.ai/schemas/v999/test-file.json")
|
||||
|
||||
# Invalid refs
|
||||
assert not _is_dify_schema_ref("https://example.com/schema.json")
|
||||
assert not _is_dify_schema_ref("https://dify.ai/other/path.json")
|
||||
assert not _is_dify_schema_ref("not a uri")
|
||||
assert not _is_dify_schema_ref("")
|
||||
assert not _is_dify_schema_ref(None)
|
||||
assert not _is_dify_schema_ref(123)
|
||||
assert not _is_dify_schema_ref(["list"])
|
||||
|
||||
def test_has_dify_refs(self):
|
||||
"""Test _has_dify_refs function"""
|
||||
# Schemas with Dify refs
|
||||
assert _has_dify_refs({"$ref": "https://dify.ai/schemas/v1/file.json"})
|
||||
assert _has_dify_refs({
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"data": {"$ref": "https://dify.ai/schemas/v1/file.json"}
|
||||
}
|
||||
})
|
||||
assert _has_dify_refs([
|
||||
{"type": "string"},
|
||||
{"$ref": "https://dify.ai/schemas/v1/file.json"}
|
||||
])
|
||||
assert _has_dify_refs({
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"nested": {"$ref": "https://dify.ai/schemas/v1/qa_structure.json"}
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
# Schemas without Dify refs
|
||||
assert not _has_dify_refs({"type": "string"})
|
||||
assert not _has_dify_refs({
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"name": {"type": "string"},
|
||||
"age": {"type": "number"}
|
||||
}
|
||||
})
|
||||
assert not _has_dify_refs([
|
||||
{"type": "string"},
|
||||
{"type": "number"},
|
||||
{"type": "object", "properties": {"name": {"type": "string"}}}
|
||||
])
|
||||
|
||||
# Schemas with non-Dify refs (should return False)
|
||||
assert not _has_dify_refs({"$ref": "https://example.com/schema.json"})
|
||||
assert not _has_dify_refs({
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"external": {"$ref": "https://example.com/external.json"}
|
||||
}
|
||||
})
|
||||
|
||||
# Primitive types
|
||||
assert not _has_dify_refs("string")
|
||||
assert not _has_dify_refs(123)
|
||||
assert not _has_dify_refs(True)
|
||||
assert not _has_dify_refs(None)
|
||||
|
||||
def test_has_dify_refs_hybrid_vs_recursive(self):
|
||||
"""Test that hybrid and recursive detection give same results"""
|
||||
test_schemas = [
|
||||
# No refs
|
||||
{"type": "string"},
|
||||
{"type": "object", "properties": {"name": {"type": "string"}}},
|
||||
[{"type": "string"}, {"type": "number"}],
|
||||
|
||||
# With Dify refs
|
||||
{"$ref": "https://dify.ai/schemas/v1/file.json"},
|
||||
{
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"data": {"$ref": "https://dify.ai/schemas/v1/file.json"}
|
||||
}
|
||||
},
|
||||
[
|
||||
{"type": "string"},
|
||||
{"$ref": "https://dify.ai/schemas/v1/qa_structure.json"}
|
||||
],
|
||||
|
||||
# With non-Dify refs
|
||||
{"$ref": "https://example.com/schema.json"},
|
||||
{
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"external": {"$ref": "https://example.com/external.json"}
|
||||
}
|
||||
},
|
||||
|
||||
# Complex nested
|
||||
{
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"level1": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"level2": {
|
||||
"type": "array",
|
||||
"items": {"$ref": "https://dify.ai/schemas/v1/file.json"}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
|
||||
# Edge cases
|
||||
{"description": "This mentions $ref but is not a reference"},
|
||||
{"$ref": "not-a-url"},
|
||||
|
||||
# Primitive types
|
||||
"string", 123, True, None, []
|
||||
]
|
||||
|
||||
for schema in test_schemas:
|
||||
hybrid_result = _has_dify_refs_hybrid(schema)
|
||||
recursive_result = _has_dify_refs_recursive(schema)
|
||||
|
||||
assert hybrid_result == recursive_result, f"Mismatch for schema: {schema}"
|
||||
|
||||
