mirror of https://github.com/langgenius/dify.git
improve the consistancy
This commit is contained in:
parent
610d069b69
commit
75dd8677b9
|
|
@ -1,7 +1,8 @@
|
|||
import json
|
||||
import logging
|
||||
import os
|
||||
from collections import defaultdict
|
||||
from typing import Any, Optional
|
||||
from typing import Any, Dict, List, Optional, Set
|
||||
|
||||
from core.rag.datasource.keyword.keyword_base import BaseKeyword
|
||||
from core.rag.datasource.keyword.mecab.config import MeCabConfig
|
||||
|
|
@ -10,32 +11,28 @@ from core.rag.models.document import Document
|
|||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from extensions.ext_storage import storage
|
||||
from models.dataset import Dataset, DocumentSegment
|
||||
from models.dataset import Dataset, DatasetKeywordTable, DocumentSegment
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class KeywordProcessorError(Exception):
|
||||
"""Base error for keyword processing."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class KeywordExtractionError(KeywordProcessorError):
|
||||
"""Error during keyword extraction."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class KeywordStorageError(KeywordProcessorError):
|
||||
"""Error during storage operations."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class SetEncoder(json.JSONEncoder):
|
||||
"""JSON encoder that handles sets."""
|
||||
|
||||
def default(self, obj):
|
||||
if isinstance(obj, set):
|
||||
return list(obj)
|
||||
|
|
@ -48,164 +45,283 @@ class MeCab(BaseKeyword):
|
|||
def __init__(self, dataset: Dataset):
|
||||
super().__init__(dataset)
|
||||
self._config = MeCabConfig()
|
||||
self._keyword_handler = None
|
||||
self._keyword_handler: MeCabKeywordTableHandler = MeCabKeywordTableHandler()
|
||||
self._init_handler()
|
||||
|
||||
def _init_handler(self):
|
||||
def _init_handler(self) -> None:
|
||||
"""Initialize MeCab handler with configuration."""
|
||||
try:
|
||||
self._keyword_handler = MeCabKeywordTableHandler(
|
||||
dictionary_path=self._config.dictionary_path, user_dictionary_path=self._config.user_dictionary_path
|
||||
dictionary_path=self._config.dictionary_path,
|
||||
user_dictionary_path=self._config.user_dictionary_path
|
||||
)
|
||||
if self._config.pos_weights:
|
||||
self._keyword_handler.pos_weights = self._config.pos_weights
|
||||
self._keyword_handler.min_score = self._config.score_threshold
|
||||
except Exception as e:
|
||||
logger.exception("Failed to initialize MeCab handler")
|
||||
raise KeywordProcessorError(f"MeCab initialization failed: {str(e)}")
|
||||
raise KeywordProcessorError("MeCab initialization failed: {}".format(str(e)))
|
||||
|
||||
def create(self, texts: list[Document], **kwargs) -> BaseKeyword:
|
||||
def create(self, texts: List[Document], **kwargs: Any) -> BaseKeyword:
|
||||
"""Create keyword index for documents."""
|
||||
lock_name = f"keyword_indexing_lock_{self.dataset.id}"
|
||||
with redis_client.lock(lock_name, timeout=600):
|
||||
keyword_table = self._get_dataset_keyword_table()
|
||||
|
||||
for text in texts:
|
||||
keywords = self._keyword_handler.extract_keywords(
|
||||
text.page_content, self._config.max_keywords_per_chunk
|
||||
)
|
||||
if text.metadata is not None:
|
||||
self._update_segment_keywords(self.dataset.id, text.metadata["doc_id"], list(keywords))
|
||||
keyword_table = self._add_text_to_keyword_table(
|
||||
keyword_table or {}, text.metadata["doc_id"], list(keywords)
|
||||
)
|
||||
|
||||
self._save_dataset_keyword_table(keyword_table)
|
||||
if not texts:
|
||||
return self
|
||||
|
||||
def add_texts(self, texts: list[Document], **kwargs):
|
||||
"""Add new texts to existing index."""
