improve the consistancy

This commit is contained in:
Dr. Kiji 2025-01-02 19:54:34 +09:00
parent 610d069b69
commit 75dd8677b9
1 changed files with 336 additions and 124 deletions

View File

@ -1,7 +1,8 @@
import json
import logging
import os
from collections import defaultdict
from typing import Any, Optional
from typing import Any, Dict, List, Optional, Set
from core.rag.datasource.keyword.keyword_base import BaseKeyword
from core.rag.datasource.keyword.mecab.config import MeCabConfig
@ -10,32 +11,28 @@ from core.rag.models.document import Document
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from extensions.ext_storage import storage
from models.dataset import Dataset, DocumentSegment
from models.dataset import Dataset, DatasetKeywordTable, DocumentSegment
logger = logging.getLogger(__name__)
class KeywordProcessorError(Exception):
"""Base error for keyword processing."""
pass
class KeywordExtractionError(KeywordProcessorError):
"""Error during keyword extraction."""
pass
class KeywordStorageError(KeywordProcessorError):
"""Error during storage operations."""
pass
class SetEncoder(json.JSONEncoder):
"""JSON encoder that handles sets."""
def default(self, obj):
if isinstance(obj, set):
return list(obj)
@ -48,164 +45,283 @@ class MeCab(BaseKeyword):
def __init__(self, dataset: Dataset):
super().__init__(dataset)
self._config = MeCabConfig()
self._keyword_handler = None
self._keyword_handler: MeCabKeywordTableHandler = MeCabKeywordTableHandler()
self._init_handler()
def _init_handler(self):
def _init_handler(self) -> None:
"""Initialize MeCab handler with configuration."""
try:
self._keyword_handler = MeCabKeywordTableHandler(
dictionary_path=self._config.dictionary_path, user_dictionary_path=self._config.user_dictionary_path
dictionary_path=self._config.dictionary_path,
user_dictionary_path=self._config.user_dictionary_path
)
if self._config.pos_weights:
self._keyword_handler.pos_weights = self._config.pos_weights
self._keyword_handler.min_score = self._config.score_threshold
except Exception as e:
logger.exception("Failed to initialize MeCab handler")
raise KeywordProcessorError(f"MeCab initialization failed: {str(e)}")
raise KeywordProcessorError("MeCab initialization failed: {}".format(str(e)))
def create(self, texts: list[Document], **kwargs) -> BaseKeyword:
def create(self, texts: List[Document], **kwargs: Any) -> BaseKeyword:
"""Create keyword index for documents."""
lock_name = f"keyword_indexing_lock_{self.dataset.id}"
with redis_client.lock(lock_name, timeout=600):
keyword_table = self._get_dataset_keyword_table()
for text in texts:
keywords = self._keyword_handler.extract_keywords(
text.page_content, self._config.max_keywords_per_chunk
)
if text.metadata is not None:
self._update_segment_keywords(self.dataset.id, text.metadata["doc_id"], list(keywords))
keyword_table = self._add_text_to_keyword_table(
keyword_table or {}, text.metadata["doc_id"], list(keywords)
)
self._save_dataset_keyword_table(keyword_table)
if not texts:
return self
def add_texts(self, texts: list[Document], **kwargs):
"""Add new texts to existing index."""
