Merge branch 'main' into feat/node-execution-retry

This commit is contained in:
Novice Lee 2024-12-18 09:38:18 +08:00
commit 853b9af09c
179 changed files with 3286 additions and 1295 deletions

View File

@ -9,5 +9,6 @@ yq eval '.services["pgvecto-rs"].ports += ["5431:5432"]' -i docker/docker-compos
yq eval '.services["elasticsearch"].ports += ["9200:9200"]' -i docker/docker-compose.yaml
yq eval '.services.couchbase-server.ports += ["8091-8096:8091-8096"]' -i docker/docker-compose.yaml
yq eval '.services.couchbase-server.ports += ["11210:11210"]' -i docker/docker-compose.yaml
yq eval '.services.tidb.ports += ["4000:4000"]' -i docker/docker-compose.yaml
echo "Ports exposed for sandbox, weaviate, qdrant, chroma, milvus, pgvector, pgvecto-rs, elasticsearch, couchbase"
echo "Ports exposed for sandbox, weaviate, tidb, qdrant, chroma, milvus, pgvector, pgvecto-rs, elasticsearch, couchbase"

View File

@ -51,7 +51,7 @@ jobs:
- name: Expose Service Ports
run: sh .github/workflows/expose_service_ports.sh
- name: Set up Vector Stores (Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS, Chroma, MyScale, ElasticSearch, Couchbase)
- name: Set up Vector Stores (TiDB, Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS, Chroma, MyScale, ElasticSearch, Couchbase)
uses: hoverkraft-tech/compose-action@v2.0.2
with:
compose-file: |
@ -67,6 +67,7 @@ jobs:
pgvector
chroma
elasticsearch
tidb
- name: Test Vector Stores
run: poetry run -C api bash dev/pytest/pytest_vdb.sh

View File

@ -60,17 +60,8 @@ DB_DATABASE=dify
STORAGE_TYPE=opendal
# Apache OpenDAL storage configuration, refer to https://github.com/apache/opendal
STORAGE_OPENDAL_SCHEME=fs
# OpenDAL FS
OPENDAL_SCHEME=fs
OPENDAL_FS_ROOT=storage
# OpenDAL S3
OPENDAL_S3_ROOT=/
OPENDAL_S3_BUCKET=your-bucket-name
OPENDAL_S3_ENDPOINT=https://s3.amazonaws.com
OPENDAL_S3_ACCESS_KEY_ID=your-access-key
OPENDAL_S3_SECRET_ACCESS_KEY=your-secret-key
OPENDAL_S3_REGION=your-region
OPENDAL_S3_SERVER_SIDE_ENCRYPTION=
# S3 Storage configuration
S3_USE_AWS_MANAGED_IAM=false
@ -313,8 +304,7 @@ UPLOAD_VIDEO_FILE_SIZE_LIMIT=100
UPLOAD_AUDIO_FILE_SIZE_LIMIT=50
# Model configuration
MULTIMODAL_SEND_IMAGE_FORMAT=base64
MULTIMODAL_SEND_VIDEO_FORMAT=base64
MULTIMODAL_SEND_FORMAT=base64
PROMPT_GENERATION_MAX_TOKENS=512
CODE_GENERATION_MAX_TOKENS=1024
@ -399,6 +389,8 @@ LOG_FILE_BACKUP_COUNT=5
LOG_DATEFORMAT=%Y-%m-%d %H:%M:%S
# Log Timezone
LOG_TZ=UTC
# Log format
LOG_FORMAT=%(asctime)s,%(msecs)d %(levelname)-2s [%(filename)s:%(lineno)d] %(req_id)s %(message)s
# Indexing configuration
INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH=4000
@ -431,3 +423,7 @@ RESET_PASSWORD_TOKEN_EXPIRY_MINUTES=5
CREATE_TIDB_SERVICE_JOB_ENABLED=false
# Maximum number of submitted thread count in a ThreadPool for parallel node execution
MAX_SUBMIT_COUNT=100
# Lockout duration in seconds
LOGIN_LOCKOUT_DURATION=86400

View File

@ -1,13 +1,30 @@
from app_factory import create_app
from libs import threadings_utils, version_utils
from libs import version_utils
# preparation before creating app
version_utils.check_supported_python_version()
threadings_utils.apply_gevent_threading_patch()
def is_db_command():
import sys
if len(sys.argv) > 1 and sys.argv[0].endswith("flask") and sys.argv[1] == "db":
return True
return False
# create app
app = create_app()
celery = app.extensions["celery"]
if is_db_command():
from app_factory import create_migrations_app
app = create_migrations_app()
else:
from app_factory import create_app
from libs import threadings_utils
threadings_utils.apply_gevent_threading_patch()
app = create_app()
celery = app.extensions["celery"]
if __name__ == "__main__":
app.run(host="0.0.0.0", port=5001)

View File

@ -1,5 +1,4 @@
import logging
import os
import time
from configs import dify_config
@ -17,15 +16,6 @@ def create_flask_app_with_configs() -> DifyApp:
dify_app = DifyApp(__name__)
dify_app.config.from_mapping(dify_config.model_dump())
# populate configs into system environment variables
for key, value in dify_app.config.items():
if isinstance(value, str):
os.environ[key] = value
elif isinstance(value, int | float | bool):
os.environ[key] = str(value)
elif value is None:
os.environ[key] = ""
return dify_app
@ -98,3 +88,14 @@ def initialize_extensions(app: DifyApp):
end_time = time.perf_counter()
if dify_config.DEBUG:
logging.info(f"Loaded {short_name} ({round((end_time - start_time) * 1000, 2)} ms)")
def create_migrations_app():
app = create_flask_app_with_configs()
from extensions import ext_database, ext_migrate
# Initialize only required extensions
ext_database.init_app(app)
ext_migrate.init_app(app)
return app

View File

@ -439,6 +439,17 @@ class WorkflowConfig(BaseSettings):
)
class WorkflowNodeExecutionConfig(BaseSettings):
"""
Configuration for workflow node execution
"""
MAX_SUBMIT_COUNT: PositiveInt = Field(
description="Maximum number of submitted thread count in a ThreadPool for parallel node execution",
default=100,
)
class AuthConfig(BaseSettings):
"""
Configuration for authentication and OAuth
@ -474,6 +485,11 @@ class AuthConfig(BaseSettings):
default=60,
)
LOGIN_LOCKOUT_DURATION: PositiveInt = Field(
description="Time (in seconds) a user must wait before retrying login after exceeding the rate limit.",
default=86400,
)
class ModerationConfig(BaseSettings):
"""
@ -649,14 +665,9 @@ class IndexingConfig(BaseSettings):
)
class VisionFormatConfig(BaseSettings):
MULTIMODAL_SEND_IMAGE_FORMAT: Literal["base64", "url"] = Field(
description="Format for sending images in multimodal contexts ('base64' or 'url'), default is base64",
default="base64",
)
MULTIMODAL_SEND_VIDEO_FORMAT: Literal["base64", "url"] = Field(
description="Format for sending videos in multimodal contexts ('base64' or 'url'), default is base64",
class MultiModalTransferConfig(BaseSettings):
MULTIMODAL_SEND_FORMAT: Literal["base64", "url"] = Field(
description="Format for sending files in multimodal contexts ('base64' or 'url'), default is base64",
default="base64",
)
@ -762,19 +773,20 @@ class FeatureConfig(
FileAccessConfig,
FileUploadConfig,
HttpConfig,
VisionFormatConfig,
InnerAPIConfig,
IndexingConfig,
LoggingConfig,
MailConfig,
ModelLoadBalanceConfig,
ModerationConfig,
MultiModalTransferConfig,
PositionConfig,
RagEtlConfig,
SecurityConfig,
ToolConfig,
UpdateConfig,
WorkflowConfig,
WorkflowNodeExecutionConfig,
WorkspaceConfig,
LoginConfig,
# hosted services config

View File

@ -1,51 +1,9 @@
from enum import StrEnum
from typing import Literal
from pydantic import Field
from pydantic_settings import BaseSettings
class OpenDALScheme(StrEnum):
FS = "fs"
S3 = "s3"
class OpenDALStorageConfig(BaseSettings):
STORAGE_OPENDAL_SCHEME: str = Field(
default=OpenDALScheme.FS.value,
OPENDAL_SCHEME: str = Field(
default="fs",
description="OpenDAL scheme.",
)
# FS
OPENDAL_FS_ROOT: str = Field(
default="storage",
description="Root path for local storage.",
)
# S3
OPENDAL_S3_ROOT: str = Field(
default="/",
description="Root path for S3 storage.",
)
OPENDAL_S3_BUCKET: str = Field(
default="",
description="S3 bucket name.",
)
OPENDAL_S3_ENDPOINT: str = Field(
default="https://s3.amazonaws.com",
description="S3 endpoint URL.",
)
OPENDAL_S3_ACCESS_KEY_ID: str = Field(
default="",
description="S3 access key ID.",
)
OPENDAL_S3_SECRET_ACCESS_KEY: str = Field(
default="",
description="S3 secret access key.",
)
OPENDAL_S3_REGION: str = Field(
default="",
description="S3 region.",
)
OPENDAL_S3_SERVER_SIDE_ENCRYPTION: Literal["aws:kms", ""] = Field(
default="",
description="S3 server-side encryption.",
)

View File

@ -9,7 +9,7 @@ class PackagingInfo(BaseSettings):
CURRENT_VERSION: str = Field(
description="Dify version",
default="0.13.2",
default="0.14.0",
)
COMMIT_SHA: str = Field(

View File

@ -65,7 +65,7 @@ class ModelConfigResource(Resource):
provider_type=agent_tool_entity.provider_type,
identity_id=f"AGENT.{app_model.id}",
)
except Exception as e:
except Exception:
continue
# get decrypted parameters
@ -97,7 +97,7 @@ class ModelConfigResource(Resource):
app_id=app_model.id,
agent_tool=agent_tool_entity,
)
except Exception as e:
except Exception:
continue
manager = ToolParameterConfigurationManager(

View File

@ -1,4 +1,5 @@
from flask_restful import Resource, reqparse
from werkzeug.exceptions import BadRequest
from controllers.console import api
from controllers.console.app.error import TracingConfigCheckError, TracingConfigIsExist, TracingConfigNotExist
@ -26,7 +27,7 @@ class TraceAppConfigApi(Resource):
return {"has_not_configured": True}
return trace_config
except Exception as e:
raise e
raise BadRequest(str(e))
@setup_required
@login_required
@ -48,7 +49,7 @@ class TraceAppConfigApi(Resource):
raise TracingConfigCheckError()
return result
except Exception as e:
raise e
raise BadRequest(str(e))
@setup_required
@login_required
@ -68,7 +69,7 @@ class TraceAppConfigApi(Resource):
raise TracingConfigNotExist()
return {"result": "success"}
except Exception as e:
raise e
raise BadRequest(str(e))
@setup_required
@login_required
@ -85,7 +86,7 @@ class TraceAppConfigApi(Resource):
raise TracingConfigNotExist()
return {"result": "success"}
except Exception as e:
raise e
raise BadRequest(str(e))
api.add_resource(TraceAppConfigApi, "/apps/<uuid:app_id>/trace-config")

View File

@ -948,7 +948,7 @@ class DocumentRetryApi(DocumentResource):
if document.indexing_status == "completed":
raise DocumentAlreadyFinishedError()
retry_documents.append(document)
except Exception as e:
except Exception:
logging.exception(f"Failed to retry document, document id: {document_id}")
continue
# retry document

View File

@ -4,6 +4,7 @@ from flask_restful import Resource, fields, marshal_with, reqparse
from constants.languages import languages
from controllers.console import api
from controllers.console.wraps import account_initialization_required
from libs.helper import AppIconUrlField
from libs.login import login_required
from services.recommended_app_service import RecommendedAppService
@ -12,6 +13,7 @@ app_fields = {
"name": fields.String,
"mode": fields.String,
"icon": fields.String,
"icon_url": AppIconUrlField,
"icon_background": fields.String,
}

View File

@ -260,36 +260,34 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
workflow_node_execution = self._handle_node_execution_start(workflow_run=workflow_run, event=event)
response = self._workflow_node_start_to_stream_response(
node_start_response = self._workflow_node_start_to_stream_response(
event=event,
task_id=self._application_generate_entity.task_id,
workflow_node_execution=workflow_node_execution,
)
if response:
yield response
if node_start_response:
yield node_start_response
elif isinstance(event, QueueNodeSucceededEvent):
workflow_node_execution = self._handle_workflow_node_execution_success(event)
response = self._workflow_node_finish_to_stream_response(
node_success_response = self._workflow_node_finish_to_stream_response(
event=event,
task_id=self._application_generate_entity.task_id,
workflow_node_execution=workflow_node_execution,
)
if response:
yield response
if node_success_response:
yield node_success_response
elif isinstance(event, QueueNodeFailedEvent | QueueNodeInIterationFailedEvent | QueueNodeExceptionEvent):
workflow_node_execution = self._handle_workflow_node_execution_failed(event)
response = self._workflow_node_finish_to_stream_response(
node_failed_response = self._workflow_node_finish_to_stream_response(
event=event,
task_id=self._application_generate_entity.task_id,
workflow_node_execution=workflow_node_execution,
)
if response:
yield response
elif isinstance(
event,
QueueNodeRetryEvent,
@ -306,6 +304,8 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
if response:
yield response
if node_failed_response:
yield node_failed_response
elif isinstance(event, QueueParallelBranchRunStartedEvent):
if not workflow_run:
raise Exception("Workflow run not initialized.")
@ -394,47 +394,19 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
if not graph_runtime_state:
raise Exception("Graph runtime state not initialized.")
handle_args = {
"workflow_run": workflow_run,
"start_at": graph_runtime_state.start_at,
"total_tokens": graph_runtime_state.total_tokens,
"total_steps": graph_runtime_state.node_run_steps,
"status": WorkflowRunStatus.FAILED
workflow_run = self._handle_workflow_run_failed(
workflow_run=workflow_run,
start_at=graph_runtime_state.start_at,
total_tokens=graph_runtime_state.total_tokens,
total_steps=graph_runtime_state.node_run_steps,
status=WorkflowRunStatus.FAILED
if isinstance(event, QueueWorkflowFailedEvent)
else WorkflowRunStatus.STOPPED,
"error": event.error if isinstance(event, QueueWorkflowFailedEvent) else event.get_stop_reason(),
"conversation_id": None,
"trace_manager": trace_manager,
"exceptions_count": event.exceptions_count if isinstance(event, QueueWorkflowFailedEvent) else 0,
}
workflow_run = self._handle_workflow_run_failed(**handle_args)
# save workflow app log
self._save_workflow_app_log(workflow_run)
yield self._workflow_finish_to_stream_response(
task_id=self._application_generate_entity.task_id, workflow_run=workflow_run
error=event.error if isinstance(event, QueueWorkflowFailedEvent) else event.get_stop_reason(),
conversation_id=None,
trace_manager=trace_manager,
exceptions_count=event.exceptions_count if isinstance(event, QueueWorkflowFailedEvent) else 0,
)
elif isinstance(event, QueueWorkflowPartialSuccessEvent):
if not workflow_run:
raise Exception("Workflow run not initialized.")
if not graph_runtime_state:
raise Exception("Graph runtime state not initialized.")
handle_args = {
"workflow_run": workflow_run,
"start_at": graph_runtime_state.start_at,
"total_tokens": graph_runtime_state.total_tokens,
"total_steps": graph_runtime_state.node_run_steps,
"status": WorkflowRunStatus.FAILED
if isinstance(event, QueueWorkflowFailedEvent)
else WorkflowRunStatus.STOPPED,
"error": event.error if isinstance(event, QueueWorkflowFailedEvent) else event.get_stop_reason(),
"conversation_id": None,
"trace_manager": trace_manager,
"exceptions_count": event.exceptions_count,
}
workflow_run = self._handle_workflow_run_partial_success(**handle_args)
# save workflow app log
self._save_workflow_app_log(workflow_run)

View File

@ -273,9 +273,9 @@ class WorkflowCycleManage:
db.session.close()
with Session(db.engine, expire_on_commit=False) as session:
session.add(workflow_run)
session.refresh(workflow_run)
# with Session(db.engine, expire_on_commit=False) as session:
# session.add(workflow_run)
# session.refresh(workflow_run)
if trace_manager:
trace_manager.add_trace_task(

View File

@ -42,39 +42,31 @@ def to_prompt_message_content(
*,
image_detail_config: ImagePromptMessageContent.DETAIL | None = None,
):
match f.type:
case FileType.IMAGE:
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
if dify_config.MULTIMODAL_SEND_IMAGE_FORMAT == "url":
data = _to_url(f)
else:
data = _to_base64_data_string(f)
if f.extension is None:
raise ValueError("Missing file extension")
if f.mime_type is None:
raise ValueError("Missing file mime_type")
return ImagePromptMessageContent(data=data, detail=image_detail_config)
case FileType.AUDIO:
encoded_string = _get_encoded_string(f)
if f.extension is None:
raise ValueError("Missing file extension")
return AudioPromptMessageContent(data=encoded_string, format=f.extension.lstrip("."))
case FileType.VIDEO:
if dify_config.MULTIMODAL_SEND_VIDEO_FORMAT == "url":
data = _to_url(f)
else:
data = _to_base64_data_string(f)
if f.extension is None:
raise ValueError("Missing file extension")
return VideoPromptMessageContent(data=data, format=f.extension.lstrip("."))
case FileType.DOCUMENT:
data = _get_encoded_string(f)
if f.mime_type is None:
raise ValueError("Missing file mime_type")
return DocumentPromptMessageContent(
encode_format="base64",
mime_type=f.mime_type,
data=data,
)
case _:
raise ValueError(f"file type {f.type} is not supported")
params = {
"base64_data": _get_encoded_string(f) if dify_config.MULTIMODAL_SEND_FORMAT == "base64" else "",
"url": _to_url(f) if dify_config.MULTIMODAL_SEND_FORMAT == "url" else "",
"format": f.extension.removeprefix("."),
"mime_type": f.mime_type,
}
if f.type == FileType.IMAGE:
params["detail"] = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
prompt_class_map = {
FileType.IMAGE: ImagePromptMessageContent,
FileType.AUDIO: AudioPromptMessageContent,
FileType.VIDEO: VideoPromptMessageContent,
FileType.DOCUMENT: DocumentPromptMessageContent,
}
try:
return prompt_class_map[f.type](**params)
except KeyError:
raise ValueError(f"file type {f.type} is not supported")
def download(f: File, /):
@ -128,11 +120,6 @@ def _get_encoded_string(f: File, /):
return encoded_string
def _to_base64_data_string(f: File, /):
encoded_string = _get_encoded_string(f)
return f"data:{f.mime_type};base64,{encoded_string}"
def _to_url(f: File, /):
if f.transfer_method == FileTransferMethod.REMOTE_URL:
if f.remote_url is None:

View File

@ -1,9 +1,9 @@
from abc import ABC
from collections.abc import Sequence
from enum import Enum, StrEnum
from typing import Literal, Optional
from typing import Optional
from pydantic import BaseModel, Field, field_validator
from pydantic import BaseModel, Field, computed_field, field_validator
class PromptMessageRole(Enum):
@ -67,7 +67,6 @@ class PromptMessageContent(BaseModel):
"""
type: PromptMessageContentType
data: str
class TextPromptMessageContent(PromptMessageContent):
@ -76,21 +75,35 @@ class TextPromptMessageContent(PromptMessageContent):
"""
type: PromptMessageContentType = PromptMessageContentType.TEXT
data: str
class VideoPromptMessageContent(PromptMessageContent):
class MultiModalPromptMessageContent(PromptMessageContent):
"""
Model class for multi-modal prompt message content.
"""
type: PromptMessageContentType
format: str = Field(..., description="the format of multi-modal file")
base64_data: str = Field("", description="the base64 data of multi-modal file")
url: str = Field("", description="the url of multi-modal file")
mime_type: str = Field(..., description="the mime type of multi-modal file")
@computed_field(return_type=str)
@property
def data(self):
return self.url or f"data:{self.mime_type};base64,{self.base64_data}"
class VideoPromptMessageContent(MultiModalPromptMessageContent):
type: PromptMessageContentType = PromptMessageContentType.VIDEO
data: str = Field(..., description="Base64 encoded video data")
format: str = Field(..., description="Video format")
class AudioPromptMessageContent(PromptMessageContent):
class AudioPromptMessageContent(MultiModalPromptMessageContent):
type: PromptMessageContentType = PromptMessageContentType.AUDIO
data: str = Field(..., description="Base64 encoded audio data")
format: str = Field(..., description="Audio format")
class ImagePromptMessageContent(PromptMessageContent):
class ImagePromptMessageContent(MultiModalPromptMessageContent):
"""
Model class for image prompt message content.
"""
@ -103,11 +116,8 @@ class ImagePromptMessageContent(PromptMessageContent):
detail: DETAIL = DETAIL.LOW
class DocumentPromptMessageContent(PromptMessageContent):
class DocumentPromptMessageContent(MultiModalPromptMessageContent):
type: PromptMessageContentType = PromptMessageContentType.DOCUMENT
encode_format: Literal["base64"]
mime_type: str
data: str
class PromptMessage(ABC, BaseModel):

View File

@ -1,5 +1,4 @@
import base64
import io
import json
from collections.abc import Generator, Sequence
from typing import Optional, Union, cast
@ -18,7 +17,6 @@ from anthropic.types import (
)
from anthropic.types.beta.tools import ToolsBetaMessage
from httpx import Timeout
from PIL import Image
from core.model_runtime.callbacks.base_callback import Callback
from core.model_runtime.entities import (
@ -498,22 +496,19 @@ class AnthropicLargeLanguageModel(LargeLanguageModel):
sub_messages.append(sub_message_dict)
elif message_content.type == PromptMessageContentType.IMAGE:
message_content = cast(ImagePromptMessageContent, message_content)
if not message_content.data.startswith("data:"):
if not message_content.base64_data:
# fetch image data from url
try:
image_content = requests.get(message_content.data).content
with Image.open(io.BytesIO(image_content)) as img:
mime_type = f"image/{img.format.lower()}"
image_content = requests.get(message_content.url).content
base64_data = base64.b64encode(image_content).decode("utf-8")
except Exception as ex:
raise ValueError(
f"Failed to fetch image data from url {message_content.data}, {ex}"
)
else:
data_split = message_content.data.split(";base64,")
mime_type = data_split[0].replace("data:", "")
base64_data = data_split[1]
base64_data = message_content.base64_data
mime_type = message_content.mime_type
if mime_type not in {"image/jpeg", "image/png", "image/gif", "image/webp"}:
raise ValueError(
f"Unsupported image type {mime_type}, "
@ -534,7 +529,7 @@ class AnthropicLargeLanguageModel(LargeLanguageModel):
sub_message_dict = {
"type": "document",
"source": {
"type": message_content.encode_format,
"type": "base64",
"media_type": message_content.mime_type,
"data": message_content.data,
},

View File

@ -86,6 +86,9 @@ model_credential_schema:
- label:
en_US: '2024-06-01'
value: '2024-06-01'
- label:
en_US: '2024-10-21'
value: '2024-10-21'
placeholder:
zh_Hans: 在此选择您的 API 版本
en_US: Select your API Version here

View File

@ -10,6 +10,7 @@ from core.model_runtime.entities.llm_entities import (
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessage,
PromptMessageContentType,
PromptMessageTool,
SystemPromptMessage,
ToolPromptMessage,
@ -105,7 +106,11 @@ class BaichuanLanguageModel(LargeLanguageModel):
if isinstance(message.content, str):
message_dict = {"role": "user", "content": message.content}
else:
raise ValueError("User message content must be str")
for message_content in message.content:
if message_content.type == PromptMessageContentType.TEXT:
message_dict = {"role": "user", "content": message_content.data}
elif message_content.type == PromptMessageContentType.IMAGE:
raise ValueError("Content object type not support image_url")
elif isinstance(message, AssistantPromptMessage):
message = cast(AssistantPromptMessage, message)
message_dict = {"role": "assistant", "content": message.content}

View File

@ -24,6 +24,9 @@ class DeepseekLargeLanguageModel(OAIAPICompatLargeLanguageModel):
user: Optional[str] = None,
) -> Union[LLMResult, Generator]:
self._add_custom_parameters(credentials)
# {"response_format": "xx"} need convert to {"response_format": {"type": "xx"}}
if "response_format" in model_parameters:
model_parameters["response_format"] = {"type": model_parameters.get("response_format")}
return super()._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream)
def validate_credentials(self, model: str, credentials: dict) -> None:

View File

@ -0,0 +1,93 @@
model: InternVL2-8B
label:
en_US: InternVL2-8B
model_type: llm
features:
- vision
- agent-thought
model_properties:
mode: chat
context_size: 32000
parameter_rules:
- name: max_tokens
use_template: max_tokens
label:
en_US: "Max Tokens"
zh_Hans: "最大Token数"
type: int
default: 512
min: 1
required: true
help:
en_US: "The maximum number of tokens that can be generated by the model varies depending on the model."
zh_Hans: "模型可生成的最大 token 个数,不同模型上限不同。"
- name: temperature
use_template: temperature
label:
en_US: "Temperature"
zh_Hans: "采样温度"
type: float
default: 0.7
min: 0.0
max: 1.0
precision: 1
required: true
help:
en_US: "The randomness of the sampling temperature control output. The temperature value is within the range of [0.0, 1.0]. The higher the value, the more random and creative the output; the lower the value, the more stable it is. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样温度控制输出的随机性。温度值在 [0.0, 1.0] 范围内,值越高,输出越随机和创造性;值越低,输出越稳定。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"
- name: top_p
use_template: top_p
label:
en_US: "Top P"
zh_Hans: "Top P"
type: float
default: 0.7
min: 0.0
max: 1.0
precision: 1
required: true
help:
en_US: "The value range of the sampling method is [0.0, 1.0]. The top_p value determines that the model selects tokens from the top p% of candidate words with the highest probability; when top_p is 0, this parameter is invalid. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样方法的取值范围为 [0.0,1.0]。top_p 值确定模型从概率最高的前p%的候选词中选取 tokens当 top_p 为 0 时,此参数无效。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"
- name: top_k
use_template: top_k
label:
en_US: "Top K"
zh_Hans: "Top K"
type: int
default: 50
min: 0
max: 100
required: true
help:
en_US: "The value range is [0,100], which limits the model to only select from the top k words with the highest probability when choosing the next word at each step. The larger the value, the more diverse text generation will be."
zh_Hans: "取值范围为 [0,100],限制模型在每一步选择下一个词时,只从概率最高的前 k 个词中选取。数值越大,文本生成越多样。"
- name: frequency_penalty
use_template: frequency_penalty
label:
en_US: "Frequency Penalty"
zh_Hans: "频率惩罚"
type: float
default: 0
min: -1.0
max: 1.0
precision: 1
required: false
help:
en_US: "Used to adjust the frequency of repeated content in automatically generated text. Positive numbers reduce repetition, while negative numbers increase repetition. After setting this parameter, if a word has already appeared in the text, the model will decrease the probability of choosing that word for subsequent generation."
zh_Hans: "用于调整自动生成文本中重复内容的频率。正数减少重复,负数增加重复。设置此参数后,如果一个词在文本中已经出现过,模型在后续生成中选择该词的概率会降低。"
- name: user
use_template: text
label:
en_US: "User"
zh_Hans: "用户"
type: string
required: false
help:
en_US: "Used to track and differentiate conversation requests from different users."
zh_Hans: "用于追踪和区分不同用户的对话请求。"