|
||||
lock_name = f"keyword_indexing_lock_{self.dataset.id}"
|
||||
with redis_client.lock(lock_name, timeout=600):
|
||||
keyword_table = self._get_dataset_keyword_table()
|
||||
keywords_list = kwargs.get("keywords_list")
|
||||
lock_name = "keyword_indexing_lock_{}".format(self.dataset.id)
|
||||
try:
|
||||
with redis_client.lock(lock_name, timeout=600):
|
||||
keyword_table = self._get_dataset_keyword_table()
|
||||
if keyword_table is None:
|
||||
keyword_table = {}
|
||||
|
||||
for i, text in enumerate(texts):
|
||||
if keywords_list:
|
||||
keywords = keywords_list[i]
|
||||
if not keywords:
|
||||
for text in texts:
|
||||
if not text.page_content or not text.metadata or "doc_id" not in text.metadata:
|
||||
logger.warning("Skipping invalid document: {}".format(text))
|
||||
continue
|
||||
|
||||
try:
|
||||
keywords = self._keyword_handler.extract_keywords(
|
||||
text.page_content, self._config.max_keywords_per_chunk
|
||||
)
|
||||
else:
|
||||
keywords = self._keyword_handler.extract_keywords(
|
||||
text.page_content, self._config.max_keywords_per_chunk
|
||||
)
|
||||
self._update_segment_keywords(self.dataset.id, text.metadata["doc_id"], list(keywords))
|
||||
keyword_table = self._add_text_to_keyword_table(
|
||||
keyword_table, text.metadata["doc_id"], list(keywords)
|
||||
)
|
||||
except Exception as e:
|
||||
logger.exception("Failed to process document: {}".format(text.metadata.get("doc_id")))
|
||||
raise KeywordExtractionError("Failed to extract keywords: {}".format(str(e)))
|
||||
|
||||
if text.metadata is not None:
|
||||
self._update_segment_keywords(self.dataset.id, text.metadata["doc_id"], list(keywords))
|
||||
keyword_table = self._add_text_to_keyword_table(
|
||||
keyword_table or {}, text.metadata["doc_id"], list(keywords)
|
||||
)
|
||||
try:
|
||||
self._save_dataset_keyword_table(keyword_table)
|
||||
except Exception as e:
|
||||
logger.exception("Failed to save keyword table")
|
||||
raise KeywordStorageError("Failed to save keyword table: {}".format(str(e)))
|
||||
|
||||
self._save_dataset_keyword_table(keyword_table)
|
||||
except Exception as e:
|
||||
if not isinstance(e, (KeywordExtractionError, KeywordStorageError)):
|
||||
logger.exception("Unexpected error during keyword indexing")
|
||||
raise KeywordProcessorError("Keyword indexing failed: {}".format(str(e)))
|
||||
raise
|
||||
|
||||
return self
|
||||
|
||||
def add_texts(self, texts: List[Document], **kwargs: Any) -> None:
|
||||
"""Add new texts to existing index."""