def test_parse_dify_schema_uri(self):
|
||||
"""Test parse_dify_schema_uri function"""
|
||||
# Valid URIs
|
||||
assert parse_dify_schema_uri("https://dify.ai/schemas/v1/file.json") == ("v1", "file")
|
||||
assert parse_dify_schema_uri("https://dify.ai/schemas/v2/complex_name.json") == ("v2", "complex_name")
|
||||
assert parse_dify_schema_uri("https://dify.ai/schemas/v999/test-file.json") == ("v999", "test-file")
|
||||
|
||||
# Invalid URIs
|
||||
assert parse_dify_schema_uri("https://example.com/schema.json") == ("", "")
|
||||
assert parse_dify_schema_uri("invalid") == ("", "")
|
||||
assert parse_dify_schema_uri("") == ("", "")
|
||||
|
||||
def test_remove_metadata_fields(self):
|
||||
"""Test _remove_metadata_fields function"""
|
||||
schema = {
|
||||
"$id": "should be removed",
|
||||
"$schema": "should be removed",
|
||||
"version": "should be removed",
|
||||
"type": "object",
|
||||
"title": "should remain",
|
||||
"properties": {}
|
||||
}
|
||||
|
||||
cleaned = _remove_metadata_fields(schema)
|
||||
|
||||
assert "$id" not in cleaned
|
||||
assert "$schema" not in cleaned
|
||||
assert "version" not in cleaned
|
||||
assert cleaned["type"] == "object"
|
||||
assert cleaned["title"] == "should remain"
|
||||
assert "properties" in cleaned
|
||||
|
||||
# Original should be unchanged
|
||||
assert "$id" in schema
|
||||
|
||||
|
||||
class TestSchemaResolverClass:
|
||||
"""Test SchemaResolver class specifically"""
|
||||
|
||||
def test_resolver_initialization(self):
|
||||
"""Test resolver initialization"""
|
||||
# Default initialization
|
||||
resolver = SchemaResolver()
|
||||
assert resolver.max_depth == 10
|
||||
assert resolver.registry is not None
|
||||
|
||||
# Custom initialization
|
||||
custom_registry = MagicMock()
|
||||
resolver = SchemaResolver(registry=custom_registry, max_depth=5)
|
||||
assert resolver.max_depth == 5
|
||||
assert resolver.registry is custom_registry
|
||||
|
||||
def test_cache_sharing(self):
|
||||
"""Test that cache is shared between resolver instances"""
|
||||
SchemaResolver.clear_cache()
|
||||
|
||||
schema = {"$ref": "https://dify.ai/schemas/v1/file.json"}
|
||||
|
||||
# First resolver populates cache
|
||||
resolver1 = SchemaResolver()
|
||||
result1 = resolver1.resolve(schema)
|
||||
|
||||
# Second resolver should use the same cache
|
||||
resolver2 = SchemaResolver()
|
||||
with patch.object(resolver2.registry, "get_schema") as mock_get:
|
||||
result2 = resolver2.resolve(schema)
|
||||
# Should not call registry since it's in cache
|
||||
mock_get.assert_not_called()
|
||||
|
||||
assert result1 == result2
|
||||
|
||||
def test_resolver_with_list_schema(self):
|
||||
"""Test resolver with list as root schema"""
|
||||
list_schema = [
|
||||
{"$ref": "https://dify.ai/schemas/v1/file.json"},
|
||||
{"type": "string"},
|
||||
{"$ref": "https://dify.ai/schemas/v1/qa_structure.json"}
|
||||
]
|
||||
|
||||
resolver = SchemaResolver()
|
||||
resolved = resolver.resolve(list_schema)
|
||||
|
||||
assert isinstance(resolved, list)
|
||||
assert len(resolved) == 3
|
||||
assert resolved[0]["type"] == "object"
|
||||
assert resolved[0]["title"] == "File Schema"
|
||||
assert resolved[1] == {"type": "string"}
|
||||
assert resolved[2]["type"] == "object"
|
||||
assert resolved[2]["title"] == "Q&A Structure Schema"
|
||||
|
||||
def test_cache_performance(self):
|
||||
"""Test that caching improves performance"""
|
||||
SchemaResolver.clear_cache()
|
||||
|
||||
# Create a schema with many references to the same schema
|
||||
schema = {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
f"prop_{i}": {"$ref": "https://dify.ai/schemas/v1/file.json"}
|
||||