View File

@ -0,0 +1,93 @@
model: InternVL2.5-26B
label:
en_US: InternVL2.5-26B
model_type: llm
features:
- vision
- agent-thought
model_properties:
mode: chat
context_size: 32000
parameter_rules:
- name: max_tokens
use_template: max_tokens
label:
en_US: "Max Tokens"
zh_Hans: "最大Token数"
type: int
default: 512
min: 1
required: true
help:
en_US: "The maximum number of tokens that can be generated by the model varies depending on the model."
zh_Hans: "模型可生成的最大 token 个数,不同模型上限不同。"
- name: temperature
use_template: temperature
label:
en_US: "Temperature"
zh_Hans: "采样温度"
type: float
default: 0.7
min: 0.0
max: 1.0
precision: 1
required: true
help:
en_US: "The randomness of the sampling temperature control output. The temperature value is within the range of [0.0, 1.0]. The higher the value, the more random and creative the output; the lower the value, the more stable it is. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样温度控制输出的随机性。温度值在 [0.0, 1.0] 范围内,值越高,输出越随机和创造性;值越低,输出越稳定。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"
- name: top_p
use_template: top_p
label:
en_US: "Top P"
zh_Hans: "Top P"
type: float
default: 0.7
min: 0.0
max: 1.0
precision: 1
required: true
help:
en_US: "The value range of the sampling method is [0.0, 1.0]. The top_p value determines that the model selects tokens from the top p% of candidate words with the highest probability; when top_p is 0, this parameter is invalid. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样方法的取值范围为 [0.0,1.0]。top_p 值确定模型从概率最高的前p%的候选词中选取 tokens当 top_p 为 0 时,此参数无效。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"
- name: top_k
use_template: top_k
label:
en_US: "Top K"
zh_Hans: "Top K"
type: int
default: 50
min: 0
max: 100
required: true
help:
en_US: "The value range is [0,100], which limits the model to only select from the top k words with the highest probability when choosing the next word at each step. The larger the value, the more diverse text generation will be."
zh_Hans: "取值范围为 [0,100],限制模型在每一步选择下一个词时,只从概率最高的前 k 个词中选取。数值越大,文本生成越多样。"
- name: frequency_penalty
use_template: frequency_penalty
label:
en_US: "Frequency Penalty"
zh_Hans: "频率惩罚"
type: float
default: 0
min: -1.0
max: 1.0
precision: 1
required: false
help:
en_US: "Used to adjust the frequency of repeated content in automatically generated text. Positive numbers reduce repetition, while negative numbers increase repetition. After setting this parameter, if a word has already appeared in the text, the model will decrease the probability of choosing that word for subsequent generation."
zh_Hans: "用于调整自动生成文本中重复内容的频率。正数减少重复,负数增加重复。设置此参数后,如果一个词在文本中已经出现过,模型在后续生成中选择该词的概率会降低。"
- name: user
use_template: text
label:
en_US: "User"
zh_Hans: "用户"
type: string
required: false
help:
en_US: "Used to track and differentiate conversation requests from different users."
zh_Hans: "用于追踪和区分不同用户的对话请求。"

View File

@ -6,3 +6,5 @@
- deepseek-coder-33B-instruct-chat
- deepseek-coder-33B-instruct-completions
- codegeex4-all-9b
- InternVL2.5-26B
- InternVL2-8B

View File

@ -29,18 +29,26 @@ class GiteeAILargeLanguageModel(OAIAPICompatLargeLanguageModel):
user: Optional[str] = None,
) -> Union[LLMResult, Generator]:
self._add_custom_parameters(credentials, model, model_parameters)
return super()._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream, user)
return super()._invoke(
GiteeAILargeLanguageModel.MODEL_TO_IDENTITY.get(model, model),
credentials,
prompt_messages,
model_parameters,
tools,
stop,
stream,
user,
)
def validate_credentials(self, model: str, credentials: dict) -> None:
self._add_custom_parameters(credentials, None)
super().validate_credentials(model, credentials)
self._add_custom_parameters(credentials, model, None)
super().validate_credentials(GiteeAILargeLanguageModel.MODEL_TO_IDENTITY.get(model, model), credentials)
def _add_custom_parameters(self, credentials: dict, model: Optional[str]) -> None:
def _add_custom_parameters(self, credentials: dict, model: Optional[str], model_parameters: dict) -> None:
if model is None:
model = "Qwen2-72B-Instruct"
model_identity = GiteeAILargeLanguageModel.MODEL_TO_IDENTITY.get(model, model)
credentials["endpoint_url"] = f"https://ai.gitee.com/api/serverless/{model_identity}/"
credentials["endpoint_url"] = "https://ai.gitee.com/v1"
if model.endswith("completions"):
credentials["mode"] = LLMMode.COMPLETION.value
else:

View File

@ -1,3 +1,4 @@
- gemini-2.0-flash-exp
- gemini-1.5-pro
- gemini-1.5-pro-latest
- gemini-1.5-pro-001
@ -11,6 +12,8 @@
- gemini-1.5-flash-exp-0827
- gemini-1.5-flash-8b-exp-0827
- gemini-1.5-flash-8b-exp-0924
- gemini-exp-1206
- gemini-exp-1121
- gemini-exp-1114
- gemini-pro
- gemini-pro-vision

View File

@ -8,6 +8,8 @@ features:
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 1048576

View File

@ -8,6 +8,8 @@ features:
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 1048576

View File

@ -8,6 +8,8 @@ features:
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 1048576

View File

@ -8,6 +8,8 @@ features:
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 1048576

View File

@ -8,6 +8,8 @@ features:
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 1048576

View File

@ -8,6 +8,8 @@ features:
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 1048576

View File

@ -8,6 +8,8 @@ features:
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 1048576

View File

@ -8,6 +8,8 @@ features:
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 2097152

View File

@ -8,6 +8,8 @@ features:
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 2097152

View File

@ -8,6 +8,8 @@ features:
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 2097152

View File

@ -8,6 +8,8 @@ features:
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 2097152

View File

@ -8,6 +8,8 @@ features:
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 2097152

View File

@ -8,6 +8,8 @@ features:
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 2097152

View File

@ -8,6 +8,8 @@ features:
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 1048576

View File

@ -8,6 +8,8 @@ features:
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 32767

View File

@ -7,6 +7,9 @@ features:
- vision
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 32767

View File

@ -7,6 +7,9 @@ features:
- vision
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 2097152

View File

@ -7,6 +7,9 @@ features:
- vision
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 32767

View File

@ -1,24 +1,23 @@
import base64
import io
import json
import os
import tempfile
import time
from collections.abc import Generator
from typing import Optional, Union, cast
from typing import Optional, Union
import google.ai.generativelanguage as glm
import google.generativeai as genai
import requests
from google.api_core import exceptions
from google.generativeai.client import _ClientManager
from google.generativeai.types import ContentType, GenerateContentResponse
from google.generativeai.types import ContentType, File, GenerateContentResponse
from google.generativeai.types.content_types import to_part
from PIL import Image
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
DocumentPromptMessageContent,
ImagePromptMessageContent,
PromptMessage,
PromptMessageContent,
PromptMessageContentType,
PromptMessageTool,
SystemPromptMessage,
@ -35,21 +34,7 @@ from core.model_runtime.errors.invoke import (
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
GOOGLE_AVAILABLE_MIMETYPE = [
"application/pdf",
"application/x-javascript",
"text/javascript",
"application/x-python",
"text/x-python",
"text/plain",
"text/html",
"text/css",
"text/md",
"text/csv",
"text/xml",
"text/rtf",
]
from extensions.ext_redis import redis_client
class GoogleLargeLanguageModel(LargeLanguageModel):
@ -201,29 +186,17 @@ class GoogleLargeLanguageModel(LargeLanguageModel):
if stop:
config_kwargs["stop_sequences"] = stop
genai.configure(api_key=credentials["google_api_key"])
google_model = genai.GenerativeModel(model_name=model)
history = []
# hack for gemini-pro-vision, which currently does not support multi-turn chat
if model == "gemini-pro-vision":
last_msg = prompt_messages[-1]
content = self._format_message_to_glm_content(last_msg)
history.append(content)
else:
for msg in prompt_messages: # makes message roles strictly alternating
content = self._format_message_to_glm_content(msg)
if history and history[-1]["role"] == content["role"]:
history[-1]["parts"].extend(content["parts"])
else:
history.append(content)
# Create a new ClientManager with tenant's API key
new_client_manager = _ClientManager()
new_client_manager.configure(api_key=credentials["google_api_key"])
new_custom_client = new_client_manager.make_client("generative")
google_model._client = new_custom_client
for msg in prompt_messages: # makes message roles strictly alternating
content = self._format_message_to_glm_content(msg)
if history and history[-1]["role"] == content["role"]:
history[-1]["parts"].extend(content["parts"])
else:
history.append(content)
response = google_model.generate_content(
contents=history,
@ -317,8 +290,12 @@ class GoogleLargeLanguageModel(LargeLanguageModel):
)
else:
# calculate num tokens
prompt_tokens = self.get_num_tokens(model, credentials, prompt_messages)
completion_tokens = self.get_num_tokens(model, credentials, [assistant_prompt_message])
if hasattr(response, "usage_metadata") and response.usage_metadata:
prompt_tokens = response.usage_metadata.prompt_token_count
completion_tokens = response.usage_metadata.candidates_token_count
else:
prompt_tokens = self.get_num_tokens(model, credentials, prompt_messages)
completion_tokens = self.get_num_tokens(model, credentials, [assistant_prompt_message])
# transform usage
usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
@ -346,7 +323,7 @@ class GoogleLargeLanguageModel(LargeLanguageModel):
content = message.content
if isinstance(content, list):
content = "".join(c.data for c in content if c.type != PromptMessageContentType.IMAGE)
content = "".join(c.data for c in content if c.type == PromptMessageContentType.TEXT)
if isinstance(message, UserPromptMessage):
message_text = f"{human_prompt} {content}"
@ -359,6 +336,40 @@ class GoogleLargeLanguageModel(LargeLanguageModel):
return message_text
def _upload_file_content_to_google(self, message_content: PromptMessageContent) -> File:
key = f"{message_content.type.value}:{hash(message_content.data)}"
if redis_client.exists(key):
try:
return genai.get_file(redis_client.get(key).decode())
except:
pass
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
if message_content.base64_data:
file_content = base64.b64decode(message_content.base64_data)
temp_file.write(file_content)
else:
try:
response = requests.get(message_content.url)
response.raise_for_status()
temp_file.write(response.content)
except Exception as ex:
raise ValueError(f"Failed to fetch data from url {message_content.url}, {ex}")
temp_file.flush()
file = genai.upload_file(path=temp_file.name, mime_type=message_content.mime_type)
while file.state.name == "PROCESSING":
time.sleep(5)
file = genai.get_file(file.name)
# google will delete your upload files in 2 days.
redis_client.setex(key, 47 * 60 * 60, file.name)
try:
os.unlink(temp_file.name)
except PermissionError:
# windows may raise permission error
pass
return file
def _format_message_to_glm_content(self, message: PromptMessage) -> ContentType:
"""
Format a single message into glm.Content for Google API
@ -374,28 +385,8 @@ class GoogleLargeLanguageModel(LargeLanguageModel):
for c in message.content:
if c.type == PromptMessageContentType.TEXT:
glm_content["parts"].append(to_part(c.data))
elif c.type == PromptMessageContentType.IMAGE:
message_content = cast(ImagePromptMessageContent, c)
if message_content.data.startswith("data:"):
metadata, base64_data = c.data.split(",", 1)
mime_type = metadata.split(";", 1)[0].split(":")[1]
else:
# fetch image data from url
try:
image_content = requests.get(message_content.data).content
with Image.open(io.BytesIO(image_content)) as img:
mime_type = f"image/{img.format.lower()}"
base64_data = base64.b64encode(image_content).decode("utf-8")
except Exception as ex:
raise ValueError(f"Failed to fetch image data from url {message_content.data}, {ex}")
blob = {"inline_data": {"mime_type": mime_type, "data": base64_data}}
glm_content["parts"].append(blob)
elif c.type == PromptMessageContentType.DOCUMENT:
message_content = cast(DocumentPromptMessageContent, c)
if message_content.mime_type not in GOOGLE_AVAILABLE_MIMETYPE:
raise ValueError(f"Unsupported mime type {message_content.mime_type}")
blob = {"inline_data": {"mime_type": message_content.mime_type, "data": message_content.data}}
glm_content["parts"].append(blob)
else:
glm_content["parts"].append(self._upload_file_content_to_google(c))
return glm_content
elif isinstance(message, AssistantPromptMessage):

View File

@ -920,10 +920,12 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
}
sub_messages.append(sub_message_dict)
elif isinstance(message_content, AudioPromptMessageContent):
data_split = message_content.data.split(";base64,")
base64_data = data_split[1]
sub_message_dict = {
"type": "input_audio",
"input_audio": {
"data": message_content.data,
"data": base64_data,
"format": message_content.format,
},
}

View File

@ -478,6 +478,10 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
usage=usage,
)
break
# handle the error here. for issue #11629
if chunk_json.get("error") and chunk_json.get("choices") is None:
raise ValueError(chunk_json.get("error"))
if chunk_json:
if u := chunk_json.get("usage"):
usage = u

View File

@ -434,9 +434,9 @@ class TongyiLargeLanguageModel(LargeLanguageModel):
sub_messages.append(sub_message_dict)
elif message_content.type == PromptMessageContentType.VIDEO:
message_content = cast(VideoPromptMessageContent, message_content)
video_url = message_content.data
if message_content.data.startswith("data:"):
raise InvokeError("not support base64, please set MULTIMODAL_SEND_VIDEO_FORMAT to url")
video_url = message_content.url
if not video_url:
raise InvokeError("not support base64, please set MULTIMODAL_SEND_FORMAT to url")
sub_message_dict = {"video": video_url}
sub_messages.append(sub_message_dict)

View File

@ -1,4 +1,3 @@
import re
from collections.abc import Generator
from typing import Optional, cast
@ -104,17 +103,16 @@ class ArkClientV3:
if message_content.type == PromptMessageContentType.TEXT:
content.append(
ChatCompletionContentPartTextParam(
text=message_content.text,
text=message_content.data,
type="text",
)
)
elif message_content.type == PromptMessageContentType.IMAGE:
message_content = cast(ImagePromptMessageContent, message_content)
image_data = re.sub(r"^data:image\/[a-zA-Z]+;base64,", "", message_content.data)
content.append(
ChatCompletionContentPartImageParam(
image_url=ImageURL(
url=image_data,
url=message_content.data,
detail=message_content.detail.value,
),
type="image_url",

View File

@ -68,7 +68,12 @@ class MaaSClient(MaasService):
content = []
for message_content in message.content:
if message_content.type == PromptMessageContentType.TEXT:
raise ValueError("Content object type only support image_url")
content.append(
{
"type": "text",
"text": message_content.data,
}
)
elif message_content.type == PromptMessageContentType.IMAGE:
message_content = cast(ImagePromptMessageContent, message_content)
image_data = re.sub(r"^data:image\/[a-zA-Z]+;base64,", "", message_content.data)

View File

@ -132,6 +132,14 @@ class VolcengineMaaSLargeLanguageModel(LargeLanguageModel):
messages_dict = [ArkClientV3.convert_prompt_message(m) for m in messages]
for message in messages_dict:
for key, value in message.items():
# Ignore tokens for image type
if isinstance(value, list):
text = ""
for item in value:
if isinstance(item, dict) and item["type"] == "text":
text += item["text"]
value = text
num_tokens += self._get_num_tokens_by_gpt2(str(key))
num_tokens += self._get_num_tokens_by_gpt2(str(value))

View File

@ -16,6 +16,14 @@ class ModelConfig(BaseModel):
configs: dict[str, ModelConfig] = {
"Doubao-vision-pro-32k": ModelConfig(
properties=ModelProperties(context_size=32768, max_tokens=4096, mode=LLMMode.CHAT),
features=[ModelFeature.VISION],
),
"Doubao-vision-lite-32k": ModelConfig(
properties=ModelProperties(context_size=32768, max_tokens=4096, mode=LLMMode.CHAT),
features=[ModelFeature.VISION],
),
"Doubao-pro-4k": ModelConfig(
properties=ModelProperties(context_size=4096, max_tokens=4096, mode=LLMMode.CHAT),
features=[ModelFeature.TOOL_CALL],

View File

@ -118,6 +118,18 @@ model_credential_schema:
type: select
required: true
options:
- label:
en_US: Doubao-vision-pro-32k
value: Doubao-vision-pro-32k
show_on:
- variable: __model_type
value: llm
- label:
en_US: Doubao-vision-lite-32k
value: Doubao-vision-lite-32k
show_on:
- variable: __model_type
value: llm
- label:
en_US: Doubao-pro-4k
value: Doubao-pro-4k

View File

@ -0,0 +1,66 @@
model: grok-2-1212
label:
en_US: grok-2-1212
model_type: llm
features:
- agent-thought
- tool-call
- multi-tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 131072
parameter_rules:
- name: temperature
label:
en_US: "Temperature"
zh_Hans: "采样温度"
type: float
default: 0.7
min: 0.0
max: 2.0
precision: 1
required: true
help:
en_US: "The randomness of the sampling temperature control output. The temperature value is within the range of [0.0, 1.0]. The higher the value, the more random and creative the output; the lower the value, the more stable it is. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样温度控制输出的随机性。温度值在 [0.0, 1.0] 范围内,值越高,输出越随机和创造性;值越低,输出越稳定。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"
- name: top_p
label:
en_US: "Top P"
zh_Hans: "Top P"
type: float
default: 0.7
min: 0.0
max: 1.0
precision: 1
required: true
help:
en_US: "The value range of the sampling method is [0.0, 1.0]. The top_p value determines that the model selects tokens from the top p% of candidate words with the highest probability; when top_p is 0, this parameter is invalid. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样方法的取值范围为 [0.0,1.0]。top_p 值确定模型从概率最高的前p%的候选词中选取 tokens当 top_p 为 0 时,此参数无效。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"
- name: frequency_penalty
use_template: frequency_penalty
label:
en_US: "Frequency Penalty"
zh_Hans: "频率惩罚"
type: float
default: 0
min: 0
max: 2.0
precision: 1
required: false
help:
en_US: "Number between 0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim."
zh_Hans: "介于0和2.0之间的数字。正值会根据新标记在文本中迄今为止的现有频率来惩罚它们,从而降低模型一字不差地重复同一句话的可能性。"
- name: user
use_template: text
label:
en_US: "User"
zh_Hans: "用户"
type: string
required: false
help:
en_US: "Used to track and differentiate conversation requests from different users."
zh_Hans: "用于追踪和区分不同用户的对话请求。"

View File

@ -0,0 +1,64 @@
model: grok-2-vision-1212
label:
en_US: grok-2-vision-1212
model_type: llm
features:
- agent-thought
- vision
model_properties:
mode: chat
context_size: 8192
parameter_rules:
- name: temperature
label:
en_US: "Temperature"
zh_Hans: "采样温度"
type: float
default: 0.7
min: 0.0
max: 2.0
precision: 1
required: true
help:
en_US: "The randomness of the sampling temperature control output. The temperature value is within the range of [0.0, 1.0]. The higher the value, the more random and creative the output; the lower the value, the more stable it is. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样温度控制输出的随机性。温度值在 [0.0, 1.0] 范围内,值越高,输出越随机和创造性;值越低,输出越稳定。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"
- name: top_p
label:
en_US: "Top P"
zh_Hans: "Top P"
type: float
default: 0.7
min: 0.0
max: 1.0
precision: 1
required: true
help:
en_US: "The value range of the sampling method is [0.0, 1.0]. The top_p value determines that the model selects tokens from the top p% of candidate words with the highest probability; when top_p is 0, this parameter is invalid. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样方法的取值范围为 [0.0,1.0]。top_p 值确定模型从概率最高的前p%的候选词中选取 tokens当 top_p 为 0 时,此参数无效。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"
- name: frequency_penalty
use_template: frequency_penalty
label:
en_US: "Frequency Penalty"
zh_Hans: "频率惩罚"
type: float
default: 0
min: 0
max: 2.0
precision: 1
required: false
help:
en_US: "Number between 0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim."
zh_Hans: "介于0和2.0之间的数字。正值会根据新标记在文本中迄今为止的现有频率来惩罚它们,从而降低模型一字不差地重复同一句话的可能性。"
- name: user
use_template: text
label:
en_US: "User"
zh_Hans: "用户"
type: string
required: false
help:
en_US: "Used to track and differentiate conversation requests from different users."
zh_Hans: "用于追踪和区分不同用户的对话请求。"

View File

@ -1,6 +1,6 @@
model: grok-beta
label:
en_US: Grok Beta
en_US: grok-beta
model_type: llm
features:
- agent-thought

View File

@ -1,6 +1,6 @@
model: grok-vision-beta
label:
en_US: Grok Vision Beta
en_US: grok-vision-beta
model_type: llm
features:
- agent-thought

View File

@ -4,7 +4,7 @@ import os
from datetime import datetime, timedelta
from typing import Optional
from langfuse import Langfuse
from langfuse import Langfuse # type: ignore
from core.ops.base_trace_instance import BaseTraceInstance
from core.ops.entities.config_entity import LangfuseConfig
@ -82,8 +82,6 @@ class LangFuseDataTrace(BaseTraceInstance):
metadata=metadata,
session_id=trace_info.conversation_id,
tags=["message", "workflow"],
created_at=trace_info.start_time,
updated_at=trace_info.end_time,
)
self.add_trace(langfuse_trace_data=trace_data)
workflow_span_data = LangfuseSpan(
@ -242,11 +240,13 @@ class LangFuseDataTrace(BaseTraceInstance):
file_list = trace_info.file_list
metadata = trace_info.metadata
message_data = trace_info.message_data
if message_data is None:
return
message_id = message_data.id
user_id = message_data.from_account_id
if message_data.from_end_user_id:
end_user_data: EndUser = (
end_user_data: Optional[EndUser] = (
db.session.query(EndUser).filter(EndUser.id == message_data.from_end_user_id).first()
)
if end_user_data is not None:
@ -303,6 +303,8 @@ class LangFuseDataTrace(BaseTraceInstance):
self.add_generation(langfuse_generation_data)
def moderation_trace(self, trace_info: ModerationTraceInfo):
if trace_info.message_data is None:
return
span_data = LangfuseSpan(
name=TraceTaskName.MODERATION_TRACE.value,
input=trace_info.inputs,
@ -322,9 +324,11 @@ class LangFuseDataTrace(BaseTraceInstance):
def suggested_question_trace(self, trace_info: SuggestedQuestionTraceInfo):
message_data = trace_info.message_data
if message_data is None:
return
generation_usage = GenerationUsage(
total=len(str(trace_info.suggested_question)),
input=len(trace_info.inputs),
input=len(trace_info.inputs) if trace_info.inputs else 0,
output=len(trace_info.suggested_question),
unit=UnitEnum.CHARACTERS,
)
@ -345,6 +349,8 @@ class LangFuseDataTrace(BaseTraceInstance):
self.add_generation(langfuse_generation_data=generation_data)
def dataset_retrieval_trace(self, trace_info: DatasetRetrievalTraceInfo):
if trace_info.message_data is None:
return
dataset_retrieval_span_data = LangfuseSpan(
name=TraceTaskName.DATASET_RETRIEVAL_TRACE.value,
input=trace_info.inputs,

View File

@ -424,7 +424,7 @@ def default_vector_search_query(
) -> dict:
if filters is not None:
filter_type = "post_filter" if filter_type is None else filter_type
if not isinstance(filter, list):
if not isinstance(filters, list):
raise RuntimeError(f"unexpected filter with {type(filters)}")
final_ext = {"lvector": {}}
if min_score != "0.0":

View File

@ -37,8 +37,6 @@ class TiDBVectorConfig(BaseModel):
raise ValueError("config TIDB_VECTOR_PORT is required")
if not values["user"]:
raise ValueError("config TIDB_VECTOR_USER is required")
if not values["password"]:
raise ValueError("config TIDB_VECTOR_PASSWORD is required")
if not values["database"]:
raise ValueError("config TIDB_VECTOR_DATABASE is required")
if not values["program_name"]:

View File

@ -43,6 +43,13 @@ class JinaReaderTool(BuiltinTool):
if wait_for_selector is not None and wait_for_selector != "":
headers["X-Wait-For-Selector"] = wait_for_selector
remove_selector = tool_parameters.get("remove_selector")
if remove_selector is not None and remove_selector != "":
headers["X-Remove-Selector"] = remove_selector
if tool_parameters.get("retain_images", False):
headers["X-Retain-Images"] = "true"
if tool_parameters.get("image_caption", False):
headers["X-With-Generated-Alt"] = "true"
@ -59,6 +66,12 @@ class JinaReaderTool(BuiltinTool):
if tool_parameters.get("no_cache", False):
headers["X-No-Cache"] = "true"
if tool_parameters.get("with_iframe", False):
headers["X-With-Iframe"] = "true"
if tool_parameters.get("with_shadow_dom", False):
headers["X-With-Shadow-Dom"] = "true"
max_retries = tool_parameters.get("max_retries", 3)
response = ssrf_proxy.get(
str(URL(self._jina_reader_endpoint + url)),