|
||||
if not texts:
|
||||
return
|
||||
|
||||
lock_name = "keyword_indexing_lock_{}".format(self.dataset.id)
|
||||
try:
|
||||
with redis_client.lock(lock_name, timeout=600):
|
||||
keyword_table = self._get_dataset_keyword_table()
|
||||
if keyword_table is None:
|
||||
keyword_table = {}
|
||||
keywords_list = kwargs.get("keywords_list")
|
||||
|
||||
for i, text in enumerate(texts):
|
||||
if not text.page_content or not text.metadata or "doc_id" not in text.metadata:
|
||||
logger.warning("Skipping invalid document: {}".format(text))
|
||||
continue
|
||||
|
||||
try:
|
||||
if keywords_list:
|
||||
keywords = keywords_list[i]
|
||||
if not keywords:
|
||||
keywords = self._keyword_handler.extract_keywords(
|
||||
text.page_content, self._config.max_keywords_per_chunk
|
||||
)
|
||||
else:
|
||||
keywords = self._keyword_handler.extract_keywords(
|
||||
text.page_content, self._config.max_keywords_per_chunk
|
||||
)
|
||||
|
||||
self._update_segment_keywords(self.dataset.id, text.metadata["doc_id"], list(keywords))
|
||||
keyword_table = self._add_text_to_keyword_table(
|
||||
keyword_table, text.metadata["doc_id"], list(keywords)
|
||||
)
|
||||
except Exception as e:
|
||||
logger.exception("Failed to process document: {}".format(text.metadata.get("doc_id")))
|
||||
continue
|
||||
|
||||
try:
|
||||
self._save_dataset_keyword_table(keyword_table)
|
||||
except Exception as e:
|
||||
logger.exception("Failed to save keyword table")
|
||||
raise KeywordStorageError("Failed to save keyword table: {}".format(str(e)))
|
||||
|
||||
except Exception as e:
|
||||
if not isinstance(e, KeywordStorageError):
|
||||
logger.exception("Unexpected error during keyword indexing")
|
||||
raise KeywordProcessorError("Keyword indexing failed: {}".format(str(e)))
|
||||
raise
|
||||
|
||||
def text_exists(self, id: str) -> bool:
|
||||
"""Check if text exists in index."""
|
||||
if not id:
|
||||
return False
|
||||
|
||||
keyword_table = self._get_dataset_keyword_table()
|
||||
if keyword_table is None:
|
||||
return False
|
||||
return id in set.union(*keyword_table.values()) if keyword_table else False
|
||||
|
||||
def delete_by_ids(self, ids: list[str]) -> None:
|
||||
def delete_by_ids(self, ids: List[str]) -> None:
|
||||
"""Delete texts by IDs."""
|
||||
lock_name = f"keyword_indexing_lock_{self.dataset.id}"
|
||||
with redis_client.lock(lock_name, timeout=600):
|
||||
keyword_table = self._get_dataset_keyword_table()
|
||||
if keyword_table is not None:
|
||||
keyword_table = self._delete_ids_from_keyword_table(keyword_table, ids)
|
||||
self._save_dataset_keyword_table(keyword_table)
|
||||
if not ids:
|
||||
return
|
||||
|
||||
lock_name = "keyword_indexing_lock_{}".format(self.dataset.id)
|
||||
try:
|
||||
with redis_client.lock(lock_name, timeout=600):
|
||||
keyword_table = self._get_dataset_keyword_table()
|
||||
if keyword_table is not None:
|
||||
keyword_table = self._delete_ids_from_keyword_table(keyword_table, ids)
|
||||
self._save_dataset_keyword_table(keyword_table)
|
||||
except Exception as e:
|
||||
logger.exception("Failed to delete documents")
|
||||
raise KeywordStorageError("Failed to delete documents: {}".format(str(e)))
|
||||
|
||||
def delete(self) -> None:
|
||||
"""Delete entire index."""
|
||||
lock_name = f"keyword_indexing_lock_{self.dataset.id}"
|
||||
with redis_client.lock(lock_name, timeout=600):
|
||||
dataset_keyword_table = self.dataset.dataset_keyword_table
|
||||
if dataset_keyword_table:
|
||||
db.session.delete(dataset_keyword_table)
|
||||
db.session.commit()
|
||||
if dataset_keyword_table.data_source_type != "database":
|
||||
file_key = f"keyword_files/{self.dataset.tenant_id}/{self.dataset.id}.txt"
|
||||
storage.delete(file_key)
|
||||
lock_name = "keyword_indexing_lock_{}".format(self.dataset.id)
|
||||
try:
|
||||
with redis_client.lock(lock_name, timeout=600):
|
||||
dataset_keyword_table = self.dataset.dataset_keyword_table
|
||||
if dataset_keyword_table:
|
||||
db.session.delete(dataset_keyword_table)
|
||||
db.session.commit()
|
||||
if dataset_keyword_table.data_source_type != "database":
|
||||
file_key = os.path.join("keyword_files", self.dataset.tenant_id, self.dataset.id + ".txt")
|
||||
storage.delete(file_key)
|
||||
except Exception as e:
|
||||
logger.exception("Failed to delete index")
|
||||
raise KeywordStorageError("Failed to delete index: {}".format(str(e)))
|
||||
|
||||
def search(self, query: str, **kwargs: Any) -> list[Document]:
|
||||
def search(self, query: str, **kwargs: Any) -> List[Document]:
|
||||
"""Search documents using keywords."""