lock_name = f"keyword_indexing_lock_{self.dataset.id}"
with redis_client.lock(lock_name, timeout=600):
keyword_table = self._get_dataset_keyword_table()
keywords_list = kwargs.get("keywords_list")
lock_name = "keyword_indexing_lock_{}".format(self.dataset.id)
try:
with redis_client.lock(lock_name, timeout=600):
keyword_table = self._get_dataset_keyword_table()
if keyword_table is None:
keyword_table = {}
for i, text in enumerate(texts):
if keywords_list:
keywords = keywords_list[i]
if not keywords:
for text in texts:
if not text.page_content or not text.metadata or "doc_id" not in text.metadata:
logger.warning("Skipping invalid document: {}".format(text))
continue
try:
keywords = self._keyword_handler.extract_keywords(
text.page_content, self._config.max_keywords_per_chunk
)
else:
keywords = self._keyword_handler.extract_keywords(
text.page_content, self._config.max_keywords_per_chunk
)
self._update_segment_keywords(self.dataset.id, text.metadata["doc_id"], list(keywords))
keyword_table = self._add_text_to_keyword_table(
keyword_table, text.metadata["doc_id"], list(keywords)
)
except Exception as e:
logger.exception("Failed to process document: {}".format(text.metadata.get("doc_id")))
raise KeywordExtractionError("Failed to extract keywords: {}".format(str(e)))
if text.metadata is not None:
self._update_segment_keywords(self.dataset.id, text.metadata["doc_id"], list(keywords))
keyword_table = self._add_text_to_keyword_table(
keyword_table or {}, text.metadata["doc_id"], list(keywords)
)
try:
self._save_dataset_keyword_table(keyword_table)
except Exception as e:
logger.exception("Failed to save keyword table")
raise KeywordStorageError("Failed to save keyword table: {}".format(str(e)))
self._save_dataset_keyword_table(keyword_table)
except Exception as e:
if not isinstance(e, (KeywordExtractionError, KeywordStorageError)):
logger.exception("Unexpected error during keyword indexing")
raise KeywordProcessorError("Keyword indexing failed: {}".format(str(e)))
raise
return self
def add_texts(self, texts: List[Document], **kwargs: Any) -> None:
"""Add new texts to existing index."""
if not texts:
return
lock_name = "keyword_indexing_lock_{}".format(self.dataset.id)
try:
with redis_client.lock(lock_name, timeout=600):
keyword_table = self._get_dataset_keyword_table()
if keyword_table is None:
keyword_table = {}
keywords_list = kwargs.get("keywords_list")
for i, text in enumerate(texts):
if not text.page_content or not text.metadata or "doc_id" not in text.metadata:
logger.warning("Skipping invalid document: {}".format(text))
continue
try:
if keywords_list:
keywords = keywords_list[i]
if not keywords:
keywords = self._keyword_handler.extract_keywords(
text.page_content, self._config.max_keywords_per_chunk
)
else:
keywords = self._keyword_handler.extract_keywords(
text.page_content, self._config.max_keywords_per_chunk
)
self._update_segment_keywords(self.dataset.id, text.metadata["doc_id"], list(keywords))
keyword_table = self._add_text_to_keyword_table(
keyword_table, text.metadata["doc_id"], list(keywords)
)
except Exception as e:
logger.exception("Failed to process document: {}".format(text.metadata.get("doc_id")))
continue
try:
self._save_dataset_keyword_table(keyword_table)
except Exception as e:
logger.exception("Failed to save keyword table")
raise KeywordStorageError("Failed to save keyword table: {}".format(str(e)))
except Exception as e:
if not isinstance(e, KeywordStorageError):
logger.exception("Unexpected error during keyword indexing")
raise KeywordProcessorError("Keyword indexing failed: {}".format(str(e)))
raise
def text_exists(self, id: str) -> bool:
"""Check if text exists in index."""
if not id:
return False
keyword_table = self._get_dataset_keyword_table()
if keyword_table is None:
return False
return id in set.union(*keyword_table.values()) if keyword_table else False
def delete_by_ids(self, ids: list[str]) -> None:
def delete_by_ids(self, ids: List[str]) -> None:
"""Delete texts by IDs."""
lock_name = f"keyword_indexing_lock_{self.dataset.id}"
with redis_client.lock(lock_name, timeout=600):
keyword_table = self._get_dataset_keyword_table()
if keyword_table is not None:
keyword_table = self._delete_ids_from_keyword_table(keyword_table, ids)
self._save_dataset_keyword_table(keyword_table)
if not ids:
return
lock_name = "keyword_indexing_lock_{}".format(self.dataset.id)
try:
with redis_client.lock(lock_name, timeout=600):
keyword_table = self._get_dataset_keyword_table()
if keyword_table is not None:
keyword_table = self._delete_ids_from_keyword_table(keyword_table, ids)
self._save_dataset_keyword_table(keyword_table)
except Exception as e:
logger.exception("Failed to delete documents")
raise KeywordStorageError("Failed to delete documents: {}".format(str(e)))
def delete(self) -> None:
"""Delete entire index."""