View File

@ -67,6 +67,33 @@ parameters:
pt_BR: css selector para aguardar elementos específicos
llm_description: css selector of the target element to wait for
form: form
- name: remove_selector
type: string
required: false
label:
en_US: Excluded Selector
zh_Hans: 排除选择器
pt_BR: Seletor Excluído
human_description:
en_US: css selector for remove for specific elements
zh_Hans: css 选择器用于排除特定元素
pt_BR: seletor CSS para remover elementos específicos
llm_description: css selector of the target element to remove for
form: form
- name: retain_images
type: boolean
required: false
default: false
label:
en_US: Remove All Images
zh_Hans: 删除所有图片
pt_BR: Remover todas as imagens
human_description:
en_US: Removes all images from the response.
zh_Hans: 从响应中删除所有图片。
pt_BR: Remove todas as imagens da resposta.
llm_description: Remove all images
form: form
- name: image_caption
type: boolean
required: false
@ -136,6 +163,34 @@ parameters:
pt_BR: Ignorar o cache
llm_description: bypass the cache
form: form
- name: with_iframe
type: boolean
required: false
default: false
label:
en_US: Enable iframe extraction
zh_Hans: 启用 iframe 提取
pt_BR: Habilitar extração de iframe
human_description:
en_US: Extract and process content of all embedded iframes in the DOM tree.
zh_Hans: 提取并处理 DOM 树中所有嵌入 iframe 的内容。
pt_BR: Extrair e processar o conteúdo de todos os iframes incorporados na árvore DOM.
llm_description: Extract content from embedded iframes
form: form
- name: with_shadow_dom
type: boolean
required: false
default: false
label:
en_US: Enable Shadow DOM extraction
zh_Hans: 启用 Shadow DOM 提取
pt_BR: Habilitar extração de Shadow DOM
human_description:
en_US: Traverse all Shadow DOM roots in the document and extract content.
zh_Hans: 遍历文档中所有 Shadow DOM 根并提取内容。
pt_BR: Percorra todas as raízes do Shadow DOM no documento e extraia o conteúdo.
llm_description: Extract content from Shadow DOM roots
form: form
- name: summary
type: boolean
required: false

View File

@ -10,6 +10,7 @@ from typing import Any, Optional, cast
from flask import Flask, current_app
from configs import dify_config
from core.app.apps.base_app_queue_manager import GenerateTaskStoppedError
from core.app.entities.app_invoke_entities import InvokeFrom
from core.workflow.entities.node_entities import NodeRunMetadataKey, NodeRunResult
@ -54,7 +55,12 @@ logger = logging.getLogger(__name__)
class GraphEngineThreadPool(ThreadPoolExecutor):
def __init__(
self, max_workers=None, thread_name_prefix="", initializer=None, initargs=(), max_submit_count=100
self,
max_workers=None,
thread_name_prefix="",
initializer=None,
initargs=(),
max_submit_count=dify_config.MAX_SUBMIT_COUNT,
) -> None:
super().__init__(max_workers, thread_name_prefix, initializer, initargs)
self.max_submit_count = max_submit_count
@ -94,7 +100,7 @@ class GraphEngine:
max_execution_time: int,
thread_pool_id: Optional[str] = None,
) -> None:
thread_pool_max_submit_count = 100
thread_pool_max_submit_count = dify_config.MAX_SUBMIT_COUNT
thread_pool_max_workers = 10
# init thread pool

View File

@ -72,7 +72,11 @@ class BaseNode(Generic[GenericNodeData]):
result = self._run()
except Exception as e:
logger.exception(f"Node {self.node_id} failed to run")
result = NodeRunResult(status=WorkflowNodeExecutionStatus.FAILED, error=str(e), error_type="SystemError")
result = NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
error=str(e),
error_type="WorkflowNodeError",
)
if isinstance(result, NodeRunResult):
yield RunCompletedEvent(run_result=result)

View File

@ -37,7 +37,7 @@ BODY_TYPE_TO_CONTENT_TYPE = {
class Executor:
method: Literal["get", "head", "post", "put", "delete", "patch"]
url: str
params: Mapping[str, str] | None
params: list[tuple[str, str]] | None
content: str | bytes | None
data: Mapping[str, Any] | None
files: Mapping[str, tuple[str | None, bytes, str]] | None
@ -69,7 +69,7 @@ class Executor:
self.method = node_data.method
self.auth = node_data.authorization
self.timeout = timeout
self.params = {}
self.params = []
self.headers = {}
self.content = None
self.files = None
@ -92,14 +92,48 @@ class Executor:
self.url = self.variable_pool.convert_template(self.node_data.url).text
def _init_params(self):
params = _plain_text_to_dict(self.node_data.params)
for key in params:
params[key] = self.variable_pool.convert_template(params[key]).text
self.params = params
"""
Almost same as _init_headers(), difference:
1. response a list tuple to support same key, like 'aa=1&aa=2'
2. param value may have '\n', we need to splitlines then extract the variable value.
"""
result = []
for line in self.node_data.params.splitlines():
if not (line := line.strip()):
continue
key, *value = line.split(":", 1)
if not (key := key.strip()):
continue
value = value[0].strip() if value else ""
result.append(
(self.variable_pool.convert_template(key).text, self.variable_pool.convert_template(value).text)
)
self.params = result
def _init_headers(self):
"""
Convert the header string of frontend to a dictionary.
Each line in the header string represents a key-value pair.
Keys and values are separated by ':'.
Empty values are allowed.
Examples:
'aa:bb\n cc:dd' -> {'aa': 'bb', 'cc': 'dd'}
'aa:\n cc:dd\n' -> {'aa': '', 'cc': 'dd'}
'aa\n cc : dd' -> {'aa': '', 'cc': 'dd'}
"""
headers = self.variable_pool.convert_template(self.node_data.headers).text
self.headers = _plain_text_to_dict(headers)
self.headers = {
key.strip(): (value[0].strip() if value else "")
for line in headers.splitlines()
if line.strip()
for key, *value in [line.split(":", 1)]
}
def _init_body(self):
body = self.node_data.body
@ -292,33 +326,6 @@ class Executor:
return raw
def _plain_text_to_dict(text: str, /) -> dict[str, str]:
"""
Convert a string of key-value pairs to a dictionary.
Each line in the input string represents a key-value pair.
Keys and values are separated by ':'.
Empty values are allowed.
Examples:
'aa:bb\n cc:dd' -> {'aa': 'bb', 'cc': 'dd'}
'aa:\n cc:dd\n' -> {'aa': '', 'cc': 'dd'}
'aa\n cc : dd' -> {'aa': '', 'cc': 'dd'}
Args:
convert_text (str): The input string to convert.
Returns:
dict[str, str]: A dictionary of key-value pairs.
"""
return {
key.strip(): (value[0].strip() if value else "")
for line in text.splitlines()
if line.strip()
for key, *value in [line.split(":", 1)]
}
def _generate_random_string(n: int) -> str:
"""
Generate a random string of lowercase ASCII letters.

View File

@ -163,7 +163,9 @@ class IterationNode(BaseNode[IterationNodeData]):
if self.node_data.is_parallel:
futures: list[Future] = []
q: Queue = Queue()
thread_pool = GraphEngineThreadPool(max_workers=self.node_data.parallel_nums, max_submit_count=100)
thread_pool = GraphEngineThreadPool(
max_workers=self.node_data.parallel_nums, max_submit_count=dify_config.MAX_SUBMIT_COUNT
)
for index, item in enumerate(iterator_list_value):
future: Future = thread_pool.submit(
self._run_single_iter_parallel,

View File

@ -70,7 +70,20 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
except KnowledgeRetrievalNodeError as e:
logger.warning("Error when running knowledge retrieval node")
return NodeRunResult(status=WorkflowNodeExecutionStatus.FAILED, inputs=variables, error=str(e))
return NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
inputs=variables,
error=str(e),
error_type=type(e).__name__,
)
# Temporary handle all exceptions from DatasetRetrieval class here.
except Exception as e:
return NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
inputs=variables,
error=str(e),
error_type=type(e).__name__,
)
def _fetch_dataset_retriever(self, node_data: KnowledgeRetrievalNodeData, query: str) -> list[dict[str, Any]]:
available_datasets = []
@ -160,18 +173,18 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
reranking_model = None
weights = None
all_documents = dataset_retrieval.multiple_retrieve(
self.app_id,
self.tenant_id,
self.user_id,
self.user_from.value,
available_datasets,
query,
node_data.multiple_retrieval_config.top_k,
node_data.multiple_retrieval_config.score_threshold,
node_data.multiple_retrieval_config.reranking_mode,
reranking_model,
weights,
node_data.multiple_retrieval_config.reranking_enable,
app_id=self.app_id,
tenant_id=self.tenant_id,
user_id=self.user_id,
user_from=self.user_from.value,
available_datasets=available_datasets,
query=query,
top_k=node_data.multiple_retrieval_config.top_k,
score_threshold=node_data.multiple_retrieval_config.score_threshold,
reranking_mode=node_data.multiple_retrieval_config.reranking_mode,
reranking_model=reranking_model,
weights=weights,
reranking_enable=node_data.multiple_retrieval_config.reranking_enable,
)
dify_documents = [item for item in all_documents if item.provider == "dify"]
external_documents = [item for item in all_documents if item.provider == "external"]

View File

@ -92,6 +92,16 @@ class ToolNode(BaseNode[ToolNodeData]):
error=f"Failed to invoke tool: {str(e)}",
error_type=type(e).__name__,
)
except Exception as e:
return NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
inputs=parameters_for_log,
metadata={
NodeRunMetadataKey.TOOL_INFO: tool_info,
},
error=f"Failed to invoke tool: {str(e)}",
error_type="UnknownError",
)
# convert tool messages
plain_text, files, json = self._convert_tool_messages(messages)

View File

@ -1,8 +1,11 @@
import logging
import os
import sys
import uuid
from logging.handlers import RotatingFileHandler
import flask
from configs import dify_config
from dify_app import DifyApp
@ -22,11 +25,14 @@ def init_app(app: DifyApp):
)
# Always add StreamHandler to log to console
log_handlers.append(logging.StreamHandler(sys.stdout))
sh = logging.StreamHandler(sys.stdout)
sh.addFilter(RequestIdFilter())
log_formatter = logging.Formatter(fmt=dify_config.LOG_FORMAT)
sh.setFormatter(log_formatter)
log_handlers.append(sh)
logging.basicConfig(
level=dify_config.LOG_LEVEL,
format=dify_config.LOG_FORMAT,
datefmt=dify_config.LOG_DATEFORMAT,
handlers=log_handlers,
force=True,
@ -44,3 +50,22 @@ def init_app(app: DifyApp):
for handler in logging.root.handlers:
handler.formatter.converter = time_converter
def get_request_id():
if getattr(flask.g, "request_id", None):
return flask.g.request_id
new_uuid = uuid.uuid4().hex[:10]
flask.g.request_id = new_uuid
return new_uuid
class RequestIdFilter(logging.Filter):
# This is a logging filter that makes the request ID available for use in
# the logging format. Note that we're checking if we're in a request
# context, as we may want to log things before Flask is fully loaded.
def filter(self, record):
record.req_id = get_request_id() if flask.has_request_context() else ""
return True

View File

@ -1,11 +1,10 @@
import logging
from collections.abc import Callable, Generator, Mapping
from collections.abc import Callable, Generator
from typing import Union
from flask import Flask
from configs import dify_config
from configs.middleware.storage.opendal_storage_config import OpenDALScheme
from dify_app import DifyApp
from extensions.storage.base_storage import BaseStorage
from extensions.storage.storage_type import StorageType
@ -23,21 +22,17 @@ class Storage:
def get_storage_factory(storage_type: str) -> Callable[[], BaseStorage]:
match storage_type:
case StorageType.S3:
from extensions.storage.opendal_storage import OpenDALStorage
from extensions.storage.aws_s3_storage import AwsS3Storage
kwargs = _load_s3_storage_kwargs()
return lambda: OpenDALStorage(scheme=OpenDALScheme.S3, **kwargs)
return AwsS3Storage
case StorageType.OPENDAL:
from extensions.storage.opendal_storage import OpenDALStorage
scheme = OpenDALScheme(dify_config.STORAGE_OPENDAL_SCHEME)
kwargs = _load_opendal_storage_kwargs(scheme)
return lambda: OpenDALStorage(scheme=scheme, **kwargs)
return lambda: OpenDALStorage(dify_config.OPENDAL_SCHEME)
case StorageType.LOCAL:
from extensions.storage.opendal_storage import OpenDALStorage
kwargs = _load_local_storage_kwargs()
return lambda: OpenDALStorage(scheme=OpenDALScheme.FS, **kwargs)
return lambda: OpenDALStorage(scheme="fs", root=dify_config.STORAGE_LOCAL_PATH)
case StorageType.AZURE_BLOB:
from extensions.storage.azure_blob_storage import AzureBlobStorage
@ -75,7 +70,7 @@ class Storage:
return SupabaseStorage
case _:
raise ValueError(f"Unsupported storage type {storage_type}")
raise ValueError(f"unsupported storage type {storage_type}")
def save(self, filename, data):
try:
@ -130,81 +125,6 @@ class Storage:
raise e
def _load_s3_storage_kwargs() -> Mapping[str, str]:
"""
Load the kwargs for S3 storage based on dify_config.
Handles special cases like AWS managed IAM and R2.
"""
kwargs = {
"root": "/",
"bucket": dify_config.S3_BUCKET_NAME,
"endpoint": dify_config.S3_ENDPOINT,
"access_key_id": dify_config.S3_ACCESS_KEY,
"secret_access_key": dify_config.S3_SECRET_KEY,
"region": dify_config.S3_REGION,
}
kwargs = {k: v for k, v in kwargs.items() if isinstance(v, str)}
# For AWS managed IAM
if dify_config.S3_USE_AWS_MANAGED_IAM:
from extensions.storage.opendal_storage import S3_SSE_WITH_AWS_MANAGED_IAM_KWARGS
logger.debug("Using AWS managed IAM role for S3")
kwargs = {**kwargs, **{k: v for k, v in S3_SSE_WITH_AWS_MANAGED_IAM_KWARGS.items() if k not in kwargs}}
# For Cloudflare R2
if kwargs.get("endpoint"):
from extensions.storage.opendal_storage import S3_R2_COMPATIBLE_KWARGS, is_r2_endpoint
if is_r2_endpoint(kwargs["endpoint"]):
logger.debug("Using R2 for OpenDAL S3")
kwargs = {**kwargs, **{k: v for k, v in S3_R2_COMPATIBLE_KWARGS.items() if k not in kwargs}}
return kwargs
def _load_local_storage_kwargs() -> Mapping[str, str]:
"""
Load the kwargs for local storage based on dify_config.
"""
return {
"root": dify_config.STORAGE_LOCAL_PATH,
}
def _load_opendal_storage_kwargs(scheme: OpenDALScheme) -> Mapping[str, str]:
"""
Load the kwargs for OpenDAL storage based on the given scheme.
"""
match scheme:
case OpenDALScheme.FS:
kwargs = {
"root": dify_config.OPENDAL_FS_ROOT,
}
case OpenDALScheme.S3:
# Load OpenDAL S3-related configs
kwargs = {
"root": dify_config.OPENDAL_S3_ROOT,
"bucket": dify_config.OPENDAL_S3_BUCKET,
"endpoint": dify_config.OPENDAL_S3_ENDPOINT,
"access_key_id": dify_config.OPENDAL_S3_ACCESS_KEY_ID,
"secret_access_key": dify_config.OPENDAL_S3_SECRET_ACCESS_KEY,
"region": dify_config.OPENDAL_S3_REGION,
}
# For Cloudflare R2
if kwargs.get("endpoint"):
from extensions.storage.opendal_storage import S3_R2_COMPATIBLE_KWARGS, is_r2_endpoint
if is_r2_endpoint(kwargs["endpoint"]):
logger.debug("Using R2 for OpenDAL S3")
kwargs = {**kwargs, **{k: v for k, v in S3_R2_COMPATIBLE_KWARGS.items() if k not in kwargs}}
case _:
logger.warning(f"Unrecognized OpenDAL scheme: {scheme}, will fall back to default.")
kwargs = {}
return kwargs
storage = Storage()

View File

@ -1,46 +1,57 @@
import logging
import os
from collections.abc import Generator
from pathlib import Path
from urllib.parse import urlparse
import opendal
from dotenv import dotenv_values
from configs.middleware.storage.opendal_storage_config import OpenDALScheme
from extensions.storage.base_storage import BaseStorage
S3_R2_HOSTNAME = "r2.cloudflarestorage.com"
S3_R2_COMPATIBLE_KWARGS = {
"delete_max_size": "700",
"disable_stat_with_override": "true",
"region": "auto",
}
S3_SSE_WITH_AWS_MANAGED_IAM_KWARGS = {
"server_side_encryption": "aws:kms",
}
logger = logging.getLogger(__name__)
def is_r2_endpoint(endpoint: str) -> bool:
if not endpoint:
return False
def _get_opendal_kwargs(*, scheme: str, env_file_path: str = ".env", prefix: str = "OPENDAL_"):
kwargs = {}
config_prefix = prefix + scheme.upper() + "_"
for key, value in os.environ.items():
if key.startswith(config_prefix):
kwargs[key[len(config_prefix) :].lower()] = value
parsed_url = urlparse(endpoint)
return bool(parsed_url.hostname and parsed_url.hostname.endswith(S3_R2_HOSTNAME))
file_env_vars = dotenv_values(env_file_path)
for key, value in file_env_vars.items():
if key.startswith(config_prefix) and key[len(config_prefix) :].lower() not in kwargs and value:
kwargs[key[len(config_prefix) :].lower()] = value
return kwargs
class OpenDALStorage(BaseStorage):
def __init__(self, scheme: OpenDALScheme, **kwargs):
if scheme == OpenDALScheme.FS:
Path(kwargs["root"]).mkdir(parents=True, exist_ok=True)
def __init__(self, scheme: str, **kwargs):
kwargs = kwargs or _get_opendal_kwargs(scheme=scheme)
if scheme == "fs":
root = kwargs.get("root", "storage")
Path(root).mkdir(parents=True, exist_ok=True)
# self.op = opendal.Operator(scheme=scheme, **kwargs)
self.op = opendal.Operator(scheme=scheme, **kwargs)
logger.debug(f"opendal operator created with scheme {scheme}")
retry_layer = opendal.layers.RetryLayer(max_times=3, factor=2.0, jitter=True)
self.op = self.op.layer(retry_layer)
logger.debug("added retry layer to opendal operator")
def save(self, filename: str, data: bytes) -> None:
self.op.write(path=filename, bs=data)
logger.debug(f"file {filename} saved")
def load_once(self, filename: str) -> bytes:
if not self.exists(filename):
raise FileNotFoundError("File not found")
return self.op.read(path=filename)
content = self.op.read(path=filename)
logger.debug(f"file {filename} loaded")
return content
def load_stream(self, filename: str) -> Generator:
if not self.exists(filename):
@ -50,6 +61,7 @@ class OpenDALStorage(BaseStorage):
file = self.op.open(path=filename, mode="rb")
while chunk := file.read(batch_size):
yield chunk
logger.debug(f"file {filename} loaded as stream")
def download(self, filename: str, target_filepath: str):
if not self.exists(filename):
@ -57,16 +69,22 @@ class OpenDALStorage(BaseStorage):
with Path(target_filepath).open("wb") as f:
f.write(self.op.read(path=filename))
logger.debug(f"file {filename} downloaded to {target_filepath}")
def exists(self, filename: str) -> bool:
# FIXME this is a workaround for opendal python-binding do not have a exists method and no better
# error handler here when opendal python-binding has a exists method, we should use it
# more https://github.com/apache/opendal/blob/main/bindings/python/src/operator.rs
try:
return self.op.stat(path=filename).mode.is_file()
except Exception as e:
res = self.op.stat(path=filename).mode.is_file()
logger.debug(f"file {filename} checked")
return res
except Exception:
return False
def delete(self, filename: str):
if self.exists(filename):
self.op.delete(path=filename)
logger.debug(f"file {filename} deleted")
return
logger.debug(f"file {filename} not found, skip delete")

View File

@ -9,11 +9,11 @@ import uuid
from collections.abc import Generator, Mapping
from datetime import datetime
from hashlib import sha256
from typing import Any, Optional, Union
from typing import Any, Optional, Union, cast
from zoneinfo import available_timezones
from flask import Response, stream_with_context
from flask_restful import fields
from flask_restful import fields # type: ignore
from configs import dify_config
from core.app.features.rate_limiting.rate_limit import RateLimitGenerator
@ -168,11 +168,11 @@ def generate_string(n):
def extract_remote_ip(request) -> str:
if request.headers.get("CF-Connecting-IP"):
return request.headers.get("Cf-Connecting-Ip")
return cast(str, request.headers.get("Cf-Connecting-Ip"))
elif request.headers.getlist("X-Forwarded-For"):
return request.headers.getlist("X-Forwarded-For")[0]
return cast(str, request.headers.getlist("X-Forwarded-For")[0])
else:
return request.remote_addr
return cast(str, request.remote_addr)
def generate_text_hash(text: str) -> str:
@ -221,12 +221,14 @@ class TokenManager:
token_data.update(additional_data)
expiry_minutes = dify_config.model_dump().get(f"{token_type.upper()}_TOKEN_EXPIRY_MINUTES")
if expiry_minutes is None:
raise ValueError(f"Expiry minutes for {token_type} token is not set")
token_key = cls._get_token_key(token, token_type)
expiry_time = int(expiry_minutes * 60)
redis_client.setex(token_key, expiry_time, json.dumps(token_data))
if account_id:
cls._set_current_token_for_account(account.id, token, token_type, expiry_minutes)
cls._set_current_token_for_account(account_id, token, token_type, expiry_minutes)
return token

View File

@ -225,8 +225,10 @@ class Workflow(db.Model):
from models.tools import WorkflowToolProvider
return (
db.session.query(WorkflowToolProvider).filter(WorkflowToolProvider.app_id == self.app_id).first()
is not None
db.session.query(WorkflowToolProvider)
.filter(WorkflowToolProvider.tenant_id == self.tenant_id, WorkflowToolProvider.app_id == self.app_id)
.count()
> 0
)
@property