|
||||
keyword_table = self._get_dataset_keyword_table()
|
||||
k = kwargs.get("top_k", 4)
|
||||
if not query:
|
||||
return []
|
||||
|
||||
sorted_chunk_indices = self._retrieve_ids_by_query(keyword_table or {}, query, k)
|
||||
try:
|
||||
keyword_table = self._get_dataset_keyword_table()
|
||||
k = kwargs.get("top_k", 4)
|
||||
|
||||
documents = []
|
||||
for chunk_index in sorted_chunk_indices:
|
||||
segment = (
|
||||
db.session.query(DocumentSegment)
|
||||
.filter(DocumentSegment.dataset_id == self.dataset.id, DocumentSegment.index_node_id == chunk_index)
|
||||
.first()
|
||||
)
|
||||
sorted_chunk_indices = self._retrieve_ids_by_query(keyword_table or {}, query, k)
|
||||
if not sorted_chunk_indices:
|
||||
return []
|
||||
|
||||
if segment:
|
||||
documents.append(
|
||||
Document(
|
||||
page_content=segment.content,
|
||||
metadata={
|
||||
"doc_id": chunk_index,
|
||||
"doc_hash": segment.index_node_hash,
|
||||
"document_id": segment.document_id,
|
||||
"dataset_id": segment.dataset_id,
|
||||
},
|
||||
documents = []
|
||||
for chunk_index in sorted_chunk_indices:
|
||||
segment = (
|
||||
db.session.query(DocumentSegment)
|
||||
.filter(
|
||||
DocumentSegment.dataset_id == self.dataset.id,
|
||||
DocumentSegment.index_node_id == chunk_index
|
||||
)
|
||||
.first()
|
||||
)
|
||||
|
||||
return documents
|
||||
if segment:
|
||||
documents.append(
|
||||
Document(
|
||||
page_content=segment.content,
|
||||
metadata={
|
||||
"doc_id": chunk_index,
|
||||
"doc_hash": segment.index_node_hash,
|
||||
"document_id": segment.document_id,
|
||||
"dataset_id": segment.dataset_id,
|
||||
},
|
||||
)
|
||||
)
|
||||
|
||||
def _get_dataset_keyword_table(self) -> Optional[dict]:
|
||||
return documents
|
||||
except Exception as e:
|
||||
logger.exception("Failed to search documents")
|
||||
raise KeywordProcessorError("Search failed: {}".format(str(e)))
|
||||
|
||||
def _get_dataset_keyword_table(self) -> Optional[Dict[str, Set[str]]]:
|
||||
"""Get keyword table from storage."""