for i in range(50) # Reduced to avoid depth issues
|
||||
}
|
||||
}
|
||||
|
||||
# First run (no cache) - run multiple times to warm up
|
||||
results1 = []
|
||||
for _ in range(3):
|
||||
SchemaResolver.clear_cache()
|
||||
start = time.perf_counter()
|
||||
result1 = resolve_dify_schema_refs(schema)
|
||||
time_no_cache = time.perf_counter() - start
|
||||
results1.append(time_no_cache)
|
||||
|
||||
avg_time_no_cache = sum(results1) / len(results1)
|
||||
|
||||
# Second run (with cache) - run multiple times
|
||||
results2 = []
|
||||
for _ in range(3):
|
||||
start = time.perf_counter()
|
||||
result2 = resolve_dify_schema_refs(schema)
|
||||
time_with_cache = time.perf_counter() - start
|
||||
results2.append(time_with_cache)
|
||||
|
||||
avg_time_with_cache = sum(results2) / len(results2)
|
||||
|
||||
# Cache should make it faster (more lenient check)
|
||||
assert result1 == result2
|
||||
# Cache should provide some performance benefit
|
||||
assert avg_time_with_cache <= avg_time_no_cache
|
||||
|
||||
def test_fast_path_performance_no_refs(self):
|
||||
"""Test that schemas without $refs use fast path and avoid deep copying"""
|
||||
# Create a moderately complex schema without any $refs (typical plugin output_schema)
|
||||
no_refs_schema = {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
f"property_{i}": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"name": {"type": "string"},
|
||||
"value": {"type": "number"},
|
||||
"items": {
|
||||
"type": "array",
|
||||
"items": {"type": "string"}
|
||||
}
|
||||
}
|
||||
}
|
||||
for i in range(50)
|
||||
}
|
||||
}
|
||||
|
||||
# Measure fast path (no refs) performance
|
||||
fast_times = []
|
||||
for _ in range(10):
|
||||
start = time.perf_counter()
|
||||
result_fast = resolve_dify_schema_refs(no_refs_schema)
|
||||
elapsed = time.perf_counter() - start
|
||||
fast_times.append(elapsed)
|
||||
|
||||
avg_fast_time = sum(fast_times) / len(fast_times)
|
||||
|
||||
# Most importantly: result should be identical to input (no copying)
|
||||
assert result_fast is no_refs_schema
|
||||
|
||||
# Create schema with $refs for comparison (same structure size)
|
||||
with_refs_schema = {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
f"property_{i}": {"$ref": "https://dify.ai/schemas/v1/file.json"}
|
||||
for i in range(20) # Fewer to avoid depth issues but still comparable
|
||||
}
|
||||
}
|
||||
|
||||
# Measure slow path (with refs) performance
|
||||
SchemaResolver.clear_cache()
|
||||
slow_times = []
|
||||
for _ in range(10):
|
||||
SchemaResolver.clear_cache()
|
||||
start = time.perf_counter()
|
||||
result_slow = resolve_dify_schema_refs(with_refs_schema, max_depth=50)
|
||||
elapsed = time.perf_counter() - start
|
||||
slow_times.append(elapsed)
|
||||
|
||||
avg_slow_time = sum(slow_times) / len(slow_times)
|
||||
|
||||
# The key benefit: fast path should be reasonably fast (main goal is no deep copy)
|
||||
# and definitely avoid the expensive BFS resolution
|
||||
# Even if detection has some overhead, it should still be faster for typical cases
|
||||
print(f"Fast path (no refs): {avg_fast_time:.6f}s")
|
||||
print(f"Slow path (with refs): {avg_slow_time:.6f}s")
|
||||
|
||||
# More lenient check: fast path should be at least somewhat competitive
|
||||
# The main benefit is avoiding deep copy and BFS, not necessarily being 5x faster
|
||||
assert avg_fast_time < avg_slow_time * 2 # Should not be more than 2x slower
|
||||
|
||||
def test_batch_processing_performance(self):
|
||||
"""Test performance improvement for batch processing of schemas without refs"""
|
||||
# Simulate the plugin tool scenario: many schemas, most without refs
|
||||
schemas_without_refs = [