73
api/poetry.lock generated
View File

@ -1,4 +1,4 @@
# This file is automatically @generated by Poetry 1.8.5 and should not be changed by hand.
# This file is automatically @generated by Poetry 1.8.4 and should not be changed by hand.
[[package]]
name = "aiofiles"
@ -955,6 +955,10 @@ files = [
{file = "Brotli-1.1.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:a37b8f0391212d29b3a91a799c8e4a2855e0576911cdfb2515487e30e322253d"},
{file = "Brotli-1.1.0-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e84799f09591700a4154154cab9787452925578841a94321d5ee8fb9a9a328f0"},
{file = "Brotli-1.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:f66b5337fa213f1da0d9000bc8dc0cb5b896b726eefd9c6046f699b169c41b9e"},
{file = "Brotli-1.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:5dab0844f2cf82be357a0eb11a9087f70c5430b2c241493fc122bb6f2bb0917c"},
{file = "Brotli-1.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:e4fe605b917c70283db7dfe5ada75e04561479075761a0b3866c081d035b01c1"},
{file = "Brotli-1.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:1e9a65b5736232e7a7f91ff3d02277f11d339bf34099a56cdab6a8b3410a02b2"},
{file = "Brotli-1.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:58d4b711689366d4a03ac7957ab8c28890415e267f9b6589969e74b6e42225ec"},
{file = "Brotli-1.1.0-cp310-cp310-win32.whl", hash = "sha256:be36e3d172dc816333f33520154d708a2657ea63762ec16b62ece02ab5e4daf2"},
{file = "Brotli-1.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:0c6244521dda65ea562d5a69b9a26120769b7a9fb3db2fe9545935ed6735b128"},
{file = "Brotli-1.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a3daabb76a78f829cafc365531c972016e4aa8d5b4bf60660ad8ecee19df7ccc"},
@ -967,8 +971,14 @@ files = [
{file = "Brotli-1.1.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:19c116e796420b0cee3da1ccec3b764ed2952ccfcc298b55a10e5610ad7885f9"},
{file = "Brotli-1.1.0-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:510b5b1bfbe20e1a7b3baf5fed9e9451873559a976c1a78eebaa3b86c57b4265"},
{file = "Brotli-1.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a1fd8a29719ccce974d523580987b7f8229aeace506952fa9ce1d53a033873c8"},
{file = "Brotli-1.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c247dd99d39e0338a604f8c2b3bc7061d5c2e9e2ac7ba9cc1be5a69cb6cd832f"},
{file = "Brotli-1.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:1b2c248cd517c222d89e74669a4adfa5577e06ab68771a529060cf5a156e9757"},
{file = "Brotli-1.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:2a24c50840d89ded6c9a8fdc7b6ed3692ed4e86f1c4a4a938e1e92def92933e0"},
{file = "Brotli-1.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:f31859074d57b4639318523d6ffdca586ace54271a73ad23ad021acd807eb14b"},
{file = "Brotli-1.1.0-cp311-cp311-win32.whl", hash = "sha256:39da8adedf6942d76dc3e46653e52df937a3c4d6d18fdc94a7c29d263b1f5b50"},
{file = "Brotli-1.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:aac0411d20e345dc0920bdec5548e438e999ff68d77564d5e9463a7ca9d3e7b1"},
{file = "Brotli-1.1.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:32d95b80260d79926f5fab3c41701dbb818fde1c9da590e77e571eefd14abe28"},
{file = "Brotli-1.1.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:b760c65308ff1e462f65d69c12e4ae085cff3b332d894637f6273a12a482d09f"},
{file = "Brotli-1.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:316cc9b17edf613ac76b1f1f305d2a748f1b976b033b049a6ecdfd5612c70409"},
{file = "Brotli-1.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:caf9ee9a5775f3111642d33b86237b05808dafcd6268faa492250e9b78046eb2"},
{file = "Brotli-1.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70051525001750221daa10907c77830bc889cb6d865cc0b813d9db7fefc21451"},
@ -979,8 +989,24 @@ files = [
{file = "Brotli-1.1.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:4093c631e96fdd49e0377a9c167bfd75b6d0bad2ace734c6eb20b348bc3ea180"},
{file = "Brotli-1.1.0-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e4c4629ddad63006efa0ef968c8e4751c5868ff0b1c5c40f76524e894c50248"},
{file = "Brotli-1.1.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:861bf317735688269936f755fa136a99d1ed526883859f86e41a5d43c61d8966"},
{file = "Brotli-1.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:87a3044c3a35055527ac75e419dfa9f4f3667a1e887ee80360589eb8c90aabb9"},
{file = "Brotli-1.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:c5529b34c1c9d937168297f2c1fde7ebe9ebdd5e121297ff9c043bdb2ae3d6fb"},
{file = "Brotli-1.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:ca63e1890ede90b2e4454f9a65135a4d387a4585ff8282bb72964fab893f2111"},
{file = "Brotli-1.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:e79e6520141d792237c70bcd7a3b122d00f2613769ae0cb61c52e89fd3443839"},
{file = "Brotli-1.1.0-cp312-cp312-win32.whl", hash = "sha256:5f4d5ea15c9382135076d2fb28dde923352fe02951e66935a9efaac8f10e81b0"},
{file = "Brotli-1.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:906bc3a79de8c4ae5b86d3d75a8b77e44404b0f4261714306e3ad248d8ab0951"},
{file = "Brotli-1.1.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:8bf32b98b75c13ec7cf774164172683d6e7891088f6316e54425fde1efc276d5"},
{file = "Brotli-1.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:7bc37c4d6b87fb1017ea28c9508b36bbcb0c3d18b4260fcdf08b200c74a6aee8"},
{file = "Brotli-1.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3c0ef38c7a7014ffac184db9e04debe495d317cc9c6fb10071f7fefd93100a4f"},
{file = "Brotli-1.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:91d7cc2a76b5567591d12c01f019dd7afce6ba8cba6571187e21e2fc418ae648"},
{file = "Brotli-1.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a93dde851926f4f2678e704fadeb39e16c35d8baebd5252c9fd94ce8ce68c4a0"},
{file = "Brotli-1.1.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f0db75f47be8b8abc8d9e31bc7aad0547ca26f24a54e6fd10231d623f183d089"},
{file = "Brotli-1.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:6967ced6730aed543b8673008b5a391c3b1076d834ca438bbd70635c73775368"},
{file = "Brotli-1.1.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:7eedaa5d036d9336c95915035fb57422054014ebdeb6f3b42eac809928e40d0c"},
{file = "Brotli-1.1.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:d487f5432bf35b60ed625d7e1b448e2dc855422e87469e3f450aa5552b0eb284"},
{file = "Brotli-1.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:832436e59afb93e1836081a20f324cb185836c617659b07b129141a8426973c7"},
{file = "Brotli-1.1.0-cp313-cp313-win32.whl", hash = "sha256:43395e90523f9c23a3d5bdf004733246fba087f2948f87ab28015f12359ca6a0"},
{file = "Brotli-1.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:9011560a466d2eb3f5a6e4929cf4a09be405c64154e12df0dd72713f6500e32b"},
{file = "Brotli-1.1.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a090ca607cbb6a34b0391776f0cb48062081f5f60ddcce5d11838e67a01928d1"},
{file = "Brotli-1.1.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2de9d02f5bda03d27ede52e8cfe7b865b066fa49258cbab568720aa5be80a47d"},
{file = "Brotli-1.1.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2333e30a5e00fe0fe55903c8832e08ee9c3b1382aacf4db26664a16528d51b4b"},
@ -990,6 +1016,10 @@ files = [
{file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:fd5f17ff8f14003595ab414e45fce13d073e0762394f957182e69035c9f3d7c2"},
{file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_1_ppc64le.whl", hash = "sha256:069a121ac97412d1fe506da790b3e69f52254b9df4eb665cd42460c837193354"},
{file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:e93dfc1a1165e385cc8239fab7c036fb2cd8093728cbd85097b284d7b99249a2"},
{file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_2_aarch64.whl", hash = "sha256:aea440a510e14e818e67bfc4027880e2fb500c2ccb20ab21c7a7c8b5b4703d75"},
{file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_2_i686.whl", hash = "sha256:6974f52a02321b36847cd19d1b8e381bf39939c21efd6ee2fc13a28b0d99348c"},
{file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_2_ppc64le.whl", hash = "sha256:a7e53012d2853a07a4a79c00643832161a910674a893d296c9f1259859a289d2"},
{file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_2_x86_64.whl", hash = "sha256:d7702622a8b40c49bffb46e1e3ba2e81268d5c04a34f460978c6b5517a34dd52"},
{file = "Brotli-1.1.0-cp36-cp36m-win32.whl", hash = "sha256:a599669fd7c47233438a56936988a2478685e74854088ef5293802123b5b2460"},
{file = "Brotli-1.1.0-cp36-cp36m-win_amd64.whl", hash = "sha256:d143fd47fad1db3d7c27a1b1d66162e855b5d50a89666af46e1679c496e8e579"},
{file = "Brotli-1.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:11d00ed0a83fa22d29bc6b64ef636c4552ebafcef57154b4ddd132f5638fbd1c"},
@ -1001,6 +1031,10 @@ files = [
{file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:919e32f147ae93a09fe064d77d5ebf4e35502a8df75c29fb05788528e330fe74"},
{file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:23032ae55523cc7bccb4f6a0bf368cd25ad9bcdcc1990b64a647e7bbcce9cb5b"},
{file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:224e57f6eac61cc449f498cc5f0e1725ba2071a3d4f48d5d9dffba42db196438"},
{file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:cb1dac1770878ade83f2ccdf7d25e494f05c9165f5246b46a621cc849341dc01"},
{file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:3ee8a80d67a4334482d9712b8e83ca6b1d9bc7e351931252ebef5d8f7335a547"},
{file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:5e55da2c8724191e5b557f8e18943b1b4839b8efc3ef60d65985bcf6f587dd38"},
{file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:d342778ef319e1026af243ed0a07c97acf3bad33b9f29e7ae6a1f68fd083e90c"},
{file = "Brotli-1.1.0-cp37-cp37m-win32.whl", hash = "sha256:587ca6d3cef6e4e868102672d3bd9dc9698c309ba56d41c2b9c85bbb903cdb95"},
{file = "Brotli-1.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:2954c1c23f81c2eaf0b0717d9380bd348578a94161a65b3a2afc62c86467dd68"},
{file = "Brotli-1.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:efa8b278894b14d6da122a72fefcebc28445f2d3f880ac59d46c90f4c13be9a3"},
@ -1013,6 +1047,10 @@ files = [
{file = "Brotli-1.1.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1ab4fbee0b2d9098c74f3057b2bc055a8bd92ccf02f65944a241b4349229185a"},
{file = "Brotli-1.1.0-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:141bd4d93984070e097521ed07e2575b46f817d08f9fa42b16b9b5f27b5ac088"},
{file = "Brotli-1.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:fce1473f3ccc4187f75b4690cfc922628aed4d3dd013d047f95a9b3919a86596"},
{file = "Brotli-1.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d2b35ca2c7f81d173d2fadc2f4f31e88cc5f7a39ae5b6db5513cf3383b0e0ec7"},
{file = "Brotli-1.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:af6fa6817889314555aede9a919612b23739395ce767fe7fcbea9a80bf140fe5"},
{file = "Brotli-1.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:2feb1d960f760a575dbc5ab3b1c00504b24caaf6986e2dc2b01c09c87866a943"},
{file = "Brotli-1.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:4410f84b33374409552ac9b6903507cdb31cd30d2501fc5ca13d18f73548444a"},
{file = "Brotli-1.1.0-cp38-cp38-win32.whl", hash = "sha256:db85ecf4e609a48f4b29055f1e144231b90edc90af7481aa731ba2d059226b1b"},
{file = "Brotli-1.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:3d7954194c36e304e1523f55d7042c59dc53ec20dd4e9ea9d151f1b62b4415c0"},
{file = "Brotli-1.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5fb2ce4b8045c78ebbc7b8f3c15062e435d47e7393cc57c25115cfd49883747a"},
@ -1025,6 +1063,10 @@ files = [
{file = "Brotli-1.1.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:949f3b7c29912693cee0afcf09acd6ebc04c57af949d9bf77d6101ebb61e388c"},
{file = "Brotli-1.1.0-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:89f4988c7203739d48c6f806f1e87a1d96e0806d44f0fba61dba81392c9e474d"},
{file = "Brotli-1.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:de6551e370ef19f8de1807d0a9aa2cdfdce2e85ce88b122fe9f6b2b076837e59"},
{file = "Brotli-1.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:0737ddb3068957cf1b054899b0883830bb1fec522ec76b1098f9b6e0f02d9419"},
{file = "Brotli-1.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:4f3607b129417e111e30637af1b56f24f7a49e64763253bbc275c75fa887d4b2"},
{file = "Brotli-1.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:6c6e0c425f22c1c719c42670d561ad682f7bfeeef918edea971a79ac5252437f"},
{file = "Brotli-1.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:494994f807ba0b92092a163a0a283961369a65f6cbe01e8891132b7a320e61eb"},
{file = "Brotli-1.1.0-cp39-cp39-win32.whl", hash = "sha256:f0d8a7a6b5983c2496e364b969f0e526647a06b075d034f3297dc66f3b360c64"},
{file = "Brotli-1.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:cdad5b9014d83ca68c25d2e9444e28e967ef16e80f6b436918c700c117a85467"},
{file = "Brotli-1.1.0.tar.gz", hash = "sha256:81de08ac11bcb85841e440c13611c00b67d3bf82698314928d0b676362546724"},
@ -7482,23 +7524,24 @@ image = ["Pillow (>=8.0.0)"]
[[package]]
name = "pypdfium2"
version = "4.17.0"
version = "4.30.0"
description = "Python bindings to PDFium"
optional = false
python-versions = ">=3.6"
files = [
{file = "pypdfium2-4.17.0-py3-none-macosx_10_13_x86_64.whl", hash = "sha256:e9ed42d5a5065ae41ae3ead3cd642e1f21b6039e69ccc204e260e218e91cd7e1"},
{file = "pypdfium2-4.17.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:0a3b5a8eca53a1e68434969821b70bd2bc9ac2b70e58daf516c6ff0b6b5779e7"},
{file = "pypdfium2-4.17.0-py3-none-manylinux_2_17_aarch64.whl", hash = "sha256:854e04b51205466ec415b86588fe5dc593e9ca3e8e15b5aa05978c5352bd57d2"},
{file = "pypdfium2-4.17.0-py3-none-manylinux_2_17_armv7l.whl", hash = "sha256:9ff8707b28568e9585bdf9a96b7a8a9f91c0b5ad05af119b49381dad89983364"},
{file = "pypdfium2-4.17.0-py3-none-manylinux_2_17_i686.whl", hash = "sha256:09ecbef6212993db0b5460cfd46d6b157a921ff45c97b0764e6fe8ea2e8cdebf"},
{file = "pypdfium2-4.17.0-py3-none-manylinux_2_17_x86_64.whl", hash = "sha256:f680e469b79c71c3fb086d7ced8361fbd66f4cd7b0ad08ff888289fe6743ab32"},
{file = "pypdfium2-4.17.0-py3-none-musllinux_1_2_i686.whl", hash = "sha256:1ba7a7da48fbf0f1aaa903dac7d0e62186d6e8ae9a78b7b7b836d3f1b3d1be5d"},
{file = "pypdfium2-4.17.0-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:451752170caf59d4b4572b527c2858dfff96eb1da35f2822c66cdce006dd4eae"},
{file = "pypdfium2-4.17.0-py3-none-win32.whl", hash = "sha256:4930cfa793298214fa644c6986f6466e21f98eba3f338b4577614ebd8aa34af5"},
{file = "pypdfium2-4.17.0-py3-none-win_amd64.whl", hash = "sha256:99de7f336e967dea4d324484f581fff55db1eb3c8e90baa845567dd9a3cc84f3"},
{file = "pypdfium2-4.17.0-py3-none-win_arm64.whl", hash = "sha256:9381677b489c13d64ea4f8cbf6ebfc858216b052883e01e40fa993c2818a078e"},
{file = "pypdfium2-4.17.0.tar.gz", hash = "sha256:2a2b3273c4614ee2004df60ace5f387645f843418ae29f379408ee11560241c0"},
{file = "pypdfium2-4.30.0-py3-none-macosx_10_13_x86_64.whl", hash = "sha256:b33ceded0b6ff5b2b93bc1fe0ad4b71aa6b7e7bd5875f1ca0cdfb6ba6ac01aab"},
{file = "pypdfium2-4.30.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:4e55689f4b06e2d2406203e771f78789bd4f190731b5d57383d05cf611d829de"},
{file = "pypdfium2-4.30.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e6e50f5ce7f65a40a33d7c9edc39f23140c57e37144c2d6d9e9262a2a854854"},
{file = "pypdfium2-4.30.0-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:3d0dd3ecaffd0b6dbda3da663220e705cb563918249bda26058c6036752ba3a2"},
{file = "pypdfium2-4.30.0-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cc3bf29b0db8c76cdfaac1ec1cde8edf211a7de7390fbf8934ad2aa9b4d6dfad"},
{file = "pypdfium2-4.30.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f1f78d2189e0ddf9ac2b7a9b9bd4f0c66f54d1389ff6c17e9fd9dc034d06eb3f"},
{file = "pypdfium2-4.30.0-py3-none-musllinux_1_1_aarch64.whl", hash = "sha256:5eda3641a2da7a7a0b2f4dbd71d706401a656fea521b6b6faa0675b15d31a163"},
{file = "pypdfium2-4.30.0-py3-none-musllinux_1_1_i686.whl", hash = "sha256:0dfa61421b5eb68e1188b0b2231e7ba35735aef2d867d86e48ee6cab6975195e"},
{file = "pypdfium2-4.30.0-py3-none-musllinux_1_1_x86_64.whl", hash = "sha256:f33bd79e7a09d5f7acca3b0b69ff6c8a488869a7fab48fdf400fec6e20b9c8be"},
{file = "pypdfium2-4.30.0-py3-none-win32.whl", hash = "sha256:ee2410f15d576d976c2ab2558c93d392a25fb9f6635e8dd0a8a3a5241b275e0e"},
{file = "pypdfium2-4.30.0-py3-none-win_amd64.whl", hash = "sha256:90dbb2ac07be53219f56be09961eb95cf2473f834d01a42d901d13ccfad64b4c"},
{file = "pypdfium2-4.30.0-py3-none-win_arm64.whl", hash = "sha256:119b2969a6d6b1e8d55e99caaf05290294f2d0fe49c12a3f17102d01c441bd29"},
{file = "pypdfium2-4.30.0.tar.gz", hash = "sha256:48b5b7e5566665bc1015b9d69c1ebabe21f6aee468b509531c3c8318eeee2e16"},
]
[[package]]
@ -11052,4 +11095,4 @@ cffi = ["cffi (>=1.11)"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.11,<3.13"
content-hash = "1aa6a44bc9270d50c9c0ea09f55a304b5148bf4dbbbb068ff1b1ea8da6fa60cc"
content-hash = "14476bf95504a4df4b8d5a5c6608c6aa3dae7499d27d1e41ef39d761cc7c693d"

View File

@ -66,7 +66,7 @@ pydantic = "~2.9.2"
pydantic-settings = "~2.6.0"
pydantic_extra_types = "~2.9.0"
pyjwt = "~2.8.0"
pypdfium2 = "~4.17.0"
pypdfium2 = "~4.30.0"
python = ">=3.11,<3.13"
python-docx = "~1.1.0"
python-dotenv = "1.0.0"

View File

@ -420,7 +420,7 @@ class AccountService:
if count is None:
count = 0
count = int(count) + 1
redis_client.setex(key, 60 * 60 * 24, count)
redis_client.setex(key, dify_config.LOGIN_LOCKOUT_DURATION, count)
@staticmethod
def is_login_error_rate_limit(email: str) -> bool:

View File

@ -57,13 +57,7 @@ class DatabaseRecommendAppRetrieval(RecommendAppRetrievalBase):
recommended_app_result = {
"id": recommended_app.id,
"app": {
"id": app.id,
"name": app.name,
"mode": app.mode,
"icon": app.icon,
"icon_background": app.icon_background,
},
"app": recommended_app.app,
"app_id": recommended_app.app_id,
"description": site.description,
"copyright": site.copyright,

View File

@ -3,7 +3,7 @@ import logging
import time
import click
from celery import shared_task
from celery import shared_task # type: ignore
from core.indexing_runner import DocumentIsPausedError
from extensions.ext_database import db
@ -68,11 +68,9 @@ def external_document_indexing_task(
settings = ExternalDatasetService.get_external_knowledge_api_settings(
json.loads(external_knowledge_api.settings)
)
# assemble headers
headers = ExternalDatasetService.assembling_headers(settings.authorization, settings.headers)
# do http request
response = ExternalDatasetService.process_external_api(settings, headers, process_parameter, files)
response = ExternalDatasetService.process_external_api(settings, files)
job_id = response.json().get("job_id")
if job_id:
# save job_id to dataset

View File

@ -1,4 +1,5 @@
from collections.abc import Generator
from unittest.mock import MagicMock
import google.generativeai.types.generation_types as generation_config_types
import pytest
@ -6,11 +7,10 @@ from _pytest.monkeypatch import MonkeyPatch
from google.ai import generativelanguage as glm
from google.ai.generativelanguage_v1beta.types import content as gag_content
from google.generativeai import GenerativeModel
from google.generativeai.client import _ClientManager, configure
from google.generativeai.types import GenerateContentResponse, content_types, safety_types
from google.generativeai.types.generation_types import BaseGenerateContentResponse
current_api_key = ""
from extensions import ext_redis
class MockGoogleResponseClass:
@ -57,11 +57,6 @@ class MockGoogleClass:
stream: bool = False,
**kwargs,
) -> GenerateContentResponse:
global current_api_key
if len(current_api_key) < 16:
raise Exception("Invalid API key")
if stream:
return MockGoogleClass.generate_content_stream()
@ -75,33 +70,29 @@ class MockGoogleClass:
def generative_response_candidates(self) -> list[MockGoogleResponseCandidateClass]:
return [MockGoogleResponseCandidateClass()]
def make_client(self: _ClientManager, name: str):
global current_api_key
if name.endswith("_async"):
name = name.split("_")[0]
cls = getattr(glm, name.title() + "ServiceAsyncClient")
else:
cls = getattr(glm, name.title() + "ServiceClient")
def mock_configure(api_key: str):
if len(api_key) < 16:
raise Exception("Invalid API key")
# Attempt to configure using defaults.
if not self.client_config:
configure()
client_options = self.client_config.get("client_options", None)
if client_options:
current_api_key = client_options.api_key
class MockFileState:
def __init__(self):
self.name = "FINISHED"
def nop(self, *args, **kwargs):
pass
original_init = cls.__init__
cls.__init__ = nop
client: glm.GenerativeServiceClient = cls(**self.client_config)
cls.__init__ = original_init
class MockGoogleFile:
def __init__(self, name: str = "mock_file_name"):
self.name = name
self.state = MockFileState()
if not self.default_metadata:
return client
def mock_get_file(name: str) -> MockGoogleFile:
return MockGoogleFile(name)
def mock_upload_file(path: str, mime_type: str) -> MockGoogleFile:
return MockGoogleFile()
@pytest.fixture
@ -109,8 +100,17 @@ def setup_google_mock(request, monkeypatch: MonkeyPatch):
monkeypatch.setattr(BaseGenerateContentResponse, "text", MockGoogleClass.generative_response_text)
monkeypatch.setattr(BaseGenerateContentResponse, "candidates", MockGoogleClass.generative_response_candidates)
monkeypatch.setattr(GenerativeModel, "generate_content", MockGoogleClass.generate_content)
monkeypatch.setattr(_ClientManager, "make_client", MockGoogleClass.make_client)
monkeypatch.setattr("google.generativeai.configure", mock_configure)
monkeypatch.setattr("google.generativeai.get_file", mock_get_file)
monkeypatch.setattr("google.generativeai.upload_file", mock_upload_file)
yield
monkeypatch.undo()
@pytest.fixture
def setup_mock_redis() -> None:
ext_redis.redis_client.get = MagicMock(return_value=None)
ext_redis.redis_client.setex = MagicMock(return_value=None)
ext_redis.redis_client.exists = MagicMock(return_value=True)

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -12,11 +12,11 @@ def tidb_vector():
return TiDBVector(
collection_name="test_collection",
config=TiDBVectorConfig(
host="xxx.eu-central-1.xxx.aws.tidbcloud.com",
port="4000",
user="xxx.root",
password="xxxxxx",
database="dify",
host="localhost",
port=4000,
user="root",
password="",
database="test",
program_name="langgenius/dify",
),
)
@ -27,35 +27,14 @@ class TiDBVectorTest(AbstractVectorTest):
super().__init__()
self.vector = vector
def text_exists(self):
exist = self.vector.text_exists(self.example_doc_id)
assert exist == False
def search_by_vector(self):
hits_by_vector: list[Document] = self.vector.search_by_vector(query_vector=self.example_embedding)
assert len(hits_by_vector) == 0
def search_by_full_text(self):
hits_by_full_text: list[Document] = self.vector.search_by_full_text(query=get_example_text())
assert len(hits_by_full_text) == 0
def get_ids_by_metadata_field(self):
ids = self.vector.get_ids_by_metadata_field(key="document_id", value=self.example_doc_id)
assert len(ids) == 0
ids = self.vector.get_ids_by_metadata_field(key="doc_id", value=self.example_doc_id)
assert len(ids) == 1
def test_tidb_vector(setup_mock_redis, setup_tidbvector_mock, tidb_vector, mock_session):
def test_tidb_vector(setup_mock_redis, tidb_vector):
TiDBVectorTest(vector=tidb_vector).run_all_tests()
@pytest.fixture
def mock_session():
with patch("core.rag.datasource.vdb.tidb_vector.tidb_vector.Session", new_callable=MagicMock) as mock_session:
yield mock_session
@pytest.fixture
def setup_tidbvector_mock(tidb_vector, mock_session):
with patch("core.rag.datasource.vdb.tidb_vector.tidb_vector.create_engine"):
with patch.object(tidb_vector._engine, "connect"):
yield tidb_vector

View File

@ -1,20 +0,0 @@
import pytest
from extensions.storage.opendal_storage import is_r2_endpoint
@pytest.mark.parametrize(
("endpoint", "expected"),
[
("https://bucket.r2.cloudflarestorage.com", True),
("https://custom-domain.r2.cloudflarestorage.com/", True),
("https://bucket.r2.cloudflarestorage.com/path", True),
("https://s3.amazonaws.com", False),
("https://storage.googleapis.com", False),
("http://localhost:9000", False),
("invalid-url", False),
("", False),
],
)
def test_is_r2_endpoint(endpoint: str, expected: bool):
assert is_r2_endpoint(endpoint) == expected

View File

@ -2,6 +2,7 @@ from unittest.mock import MagicMock, patch
import pytest
from configs import dify_config
from core.app.app_config.entities import ModelConfigEntity
from core.file import File, FileTransferMethod, FileType, FileUploadConfig, ImageConfig
from core.memory.token_buffer_memory import TokenBufferMemory
@ -126,6 +127,7 @@ def test__get_chat_model_prompt_messages_no_memory(get_chat_model_args):
def test__get_chat_model_prompt_messages_with_files_no_memory(get_chat_model_args):
model_config_mock, _, messages, inputs, context = get_chat_model_args
dify_config.MULTIMODAL_SEND_FORMAT = "url"
files = [
File(
@ -140,7 +142,9 @@ def test__get_chat_model_prompt_messages_with_files_no_memory(get_chat_model_arg
prompt_transform = AdvancedPromptTransform()
prompt_transform._calculate_rest_token = MagicMock(return_value=2000)
with patch("core.file.file_manager.to_prompt_message_content") as mock_get_encoded_string:
mock_get_encoded_string.return_value = ImagePromptMessageContent(data=str(files[0].remote_url))
mock_get_encoded_string.return_value = ImagePromptMessageContent(
url=str(files[0].remote_url), format="jpg", mime_type="image/jpg"
)
prompt_messages = prompt_transform._get_chat_model_prompt_messages(
prompt_template=messages,
inputs=inputs,