|
||||
dataset_keyword_table = self.dataset.dataset_keyword_table
|
||||
if dataset_keyword_table:
|
||||
keyword_table_dict = dataset_keyword_table.keyword_table_dict
|
||||
if keyword_table_dict:
|
||||
return dict(keyword_table_dict["__data__"]["table"])
|
||||
return {}
|
||||
try:
|
||||
dataset_keyword_table = self.dataset.dataset_keyword_table
|
||||
if dataset_keyword_table:
|
||||
keyword_table_dict = dataset_keyword_table.keyword_table_dict
|
||||
if keyword_table_dict:
|
||||
return dict(keyword_table_dict["__data__"]["table"])
|
||||
else:
|
||||
# Create new dataset keyword table if it doesn't exist
|
||||
from configs import dify_config
|
||||
|
||||
def _save_dataset_keyword_table(self, keyword_table):
|
||||
keyword_data_source_type = dify_config.KEYWORD_DATA_SOURCE_TYPE
|
||||
dataset_keyword_table = DatasetKeywordTable(
|
||||
dataset_id=self.dataset.id,
|
||||
keyword_table="",
|
||||
data_source_type=keyword_data_source_type,
|
||||
)
|
||||
if keyword_data_source_type == "database":
|
||||
dataset_keyword_table.keyword_table = json.dumps(
|
||||
{
|
||||
"__type__": "keyword_table",
|
||||
"__data__": {"index_id": self.dataset.id, "summary": None, "table": {}},
|
||||
},
|
||||
cls=SetEncoder,
|
||||
)
|
||||
db.session.add(dataset_keyword_table)
|
||||
db.session.commit()
|
||||
|
||||
return {}
|
||||
except Exception as e:
|
||||
logger.exception("Failed to get keyword table")
|
||||
raise KeywordStorageError("Failed to get keyword table: {}".format(str(e)))
|
||||
|
||||
def _save_dataset_keyword_table(self, keyword_table: Dict[str, Set[str]]) -> None:
|
||||
"""Save keyword table to storage."""
|
||||
if keyword_table is None:
|
||||
raise ValueError("Keyword table cannot be None")
|
||||
|
||||
table_dict = {
|
||||
"__type__": "keyword_table",
|
||||
"__data__": {"index_id": self.dataset.id, "summary": None, "table": keyword_table},
|
||||
}
|
||||
|
||||
dataset_keyword_table = self.dataset.dataset_keyword_table
|
||||
data_source_type = dataset_keyword_table.data_source_type
|
||||
try:
|
||||
dataset_keyword_table = self.dataset.dataset_keyword_table
|
||||
if not dataset_keyword_table:
|
||||
raise KeywordStorageError("Dataset keyword table not found")
|
||||
|
||||
if data_source_type == "database":
|
||||
dataset_keyword_table.keyword_table = json.dumps(table_dict, cls=SetEncoder)
|
||||
db.session.commit()
|
||||
else:
|
||||
file_key = f"keyword_files/{self.dataset.tenant_id}/{self.dataset.id}.txt"
|
||||
if storage.exists(file_key):
|
||||
storage.delete(file_key)
|
||||
storage.save(file_key, json.dumps(table_dict, cls=SetEncoder).encode("utf-8"))
|
||||
data_source_type = dataset_keyword_table.data_source_type
|
||||
|
||||
def _add_text_to_keyword_table(self, keyword_table: dict, id: str, keywords: list[str]) -> dict:
|
||||
if data_source_type == "database":
|
||||
dataset_keyword_table.keyword_table = json.dumps(table_dict, cls=SetEncoder)
|
||||
db.session.commit()
|
||||
else:
|
||||
file_key = os.path.join("keyword_files", self.dataset.tenant_id, self.dataset.id + ".txt")
|
||||
if storage.exists(file_key):
|
||||
storage.delete(file_key)
|
||||
storage.save(file_key, json.dumps(table_dict, cls=SetEncoder).encode("utf-8"))
|
||||
except Exception as e:
|
||||
logger.exception("Failed to save keyword table")
|
||||
raise KeywordStorageError("Failed to save keyword table: {}".format(str(e)))
|
||||
|
||||
def _add_text_to_keyword_table(
|
||||
self, keyword_table: Dict[str, Set[str]], id: str, keywords: List[str]
|
||||
) -> Dict[str, Set[str]]:
|
||||
"""Add text keywords to table."""