lock_name = f"keyword_indexing_lock_{self.dataset.id}"
with redis_client.lock(lock_name, timeout=600):
dataset_keyword_table = self.dataset.dataset_keyword_table
if dataset_keyword_table:
db.session.delete(dataset_keyword_table)
db.session.commit()
if dataset_keyword_table.data_source_type != "database":
file_key = f"keyword_files/{self.dataset.tenant_id}/{self.dataset.id}.txt"
storage.delete(file_key)
lock_name = "keyword_indexing_lock_{}".format(self.dataset.id)
try:
with redis_client.lock(lock_name, timeout=600):
dataset_keyword_table = self.dataset.dataset_keyword_table
if dataset_keyword_table:
db.session.delete(dataset_keyword_table)
db.session.commit()
if dataset_keyword_table.data_source_type != "database":
file_key = os.path.join("keyword_files", self.dataset.tenant_id, self.dataset.id + ".txt")
storage.delete(file_key)
except Exception as e:
logger.exception("Failed to delete index")
raise KeywordStorageError("Failed to delete index: {}".format(str(e)))
def search(self, query: str, **kwargs: Any) -> list[Document]:
def search(self, query: str, **kwargs: Any) -> List[Document]:
"""Search documents using keywords."""
keyword_table = self._get_dataset_keyword_table()
k = kwargs.get("top_k", 4)
if not query:
return []
sorted_chunk_indices = self._retrieve_ids_by_query(keyword_table or {}, query, k)
try:
keyword_table = self._get_dataset_keyword_table()
k = kwargs.get("top_k", 4)
documents = []
for chunk_index in sorted_chunk_indices:
segment = (
db.session.query(DocumentSegment)
.filter(DocumentSegment.dataset_id == self.dataset.id, DocumentSegment.index_node_id == chunk_index)
.first()
)
sorted_chunk_indices = self._retrieve_ids_by_query(keyword_table or {}, query, k)
if not sorted_chunk_indices:
return []
if segment:
documents.append(
Document(
page_content=segment.content,
metadata={
"doc_id": chunk_index,
"doc_hash": segment.index_node_hash,
"document_id": segment.document_id,
"dataset_id": segment.dataset_id,
},
documents = []
for chunk_index in sorted_chunk_indices:
segment = (
db.session.query(DocumentSegment)
.filter(
DocumentSegment.dataset_id == self.dataset.id,
DocumentSegment.index_node_id == chunk_index
)
.first()
)
return documents
if segment:
documents.append(
Document(
page_content=segment.content,
metadata={
"doc_id": chunk_index,
"doc_hash": segment.index_node_hash,
"document_id": segment.document_id,
"dataset_id": segment.dataset_id,
},
)
)
def _get_dataset_keyword_table(self) -> Optional[dict]:
return documents
except Exception as e:
logger.exception("Failed to search documents")
raise KeywordProcessorError("Search failed: {}".format(str(e)))
def _get_dataset_keyword_table(self) -> Optional[Dict[str, Set[str]]]:
"""Get keyword table from storage."""
dataset_keyword_table = self.dataset.dataset_keyword_table
if dataset_keyword_table:
keyword_table_dict = dataset_keyword_table.keyword_table_dict
if keyword_table_dict:
return dict(keyword_table_dict["__data__"]["table"])
return {}
try:
dataset_keyword_table = self.dataset.dataset_keyword_table
if dataset_keyword_table:
keyword_table_dict = dataset_keyword_table.keyword_table_dict
if keyword_table_dict:
return dict(keyword_table_dict["__data__"]["table"])
else:
# Create new dataset keyword table if it doesn't exist
from configs import dify_config
def _save_dataset_keyword_table(self, keyword_table):
keyword_data_source_type = dify_config.KEYWORD_DATA_SOURCE_TYPE
dataset_keyword_table = DatasetKeywordTable(
dataset_id=self.dataset.id,
keyword_table="",
data_source_type=keyword_data_source_type,
)
if keyword_data_source_type == "database":
dataset_keyword_table.keyword_table = json.dumps(
{
"__type__": "keyword_table",
"__data__": {"index_id": self.dataset.id, "summary": None, "table": {}},
},
cls=SetEncoder,
)
db.session.add(dataset_keyword_table)
db.session.commit()
return {}
except Exception as e:
logger.exception("Failed to get keyword table")
raise KeywordStorageError("Failed to get keyword table: {}".format(str(e)))
def _save_dataset_keyword_table(self, keyword_table: Dict[str, Set[str]]) -> None:
"""Save keyword table to storage."""