View File

@ -48,7 +48,7 @@ def test_executor_with_json_body_and_number_variable():
assert executor.method == "post"
assert executor.url == "https://api.example.com/data"
assert executor.headers == {"Content-Type": "application/json"}
assert executor.params == {}
assert executor.params == []
assert executor.json == {"number": 42}
assert executor.data is None
assert executor.files is None
@ -101,7 +101,7 @@ def test_executor_with_json_body_and_object_variable():
assert executor.method == "post"
assert executor.url == "https://api.example.com/data"
assert executor.headers == {"Content-Type": "application/json"}
assert executor.params == {}
assert executor.params == []
assert executor.json == {"name": "John Doe", "age": 30, "email": "john@example.com"}
assert executor.data is None
assert executor.files is None
@ -156,7 +156,7 @@ def test_executor_with_json_body_and_nested_object_variable():
assert executor.method == "post"
assert executor.url == "https://api.example.com/data"
assert executor.headers == {"Content-Type": "application/json"}
assert executor.params == {}
assert executor.params == []
assert executor.json == {"object": {"name": "John Doe", "age": 30, "email": "john@example.com"}}
assert executor.data is None
assert executor.files is None
@ -195,7 +195,7 @@ def test_extract_selectors_from_template_with_newline():
variable_pool=variable_pool,
)
assert executor.params == {"test": "line1\nline2"}
assert executor.params == [("test", "line1\nline2")]
def test_executor_with_form_data():
@ -244,7 +244,7 @@ def test_executor_with_form_data():
assert executor.url == "https://api.example.com/upload"
assert "Content-Type" in executor.headers
assert "multipart/form-data" in executor.headers["Content-Type"]
assert executor.params == {}
assert executor.params == []
assert executor.json is None
assert executor.files is None
assert executor.content is None
@ -265,3 +265,72 @@ def test_executor_with_form_data():
assert "Hello, World!" in raw_request
assert "number_field" in raw_request
assert "42" in raw_request
def test_init_headers():
def create_executor(headers: str) -> Executor:
node_data = HttpRequestNodeData(
title="test",
method="get",
url="http://example.com",
headers=headers,
params="",
authorization=HttpRequestNodeAuthorization(type="no-auth"),
)
timeout = HttpRequestNodeTimeout(connect=10, read=30, write=30)
return Executor(node_data=node_data, timeout=timeout, variable_pool=VariablePool())
executor = create_executor("aa\n cc:")
executor._init_headers()
assert executor.headers == {"aa": "", "cc": ""}
executor = create_executor("aa:bb\n cc:dd")
executor._init_headers()
assert executor.headers == {"aa": "bb", "cc": "dd"}
executor = create_executor("aa:bb\n cc:dd\n")
executor._init_headers()
assert executor.headers == {"aa": "bb", "cc": "dd"}
executor = create_executor("aa:bb\n\n cc : dd\n\n")
executor._init_headers()
assert executor.headers == {"aa": "bb", "cc": "dd"}
def test_init_params():
def create_executor(params: str) -> Executor:
node_data = HttpRequestNodeData(
title="test",
method="get",
url="http://example.com",
headers="",
params=params,
authorization=HttpRequestNodeAuthorization(type="no-auth"),
)
timeout = HttpRequestNodeTimeout(connect=10, read=30, write=30)
return Executor(node_data=node_data, timeout=timeout, variable_pool=VariablePool())
# Test basic key-value pairs
executor = create_executor("key1:value1\nkey2:value2")
executor._init_params()
assert executor.params == [("key1", "value1"), ("key2", "value2")]
# Test empty values
executor = create_executor("key1:\nkey2:")
executor._init_params()
assert executor.params == [("key1", ""), ("key2", "")]
# Test duplicate keys (which is allowed for params)
executor = create_executor("key1:value1\nkey1:value2")
executor._init_params()
assert executor.params == [("key1", "value1"), ("key1", "value2")]
# Test whitespace handling
executor = create_executor(" key1 : value1 \n key2 : value2 ")
executor._init_params()
assert executor.params == [("key1", "value1"), ("key2", "value2")]
# Test empty lines and extra whitespace
executor = create_executor("key1:value1\n\nkey2:value2\n\n")
executor._init_params()
assert executor.params == [("key1", "value1"), ("key2", "value2")]

View File

@ -14,18 +14,10 @@ from core.workflow.nodes.http_request import (
HttpRequestNodeBody,
HttpRequestNodeData,
)
from core.workflow.nodes.http_request.executor import _plain_text_to_dict
from models.enums import UserFrom
from models.workflow import WorkflowNodeExecutionStatus, WorkflowType
def test_plain_text_to_dict():
assert _plain_text_to_dict("aa\n cc:") == {"aa": "", "cc": ""}
assert _plain_text_to_dict("aa:bb\n cc:dd") == {"aa": "bb", "cc": "dd"}
assert _plain_text_to_dict("aa:bb\n cc:dd\n") == {"aa": "bb", "cc": "dd"}
assert _plain_text_to_dict("aa:bb\n\n cc : dd\n\n") == {"aa": "bb", "cc": "dd"}
def test_http_request_node_binary_file(monkeypatch):
data = HttpRequestNodeData(
title="test",

View File

@ -18,8 +18,7 @@ from core.model_runtime.entities.message_entities import (
TextPromptMessageContent,
UserPromptMessage,
)
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelFeature, ModelType, ProviderModel
from core.model_runtime.entities.provider_entities import ConfigurateMethod, ProviderEntity
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelFeature, ModelType
from core.model_runtime.model_providers.model_provider_factory import ModelProviderFactory
from core.prompt.entities.advanced_prompt_entities import MemoryConfig
from core.variables import ArrayAnySegment, ArrayFileSegment, NoneSegment
@ -249,8 +248,7 @@ def test_fetch_prompt_messages__vison_disabled(faker, llm_node, model_config):
def test_fetch_prompt_messages__basic(faker, llm_node, model_config):
# Setup dify config
dify_config.MULTIMODAL_SEND_IMAGE_FORMAT = "url"
dify_config.MULTIMODAL_SEND_VIDEO_FORMAT = "url"
dify_config.MULTIMODAL_SEND_FORMAT = "url"
# Generate fake values for prompt template
fake_assistant_prompt = faker.sentence()
@ -328,6 +326,8 @@ def test_fetch_prompt_messages__basic(faker, llm_node, model_config):
filename="test1.jpg",
transfer_method=FileTransferMethod.REMOTE_URL,
remote_url=fake_remote_url,
extension=".jpg",
mime_type="image/jpg",
)
],
vision_enabled=True,
@ -361,7 +361,9 @@ def test_fetch_prompt_messages__basic(faker, llm_node, model_config):
UserPromptMessage(
content=[
TextPromptMessageContent(data=fake_query),
ImagePromptMessageContent(data=fake_remote_url, detail=fake_vision_detail),
ImagePromptMessageContent(
url=fake_remote_url, mime_type="image/jpg", format="jpg", detail=fake_vision_detail
),
]
),
],
@ -384,7 +386,9 @@ def test_fetch_prompt_messages__basic(faker, llm_node, model_config):
expected_messages=[
UserPromptMessage(
content=[
ImagePromptMessageContent(data=fake_remote_url, detail=fake_vision_detail),
ImagePromptMessageContent(
url=fake_remote_url, mime_type="image/jpg", format="jpg", detail=fake_vision_detail
),
]
),
]
@ -397,6 +401,8 @@ def test_fetch_prompt_messages__basic(faker, llm_node, model_config):
filename="test1.jpg",
transfer_method=FileTransferMethod.REMOTE_URL,
remote_url=fake_remote_url,
extension=".jpg",
mime_type="image/jpg",
)
},
),

View File

@ -1,15 +1,12 @@
import os
from collections.abc import Generator
from pathlib import Path
import pytest
from configs.middleware.storage.opendal_storage_config import OpenDALScheme
from extensions.storage.opendal_storage import OpenDALStorage
from tests.unit_tests.oss.__mock.base import (
get_example_data,
get_example_filename,
get_example_filepath,
get_opendal_bucket,
)
@ -19,7 +16,7 @@ class TestOpenDAL:
def setup_method(self, *args, **kwargs):
"""Executed before each test method."""
self.storage = OpenDALStorage(
scheme=OpenDALScheme.FS,
scheme="fs",
root=get_opendal_bucket(),
)

View File

@ -14,3 +14,4 @@ pytest api/tests/integration_tests/vdb/chroma \
api/tests/integration_tests/vdb/upstash \
api/tests/integration_tests/vdb/couchbase \
api/tests/integration_tests/vdb/oceanbase \
api/tests/integration_tests/vdb/tidb_vector \

View File

@ -2,7 +2,7 @@ version: '3'
services:
# API service
api:
image: langgenius/dify-api:0.13.2
image: langgenius/dify-api:0.14.0
restart: always
environment:
# Startup mode, 'api' starts the API server.
@ -227,7 +227,7 @@ services:
# worker service
# The Celery worker for processing the queue.
worker:
image: langgenius/dify-api:0.13.2
image: langgenius/dify-api:0.14.0
restart: always
environment:
CONSOLE_WEB_URL: ''
@ -397,7 +397,7 @@ services:
# Frontend web application.
web:
image: langgenius/dify-web:0.13.2
image: langgenius/dify-web:0.14.0
restart: always
environment:
# The base URL of console application api server, refers to the Console base URL of WEB service if console domain is

View File

@ -119,15 +119,15 @@ DIFY_BIND_ADDRESS=0.0.0.0
# API service binding port number, default 5001.
DIFY_PORT=5001
# The number of API server workers, i.e., the number of gevent workers.
# Formula: number of cpu cores x 2 + 1
# The number of API server workers, i.e., the number of workers.
# Formula: number of cpu cores x 2 + 1 for sync, 1 for Gevent
# Reference: https://docs.gunicorn.org/en/stable/design.html#how-many-workers
SERVER_WORKER_AMOUNT=
# Defaults to gevent. If using windows, it can be switched to sync or solo.
SERVER_WORKER_CLASS=
# Similar to SERVER_WORKER_CLASS. Default is gevent.
# Similar to SERVER_WORKER_CLASS.
# If using windows, it can be switched to sync or solo.
CELERY_WORKER_CLASS=
@ -227,6 +227,7 @@ REDIS_PORT=6379
REDIS_USERNAME=
REDIS_PASSWORD=difyai123456
REDIS_USE_SSL=false
REDIS_DB=0
# Whether to use Redis Sentinel mode.
# If set to true, the application will automatically discover and connect to the master node through Sentinel.
@ -281,57 +282,39 @@ CONSOLE_CORS_ALLOW_ORIGINS=*
# ------------------------------
# The type of storage to use for storing user files.
# Supported values are `opendal` , `s3` , `azure-blob` , `google-storage`, `tencent-cos`, `huawei-obs`, `volcengine-tos`, `baidu-obs`, `supabase`
# Default: `opendal`
STORAGE_TYPE=opendal
# Apache OpenDAL Configuration, refer to https://github.com/apache/opendal
# The scheme for the OpenDAL storage.
STORAGE_OPENDAL_SCHEME=fs
# OpenDAL FS
OPENDAL_SCHEME=fs
# Configurations for OpenDAL Local File System.
OPENDAL_FS_ROOT=storage
# OpenDAL S3
OPENDAL_S3_ROOT=/
OPENDAL_S3_BUCKET=your-bucket-name
OPENDAL_S3_ENDPOINT=https://s3.amazonaws.com
OPENDAL_S3_ACCESS_KEY_ID=your-access-key
OPENDAL_S3_SECRET_ACCESS_KEY=your-secret-key
OPENDAL_S3_REGION=your-region
OPENDAL_S3_SERVER_SIDE_ENCRYPTION=
# S3 Configuration
#
S3_ENDPOINT=
S3_REGION=us-east-1
S3_BUCKET_NAME=difyai
S3_ACCESS_KEY=
S3_SECRET_KEY=
# Whether to use AWS managed IAM roles for authenticating with the S3 service.
# If set to false, the access key and secret key must be provided.
S3_USE_AWS_MANAGED_IAM=false
# The endpoint of the S3 service.
S3_ENDPOINT=
# The region of the S3 service.
S3_REGION=us-east-1
# The name of the S3 bucket to use for storing files.
S3_BUCKET_NAME=difyai
# The access key to use for authenticating with the S3 service.
S3_ACCESS_KEY=
# The secret key to use for authenticating with the S3 service.
S3_SECRET_KEY=
# Azure Blob Configuration
# The name of the Azure Blob Storage account to use for storing files.
#
AZURE_BLOB_ACCOUNT_NAME=difyai
# The access key to use for authenticating with the Azure Blob Storage account.
AZURE_BLOB_ACCOUNT_KEY=difyai
# The name of the Azure Blob Storage container to use for storing files.
AZURE_BLOB_CONTAINER_NAME=difyai-container
# The URL of the Azure Blob Storage account.
AZURE_BLOB_ACCOUNT_URL=https://<your_account_name>.blob.core.windows.net
# Google Storage Configuration
# The name of the Google Storage bucket to use for storing files.
#
GOOGLE_STORAGE_BUCKET_NAME=your-bucket-name
# The service account JSON key to use for authenticating with the Google Storage service.
GOOGLE_STORAGE_SERVICE_ACCOUNT_JSON_BASE64=your-google-service-account-json-base64-string
# The Alibaba Cloud OSS configurations,
# only available when STORAGE_TYPE is `aliyun-oss`
#
ALIYUN_OSS_BUCKET_NAME=your-bucket-name
ALIYUN_OSS_ACCESS_KEY=your-access-key
ALIYUN_OSS_SECRET_KEY=your-secret-key
@ -342,55 +325,47 @@ ALIYUN_OSS_AUTH_VERSION=v4
ALIYUN_OSS_PATH=your-path
# Tencent COS Configuration
# The name of the Tencent COS bucket to use for storing files.
#
TENCENT_COS_BUCKET_NAME=your-bucket-name
# The secret key to use for authenticating with the Tencent COS service.
TENCENT_COS_SECRET_KEY=your-secret-key
# The secret id to use for authenticating with the Tencent COS service.
TENCENT_COS_SECRET_ID=your-secret-id
# The region of the Tencent COS service.
TENCENT_COS_REGION=your-region
# The scheme of the Tencent COS service.
TENCENT_COS_SCHEME=your-scheme
# Oracle Storage Configuration
#
OCI_ENDPOINT=https://objectstorage.us-ashburn-1.oraclecloud.com
OCI_BUCKET_NAME=your-bucket-name
OCI_ACCESS_KEY=your-access-key
OCI_SECRET_KEY=your-secret-key
OCI_REGION=us-ashburn-1
# Huawei OBS Configuration
# The name of the Huawei OBS bucket to use for storing files.
#
HUAWEI_OBS_BUCKET_NAME=your-bucket-name
# The secret key to use for authenticating with the Huawei OBS service.
HUAWEI_OBS_SECRET_KEY=your-secret-key
# The access key to use for authenticating with the Huawei OBS service.
HUAWEI_OBS_ACCESS_KEY=your-access-key
# The server url of the HUAWEI OBS service.
HUAWEI_OBS_SERVER=your-server-url
# Volcengine TOS Configuration
# The name of the Volcengine TOS bucket to use for storing files.
#
VOLCENGINE_TOS_BUCKET_NAME=your-bucket-name
# The secret key to use for authenticating with the Volcengine TOS service.
VOLCENGINE_TOS_SECRET_KEY=your-secret-key
# The access key to use for authenticating with the Volcengine TOS service.
VOLCENGINE_TOS_ACCESS_KEY=your-access-key
# The endpoint of the Volcengine TOS service.
VOLCENGINE_TOS_ENDPOINT=your-server-url
# The region of the Volcengine TOS service.
VOLCENGINE_TOS_REGION=your-region
# Baidu OBS Storage Configuration
# The name of the Baidu OBS bucket to use for storing files.
#
BAIDU_OBS_BUCKET_NAME=your-bucket-name
# The secret key to use for authenticating with the Baidu OBS service.
BAIDU_OBS_SECRET_KEY=your-secret-key
# The access key to use for authenticating with the Baidu OBS service.
BAIDU_OBS_ACCESS_KEY=your-access-key
# The endpoint of the Baidu OBS service.
BAIDU_OBS_ENDPOINT=your-server-url
# Supabase Storage Configuration
# The name of the Supabase bucket to use for storing files.
#
SUPABASE_BUCKET_NAME=your-bucket-name
# The api key to use for authenticating with the Supabase service.
SUPABASE_API_KEY=your-access-key
# The project endpoint url of the Supabase service.
SUPABASE_URL=your-server-url
# ------------------------------
@ -403,28 +378,20 @@ VECTOR_STORE=weaviate
# The Weaviate endpoint URL. Only available when VECTOR_STORE is `weaviate`.
WEAVIATE_ENDPOINT=http://weaviate:8080
# The Weaviate API key.
WEAVIATE_API_KEY=WVF5YThaHlkYwhGUSmCRgsX3tD5ngdN8pkih
# The Qdrant endpoint URL. Only available when VECTOR_STORE is `qdrant`.
QDRANT_URL=http://qdrant:6333
# The Qdrant API key.
QDRANT_API_KEY=difyai123456
# The Qdrant client timeout setting.
QDRANT_CLIENT_TIMEOUT=20
# The Qdrant client enable gRPC mode.
QDRANT_GRPC_ENABLED=false
# The Qdrant server gRPC mode PORT.
QDRANT_GRPC_PORT=6334
# Milvus configuration Only available when VECTOR_STORE is `milvus`.
# The milvus uri.
MILVUS_URI=http://127.0.0.1:19530
# The milvus token.
MILVUS_TOKEN=
# The milvus username.
MILVUS_USER=root
# The milvus password.
MILVUS_PASSWORD=Milvus
# MyScale configuration, only available when VECTOR_STORE is `myscale`
@ -478,8 +445,8 @@ ANALYTICDB_MAX_CONNECTION=5
# TiDB vector configurations, only available when VECTOR_STORE is `tidb`
TIDB_VECTOR_HOST=tidb
TIDB_VECTOR_PORT=4000
TIDB_VECTOR_USER=xxx.root
TIDB_VECTOR_PASSWORD=xxxxxx
TIDB_VECTOR_USER=
TIDB_VECTOR_PASSWORD=
TIDB_VECTOR_DATABASE=dify
# Tidb on qdrant configuration, only available when VECTOR_STORE is `tidb_on_qdrant`
@ -502,7 +469,7 @@ CHROMA_PORT=8000
CHROMA_TENANT=default_tenant
CHROMA_DATABASE=default_database
CHROMA_AUTH_PROVIDER=chromadb.auth.token_authn.TokenAuthClientProvider
CHROMA_AUTH_CREDENTIALS=xxxxxx
CHROMA_AUTH_CREDENTIALS=
# Oracle configuration, only available when VECTOR_STORE is `oracle`
ORACLE_HOST=oracle
@ -539,6 +506,7 @@ ELASTICSEARCH_HOST=0.0.0.0
ELASTICSEARCH_PORT=9200
ELASTICSEARCH_USERNAME=elastic
ELASTICSEARCH_PASSWORD=elastic
KIBANA_PORT=5601
# baidu vector configurations, only available when VECTOR_STORE is `baidu`
BAIDU_VECTOR_DB_ENDPOINT=http://127.0.0.1:5287
@ -558,11 +526,10 @@ VIKINGDB_SCHEMA=http
VIKINGDB_CONNECTION_TIMEOUT=30
VIKINGDB_SOCKET_TIMEOUT=30
# Lindorm configuration, only available when VECTOR_STORE is `lindorm`
LINDORM_URL=http://ld-***************-proxy-search-pub.lindorm.aliyuncs.com:30070
LINDORM_USERNAME=username
LINDORM_PASSWORD=password
LINDORM_URL=http://lindorm:30070
LINDORM_USERNAME=lindorm
LINDORM_PASSWORD=lindorm
# OceanBase Vector configuration, only available when VECTOR_STORE is `oceanbase`
OCEANBASE_VECTOR_HOST=oceanbase
@ -570,8 +537,13 @@ OCEANBASE_VECTOR_PORT=2881
OCEANBASE_VECTOR_USER=root@test
OCEANBASE_VECTOR_PASSWORD=difyai123456
OCEANBASE_VECTOR_DATABASE=test
OCEANBASE_CLUSTER_NAME=difyai
OCEANBASE_MEMORY_LIMIT=6G
# Upstash Vector configuration, only available when VECTOR_STORE is `upstash`
UPSTASH_VECTOR_URL=https://xxx-vector.upstash.io
UPSTASH_VECTOR_TOKEN=dify
# ------------------------------
# Knowledge Configuration
# ------------------------------
@ -614,20 +586,16 @@ CODE_GENERATION_MAX_TOKENS=1024
# Multi-modal Configuration
# ------------------------------
# The format of the image/video sent when the multi-modal model is input,
# The format of the image/video/audio/document sent when the multi-modal model is input,
# the default is base64, optional url.
# The delay of the call in url mode will be lower than that in base64 mode.
# It is generally recommended to use the more compatible base64 mode.
# If configured as url, you need to configure FILES_URL as an externally accessible address so that the multi-modal model can access the image/video.
MULTIMODAL_SEND_IMAGE_FORMAT=base64
MULTIMODAL_SEND_VIDEO_FORMAT=base64
# If configured as url, you need to configure FILES_URL as an externally accessible address so that the multi-modal model can access the image/video/audio/document.
MULTIMODAL_SEND_FORMAT=base64
# Upload image file size limit, default 10M.
UPLOAD_IMAGE_FILE_SIZE_LIMIT=10
# Upload video file size limit, default 100M.
UPLOAD_VIDEO_FILE_SIZE_LIMIT=100
# Upload audio file size limit, default 50M.
UPLOAD_AUDIO_FILE_SIZE_LIMIT=50
@ -640,10 +608,8 @@ UPLOAD_AUDIO_FILE_SIZE_LIMIT=50
# all monitoring information is not reported to Sentry.
# If not set, Sentry error reporting will be disabled.
API_SENTRY_DSN=
# API Service The reporting ratio of Sentry events, if it is 0.01, it is 1%.
API_SENTRY_TRACES_SAMPLE_RATE=1.0
# API Service The reporting ratio of Sentry profiles, if it is 0.01, it is 1%.
API_SENTRY_PROFILES_SAMPLE_RATE=1.0
@ -681,8 +647,10 @@ MAIL_TYPE=resend
MAIL_DEFAULT_SEND_FROM=
# API-Key for the Resend email provider, used when MAIL_TYPE is `resend`.
RESEND_API_URL=https://api.resend.com
RESEND_API_KEY=your-resend-api-key
# SMTP server configuration, used when MAIL_TYPE is `smtp`
SMTP_SERVER=
SMTP_PORT=465
@ -707,18 +675,19 @@ RESET_PASSWORD_TOKEN_EXPIRY_MINUTES=5
# The sandbox service endpoint.
CODE_EXECUTION_ENDPOINT=http://sandbox:8194
CODE_EXECUTION_API_KEY=dify-sandbox
CODE_MAX_NUMBER=9223372036854775807
CODE_MIN_NUMBER=-9223372036854775808
CODE_MAX_DEPTH=5
CODE_MAX_PRECISION=20
CODE_MAX_STRING_LENGTH=80000
TEMPLATE_TRANSFORM_MAX_LENGTH=80000
CODE_MAX_STRING_ARRAY_LENGTH=30
CODE_MAX_OBJECT_ARRAY_LENGTH=30
CODE_MAX_NUMBER_ARRAY_LENGTH=1000
CODE_EXECUTION_CONNECT_TIMEOUT=10
CODE_EXECUTION_READ_TIMEOUT=60
CODE_EXECUTION_WRITE_TIMEOUT=10
TEMPLATE_TRANSFORM_MAX_LENGTH=80000
# Workflow runtime configuration
WORKFLOW_MAX_EXECUTION_STEPS=500
@ -944,3 +913,10 @@ CSP_WHITELIST=
# Enable or disable create tidb service job
CREATE_TIDB_SERVICE_JOB_ENABLED=false
# Maximum number of submitted thread count in a ThreadPool for parallel node execution
MAX_SUBMIT_COUNT=100
# Proxy
HTTP_PROXY=
HTTPS_PROXY=