|
||||
if not id or not keywords:
|
||||
return keyword_table
|
||||
|
||||
for keyword in keywords:
|
||||
if keyword not in keyword_table:
|
||||
keyword_table[keyword] = set()
|
||||
keyword_table[keyword].add(id)
|
||||
return keyword_table
|
||||
|
||||
def _delete_ids_from_keyword_table(self, keyword_table: dict, ids: list[str]) -> dict:
|
||||
def _delete_ids_from_keyword_table(
|
||||
self, keyword_table: Dict[str, Set[str]], ids: List[str]
|
||||
) -> Dict[str, Set[str]]:
|
||||
"""Delete IDs from keyword table."""
|
||||
if not keyword_table or not ids:
|
||||
return keyword_table
|
||||
|
||||
node_idxs_to_delete = set(ids)
|
||||
keywords_to_delete = set()
|
||||
|
||||
|
|
@ -220,31 +336,127 @@ class MeCab(BaseKeyword):
|
|||
|
||||
return keyword_table
|
||||
|
||||
def _retrieve_ids_by_query(self, keyword_table: dict, query: str, k: int = 4):
|
||||
def _retrieve_ids_by_query(
|
||||
self, keyword_table: Dict[str, Set[str]], query: str, k: int = 4
|
||||
) -> List[str]:
|
||||
"""Retrieve document IDs by query."""
|
||||
keywords = self._keyword_handler.extract_keywords(query)
|
||||
if not query or not keyword_table:
|
||||
return []
|
||||
|
||||
# Score documents based on matching keywords
|
||||
chunk_indices_count = defaultdict(int)
|
||||
keywords_list = [keyword for keyword in keywords if keyword in set(keyword_table.keys())]
|
||||
try:
|
||||
keywords = self._keyword_handler.extract_keywords(query)
|
||||
|
||||
for keyword in keywords_list:
|
||||
for node_id in keyword_table[keyword]:
|
||||
chunk_indices_count[node_id] += 1
|
||||
# Score documents based on matching keywords
|
||||
chunk_indices_count: dict[str, int] = defaultdict(int)
|
||||
keywords_list = [keyword for keyword in keywords if keyword in set(keyword_table.keys())]
|
||||
|
||||
sorted_chunk_indices = sorted(chunk_indices_count.keys(), key=lambda x: chunk_indices_count[x], reverse=True)
|
||||
for keyword in keywords_list:
|
||||
for node_id in keyword_table[keyword]:
|
||||
chunk_indices_count[node_id] += 1
|
||||
|
||||
return sorted_chunk_indices[:k]
|
||||
# Sort by score in descending order
|
||||
sorted_chunk_indices = sorted(
|
||||
chunk_indices_count.keys(),
|
||||
key=lambda x: chunk_indices_count[x],
|
||||
reverse=True,
|
||||
)
|
||||
|
||||
def _update_segment_keywords(self, dataset_id: str, node_id: str, keywords: list[str]):
|
||||
return sorted_chunk_indices[:k]
|
||||
except Exception as e:
|
||||
logger.exception("Failed to retrieve IDs by query")
|
||||
raise KeywordExtractionError("Failed to retrieve IDs: {}".format(str(e)))
|
||||
|
||||
def _update_segment_keywords(self, dataset_id: str, node_id: str, keywords: List[str]) -> None:
|
||||
"""Update segment keywords in database."""
|
||||
document_segment = (
|
||||
db.session.query(DocumentSegment)
|
||||
.filter(DocumentSegment.dataset_id == dataset_id, DocumentSegment.index_node_id == node_id)
|
||||
.first()
|
||||
)
|
||||
if not dataset_id or not node_id:
|
||||
return
|
||||
|
||||
if document_segment:
|
||||
document_segment.keywords = keywords
|
||||
db.session.add(document_segment)
|
||||
db.session.commit()
|
||||
try:
|
||||
document_segment = (
|
||||
db.session.query(DocumentSegment)
|
||||
.filter(DocumentSegment.dataset_id == dataset_id, DocumentSegment.index_node_id == node_id)
|
||||
.first()
|
||||
)
|
||||
|
||||
if document_segment:
|
||||
document_segment.keywords = keywords
|
||||
db.session.add(document_segment)
|
||||
db.session.commit()
|
||||
except Exception as e:
|
||||
logger.exception("Failed to update segment keywords")
|
||||
raise KeywordStorageError("Failed to update segment keywords: {}".format(str(e)))
|
||||
|
||||
def create_segment_keywords(self, node_id: str, keywords: List[str]) -> None:
|
||||
"""Create keywords for a single segment.