if keyword_table is None:
raise ValueError("Keyword table cannot be None")
table_dict = {
"__type__": "keyword_table",
"__data__": {"index_id": self.dataset.id, "summary": None, "table": keyword_table},
}
dataset_keyword_table = self.dataset.dataset_keyword_table
data_source_type = dataset_keyword_table.data_source_type
try:
dataset_keyword_table = self.dataset.dataset_keyword_table
if not dataset_keyword_table:
raise KeywordStorageError("Dataset keyword table not found")
if data_source_type == "database":
dataset_keyword_table.keyword_table = json.dumps(table_dict, cls=SetEncoder)
db.session.commit()
else:
file_key = f"keyword_files/{self.dataset.tenant_id}/{self.dataset.id}.txt"
if storage.exists(file_key):
storage.delete(file_key)
storage.save(file_key, json.dumps(table_dict, cls=SetEncoder).encode("utf-8"))
data_source_type = dataset_keyword_table.data_source_type
def _add_text_to_keyword_table(self, keyword_table: dict, id: str, keywords: list[str]) -> dict:
if data_source_type == "database":
dataset_keyword_table.keyword_table = json.dumps(table_dict, cls=SetEncoder)
db.session.commit()
else:
file_key = os.path.join("keyword_files", self.dataset.tenant_id, self.dataset.id + ".txt")
if storage.exists(file_key):
storage.delete(file_key)
storage.save(file_key, json.dumps(table_dict, cls=SetEncoder).encode("utf-8"))
except Exception as e:
logger.exception("Failed to save keyword table")
raise KeywordStorageError("Failed to save keyword table: {}".format(str(e)))
def _add_text_to_keyword_table(
self, keyword_table: Dict[str, Set[str]], id: str, keywords: List[str]
) -> Dict[str, Set[str]]:
"""Add text keywords to table."""
if not id or not keywords:
return keyword_table
for keyword in keywords:
if keyword not in keyword_table:
keyword_table[keyword] = set()
keyword_table[keyword].add(id)
return keyword_table
def _delete_ids_from_keyword_table(self, keyword_table: dict, ids: list[str]) -> dict:
def _delete_ids_from_keyword_table(
self, keyword_table: Dict[str, Set[str]], ids: List[str]
) -> Dict[str, Set[str]]:
"""Delete IDs from keyword table."""
if not keyword_table or not ids:
return keyword_table
node_idxs_to_delete = set(ids)
keywords_to_delete = set()
@ -220,31 +336,127 @@ class MeCab(BaseKeyword):
return keyword_table
def _retrieve_ids_by_query(self, keyword_table: dict, query: str, k: int = 4):
def _retrieve_ids_by_query(
self, keyword_table: Dict[str, Set[str]], query: str, k: int = 4
) -> List[str]:
"""Retrieve document IDs by query."""