View File

@ -0,0 +1,576 @@
x-shared-env: &shared-api-worker-env
services:
# API service
api:
image: langgenius/dify-api:0.14.0
restart: always
environment:
# Use the shared environment variables.
<<: *shared-api-worker-env
# Startup mode, 'api' starts the API server.
MODE: api
SENTRY_DSN: ${API_SENTRY_DSN:-}
SENTRY_TRACES_SAMPLE_RATE: ${API_SENTRY_TRACES_SAMPLE_RATE:-1.0}
SENTRY_PROFILES_SAMPLE_RATE: ${API_SENTRY_PROFILES_SAMPLE_RATE:-1.0}
depends_on:
- db
- redis
volumes:
# Mount the storage directory to the container, for storing user files.
- ./volumes/app/storage:/app/api/storage
networks:
- ssrf_proxy_network
- default
# worker service
# The Celery worker for processing the queue.
worker:
image: langgenius/dify-api:0.14.0
restart: always
environment:
# Use the shared environment variables.
<<: *shared-api-worker-env
# Startup mode, 'worker' starts the Celery worker for processing the queue.
MODE: worker
SENTRY_DSN: ${API_SENTRY_DSN:-}
SENTRY_TRACES_SAMPLE_RATE: ${API_SENTRY_TRACES_SAMPLE_RATE:-1.0}
SENTRY_PROFILES_SAMPLE_RATE: ${API_SENTRY_PROFILES_SAMPLE_RATE:-1.0}
depends_on:
- db
- redis
volumes:
# Mount the storage directory to the container, for storing user files.
- ./volumes/app/storage:/app/api/storage
networks:
- ssrf_proxy_network
- default
# Frontend web application.
web:
image: langgenius/dify-web:0.14.0
restart: always
environment:
CONSOLE_API_URL: ${CONSOLE_API_URL:-}
APP_API_URL: ${APP_API_URL:-}
SENTRY_DSN: ${WEB_SENTRY_DSN:-}
NEXT_TELEMETRY_DISABLED: ${NEXT_TELEMETRY_DISABLED:-0}
TEXT_GENERATION_TIMEOUT_MS: ${TEXT_GENERATION_TIMEOUT_MS:-60000}
CSP_WHITELIST: ${CSP_WHITELIST:-}
# The postgres database.
db:
image: postgres:15-alpine
restart: always
environment:
PGUSER: ${PGUSER:-postgres}
POSTGRES_PASSWORD: ${POSTGRES_PASSWORD:-difyai123456}
POSTGRES_DB: ${POSTGRES_DB:-dify}
PGDATA: ${PGDATA:-/var/lib/postgresql/data/pgdata}
command: >
postgres -c 'max_connections=${POSTGRES_MAX_CONNECTIONS:-100}'
-c 'shared_buffers=${POSTGRES_SHARED_BUFFERS:-128MB}'
-c 'work_mem=${POSTGRES_WORK_MEM:-4MB}'
-c 'maintenance_work_mem=${POSTGRES_MAINTENANCE_WORK_MEM:-64MB}'
-c 'effective_cache_size=${POSTGRES_EFFECTIVE_CACHE_SIZE:-4096MB}'
volumes:
- ./volumes/db/data:/var/lib/postgresql/data
healthcheck:
test: ['CMD', 'pg_isready']
interval: 1s
timeout: 3s
retries: 30
# The redis cache.
redis:
image: redis:6-alpine
restart: always
environment:
REDISCLI_AUTH: ${REDIS_PASSWORD:-difyai123456}
volumes:
# Mount the redis data directory to the container.
- ./volumes/redis/data:/data
# Set the redis password when startup redis server.
command: redis-server --requirepass ${REDIS_PASSWORD:-difyai123456}
healthcheck:
test: ['CMD', 'redis-cli', 'ping']
# The DifySandbox
sandbox:
image: langgenius/dify-sandbox:0.2.10
restart: always
environment:
# The DifySandbox configurations
# Make sure you are changing this key for your deployment with a strong key.
# You can generate a strong key using `openssl rand -base64 42`.
API_KEY: ${SANDBOX_API_KEY:-dify-sandbox}
GIN_MODE: ${SANDBOX_GIN_MODE:-release}
WORKER_TIMEOUT: ${SANDBOX_WORKER_TIMEOUT:-15}
ENABLE_NETWORK: ${SANDBOX_ENABLE_NETWORK:-true}
HTTP_PROXY: ${SANDBOX_HTTP_PROXY:-http://ssrf_proxy:3128}
HTTPS_PROXY: ${SANDBOX_HTTPS_PROXY:-http://ssrf_proxy:3128}
SANDBOX_PORT: ${SANDBOX_PORT:-8194}
volumes:
- ./volumes/sandbox/dependencies:/dependencies
healthcheck:
test: ['CMD', 'curl', '-f', 'http://localhost:8194/health']
networks:
- ssrf_proxy_network
# ssrf_proxy server
# for more information, please refer to
# https://docs.dify.ai/learn-more/faq/install-faq#id-18.-why-is-ssrf_proxy-needed
ssrf_proxy:
image: ubuntu/squid:latest
restart: always
volumes:
- ./ssrf_proxy/squid.conf.template:/etc/squid/squid.conf.template
- ./ssrf_proxy/docker-entrypoint.sh:/docker-entrypoint-mount.sh
entrypoint:
[
'sh',
'-c',
"cp /docker-entrypoint-mount.sh /docker-entrypoint.sh && sed -i 's/\r$$//' /docker-entrypoint.sh && chmod +x /docker-entrypoint.sh && /docker-entrypoint.sh",
]
environment:
# pls clearly modify the squid env vars to fit your network environment.
HTTP_PORT: ${SSRF_HTTP_PORT:-3128}
COREDUMP_DIR: ${SSRF_COREDUMP_DIR:-/var/spool/squid}
REVERSE_PROXY_PORT: ${SSRF_REVERSE_PROXY_PORT:-8194}
SANDBOX_HOST: ${SSRF_SANDBOX_HOST:-sandbox}
SANDBOX_PORT: ${SANDBOX_PORT:-8194}
networks:
- ssrf_proxy_network
- default
# Certbot service
# use `docker-compose --profile certbot up` to start the certbot service.
certbot:
image: certbot/certbot
profiles:
- certbot
volumes:
- ./volumes/certbot/conf:/etc/letsencrypt
- ./volumes/certbot/www:/var/www/html
- ./volumes/certbot/logs:/var/log/letsencrypt
- ./volumes/certbot/conf/live:/etc/letsencrypt/live
- ./certbot/update-cert.template.txt:/update-cert.template.txt
- ./certbot/docker-entrypoint.sh:/docker-entrypoint.sh
environment:
- CERTBOT_EMAIL=${CERTBOT_EMAIL}
- CERTBOT_DOMAIN=${CERTBOT_DOMAIN}
- CERTBOT_OPTIONS=${CERTBOT_OPTIONS:-}
entrypoint: ['/docker-entrypoint.sh']
command: ['tail', '-f', '/dev/null']
# The nginx reverse proxy.
# used for reverse proxying the API service and Web service.
nginx:
image: nginx:latest
restart: always
volumes:
- ./nginx/nginx.conf.template:/etc/nginx/nginx.conf.template
- ./nginx/proxy.conf.template:/etc/nginx/proxy.conf.template
- ./nginx/https.conf.template:/etc/nginx/https.conf.template
- ./nginx/conf.d:/etc/nginx/conf.d
- ./nginx/docker-entrypoint.sh:/docker-entrypoint-mount.sh
- ./nginx/ssl:/etc/ssl # cert dir (legacy)
- ./volumes/certbot/conf/live:/etc/letsencrypt/live # cert dir (with certbot container)
- ./volumes/certbot/conf:/etc/letsencrypt
- ./volumes/certbot/www:/var/www/html
entrypoint:
[
'sh',
'-c',
"cp /docker-entrypoint-mount.sh /docker-entrypoint.sh && sed -i 's/\r$$//' /docker-entrypoint.sh && chmod +x /docker-entrypoint.sh && /docker-entrypoint.sh",
]
environment:
NGINX_SERVER_NAME: ${NGINX_SERVER_NAME:-_}
NGINX_HTTPS_ENABLED: ${NGINX_HTTPS_ENABLED:-false}
NGINX_SSL_PORT: ${NGINX_SSL_PORT:-443}
NGINX_PORT: ${NGINX_PORT:-80}
# You're required to add your own SSL certificates/keys to the `./nginx/ssl` directory
# and modify the env vars below in .env if HTTPS_ENABLED is true.
NGINX_SSL_CERT_FILENAME: ${NGINX_SSL_CERT_FILENAME:-dify.crt}
NGINX_SSL_CERT_KEY_FILENAME: ${NGINX_SSL_CERT_KEY_FILENAME:-dify.key}
NGINX_SSL_PROTOCOLS: ${NGINX_SSL_PROTOCOLS:-TLSv1.1 TLSv1.2 TLSv1.3}
NGINX_WORKER_PROCESSES: ${NGINX_WORKER_PROCESSES:-auto}
NGINX_CLIENT_MAX_BODY_SIZE: ${NGINX_CLIENT_MAX_BODY_SIZE:-15M}
NGINX_KEEPALIVE_TIMEOUT: ${NGINX_KEEPALIVE_TIMEOUT:-65}
NGINX_PROXY_READ_TIMEOUT: ${NGINX_PROXY_READ_TIMEOUT:-3600s}
NGINX_PROXY_SEND_TIMEOUT: ${NGINX_PROXY_SEND_TIMEOUT:-3600s}
NGINX_ENABLE_CERTBOT_CHALLENGE: ${NGINX_ENABLE_CERTBOT_CHALLENGE:-false}
CERTBOT_DOMAIN: ${CERTBOT_DOMAIN:-}
depends_on:
- api
- web
ports:
- '${EXPOSE_NGINX_PORT:-80}:${NGINX_PORT:-80}'
- '${EXPOSE_NGINX_SSL_PORT:-443}:${NGINX_SSL_PORT:-443}'
# The TiDB vector store.
# For production use, please refer to https://github.com/pingcap/tidb-docker-compose
tidb:
image: pingcap/tidb:v8.4.0
profiles:
- tidb
command:
- --store=unistore
restart: always
# The Weaviate vector store.
weaviate:
image: semitechnologies/weaviate:1.19.0
profiles:
- ''
- weaviate
restart: always
volumes:
# Mount the Weaviate data directory to the con tainer.
- ./volumes/weaviate:/var/lib/weaviate
environment:
# The Weaviate configurations
# You can refer to the [Weaviate](https://weaviate.io/developers/weaviate/config-refs/env-vars) documentation for more information.
PERSISTENCE_DATA_PATH: ${WEAVIATE_PERSISTENCE_DATA_PATH:-/var/lib/weaviate}
QUERY_DEFAULTS_LIMIT: ${WEAVIATE_QUERY_DEFAULTS_LIMIT:-25}
AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED: ${WEAVIATE_AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED:-false}
DEFAULT_VECTORIZER_MODULE: ${WEAVIATE_DEFAULT_VECTORIZER_MODULE:-none}
CLUSTER_HOSTNAME: ${WEAVIATE_CLUSTER_HOSTNAME:-node1}
AUTHENTICATION_APIKEY_ENABLED: ${WEAVIATE_AUTHENTICATION_APIKEY_ENABLED:-true}
AUTHENTICATION_APIKEY_ALLOWED_KEYS: ${WEAVIATE_AUTHENTICATION_APIKEY_ALLOWED_KEYS:-WVF5YThaHlkYwhGUSmCRgsX3tD5ngdN8pkih}
AUTHENTICATION_APIKEY_USERS: ${WEAVIATE_AUTHENTICATION_APIKEY_USERS:-hello@dify.ai}
AUTHORIZATION_ADMINLIST_ENABLED: ${WEAVIATE_AUTHORIZATION_ADMINLIST_ENABLED:-true}
AUTHORIZATION_ADMINLIST_USERS: ${WEAVIATE_AUTHORIZATION_ADMINLIST_USERS:-hello@dify.ai}
# Qdrant vector store.
# (if used, you need to set VECTOR_STORE to qdrant in the api & worker service.)
qdrant:
image: langgenius/qdrant:v1.7.3
profiles:
- qdrant
restart: always
volumes:
- ./volumes/qdrant:/qdrant/storage
environment:
QDRANT_API_KEY: ${QDRANT_API_KEY:-difyai123456}
# The Couchbase vector store.
couchbase-server:
build: ./couchbase-server
profiles:
- couchbase
restart: always
environment:
- CLUSTER_NAME=dify_search
- COUCHBASE_ADMINISTRATOR_USERNAME=${COUCHBASE_USER:-Administrator}
- COUCHBASE_ADMINISTRATOR_PASSWORD=${COUCHBASE_PASSWORD:-password}
- COUCHBASE_BUCKET=${COUCHBASE_BUCKET_NAME:-Embeddings}
- COUCHBASE_BUCKET_RAMSIZE=512
- COUCHBASE_RAM_SIZE=2048
- COUCHBASE_EVENTING_RAM_SIZE=512
- COUCHBASE_INDEX_RAM_SIZE=512
- COUCHBASE_FTS_RAM_SIZE=1024
hostname: couchbase-server
container_name: couchbase-server
working_dir: /opt/couchbase
stdin_open: true
tty: true
entrypoint: [""]
command: sh -c "/opt/couchbase/init/init-cbserver.sh"
volumes:
- ./volumes/couchbase/data:/opt/couchbase/var/lib/couchbase/data
healthcheck:
# ensure bucket was created before proceeding
test: [ "CMD-SHELL", "curl -s -f -u Administrator:password http://localhost:8091/pools/default/buckets | grep -q '\\[{' || exit 1" ]
interval: 10s
retries: 10
start_period: 30s
timeout: 10s
# The pgvector vector database.
pgvector:
image: pgvector/pgvector:pg16
profiles:
- pgvector
restart: always
environment:
PGUSER: ${PGVECTOR_PGUSER:-postgres}
# The password for the default postgres user.
POSTGRES_PASSWORD: ${PGVECTOR_POSTGRES_PASSWORD:-difyai123456}
# The name of the default postgres database.
POSTGRES_DB: ${PGVECTOR_POSTGRES_DB:-dify}
# postgres data directory
PGDATA: ${PGVECTOR_PGDATA:-/var/lib/postgresql/data/pgdata}
volumes:
- ./volumes/pgvector/data:/var/lib/postgresql/data
healthcheck:
test: ['CMD', 'pg_isready']
interval: 1s
timeout: 3s
retries: 30
# pgvecto-rs vector store
pgvecto-rs:
image: tensorchord/pgvecto-rs:pg16-v0.3.0
profiles:
- pgvecto-rs
restart: always
environment:
PGUSER: ${PGVECTOR_PGUSER:-postgres}
# The password for the default postgres user.
POSTGRES_PASSWORD: ${PGVECTOR_POSTGRES_PASSWORD:-difyai123456}
# The name of the default postgres database.
POSTGRES_DB: ${PGVECTOR_POSTGRES_DB:-dify}
# postgres data directory
PGDATA: ${PGVECTOR_PGDATA:-/var/lib/postgresql/data/pgdata}
volumes:
- ./volumes/pgvecto_rs/data:/var/lib/postgresql/data
healthcheck:
test: ['CMD', 'pg_isready']
interval: 1s
timeout: 3s
retries: 30
# Chroma vector database
chroma:
image: ghcr.io/chroma-core/chroma:0.5.20
profiles:
- chroma
restart: always
volumes:
- ./volumes/chroma:/chroma/chroma
environment:
CHROMA_SERVER_AUTHN_CREDENTIALS: ${CHROMA_SERVER_AUTHN_CREDENTIALS:-difyai123456}
CHROMA_SERVER_AUTHN_PROVIDER: ${CHROMA_SERVER_AUTHN_PROVIDER:-chromadb.auth.token_authn.TokenAuthenticationServerProvider}
IS_PERSISTENT: ${CHROMA_IS_PERSISTENT:-TRUE}
# OceanBase vector database
oceanbase:
image: quay.io/oceanbase/oceanbase-ce:4.3.3.0-100000142024101215
profiles:
- oceanbase
restart: always
volumes:
- ./volumes/oceanbase/data:/root/ob
- ./volumes/oceanbase/conf:/root/.obd/cluster
- ./volumes/oceanbase/init.d:/root/boot/init.d
environment:
OB_MEMORY_LIMIT: ${OCEANBASE_MEMORY_LIMIT:-6G}
OB_SYS_PASSWORD: ${OCEANBASE_VECTOR_PASSWORD:-difyai123456}
OB_TENANT_PASSWORD: ${OCEANBASE_VECTOR_PASSWORD:-difyai123456}
OB_CLUSTER_NAME: ${OCEANBASE_CLUSTER_NAME:-difyai}
OB_SERVER_IP: '127.0.0.1'
# Oracle vector database
oracle:
image: container-registry.oracle.com/database/free:latest
profiles:
- oracle
restart: always
volumes:
- source: oradata
type: volume
target: /opt/oracle/oradata
- ./startupscripts:/opt/oracle/scripts/startup
environment:
ORACLE_PWD: ${ORACLE_PWD:-Dify123456}
ORACLE_CHARACTERSET: ${ORACLE_CHARACTERSET:-AL32UTF8}
# Milvus vector database services
etcd:
container_name: milvus-etcd
image: quay.io/coreos/etcd:v3.5.5
profiles:
- milvus
environment:
ETCD_AUTO_COMPACTION_MODE: ${ETCD_AUTO_COMPACTION_MODE:-revision}
ETCD_AUTO_COMPACTION_RETENTION: ${ETCD_AUTO_COMPACTION_RETENTION:-1000}
ETCD_QUOTA_BACKEND_BYTES: ${ETCD_QUOTA_BACKEND_BYTES:-4294967296}
ETCD_SNAPSHOT_COUNT: ${ETCD_SNAPSHOT_COUNT:-50000}
volumes:
- ./volumes/milvus/etcd:/etcd
command: etcd -advertise-client-urls=http://127.0.0.1:2379 -listen-client-urls http://0.0.0.0:2379 --data-dir /etcd
healthcheck:
test: ['CMD', 'etcdctl', 'endpoint', 'health']
interval: 30s
timeout: 20s
retries: 3
networks:
- milvus
minio:
container_name: milvus-minio
image: minio/minio:RELEASE.2023-03-20T20-16-18Z
profiles:
- milvus
environment:
MINIO_ACCESS_KEY: ${MINIO_ACCESS_KEY:-minioadmin}
MINIO_SECRET_KEY: ${MINIO_SECRET_KEY:-minioadmin}
volumes:
- ./volumes/milvus/minio:/minio_data
command: minio server /minio_data --console-address ":9001"
healthcheck:
test: ['CMD', 'curl', '-f', 'http://localhost:9000/minio/health/live']
interval: 30s
timeout: 20s
retries: 3
networks:
- milvus
milvus-standalone:
container_name: milvus-standalone
image: milvusdb/milvus:v2.3.1
profiles:
- milvus
command: ['milvus', 'run', 'standalone']
environment:
ETCD_ENDPOINTS: ${ETCD_ENDPOINTS:-etcd:2379}
MINIO_ADDRESS: ${MINIO_ADDRESS:-minio:9000}
common.security.authorizationEnabled: ${MILVUS_AUTHORIZATION_ENABLED:-true}
volumes:
- ./volumes/milvus/milvus:/var/lib/milvus
healthcheck:
test: ['CMD', 'curl', '-f', 'http://localhost:9091/healthz']
interval: 30s
start_period: 90s
timeout: 20s
retries: 3
depends_on:
- etcd
- minio
ports:
- 19530:19530
- 9091:9091
networks:
- milvus
# Opensearch vector database
opensearch:
container_name: opensearch
image: opensearchproject/opensearch:latest
profiles:
- opensearch
environment:
discovery.type: ${OPENSEARCH_DISCOVERY_TYPE:-single-node}
bootstrap.memory_lock: ${OPENSEARCH_BOOTSTRAP_MEMORY_LOCK:-true}
OPENSEARCH_JAVA_OPTS: -Xms${OPENSEARCH_JAVA_OPTS_MIN:-512m} -Xmx${OPENSEARCH_JAVA_OPTS_MAX:-1024m}
OPENSEARCH_INITIAL_ADMIN_PASSWORD: ${OPENSEARCH_INITIAL_ADMIN_PASSWORD:-Qazwsxedc!@#123}
ulimits:
memlock:
soft: ${OPENSEARCH_MEMLOCK_SOFT:--1}
hard: ${OPENSEARCH_MEMLOCK_HARD:--1}
nofile:
soft: ${OPENSEARCH_NOFILE_SOFT:-65536}
hard: ${OPENSEARCH_NOFILE_HARD:-65536}
volumes:
- ./volumes/opensearch/data:/usr/share/opensearch/data
networks:
- opensearch-net
opensearch-dashboards:
container_name: opensearch-dashboards
image: opensearchproject/opensearch-dashboards:latest
profiles:
- opensearch
environment:
OPENSEARCH_HOSTS: '["https://opensearch:9200"]'
volumes:
- ./volumes/opensearch/opensearch_dashboards.yml:/usr/share/opensearch-dashboards/config/opensearch_dashboards.yml
networks:
- opensearch-net
depends_on:
- opensearch
# MyScale vector database
myscale:
container_name: myscale
image: myscale/myscaledb:1.6.4
profiles:
- myscale
restart: always
tty: true
volumes:
- ./volumes/myscale/data:/var/lib/clickhouse
- ./volumes/myscale/log:/var/log/clickhouse-server
- ./volumes/myscale/config/users.d/custom_users_config.xml:/etc/clickhouse-server/users.d/custom_users_config.xml
ports:
- ${MYSCALE_PORT:-8123}:${MYSCALE_PORT:-8123}
# https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
# https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html#docker-prod-prerequisites
elasticsearch:
image: docker.elastic.co/elasticsearch/elasticsearch:8.14.3
container_name: elasticsearch
profiles:
- elasticsearch
restart: always
volumes:
- dify_es01_data:/usr/share/elasticsearch/data
environment:
ELASTIC_PASSWORD: ${ELASTICSEARCH_PASSWORD:-elastic}
cluster.name: dify-es-cluster
node.name: dify-es0
discovery.type: single-node
xpack.license.self_generated.type: trial
xpack.security.enabled: 'true'
xpack.security.enrollment.enabled: 'false'
xpack.security.http.ssl.enabled: 'false'
ports:
- ${ELASTICSEARCH_PORT:-9200}:9200
healthcheck:
test: ['CMD', 'curl', '-s', 'http://localhost:9200/_cluster/health?pretty']
interval: 30s
timeout: 10s
retries: 50
# https://www.elastic.co/guide/en/kibana/current/docker.html
# https://www.elastic.co/guide/en/kibana/current/settings.html
kibana:
image: docker.elastic.co/kibana/kibana:8.14.3
container_name: kibana
profiles:
- elasticsearch
depends_on:
- elasticsearch
restart: always
environment:
XPACK_ENCRYPTEDSAVEDOBJECTS_ENCRYPTIONKEY: d1a66dfd-c4d3-4a0a-8290-2abcb83ab3aa
NO_PROXY: localhost,127.0.0.1,elasticsearch,kibana
XPACK_SECURITY_ENABLED: 'true'
XPACK_SECURITY_ENROLLMENT_ENABLED: 'false'
XPACK_SECURITY_HTTP_SSL_ENABLED: 'false'
XPACK_FLEET_ISAIRGAPPED: 'true'
I18N_LOCALE: zh-CN
SERVER_PORT: '5601'
ELASTICSEARCH_HOSTS: http://elasticsearch:9200
ports:
- ${KIBANA_PORT:-5601}:5601
healthcheck:
test: ['CMD-SHELL', 'curl -s http://localhost:5601 >/dev/null || exit 1']
interval: 30s
timeout: 10s
retries: 3
# unstructured .
# (if used, you need to set ETL_TYPE to Unstructured in the api & worker service.)
unstructured:
image: downloads.unstructured.io/unstructured-io/unstructured-api:latest
profiles:
- unstructured
restart: always
volumes:
- ./volumes/unstructured:/app/data
networks:
# create a network between sandbox, api and ssrf_proxy, and can not access outside.
ssrf_proxy_network:
driver: bridge
internal: true
milvus:
driver: bridge
opensearch-net:
driver: bridge
internal: true
volumes:
oradata:
dify_es01_data:

View File

@ -1,28 +1,33 @@
# ==================================================================
# WARNING: This file is auto-generated by generate_docker_compose
# Do not modify this file directly. Instead, update the .env.example
# or docker-compose-template.yaml and regenerate this file.
# ==================================================================
x-shared-env: &shared-api-worker-env
WORKFLOW_FILE_UPLOAD_LIMIT: ${WORKFLOW_FILE_UPLOAD_LIMIT:-10}
CONSOLE_API_URL: ${CONSOLE_API_URL:-}
CONSOLE_WEB_URL: ${CONSOLE_WEB_URL:-}
SERVICE_API_URL: ${SERVICE_API_URL:-}
APP_API_URL: ${APP_API_URL:-}
APP_WEB_URL: ${APP_WEB_URL:-}
FILES_URL: ${FILES_URL:-}
LOG_LEVEL: ${LOG_LEVEL:-INFO}
LOG_FILE: ${LOG_FILE:-}
LOG_FILE: ${LOG_FILE:-/app/logs/server.log}
LOG_FILE_MAX_SIZE: ${LOG_FILE_MAX_SIZE:-20}
LOG_FILE_BACKUP_COUNT: ${LOG_FILE_BACKUP_COUNT:-5}
# Log dateformat
LOG_DATEFORMAT: ${LOG_DATEFORMAT:-%Y-%m-%d %H:%M:%S}
# Log Timezone
LOG_DATEFORMAT: ${LOG_DATEFORMAT:-"%Y-%m-%d %H:%M:%S"}
LOG_TZ: ${LOG_TZ:-UTC}
DEBUG: ${DEBUG:-false}
FLASK_DEBUG: ${FLASK_DEBUG:-false}
SECRET_KEY: ${SECRET_KEY:-sk-9f73s3ljTXVcMT3Blb3ljTqtsKiGHXVcMT3BlbkFJLK7U}
INIT_PASSWORD: ${INIT_PASSWORD:-}
CONSOLE_WEB_URL: ${CONSOLE_WEB_URL:-}
CONSOLE_API_URL: ${CONSOLE_API_URL:-}
SERVICE_API_URL: ${SERVICE_API_URL:-}
APP_WEB_URL: ${APP_WEB_URL:-}
CHECK_UPDATE_URL: ${CHECK_UPDATE_URL:-https://updates.dify.ai}
OPENAI_API_BASE: ${OPENAI_API_BASE:-https://api.openai.com/v1}
FILES_URL: ${FILES_URL:-}
FILES_ACCESS_TIMEOUT: ${FILES_ACCESS_TIMEOUT:-300}
APP_MAX_ACTIVE_REQUESTS: ${APP_MAX_ACTIVE_REQUESTS:-0}
MIGRATION_ENABLED: ${MIGRATION_ENABLED:-true}
DEPLOY_ENV: ${DEPLOY_ENV:-PRODUCTION}
CHECK_UPDATE_URL: ${CHECK_UPDATE_URL:-"https://updates.dify.ai"}
OPENAI_API_BASE: ${OPENAI_API_BASE:-"https://api.openai.com/v1"}
MIGRATION_ENABLED: ${MIGRATION_ENABLED:-true}
FILES_ACCESS_TIMEOUT: ${FILES_ACCESS_TIMEOUT:-300}
ACCESS_TOKEN_EXPIRE_MINUTES: ${ACCESS_TOKEN_EXPIRE_MINUTES:-60}
APP_MAX_ACTIVE_REQUESTS: ${APP_MAX_ACTIVE_REQUESTS:-0}
DIFY_BIND_ADDRESS: ${DIFY_BIND_ADDRESS:-0.0.0.0}
DIFY_PORT: ${DIFY_PORT:-5001}
SERVER_WORKER_AMOUNT: ${SERVER_WORKER_AMOUNT:-}
@ -43,6 +48,11 @@ x-shared-env: &shared-api-worker-env
SQLALCHEMY_POOL_SIZE: ${SQLALCHEMY_POOL_SIZE:-30}
SQLALCHEMY_POOL_RECYCLE: ${SQLALCHEMY_POOL_RECYCLE:-3600}
SQLALCHEMY_ECHO: ${SQLALCHEMY_ECHO:-false}
POSTGRES_MAX_CONNECTIONS: ${POSTGRES_MAX_CONNECTIONS:-100}
POSTGRES_SHARED_BUFFERS: ${POSTGRES_SHARED_BUFFERS:-128MB}
POSTGRES_WORK_MEM: ${POSTGRES_WORK_MEM:-4MB}
POSTGRES_MAINTENANCE_WORK_MEM: ${POSTGRES_MAINTENANCE_WORK_MEM:-64MB}
POSTGRES_EFFECTIVE_CACHE_SIZE: ${POSTGRES_EFFECTIVE_CACHE_SIZE:-4096MB}
REDIS_HOST: ${REDIS_HOST:-redis}
REDIS_PORT: ${REDIS_PORT:-6379}
REDIS_USERNAME: ${REDIS_USERNAME:-}
@ -55,75 +65,73 @@ x-shared-env: &shared-api-worker-env
REDIS_SENTINEL_USERNAME: ${REDIS_SENTINEL_USERNAME:-}
REDIS_SENTINEL_PASSWORD: ${REDIS_SENTINEL_PASSWORD:-}
REDIS_SENTINEL_SOCKET_TIMEOUT: ${REDIS_SENTINEL_SOCKET_TIMEOUT:-0.1}
REDIS_CLUSTERS: ${REDIS_CLUSTERS:-}
REDIS_USE_CLUSTERS: ${REDIS_USE_CLUSTERS:-false}
REDIS_CLUSTERS: ${REDIS_CLUSTERS:-}
REDIS_CLUSTERS_PASSWORD: ${REDIS_CLUSTERS_PASSWORD:-}
ACCESS_TOKEN_EXPIRE_MINUTES: ${ACCESS_TOKEN_EXPIRE_MINUTES:-60}
CELERY_BROKER_URL: ${CELERY_BROKER_URL:-redis://:difyai123456@redis:6379/1}
CELERY_BROKER_URL: ${CELERY_BROKER_URL:-"redis://:difyai123456@redis:6379/1"}
BROKER_USE_SSL: ${BROKER_USE_SSL:-false}
CELERY_USE_SENTINEL: ${CELERY_USE_SENTINEL:-false}
CELERY_SENTINEL_MASTER_NAME: ${CELERY_SENTINEL_MASTER_NAME:-}
CELERY_SENTINEL_SOCKET_TIMEOUT: ${CELERY_SENTINEL_SOCKET_TIMEOUT:-0.1}
WEB_API_CORS_ALLOW_ORIGINS: ${WEB_API_CORS_ALLOW_ORIGINS:-*}
CONSOLE_CORS_ALLOW_ORIGINS: ${CONSOLE_CORS_ALLOW_ORIGINS:-*}
STORAGE_TYPE: ${STORAGE_TYPE:-local}
STORAGE_LOCAL_PATH: ${STORAGE_LOCAL_PATH:-storage}
S3_USE_AWS_MANAGED_IAM: ${S3_USE_AWS_MANAGED_IAM:-false}
STORAGE_TYPE: ${STORAGE_TYPE:-opendal}
OPENDAL_SCHEME: ${OPENDAL_SCHEME:-fs}
OPENDAL_FS_ROOT: ${OPENDAL_FS_ROOT:-storage}
S3_ENDPOINT: ${S3_ENDPOINT:-}
S3_BUCKET_NAME: ${S3_BUCKET_NAME:-}
S3_REGION: ${S3_REGION:-us-east-1}
S3_BUCKET_NAME: ${S3_BUCKET_NAME:-difyai}
S3_ACCESS_KEY: ${S3_ACCESS_KEY:-}
S3_SECRET_KEY: ${S3_SECRET_KEY:-}
S3_REGION: ${S3_REGION:-us-east-1}
AZURE_BLOB_ACCOUNT_NAME: ${AZURE_BLOB_ACCOUNT_NAME:-}
AZURE_BLOB_ACCOUNT_KEY: ${AZURE_BLOB_ACCOUNT_KEY:-}
AZURE_BLOB_CONTAINER_NAME: ${AZURE_BLOB_CONTAINER_NAME:-}
AZURE_BLOB_ACCOUNT_URL: ${AZURE_BLOB_ACCOUNT_URL:-}
GOOGLE_STORAGE_BUCKET_NAME: ${GOOGLE_STORAGE_BUCKET_NAME:-}
GOOGLE_STORAGE_SERVICE_ACCOUNT_JSON_BASE64: ${GOOGLE_STORAGE_SERVICE_ACCOUNT_JSON_BASE64:-}
ALIYUN_OSS_BUCKET_NAME: ${ALIYUN_OSS_BUCKET_NAME:-}
ALIYUN_OSS_ACCESS_KEY: ${ALIYUN_OSS_ACCESS_KEY:-}
ALIYUN_OSS_SECRET_KEY: ${ALIYUN_OSS_SECRET_KEY:-}
ALIYUN_OSS_ENDPOINT: ${ALIYUN_OSS_ENDPOINT:-}
ALIYUN_OSS_REGION: ${ALIYUN_OSS_REGION:-}
S3_USE_AWS_MANAGED_IAM: ${S3_USE_AWS_MANAGED_IAM:-false}
AZURE_BLOB_ACCOUNT_NAME: ${AZURE_BLOB_ACCOUNT_NAME:-difyai}
AZURE_BLOB_ACCOUNT_KEY: ${AZURE_BLOB_ACCOUNT_KEY:-difyai}
AZURE_BLOB_CONTAINER_NAME: ${AZURE_BLOB_CONTAINER_NAME:-difyai-container}
AZURE_BLOB_ACCOUNT_URL: ${AZURE_BLOB_ACCOUNT_URL:-"https://<your_account_name>.blob.core.windows.net"}
GOOGLE_STORAGE_BUCKET_NAME: ${GOOGLE_STORAGE_BUCKET_NAME:-your-bucket-name}
GOOGLE_STORAGE_SERVICE_ACCOUNT_JSON_BASE64: ${GOOGLE_STORAGE_SERVICE_ACCOUNT_JSON_BASE64:-your-google-service-account-json-base64-string}
ALIYUN_OSS_BUCKET_NAME: ${ALIYUN_OSS_BUCKET_NAME:-your-bucket-name}
ALIYUN_OSS_ACCESS_KEY: ${ALIYUN_OSS_ACCESS_KEY:-your-access-key}
ALIYUN_OSS_SECRET_KEY: ${ALIYUN_OSS_SECRET_KEY:-your-secret-key}
ALIYUN_OSS_ENDPOINT: ${ALIYUN_OSS_ENDPOINT:-"https://oss-ap-southeast-1-internal.aliyuncs.com"}
ALIYUN_OSS_REGION: ${ALIYUN_OSS_REGION:-ap-southeast-1}
ALIYUN_OSS_AUTH_VERSION: ${ALIYUN_OSS_AUTH_VERSION:-v4}
ALIYUN_OSS_PATH: ${ALIYUN_OSS_PATH:-}
TENCENT_COS_BUCKET_NAME: ${TENCENT_COS_BUCKET_NAME:-}
TENCENT_COS_SECRET_KEY: ${TENCENT_COS_SECRET_KEY:-}
TENCENT_COS_SECRET_ID: ${TENCENT_COS_SECRET_ID:-}
TENCENT_COS_REGION: ${TENCENT_COS_REGION:-}
TENCENT_COS_SCHEME: ${TENCENT_COS_SCHEME:-}
HUAWEI_OBS_BUCKET_NAME: ${HUAWEI_OBS_BUCKET_NAME:-}
HUAWEI_OBS_SECRET_KEY: ${HUAWEI_OBS_SECRET_KEY:-}
HUAWEI_OBS_ACCESS_KEY: ${HUAWEI_OBS_ACCESS_KEY:-}
HUAWEI_OBS_SERVER: ${HUAWEI_OBS_SERVER:-}
OCI_ENDPOINT: ${OCI_ENDPOINT:-}
OCI_BUCKET_NAME: ${OCI_BUCKET_NAME:-}
OCI_ACCESS_KEY: ${OCI_ACCESS_KEY:-}
OCI_SECRET_KEY: ${OCI_SECRET_KEY:-}
OCI_REGION: ${OCI_REGION:-}
VOLCENGINE_TOS_BUCKET_NAME: ${VOLCENGINE_TOS_BUCKET_NAME:-}
VOLCENGINE_TOS_SECRET_KEY: ${VOLCENGINE_TOS_SECRET_KEY:-}
VOLCENGINE_TOS_ACCESS_KEY: ${VOLCENGINE_TOS_ACCESS_KEY:-}
VOLCENGINE_TOS_ENDPOINT: ${VOLCENGINE_TOS_ENDPOINT:-}
VOLCENGINE_TOS_REGION: ${VOLCENGINE_TOS_REGION:-}
BAIDU_OBS_BUCKET_NAME: ${BAIDU_OBS_BUCKET_NAME:-}
BAIDU_OBS_SECRET_KEY: ${BAIDU_OBS_SECRET_KEY:-}
BAIDU_OBS_ACCESS_KEY: ${BAIDU_OBS_ACCESS_KEY:-}
BAIDU_OBS_ENDPOINT: ${BAIDU_OBS_ENDPOINT:-}
ALIYUN_OSS_PATH: ${ALIYUN_OSS_PATH:-your-path}
TENCENT_COS_BUCKET_NAME: ${TENCENT_COS_BUCKET_NAME:-your-bucket-name}
TENCENT_COS_SECRET_KEY: ${TENCENT_COS_SECRET_KEY:-your-secret-key}
TENCENT_COS_SECRET_ID: ${TENCENT_COS_SECRET_ID:-your-secret-id}
TENCENT_COS_REGION: ${TENCENT_COS_REGION:-your-region}
TENCENT_COS_SCHEME: ${TENCENT_COS_SCHEME:-your-scheme}
OCI_ENDPOINT: ${OCI_ENDPOINT:-"https://objectstorage.us-ashburn-1.oraclecloud.com"}
OCI_BUCKET_NAME: ${OCI_BUCKET_NAME:-your-bucket-name}
OCI_ACCESS_KEY: ${OCI_ACCESS_KEY:-your-access-key}
OCI_SECRET_KEY: ${OCI_SECRET_KEY:-your-secret-key}
OCI_REGION: ${OCI_REGION:-us-ashburn-1}
HUAWEI_OBS_BUCKET_NAME: ${HUAWEI_OBS_BUCKET_NAME:-your-bucket-name}
HUAWEI_OBS_SECRET_KEY: ${HUAWEI_OBS_SECRET_KEY:-your-secret-key}
HUAWEI_OBS_ACCESS_KEY: ${HUAWEI_OBS_ACCESS_KEY:-your-access-key}
HUAWEI_OBS_SERVER: ${HUAWEI_OBS_SERVER:-your-server-url}
VOLCENGINE_TOS_BUCKET_NAME: ${VOLCENGINE_TOS_BUCKET_NAME:-your-bucket-name}
VOLCENGINE_TOS_SECRET_KEY: ${VOLCENGINE_TOS_SECRET_KEY:-your-secret-key}
VOLCENGINE_TOS_ACCESS_KEY: ${VOLCENGINE_TOS_ACCESS_KEY:-your-access-key}
VOLCENGINE_TOS_ENDPOINT: ${VOLCENGINE_TOS_ENDPOINT:-your-server-url}
VOLCENGINE_TOS_REGION: ${VOLCENGINE_TOS_REGION:-your-region}
BAIDU_OBS_BUCKET_NAME: ${BAIDU_OBS_BUCKET_NAME:-your-bucket-name}
BAIDU_OBS_SECRET_KEY: ${BAIDU_OBS_SECRET_KEY:-your-secret-key}
BAIDU_OBS_ACCESS_KEY: ${BAIDU_OBS_ACCESS_KEY:-your-access-key}
BAIDU_OBS_ENDPOINT: ${BAIDU_OBS_ENDPOINT:-your-server-url}
SUPABASE_BUCKET_NAME: ${SUPABASE_BUCKET_NAME:-your-bucket-name}
SUPABASE_API_KEY: ${SUPABASE_API_KEY:-your-access-key}
SUPABASE_URL: ${SUPABASE_URL:-your-server-url}
VECTOR_STORE: ${VECTOR_STORE:-weaviate}
WEAVIATE_ENDPOINT: ${WEAVIATE_ENDPOINT:-http://weaviate:8080}
WEAVIATE_ENDPOINT: ${WEAVIATE_ENDPOINT:-"http://weaviate:8080"}
WEAVIATE_API_KEY: ${WEAVIATE_API_KEY:-WVF5YThaHlkYwhGUSmCRgsX3tD5ngdN8pkih}
QDRANT_URL: ${QDRANT_URL:-http://qdrant:6333}
QDRANT_URL: ${QDRANT_URL:-"http://qdrant:6333"}
QDRANT_API_KEY: ${QDRANT_API_KEY:-difyai123456}
QDRANT_CLIENT_TIMEOUT: ${QDRANT_CLIENT_TIMEOUT:-20}
QDRANT_GRPC_ENABLED: ${QDRANT_GRPC_ENABLED:-false}
QDRANT_GRPC_PORT: ${QDRANT_GRPC_PORT:-6334}
COUCHBASE_CONNECTION_STRING: ${COUCHBASE_CONNECTION_STRING:-'couchbase-server'}
COUCHBASE_USER: ${COUCHBASE_USER:-Administrator}
COUCHBASE_PASSWORD: ${COUCHBASE_PASSWORD:-password}
COUCHBASE_BUCKET_NAME: ${COUCHBASE_BUCKET_NAME:-Embeddings}
COUCHBASE_SCOPE_NAME: ${COUCHBASE_SCOPE_NAME:-_default}
MILVUS_URI: ${MILVUS_URI:-http://127.0.0.1:19530}
MILVUS_URI: ${MILVUS_URI:-"http://127.0.0.1:19530"}
MILVUS_TOKEN: ${MILVUS_TOKEN:-}
MILVUS_USER: ${MILVUS_USER:-root}
MILVUS_PASSWORD: ${MILVUS_PASSWORD:-Milvus}
@ -133,172 +141,264 @@ x-shared-env: &shared-api-worker-env
MYSCALE_PASSWORD: ${MYSCALE_PASSWORD:-}
MYSCALE_DATABASE: ${MYSCALE_DATABASE:-dify}
MYSCALE_FTS_PARAMS: ${MYSCALE_FTS_PARAMS:-}
RELYT_HOST: ${RELYT_HOST:-db}
RELYT_PORT: ${RELYT_PORT:-5432}
RELYT_USER: ${RELYT_USER:-postgres}
RELYT_PASSWORD: ${RELYT_PASSWORD:-difyai123456}
RELYT_DATABASE: ${RELYT_DATABASE:-postgres}
COUCHBASE_CONNECTION_STRING: ${COUCHBASE_CONNECTION_STRING:-"couchbase://couchbase-server"}
COUCHBASE_USER: ${COUCHBASE_USER:-Administrator}
COUCHBASE_PASSWORD: ${COUCHBASE_PASSWORD:-password}
COUCHBASE_BUCKET_NAME: ${COUCHBASE_BUCKET_NAME:-Embeddings}
COUCHBASE_SCOPE_NAME: ${COUCHBASE_SCOPE_NAME:-_default}
PGVECTOR_HOST: ${PGVECTOR_HOST:-pgvector}
PGVECTOR_PORT: ${PGVECTOR_PORT:-5432}
PGVECTOR_USER: ${PGVECTOR_USER:-postgres}
PGVECTOR_PASSWORD: ${PGVECTOR_PASSWORD:-difyai123456}
PGVECTOR_DATABASE: ${PGVECTOR_DATABASE:-dify}
PGVECTOR_MIN_CONNECTION: ${PGVECTOR_MIN_CONNECTION:-1}
PGVECTOR_MAX_CONNECTION: ${PGVECTOR_MAX_CONNECTION:-5}
PGVECTO_RS_HOST: ${PGVECTO_RS_HOST:-pgvecto-rs}
PGVECTO_RS_PORT: ${PGVECTO_RS_PORT:-5432}
PGVECTO_RS_USER: ${PGVECTO_RS_USER:-postgres}
PGVECTO_RS_PASSWORD: ${PGVECTO_RS_PASSWORD:-difyai123456}
PGVECTO_RS_DATABASE: ${PGVECTO_RS_DATABASE:-dify}
ANALYTICDB_KEY_ID: ${ANALYTICDB_KEY_ID:-your-ak}
ANALYTICDB_KEY_SECRET: ${ANALYTICDB_KEY_SECRET:-your-sk}
ANALYTICDB_REGION_ID: ${ANALYTICDB_REGION_ID:-cn-hangzhou}
ANALYTICDB_INSTANCE_ID: ${ANALYTICDB_INSTANCE_ID:-gp-ab123456}
ANALYTICDB_ACCOUNT: ${ANALYTICDB_ACCOUNT:-testaccount}
ANALYTICDB_PASSWORD: ${ANALYTICDB_PASSWORD:-testpassword}
ANALYTICDB_NAMESPACE: ${ANALYTICDB_NAMESPACE:-dify}
ANALYTICDB_NAMESPACE_PASSWORD: ${ANALYTICDB_NAMESPACE_PASSWORD:-difypassword}
ANALYTICDB_HOST: ${ANALYTICDB_HOST:-gp-test.aliyuncs.com}
ANALYTICDB_PORT: ${ANALYTICDB_PORT:-5432}
ANALYTICDB_MIN_CONNECTION: ${ANALYTICDB_MIN_CONNECTION:-1}
ANALYTICDB_MAX_CONNECTION: ${ANALYTICDB_MAX_CONNECTION:-5}
TIDB_VECTOR_HOST: ${TIDB_VECTOR_HOST:-tidb}
TIDB_VECTOR_PORT: ${TIDB_VECTOR_PORT:-4000}
TIDB_VECTOR_USER: ${TIDB_VECTOR_USER:-}
TIDB_VECTOR_PASSWORD: ${TIDB_VECTOR_PASSWORD:-}
TIDB_VECTOR_DATABASE: ${TIDB_VECTOR_DATABASE:-dify}
TIDB_ON_QDRANT_URL: ${TIDB_ON_QDRANT_URL:-http://127.0.0.1}
TIDB_ON_QDRANT_URL: ${TIDB_ON_QDRANT_URL:-"http://127.0.0.1"}
TIDB_ON_QDRANT_API_KEY: ${TIDB_ON_QDRANT_API_KEY:-dify}
TIDB_ON_QDRANT_CLIENT_TIMEOUT: ${TIDB_ON_QDRANT_CLIENT_TIMEOUT:-20}
TIDB_ON_QDRANT_GRPC_ENABLED: ${TIDB_ON_QDRANT_GRPC_ENABLED:-false}
TIDB_ON_QDRANT_GRPC_PORT: ${TIDB_ON_QDRANT_GRPC_PORT:-6334}
TIDB_PUBLIC_KEY: ${TIDB_PUBLIC_KEY:-dify}
TIDB_PRIVATE_KEY: ${TIDB_PRIVATE_KEY:-dify}
TIDB_API_URL: ${TIDB_API_URL:-http://127.0.0.1}
TIDB_IAM_API_URL: ${TIDB_IAM_API_URL:-http://127.0.0.1}
TIDB_API_URL: ${TIDB_API_URL:-"http://127.0.0.1"}
TIDB_IAM_API_URL: ${TIDB_IAM_API_URL:-"http://127.0.0.1"}
TIDB_REGION: ${TIDB_REGION:-regions/aws-us-east-1}
TIDB_PROJECT_ID: ${TIDB_PROJECT_ID:-dify}
TIDB_SPEND_LIMIT: ${TIDB_SPEND_LIMIT:-100}
ORACLE_HOST: ${ORACLE_HOST:-oracle}
ORACLE_PORT: ${ORACLE_PORT:-1521}
ORACLE_USER: ${ORACLE_USER:-dify}
ORACLE_PASSWORD: ${ORACLE_PASSWORD:-dify}
ORACLE_DATABASE: ${ORACLE_DATABASE:-FREEPDB1}
CHROMA_HOST: ${CHROMA_HOST:-127.0.0.1}
CHROMA_PORT: ${CHROMA_PORT:-8000}
CHROMA_TENANT: ${CHROMA_TENANT:-default_tenant}
CHROMA_DATABASE: ${CHROMA_DATABASE:-default_database}
CHROMA_AUTH_PROVIDER: ${CHROMA_AUTH_PROVIDER:-chromadb.auth.token_authn.TokenAuthClientProvider}
CHROMA_AUTH_CREDENTIALS: ${CHROMA_AUTH_CREDENTIALS:-}
ELASTICSEARCH_HOST: ${ELASTICSEARCH_HOST:-0.0.0.0}
ELASTICSEARCH_PORT: ${ELASTICSEARCH_PORT:-9200}
ELASTICSEARCH_USERNAME: ${ELASTICSEARCH_USERNAME:-elastic}
ELASTICSEARCH_PASSWORD: ${ELASTICSEARCH_PASSWORD:-elastic}
LINDORM_URL: ${LINDORM_URL:-http://lindorm:30070}
LINDORM_USERNAME: ${LINDORM_USERNAME:-lindorm}
LINDORM_PASSWORD: ${LINDORM_PASSWORD:-lindorm }
KIBANA_PORT: ${KIBANA_PORT:-5601}
# AnalyticDB configuration
ANALYTICDB_KEY_ID: ${ANALYTICDB_KEY_ID:-}
ANALYTICDB_KEY_SECRET: ${ANALYTICDB_KEY_SECRET:-}
ANALYTICDB_REGION_ID: ${ANALYTICDB_REGION_ID:-}
ANALYTICDB_INSTANCE_ID: ${ANALYTICDB_INSTANCE_ID:-}
ANALYTICDB_ACCOUNT: ${ANALYTICDB_ACCOUNT:-}
ANALYTICDB_PASSWORD: ${ANALYTICDB_PASSWORD:-}
ANALYTICDB_NAMESPACE: ${ANALYTICDB_NAMESPACE:-dify}
ANALYTICDB_NAMESPACE_PASSWORD: ${ANALYTICDB_NAMESPACE_PASSWORD:-}
ANALYTICDB_HOST: ${ANALYTICDB_HOST:-}
ANALYTICDB_PORT: ${ANALYTICDB_PORT:-5432}
ANALYTICDB_MIN_CONNECTION: ${ANALYTICDB_MIN_CONNECTION:-1}
ANALYTICDB_MAX_CONNECTION: ${ANALYTICDB_MAX_CONNECTION:-5}
ORACLE_HOST: ${ORACLE_HOST:-oracle}
ORACLE_PORT: ${ORACLE_PORT:-1521}
ORACLE_USER: ${ORACLE_USER:-dify}
ORACLE_PASSWORD: ${ORACLE_PASSWORD:-dify}
ORACLE_DATABASE: ${ORACLE_DATABASE:-FREEPDB1}
RELYT_HOST: ${RELYT_HOST:-db}
RELYT_PORT: ${RELYT_PORT:-5432}
RELYT_USER: ${RELYT_USER:-postgres}
RELYT_PASSWORD: ${RELYT_PASSWORD:-difyai123456}
RELYT_DATABASE: ${RELYT_DATABASE:-postgres}
OPENSEARCH_HOST: ${OPENSEARCH_HOST:-opensearch}
OPENSEARCH_PORT: ${OPENSEARCH_PORT:-9200}
OPENSEARCH_USER: ${OPENSEARCH_USER:-admin}
OPENSEARCH_PASSWORD: ${OPENSEARCH_PASSWORD:-admin}
OPENSEARCH_SECURE: ${OPENSEARCH_SECURE:-true}
TENCENT_VECTOR_DB_URL: ${TENCENT_VECTOR_DB_URL:-http://127.0.0.1}
TENCENT_VECTOR_DB_URL: ${TENCENT_VECTOR_DB_URL:-"http://127.0.0.1"}
TENCENT_VECTOR_DB_API_KEY: ${TENCENT_VECTOR_DB_API_KEY:-dify}
TENCENT_VECTOR_DB_TIMEOUT: ${TENCENT_VECTOR_DB_TIMEOUT:-30}
TENCENT_VECTOR_DB_USERNAME: ${TENCENT_VECTOR_DB_USERNAME:-dify}
TENCENT_VECTOR_DB_DATABASE: ${TENCENT_VECTOR_DB_DATABASE:-dify}
TENCENT_VECTOR_DB_SHARD: ${TENCENT_VECTOR_DB_SHARD:-1}
TENCENT_VECTOR_DB_REPLICAS: ${TENCENT_VECTOR_DB_REPLICAS:-2}
BAIDU_VECTOR_DB_ENDPOINT: ${BAIDU_VECTOR_DB_ENDPOINT:-http://127.0.0.1:5287}
ELASTICSEARCH_HOST: ${ELASTICSEARCH_HOST:-0.0.0.0}
ELASTICSEARCH_PORT: ${ELASTICSEARCH_PORT:-9200}
ELASTICSEARCH_USERNAME: ${ELASTICSEARCH_USERNAME:-elastic}
ELASTICSEARCH_PASSWORD: ${ELASTICSEARCH_PASSWORD:-elastic}