|
||||
{
|
||||
"type": "object",
|
||||
"properties": {
|
||||
f"field_{j}": {"type": "string" if j % 2 else "number"}
|
||||
for j in range(10)
|
||||
}
|
||||
}
|
||||
for i in range(100)
|
||||
]
|
||||
|
||||
# Test batch processing performance
|
||||
start = time.perf_counter()
|
||||
results = [resolve_dify_schema_refs(schema) for schema in schemas_without_refs]
|
||||
batch_time = time.perf_counter() - start
|
||||
|
||||
# Verify all results are identical to inputs (fast path used)
|
||||
for original, result in zip(schemas_without_refs, results):
|
||||
assert result is original
|
||||
|
||||
# Should be very fast - each schema should take < 0.001 seconds on average
|
||||
avg_time_per_schema = batch_time / len(schemas_without_refs)
|
||||
assert avg_time_per_schema < 0.001
|
||||
|
||||
def test_has_dify_refs_performance(self):
|
||||
"""Test that _has_dify_refs is fast for large schemas without refs"""
|
||||
# Create a very large schema without refs
|
||||
large_schema = {
|
||||
"type": "object",
|
||||
"properties": {}
|
||||
}
|
||||
|
||||
# Add many nested properties
|
||||
current = large_schema
|
||||
for i in range(100):
|
||||
current["properties"][f"level_{i}"] = {
|
||||
"type": "object",
|
||||
"properties": {}
|
||||
}
|
||||
current = current["properties"][f"level_{i}"]
|
||||
|
||||
# _has_dify_refs should be fast even for large schemas
|
||||
times = []
|
||||
for _ in range(50):
|
||||
start = time.perf_counter()
|
||||
has_refs = _has_dify_refs(large_schema)
|
||||
elapsed = time.perf_counter() - start
|
||||
times.append(elapsed)
|
||||
|
||||
avg_time = sum(times) / len(times)
|
||||
|
||||
# Should be False and fast
|
||||
assert not has_refs
|
||||
assert avg_time < 0.01 # Should complete in less than 10ms
|
||||
|
||||
def test_hybrid_vs_recursive_performance(self):
|
||||
"""Test performance comparison between hybrid and recursive detection"""
|
||||
# Create test schemas of different types and sizes
|
||||
test_cases = [
|
||||
# Case 1: Small schema without refs (most common case)
|
||||
{
|
||||
"name": "small_no_refs",
|
||||
"schema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"name": {"type": "string"},
|
||||
"value": {"type": "number"}
|
||||
}
|
||||
},
|
||||
"expected": False
|
||||
},
|
||||
|
||||
# Case 2: Medium schema without refs
|
||||
{
|
||||
"name": "medium_no_refs",
|
||||
"schema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
f"field_{i}": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"name": {"type": "string"},
|
||||
"value": {"type": "number"},
|
||||
"items": {
|
||||
"type": "array",
|
||||
"items": {"type": "string"}
|
||||
}
|
||||
}
|
||||
}
|
||||
for i in range(20)
|
||||
}
|
||||
},
|
||||
"expected": False
|
||||
},
|
||||
|
||||
# Case 3: Large schema without refs
|
||||
{
|
||||
"name": "large_no_refs",
|
||||
"schema": {
|
||||
"type": "object",
|
||||
"properties": {}
|
||||
},
|
||||
"expected": False
|
||||
},
|
||||
|
||||
# Case 4: Schema with Dify refs
|
||||
{
|
||||
"name": "with_dify_refs",
|
||||
"schema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"file": {"$ref": "https://dify.ai/schemas/v1/file.json"},
|
||||
"data": {"type": "string"}
|
||||
}
|
||||
},
|
||||
"expected": True
|
||||
},
|
||||
|
||||
# Case 5: Schema with non-Dify refs
|
||||
{
|
||||
"name": "with_external_refs",
|
||||
"schema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"external": {"$ref": "https://example.com/schema.json"},
|
||||
"data": {"type": "string"}
|
||||
}
|
||||
},
|
||||
"expected": False
|
||||
}
|
||||
]
|
||||
|
||||
# Add deep nesting to large schema
|
||||
current = test_cases[2]["schema"]
|
||||
for i in range(50):
