Merge branch 'feat/r2' into deploy/rag-dev

This commit is contained in:
jyong 2025-06-18 17:11:52 +08:00
commit 643efc5d85
2 changed files with 44 additions and 4 deletions

View File

@ -15,13 +15,15 @@ from core.llm_generator.llm_generator import LLMGenerator
from core.rag.cleaner.clean_processor import CleanProcessor
from core.rag.datasource.retrieval_service import RetrievalService
from core.rag.datasource.vdb.vector_factory import Vector
from core.rag.docstore.dataset_docstore import DatasetDocumentStore
from core.rag.extractor.entity.extract_setting import ExtractSetting
from core.rag.extractor.extract_processor import ExtractProcessor
from core.rag.index_processor.index_processor_base import BaseIndexProcessor
from core.rag.models.document import Document
from core.rag.models.document import Document, QAStructureChunk
from core.tools.utils.text_processing_utils import remove_leading_symbols
from libs import helper
from models.dataset import Dataset
from models.dataset import Document as DatasetDocument
from services.entities.knowledge_entities.knowledge_entities import Rule
@ -162,11 +164,35 @@ class QAIndexProcessor(BaseIndexProcessor):
docs.append(doc)
return docs
def index(self, dataset: Dataset, document: Document, chunks: Mapping[str, Any]):
pass
def index(self, dataset: Dataset, document: DatasetDocument, chunks: Mapping[str, Any]):
qa_chunks = QAStructureChunk(**chunks)
documents = []
for qa_chunk in qa_chunks.qa_chunks:
metadata = {
"dataset_id": dataset.id,
"document_id": document.id,
"doc_id": str(uuid.uuid4()),
"doc_hash": helper.generate_text_hash(qa_chunk.question),
"answer": qa_chunk.answer,
}
doc = Document(page_content=qa_chunk.question, metadata=metadata)
documents.append(doc)
if documents:
# save node to document segment
doc_store = DatasetDocumentStore(dataset=dataset, user_id=document.created_by, document_id=document.id)
doc_store.add_documents(docs=documents, save_child=False)
if dataset.indexing_technique == "high_quality":
vector = Vector(dataset)
vector.create(documents)
else:
raise ValueError("Indexing technique must be high quality.")
def format_preview(self, chunks: Mapping[str, Any]) -> Mapping[str, Any]:
return {"preview": chunks}
qa_chunks = QAStructureChunk(**chunks)
preview = []
for qa_chunk in qa_chunks.qa_chunks:
preview.append({"question": qa_chunk.question, "answer": qa_chunk.answer})
return {"qa_preview": preview, "total_segments": len(qa_chunks.qa_chunks)}
def _format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
format_documents = []

View File

@ -60,6 +60,20 @@ class ParentChildStructureChunk(BaseModel):
parent_child_chunks: list[ParentChildChunk]
class QAChunk(BaseModel):
"""
QA Chunk.
"""
question: str
answer: str
class QAStructureChunk(BaseModel):
"""
QAStructureChunk.
"""
qa_chunks: list[QAChunk]
class BaseDocumentTransformer(ABC):
"""Abstract base class for document transformation systems.