|
||||
|
||||
Args:
|
||||
node_id: The segment node ID
|
||||
keywords: List of keywords to add
|
||||
"""
|
||||
if not node_id or not keywords:
|
||||
return
|
||||
|
||||
try:
|
||||
keyword_table = self._get_dataset_keyword_table()
|
||||
self._update_segment_keywords(self.dataset.id, node_id, keywords)
|
||||
keyword_table = self._add_text_to_keyword_table(keyword_table or {}, node_id, keywords)
|
||||
self._save_dataset_keyword_table(keyword_table)
|
||||
except Exception as e:
|
||||
logger.exception("Failed to create segment keywords")
|
||||
raise KeywordProcessorError("Failed to create segment keywords: {}".format(str(e)))
|
||||
|
||||
def multi_create_segment_keywords(self, pre_segment_data_list: List[Dict[str, Any]]) -> None:
|
||||
"""Create keywords for multiple segments in batch."""
|
||||
if not pre_segment_data_list:
|
||||
return
|
||||
|
||||
try:
|
||||
keyword_table = self._get_dataset_keyword_table()
|
||||
if keyword_table is None:
|
||||
keyword_table = {}
|
||||
|
||||
for pre_segment_data in pre_segment_data_list:
|
||||
segment = pre_segment_data["segment"]
|
||||
if not segment:
|
||||
continue
|
||||
|
||||
try:
|
||||
if pre_segment_data.get("keywords"):
|
||||
segment.keywords = pre_segment_data["keywords"]
|
||||
keyword_table = self._add_text_to_keyword_table(
|
||||
keyword_table, segment.index_node_id, pre_segment_data["keywords"]
|
||||
)
|
||||
else:
|
||||
keywords = self._keyword_handler.extract_keywords(
|
||||
segment.content, self._config.max_keywords_per_chunk
|
||||
)
|
||||
segment.keywords = list(keywords)
|
||||
keyword_table = self._add_text_to_keyword_table(
|
||||
keyword_table, segment.index_node_id, list(keywords)
|
||||
)
|
||||
except Exception as e:
|
||||
logger.exception("Failed to process segment: {}".format(segment.index_node_id))
|
||||
continue
|
||||
|
||||
self._save_dataset_keyword_table(keyword_table)
|
||||
except Exception as e:
|
||||
logger.exception("Failed to create multiple segment keywords")
|
||||
raise KeywordProcessorError("Failed to create multiple segment keywords: {}".format(str(e)))
|
||||
|
||||
def update_segment_keywords_index(self, node_id: str, keywords: List[str]) -> None:
|
||||
"""Update keywords index for a segment.
|
||||
|
||||
Args:
|
||||
node_id: The segment node ID
|
||||
keywords: List of keywords to update
|
||||
"""
|
||||
if not node_id or not keywords:
|
||||
return
|
||||
|
||||
try:
|
||||
keyword_table = self._get_dataset_keyword_table()
|
||||
keyword_table = self._add_text_to_keyword_table(keyword_table or {}, node_id, keywords)
|
||||
self._save_dataset_keyword_table(keyword_table)
|
||||
except Exception as e:
|
||||
logger.exception("Failed to update segment keywords index")
|
||||
raise KeywordStorageError("Failed to update segment keywords index: {}".format(str(e)))
|
||||
|
|
|
|||
Loading…
Reference in New Issue