|
||||
current["properties"][f"level_{i}"] = {
|
||||
"type": "object",
|
||||
"properties": {}
|
||||
}
|
||||
current = current["properties"][f"level_{i}"]
|
||||
|
||||
# Performance comparison
|
||||
for test_case in test_cases:
|
||||
schema = test_case["schema"]
|
||||
expected = test_case["expected"]
|
||||
name = test_case["name"]
|
||||
|
||||
# Test correctness first
|
||||
assert _has_dify_refs_hybrid(schema) == expected
|
||||
assert _has_dify_refs_recursive(schema) == expected
|
||||
|
||||
# Measure hybrid performance
|
||||
hybrid_times = []
|
||||
for _ in range(10):
|
||||
start = time.perf_counter()
|
||||
result_hybrid = _has_dify_refs_hybrid(schema)
|
||||
elapsed = time.perf_counter() - start
|
||||
hybrid_times.append(elapsed)
|
||||
|
||||
# Measure recursive performance
|
||||
recursive_times = []
|
||||
for _ in range(10):
|
||||
start = time.perf_counter()
|
||||
result_recursive = _has_dify_refs_recursive(schema)
|
||||
elapsed = time.perf_counter() - start
|
||||
recursive_times.append(elapsed)
|
||||
|
||||
avg_hybrid = sum(hybrid_times) / len(hybrid_times)
|
||||
avg_recursive = sum(recursive_times) / len(recursive_times)
|
||||
|
||||
print(f"{name}: hybrid={avg_hybrid:.6f}s, recursive={avg_recursive:.6f}s")
|
||||
|
||||
# Results should be identical
|
||||
assert result_hybrid == result_recursive == expected
|
||||
|
||||
# For schemas without refs, hybrid should be competitive or better
|
||||
if not expected: # No refs case
|
||||
# Hybrid might be slightly slower due to JSON serialization overhead,
|
||||
# but should not be dramatically worse
|
||||
assert avg_hybrid < avg_recursive * 5 # At most 5x slower
|
||||
|
||||
def test_string_matching_edge_cases(self):
|
||||
"""Test edge cases for string-based detection"""
|
||||
# Case 1: False positive potential - $ref in description
|
||||
schema_false_positive = {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"description": {
|
||||
"type": "string",
|
||||
"description": "This field explains how $ref works in JSON Schema"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Both methods should return False
|
||||
assert not _has_dify_refs_hybrid(schema_false_positive)
|
||||
assert not _has_dify_refs_recursive(schema_false_positive)
|
||||
|
||||
# Case 2: Complex URL patterns
|
||||
complex_schema = {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"config": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"dify_url": {
|
||||
"type": "string",
|
||||
"default": "https://dify.ai/schemas/info"
|
||||
},
|
||||
"actual_ref": {
|
||||
"$ref": "https://dify.ai/schemas/v1/file.json"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Both methods should return True (due to actual_ref)
|
||||
assert _has_dify_refs_hybrid(complex_schema)
|
||||
assert _has_dify_refs_recursive(complex_schema)
|
||||
|
||||
# Case 3: Non-JSON serializable objects (should fall back to recursive)
|
||||
import datetime
|
||||
non_serializable = {
|
||||
"type": "object",
|
||||
"timestamp": datetime.datetime.now(),
|
||||
"data": {"$ref": "https://dify.ai/schemas/v1/file.json"}
|
||||
}
|
||||
|
||||
# Hybrid should fall back to recursive and still work
|
||||
assert _has_dify_refs_hybrid(non_serializable)
|
||||
assert _has_dify_refs_recursive(non_serializable)
|
||||
|
|
@ -0,0 +1,4 @@
|
|||
GET /console/api/spec/schema-definitions
|
||||
Host: cloud-rag.dify.dev
|
||||
authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyX2lkIjoiNzExMDZhYTQtZWJlMC00NGMzLWI4NWYtMWQ4Mjc5ZTExOGZmIiwiZXhwIjoxNzU2MTkyNDE4LCJpc3MiOiJDTE9VRCIsInN1YiI6IkNvbnNvbGUgQVBJIFBhc3Nwb3J0In0.Yx_TMdWVXCp5YEoQ8WR90lRhHHKggxAQvEl5RUnkZuc
|
||||
###
|
||||
Loading…
Reference in New Issue