keywords = self._keyword_handler.extract_keywords(query)
if not query or not keyword_table:
return []
# Score documents based on matching keywords
chunk_indices_count = defaultdict(int)
keywords_list = [keyword for keyword in keywords if keyword in set(keyword_table.keys())]
try:
keywords = self._keyword_handler.extract_keywords(query)
for keyword in keywords_list:
for node_id in keyword_table[keyword]:
chunk_indices_count[node_id] += 1
# Score documents based on matching keywords
chunk_indices_count: dict[str, int] = defaultdict(int)
keywords_list = [keyword for keyword in keywords if keyword in set(keyword_table.keys())]
sorted_chunk_indices = sorted(chunk_indices_count.keys(), key=lambda x: chunk_indices_count[x], reverse=True)
for keyword in keywords_list:
for node_id in keyword_table[keyword]:
chunk_indices_count[node_id] += 1
return sorted_chunk_indices[:k]
# Sort by score in descending order
sorted_chunk_indices = sorted(
chunk_indices_count.keys(),
key=lambda x: chunk_indices_count[x],
reverse=True,
)
def _update_segment_keywords(self, dataset_id: str, node_id: str, keywords: list[str]):
return sorted_chunk_indices[:k]
except Exception as e:
logger.exception("Failed to retrieve IDs by query")
raise KeywordExtractionError("Failed to retrieve IDs: {}".format(str(e)))
def _update_segment_keywords(self, dataset_id: str, node_id: str, keywords: List[str]) -> None:
"""Update segment keywords in database."""
document_segment = (
db.session.query(DocumentSegment)
.filter(DocumentSegment.dataset_id == dataset_id, DocumentSegment.index_node_id == node_id)
.first()
)
if not dataset_id or not node_id:
return
if document_segment:
document_segment.keywords = keywords
db.session.add(document_segment)
db.session.commit()
try:
document_segment = (
db.session.query(DocumentSegment)
.filter(DocumentSegment.dataset_id == dataset_id, DocumentSegment.index_node_id == node_id)
.first()
)
if document_segment:
document_segment.keywords = keywords
db.session.add(document_segment)
db.session.commit()
except Exception as e:
logger.exception("Failed to update segment keywords")
raise KeywordStorageError("Failed to update segment keywords: {}".format(str(e)))
def create_segment_keywords(self, node_id: str, keywords: List[str]) -> None:
"""Create keywords for a single segment.
Args:
node_id: The segment node ID
keywords: List of keywords to add
"""
if not node_id or not keywords:
return
try:
keyword_table = self._get_dataset_keyword_table()
self._update_segment_keywords(self.dataset.id, node_id, keywords)
keyword_table = self._add_text_to_keyword_table(keyword_table or {}, node_id, keywords)
self._save_dataset_keyword_table(keyword_table)
except Exception as e:
logger.exception("Failed to create segment keywords")
raise KeywordProcessorError("Failed to create segment keywords: {}".format(str(e)))
def multi_create_segment_keywords(self, pre_segment_data_list: List[Dict[str, Any]]) -> None:
"""Create keywords for multiple segments in batch."""
if not pre_segment_data_list:
return
try:
keyword_table = self._get_dataset_keyword_table()
if keyword_table is None:
keyword_table = {}
for pre_segment_data in pre_segment_data_list:
segment = pre_segment_data["segment"]
if not segment:
continue
try:
if pre_segment_data.get("keywords"):
segment.keywords = pre_segment_data["keywords"]
keyword_table = self._add_text_to_keyword_table(
keyword_table, segment.index_node_id, pre_segment_data["keywords"]
)
else:
keywords = self._keyword_handler.extract_keywords(
segment.content, self._config.max_keywords_per_chunk
)
segment.keywords = list(keywords)
keyword_table = self._add_text_to_keyword_table(
keyword_table, segment.index_node_id, list(keywords)
)
except Exception as e:
logger.exception("Failed to process segment: {}".format(segment.index_node_id))
continue
self._save_dataset_keyword_table(keyword_table)
except Exception as e:
logger.exception("Failed to create multiple segment keywords")
raise KeywordProcessorError("Failed to create multiple segment keywords: {}".format(str(e)))
def update_segment_keywords_index(self, node_id: str, keywords: List[str]) -> None:
"""Update keywords index for a segment.
Args:
node_id: The segment node ID
keywords: List of keywords to update
"""
if not node_id or not keywords:
return
try:
keyword_table = self._get_dataset_keyword_table()
keyword_table = self._add_text_to_keyword_table(keyword_table or {}, node_id, keywords)
self._save_dataset_keyword_table(keyword_table)
except Exception as e:
logger.exception("Failed to update segment keywords index")
raise KeywordStorageError("Failed to update segment keywords index: {}".format(str(e)))