KIBANA_PORT: ${KIBANA_PORT:-5601}
BAIDU_VECTOR_DB_ENDPOINT: ${BAIDU_VECTOR_DB_ENDPOINT:-"http://127.0.0.1:5287"}
BAIDU_VECTOR_DB_CONNECTION_TIMEOUT_MS: ${BAIDU_VECTOR_DB_CONNECTION_TIMEOUT_MS:-30000}
BAIDU_VECTOR_DB_ACCOUNT: ${BAIDU_VECTOR_DB_ACCOUNT:-root}
BAIDU_VECTOR_DB_API_KEY: ${BAIDU_VECTOR_DB_API_KEY:-dify}
BAIDU_VECTOR_DB_DATABASE: ${BAIDU_VECTOR_DB_DATABASE:-dify}
BAIDU_VECTOR_DB_SHARD: ${BAIDU_VECTOR_DB_SHARD:-1}
BAIDU_VECTOR_DB_REPLICAS: ${BAIDU_VECTOR_DB_REPLICAS:-3}
VIKINGDB_ACCESS_KEY: ${VIKINGDB_ACCESS_KEY:-dify}
VIKINGDB_SECRET_KEY: ${VIKINGDB_SECRET_KEY:-dify}
VIKINGDB_ACCESS_KEY: ${VIKINGDB_ACCESS_KEY:-your-ak}
VIKINGDB_SECRET_KEY: ${VIKINGDB_SECRET_KEY:-your-sk}
VIKINGDB_REGION: ${VIKINGDB_REGION:-cn-shanghai}
VIKINGDB_HOST: ${VIKINGDB_HOST:-api-vikingdb.xxx.volces.com}
VIKINGDB_SCHEMA: ${VIKINGDB_SCHEMA:-http}
UPSTASH_VECTOR_URL: ${UPSTASH_VECTOR_URL:-https://xxx-vector.upstash.io}
UPSTASH_VECTOR_TOKEN: ${UPSTASH_VECTOR_TOKEN:-dify}
UPLOAD_FILE_SIZE_LIMIT: ${UPLOAD_FILE_SIZE_LIMIT:-15}
UPLOAD_FILE_BATCH_LIMIT: ${UPLOAD_FILE_BATCH_LIMIT:-5}
ETL_TYPE: ${ETL_TYPE:-dify}
UNSTRUCTURED_API_URL: ${UNSTRUCTURED_API_URL:-}
UNSTRUCTURED_API_KEY: ${UNSTRUCTURED_API_KEY:-}
PROMPT_GENERATION_MAX_TOKENS: ${PROMPT_GENERATION_MAX_TOKENS:-512}
CODE_GENERATION_MAX_TOKENS: ${CODE_GENERATION_MAX_TOKENS:-1024}
MULTIMODAL_SEND_IMAGE_FORMAT: ${MULTIMODAL_SEND_IMAGE_FORMAT:-base64}
MULTIMODAL_SEND_VIDEO_FORMAT: ${MULTIMODAL_SEND_VIDEO_FORMAT:-base64}
UPLOAD_IMAGE_FILE_SIZE_LIMIT: ${UPLOAD_IMAGE_FILE_SIZE_LIMIT:-10}
UPLOAD_VIDEO_FILE_SIZE_LIMIT: ${UPLOAD_VIDEO_FILE_SIZE_LIMIT:-100}
UPLOAD_AUDIO_FILE_SIZE_LIMIT: ${UPLOAD_AUDIO_FILE_SIZE_LIMIT:-50}
SENTRY_DSN: ${API_SENTRY_DSN:-}
SENTRY_TRACES_SAMPLE_RATE: ${API_SENTRY_TRACES_SAMPLE_RATE:-1.0}
SENTRY_PROFILES_SAMPLE_RATE: ${API_SENTRY_PROFILES_SAMPLE_RATE:-1.0}
NOTION_INTEGRATION_TYPE: ${NOTION_INTEGRATION_TYPE:-public}
NOTION_CLIENT_SECRET: ${NOTION_CLIENT_SECRET:-}
NOTION_CLIENT_ID: ${NOTION_CLIENT_ID:-}
NOTION_INTERNAL_SECRET: ${NOTION_INTERNAL_SECRET:-}
MAIL_TYPE: ${MAIL_TYPE:-resend}
MAIL_DEFAULT_SEND_FROM: ${MAIL_DEFAULT_SEND_FROM:-}
SMTP_SERVER: ${SMTP_SERVER:-}
SMTP_PORT: ${SMTP_PORT:-465}
SMTP_USERNAME: ${SMTP_USERNAME:-}
SMTP_PASSWORD: ${SMTP_PASSWORD:-}
SMTP_USE_TLS: ${SMTP_USE_TLS:-true}
SMTP_OPPORTUNISTIC_TLS: ${SMTP_OPPORTUNISTIC_TLS:-false}
RESEND_API_KEY: ${RESEND_API_KEY:-your-resend-api-key}
RESEND_API_URL: ${RESEND_API_URL:-https://api.resend.com}
INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH: ${INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH:-4000}
INVITE_EXPIRY_HOURS: ${INVITE_EXPIRY_HOURS:-72}
RESET_PASSWORD_TOKEN_EXPIRY_MINUTES: ${RESET_PASSWORD_TOKEN_EXPIRY_MINUTES:-5}
CODE_EXECUTION_ENDPOINT: ${CODE_EXECUTION_ENDPOINT:-http://sandbox:8194}
CODE_EXECUTION_API_KEY: ${SANDBOX_API_KEY:-dify-sandbox}
CODE_EXECUTION_CONNECT_TIMEOUT: ${CODE_EXECUTION_CONNECT_TIMEOUT:-10}
CODE_EXECUTION_READ_TIMEOUT: ${CODE_EXECUTION_READ_TIMEOUT:-60}
CODE_EXECUTION_WRITE_TIMEOUT: ${CODE_EXECUTION_WRITE_TIMEOUT:-10}
CODE_MAX_NUMBER: ${CODE_MAX_NUMBER:-9223372036854775807}
CODE_MIN_NUMBER: ${CODE_MIN_NUMBER:--9223372036854775808}
CODE_MAX_DEPTH: ${CODE_MAX_DEPTH:-5}
CODE_MAX_PRECISION: ${CODE_MAX_PRECISION:-20}
CODE_MAX_STRING_LENGTH: ${CODE_MAX_STRING_LENGTH:-80000}
TEMPLATE_TRANSFORM_MAX_LENGTH: ${TEMPLATE_TRANSFORM_MAX_LENGTH:-80000}
CODE_MAX_STRING_ARRAY_LENGTH: ${CODE_MAX_STRING_ARRAY_LENGTH:-30}
CODE_MAX_OBJECT_ARRAY_LENGTH: ${CODE_MAX_OBJECT_ARRAY_LENGTH:-30}
CODE_MAX_NUMBER_ARRAY_LENGTH: ${CODE_MAX_NUMBER_ARRAY_LENGTH:-1000}
WORKFLOW_MAX_EXECUTION_STEPS: ${WORKFLOW_MAX_EXECUTION_STEPS:-500}
WORKFLOW_MAX_EXECUTION_TIME: ${WORKFLOW_MAX_EXECUTION_TIME:-1200}
WORKFLOW_CALL_MAX_DEPTH: ${WORKFLOW_CALL_MAX_DEPTH:-5}
SSRF_PROXY_HTTP_URL: ${SSRF_PROXY_HTTP_URL:-http://ssrf_proxy:3128}
SSRF_PROXY_HTTPS_URL: ${SSRF_PROXY_HTTPS_URL:-http://ssrf_proxy:3128}
HTTP_REQUEST_NODE_MAX_BINARY_SIZE: ${HTTP_REQUEST_NODE_MAX_BINARY_SIZE:-10485760}
HTTP_REQUEST_NODE_MAX_TEXT_SIZE: ${HTTP_REQUEST_NODE_MAX_TEXT_SIZE:-1048576}
APP_MAX_EXECUTION_TIME: ${APP_MAX_EXECUTION_TIME:-12000}
POSITION_TOOL_PINS: ${POSITION_TOOL_PINS:-}
POSITION_TOOL_INCLUDES: ${POSITION_TOOL_INCLUDES:-}
POSITION_TOOL_EXCLUDES: ${POSITION_TOOL_EXCLUDES:-}
POSITION_PROVIDER_PINS: ${POSITION_PROVIDER_PINS:-}
POSITION_PROVIDER_INCLUDES: ${POSITION_PROVIDER_INCLUDES:-}
POSITION_PROVIDER_EXCLUDES: ${POSITION_PROVIDER_EXCLUDES:-}
MAX_VARIABLE_SIZE: ${MAX_VARIABLE_SIZE:-204800}
OCEANBASE_VECTOR_HOST: ${OCEANBASE_VECTOR_HOST:-http://oceanbase-vector}
VIKINGDB_CONNECTION_TIMEOUT: ${VIKINGDB_CONNECTION_TIMEOUT:-30}
VIKINGDB_SOCKET_TIMEOUT: ${VIKINGDB_SOCKET_TIMEOUT:-30}
LINDORM_URL: ${LINDORM_URL:-"http://lindorm:30070"}
LINDORM_USERNAME: ${LINDORM_USERNAME:-lindorm}
LINDORM_PASSWORD: ${LINDORM_PASSWORD:-lindorm}
OCEANBASE_VECTOR_HOST: ${OCEANBASE_VECTOR_HOST:-oceanbase}
OCEANBASE_VECTOR_PORT: ${OCEANBASE_VECTOR_PORT:-2881}
OCEANBASE_VECTOR_USER: ${OCEANBASE_VECTOR_USER:-root@test}
OCEANBASE_VECTOR_PASSWORD: ${OCEANBASE_VECTOR_PASSWORD:-difyai123456}
OCEANBASE_VECTOR_DATABASE: ${OCEANBASE_VECTOR_DATABASE:-test}
OCEANBASE_CLUSTER_NAME: ${OCEANBASE_CLUSTER_NAME:-difyai}
OCEANBASE_MEMORY_LIMIT: ${OCEANBASE_MEMORY_LIMIT:-6G}
UPSTASH_VECTOR_URL: ${UPSTASH_VECTOR_URL:-"https://xxx-vector.upstash.io"}
UPSTASH_VECTOR_TOKEN: ${UPSTASH_VECTOR_TOKEN:-dify}
UPLOAD_FILE_SIZE_LIMIT: ${UPLOAD_FILE_SIZE_LIMIT:-15}
UPLOAD_FILE_BATCH_LIMIT: ${UPLOAD_FILE_BATCH_LIMIT:-5}
ETL_TYPE: ${ETL_TYPE:-dify}
UNSTRUCTURED_API_URL: ${UNSTRUCTURED_API_URL:-}
UNSTRUCTURED_API_KEY: ${UNSTRUCTURED_API_KEY:-}
SCARF_NO_ANALYTICS: ${SCARF_NO_ANALYTICS:-true}
PROMPT_GENERATION_MAX_TOKENS: ${PROMPT_GENERATION_MAX_TOKENS:-512}
CODE_GENERATION_MAX_TOKENS: ${CODE_GENERATION_MAX_TOKENS:-1024}
MULTIMODAL_SEND_FORMAT: ${MULTIMODAL_SEND_FORMAT:-base64}
UPLOAD_IMAGE_FILE_SIZE_LIMIT: ${UPLOAD_IMAGE_FILE_SIZE_LIMIT:-10}
UPLOAD_VIDEO_FILE_SIZE_LIMIT: ${UPLOAD_VIDEO_FILE_SIZE_LIMIT:-100}
UPLOAD_AUDIO_FILE_SIZE_LIMIT: ${UPLOAD_AUDIO_FILE_SIZE_LIMIT:-50}
API_SENTRY_DSN: ${API_SENTRY_DSN:-}
API_SENTRY_TRACES_SAMPLE_RATE: ${API_SENTRY_TRACES_SAMPLE_RATE:-1.0}
API_SENTRY_PROFILES_SAMPLE_RATE: ${API_SENTRY_PROFILES_SAMPLE_RATE:-1.0}
WEB_SENTRY_DSN: ${WEB_SENTRY_DSN:-}
NOTION_INTEGRATION_TYPE: ${NOTION_INTEGRATION_TYPE:-public}
NOTION_CLIENT_SECRET: ${NOTION_CLIENT_SECRET:-}
NOTION_CLIENT_ID: ${NOTION_CLIENT_ID:-}
NOTION_INTERNAL_SECRET: ${NOTION_INTERNAL_SECRET:-}
MAIL_TYPE: ${MAIL_TYPE:-resend}
MAIL_DEFAULT_SEND_FROM: ${MAIL_DEFAULT_SEND_FROM:-}
RESEND_API_URL: ${RESEND_API_URL:-"https://api.resend.com"}
RESEND_API_KEY: ${RESEND_API_KEY:-your-resend-api-key}
SMTP_SERVER: ${SMTP_SERVER:-}
SMTP_PORT: ${SMTP_PORT:-465}
SMTP_USERNAME: ${SMTP_USERNAME:-}
SMTP_PASSWORD: ${SMTP_PASSWORD:-}
SMTP_USE_TLS: ${SMTP_USE_TLS:-true}
SMTP_OPPORTUNISTIC_TLS: ${SMTP_OPPORTUNISTIC_TLS:-false}
INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH: ${INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH:-4000}
INVITE_EXPIRY_HOURS: ${INVITE_EXPIRY_HOURS:-72}
RESET_PASSWORD_TOKEN_EXPIRY_MINUTES: ${RESET_PASSWORD_TOKEN_EXPIRY_MINUTES:-5}
CODE_EXECUTION_ENDPOINT: ${CODE_EXECUTION_ENDPOINT:-"http://sandbox:8194"}
CODE_EXECUTION_API_KEY: ${CODE_EXECUTION_API_KEY:-dify-sandbox}
CODE_MAX_NUMBER: ${CODE_MAX_NUMBER:-9223372036854775807}
CODE_MIN_NUMBER: ${CODE_MIN_NUMBER:--9223372036854775808}
CODE_MAX_DEPTH: ${CODE_MAX_DEPTH:-5}
CODE_MAX_PRECISION: ${CODE_MAX_PRECISION:-20}
CODE_MAX_STRING_LENGTH: ${CODE_MAX_STRING_LENGTH:-80000}
CODE_MAX_STRING_ARRAY_LENGTH: ${CODE_MAX_STRING_ARRAY_LENGTH:-30}
CODE_MAX_OBJECT_ARRAY_LENGTH: ${CODE_MAX_OBJECT_ARRAY_LENGTH:-30}
CODE_MAX_NUMBER_ARRAY_LENGTH: ${CODE_MAX_NUMBER_ARRAY_LENGTH:-1000}
CODE_EXECUTION_CONNECT_TIMEOUT: ${CODE_EXECUTION_CONNECT_TIMEOUT:-10}
CODE_EXECUTION_READ_TIMEOUT: ${CODE_EXECUTION_READ_TIMEOUT:-60}
CODE_EXECUTION_WRITE_TIMEOUT: ${CODE_EXECUTION_WRITE_TIMEOUT:-10}
TEMPLATE_TRANSFORM_MAX_LENGTH: ${TEMPLATE_TRANSFORM_MAX_LENGTH:-80000}
WORKFLOW_MAX_EXECUTION_STEPS: ${WORKFLOW_MAX_EXECUTION_STEPS:-500}
WORKFLOW_MAX_EXECUTION_TIME: ${WORKFLOW_MAX_EXECUTION_TIME:-1200}
WORKFLOW_CALL_MAX_DEPTH: ${WORKFLOW_CALL_MAX_DEPTH:-5}
MAX_VARIABLE_SIZE: ${MAX_VARIABLE_SIZE:-204800}
WORKFLOW_FILE_UPLOAD_LIMIT: ${WORKFLOW_FILE_UPLOAD_LIMIT:-10}
HTTP_REQUEST_NODE_MAX_BINARY_SIZE: ${HTTP_REQUEST_NODE_MAX_BINARY_SIZE:-10485760}
HTTP_REQUEST_NODE_MAX_TEXT_SIZE: ${HTTP_REQUEST_NODE_MAX_TEXT_SIZE:-1048576}
SSRF_PROXY_HTTP_URL: ${SSRF_PROXY_HTTP_URL:-"http://ssrf_proxy:3128"}
SSRF_PROXY_HTTPS_URL: ${SSRF_PROXY_HTTPS_URL:-"http://ssrf_proxy:3128"}
TEXT_GENERATION_TIMEOUT_MS: ${TEXT_GENERATION_TIMEOUT_MS:-60000}
PGUSER: ${PGUSER:-${DB_USERNAME}}
POSTGRES_PASSWORD: ${POSTGRES_PASSWORD:-${DB_PASSWORD}}
POSTGRES_DB: ${POSTGRES_DB:-${DB_DATABASE}}
PGDATA: ${PGDATA:-/var/lib/postgresql/data/pgdata}
SANDBOX_API_KEY: ${SANDBOX_API_KEY:-dify-sandbox}
SANDBOX_GIN_MODE: ${SANDBOX_GIN_MODE:-release}
SANDBOX_WORKER_TIMEOUT: ${SANDBOX_WORKER_TIMEOUT:-15}
SANDBOX_ENABLE_NETWORK: ${SANDBOX_ENABLE_NETWORK:-true}
SANDBOX_HTTP_PROXY: ${SANDBOX_HTTP_PROXY:-"http://ssrf_proxy:3128"}
SANDBOX_HTTPS_PROXY: ${SANDBOX_HTTPS_PROXY:-"http://ssrf_proxy:3128"}
SANDBOX_PORT: ${SANDBOX_PORT:-8194}
WEAVIATE_PERSISTENCE_DATA_PATH: ${WEAVIATE_PERSISTENCE_DATA_PATH:-/var/lib/weaviate}
WEAVIATE_QUERY_DEFAULTS_LIMIT: ${WEAVIATE_QUERY_DEFAULTS_LIMIT:-25}
WEAVIATE_AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED: ${WEAVIATE_AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED:-true}
WEAVIATE_DEFAULT_VECTORIZER_MODULE: ${WEAVIATE_DEFAULT_VECTORIZER_MODULE:-none}
WEAVIATE_CLUSTER_HOSTNAME: ${WEAVIATE_CLUSTER_HOSTNAME:-node1}
WEAVIATE_AUTHENTICATION_APIKEY_ENABLED: ${WEAVIATE_AUTHENTICATION_APIKEY_ENABLED:-true}
WEAVIATE_AUTHENTICATION_APIKEY_ALLOWED_KEYS: ${WEAVIATE_AUTHENTICATION_APIKEY_ALLOWED_KEYS:-WVF5YThaHlkYwhGUSmCRgsX3tD5ngdN8pkih}
WEAVIATE_AUTHENTICATION_APIKEY_USERS: ${WEAVIATE_AUTHENTICATION_APIKEY_USERS:-hello@dify.ai}
WEAVIATE_AUTHORIZATION_ADMINLIST_ENABLED: ${WEAVIATE_AUTHORIZATION_ADMINLIST_ENABLED:-true}
WEAVIATE_AUTHORIZATION_ADMINLIST_USERS: ${WEAVIATE_AUTHORIZATION_ADMINLIST_USERS:-hello@dify.ai}
CHROMA_SERVER_AUTHN_CREDENTIALS: ${CHROMA_SERVER_AUTHN_CREDENTIALS:-difyai123456}
CHROMA_SERVER_AUTHN_PROVIDER: ${CHROMA_SERVER_AUTHN_PROVIDER:-chromadb.auth.token_authn.TokenAuthenticationServerProvider}
CHROMA_IS_PERSISTENT: ${CHROMA_IS_PERSISTENT:-TRUE}
ORACLE_PWD: ${ORACLE_PWD:-Dify123456}
ORACLE_CHARACTERSET: ${ORACLE_CHARACTERSET:-AL32UTF8}
ETCD_AUTO_COMPACTION_MODE: ${ETCD_AUTO_COMPACTION_MODE:-revision}
ETCD_AUTO_COMPACTION_RETENTION: ${ETCD_AUTO_COMPACTION_RETENTION:-1000}
ETCD_QUOTA_BACKEND_BYTES: ${ETCD_QUOTA_BACKEND_BYTES:-4294967296}
ETCD_SNAPSHOT_COUNT: ${ETCD_SNAPSHOT_COUNT:-50000}
MINIO_ACCESS_KEY: ${MINIO_ACCESS_KEY:-minioadmin}
MINIO_SECRET_KEY: ${MINIO_SECRET_KEY:-minioadmin}
ETCD_ENDPOINTS: ${ETCD_ENDPOINTS:-"etcd:2379"}
MINIO_ADDRESS: ${MINIO_ADDRESS:-"minio:9000"}
MILVUS_AUTHORIZATION_ENABLED: ${MILVUS_AUTHORIZATION_ENABLED:-true}
PGVECTOR_PGUSER: ${PGVECTOR_PGUSER:-postgres}
PGVECTOR_POSTGRES_PASSWORD: ${PGVECTOR_POSTGRES_PASSWORD:-difyai123456}
PGVECTOR_POSTGRES_DB: ${PGVECTOR_POSTGRES_DB:-dify}
PGVECTOR_PGDATA: ${PGVECTOR_PGDATA:-/var/lib/postgresql/data/pgdata}
OPENSEARCH_DISCOVERY_TYPE: ${OPENSEARCH_DISCOVERY_TYPE:-single-node}
OPENSEARCH_BOOTSTRAP_MEMORY_LOCK: ${OPENSEARCH_BOOTSTRAP_MEMORY_LOCK:-true}
OPENSEARCH_JAVA_OPTS_MIN: ${OPENSEARCH_JAVA_OPTS_MIN:-512m}
OPENSEARCH_JAVA_OPTS_MAX: ${OPENSEARCH_JAVA_OPTS_MAX:-1024m}
OPENSEARCH_INITIAL_ADMIN_PASSWORD: ${OPENSEARCH_INITIAL_ADMIN_PASSWORD:-Qazwsxedc!@#123}
OPENSEARCH_MEMLOCK_SOFT: ${OPENSEARCH_MEMLOCK_SOFT:--1}
OPENSEARCH_MEMLOCK_HARD: ${OPENSEARCH_MEMLOCK_HARD:--1}
OPENSEARCH_NOFILE_SOFT: ${OPENSEARCH_NOFILE_SOFT:-65536}
OPENSEARCH_NOFILE_HARD: ${OPENSEARCH_NOFILE_HARD:-65536}
NGINX_SERVER_NAME: ${NGINX_SERVER_NAME:-_}
NGINX_HTTPS_ENABLED: ${NGINX_HTTPS_ENABLED:-false}
NGINX_PORT: ${NGINX_PORT:-80}
NGINX_SSL_PORT: ${NGINX_SSL_PORT:-443}
NGINX_SSL_CERT_FILENAME: ${NGINX_SSL_CERT_FILENAME:-dify.crt}
NGINX_SSL_CERT_KEY_FILENAME: ${NGINX_SSL_CERT_KEY_FILENAME:-dify.key}
NGINX_SSL_PROTOCOLS: ${NGINX_SSL_PROTOCOLS:-"TLSv1.1 TLSv1.2 TLSv1.3"}
NGINX_WORKER_PROCESSES: ${NGINX_WORKER_PROCESSES:-auto}
NGINX_CLIENT_MAX_BODY_SIZE: ${NGINX_CLIENT_MAX_BODY_SIZE:-15M}
NGINX_KEEPALIVE_TIMEOUT: ${NGINX_KEEPALIVE_TIMEOUT:-65}
NGINX_PROXY_READ_TIMEOUT: ${NGINX_PROXY_READ_TIMEOUT:-3600s}
NGINX_PROXY_SEND_TIMEOUT: ${NGINX_PROXY_SEND_TIMEOUT:-3600s}
NGINX_ENABLE_CERTBOT_CHALLENGE: ${NGINX_ENABLE_CERTBOT_CHALLENGE:-false}
CERTBOT_EMAIL: ${CERTBOT_EMAIL:-your_email@example.com}
CERTBOT_DOMAIN: ${CERTBOT_DOMAIN:-your_domain.com}
CERTBOT_OPTIONS: ${CERTBOT_OPTIONS:-}
SSRF_HTTP_PORT: ${SSRF_HTTP_PORT:-3128}
SSRF_COREDUMP_DIR: ${SSRF_COREDUMP_DIR:-/var/spool/squid}
SSRF_REVERSE_PROXY_PORT: ${SSRF_REVERSE_PROXY_PORT:-8194}
SSRF_SANDBOX_HOST: ${SSRF_SANDBOX_HOST:-sandbox}
COMPOSE_PROFILES: ${COMPOSE_PROFILES:-"${VECTOR_STORE:-weaviate}"}
EXPOSE_NGINX_PORT: ${EXPOSE_NGINX_PORT:-80}
EXPOSE_NGINX_SSL_PORT: ${EXPOSE_NGINX_SSL_PORT:-443}
POSITION_TOOL_PINS: ${POSITION_TOOL_PINS:-}
POSITION_TOOL_INCLUDES: ${POSITION_TOOL_INCLUDES:-}
POSITION_TOOL_EXCLUDES: ${POSITION_TOOL_EXCLUDES:-}
POSITION_PROVIDER_PINS: ${POSITION_PROVIDER_PINS:-}
POSITION_PROVIDER_INCLUDES: ${POSITION_PROVIDER_INCLUDES:-}
POSITION_PROVIDER_EXCLUDES: ${POSITION_PROVIDER_EXCLUDES:-}
CSP_WHITELIST: ${CSP_WHITELIST:-}
CREATE_TIDB_SERVICE_JOB_ENABLED: ${CREATE_TIDB_SERVICE_JOB_ENABLED:-false}
RETRIEVAL_TOP_N: ${RETRIEVAL_TOP_N:-0}
MAX_SUBMIT_COUNT: ${MAX_SUBMIT_COUNT:-100}
HTTP_PROXY: ${HTTP_PROXY:-}
HTTPS_PROXY: ${HTTPS_PROXY:-}
services:
# API service
api:
image: langgenius/dify-api:0.13.2
image: langgenius/dify-api:0.14.0
restart: always
environment:
# Use the shared environment variables.
<<: *shared-api-worker-env
# Startup mode, 'api' starts the API server.
MODE: api
SENTRY_DSN: ${API_SENTRY_DSN:-}
SENTRY_TRACES_SAMPLE_RATE: ${API_SENTRY_TRACES_SAMPLE_RATE:-1.0}
SENTRY_PROFILES_SAMPLE_RATE: ${API_SENTRY_PROFILES_SAMPLE_RATE:-1.0}
depends_on:
- db
- redis
@ -312,13 +412,16 @@ services:
# worker service
# The Celery worker for processing the queue.
worker:
image: langgenius/dify-api:0.13.2
image: langgenius/dify-api:0.14.0
restart: always
environment:
# Use the shared environment variables.
<<: *shared-api-worker-env
# Startup mode, 'worker' starts the Celery worker for processing the queue.
MODE: worker
SENTRY_DSN: ${API_SENTRY_DSN:-}
SENTRY_TRACES_SAMPLE_RATE: ${API_SENTRY_TRACES_SAMPLE_RATE:-1.0}
SENTRY_PROFILES_SAMPLE_RATE: ${API_SENTRY_PROFILES_SAMPLE_RATE:-1.0}
depends_on:
- db
- redis
@ -331,7 +434,7 @@ services:
# Frontend web application.
web:
image: langgenius/dify-web:0.13.2
image: langgenius/dify-web:0.14.0
restart: always
environment:
CONSOLE_API_URL: ${CONSOLE_API_URL:-}
@ -491,6 +594,16 @@ services:
- '${EXPOSE_NGINX_PORT:-80}:${NGINX_PORT:-80}'
- '${EXPOSE_NGINX_SSL_PORT:-443}:${NGINX_SSL_PORT:-443}'
# The TiDB vector store.
# For production use, please refer to https://github.com/pingcap/tidb-docker-compose
tidb:
image: pingcap/tidb:v8.4.0
profiles:
- tidb
command:
- --store=unistore
restart: always
# The Weaviate vector store.
weaviate:
image: semitechnologies/weaviate:1.19.0

110
docker/generate_docker_compose Executable file
View File

@ -0,0 +1,110 @@
#!/usr/bin/env python3
import os
import re
import sys
def parse_env_example(file_path):
"""
Parses the .env.example file and returns a dictionary with variable names as keys and default values as values.
"""
env_vars = {}
with open(file_path, "r") as f:
for line_number, line in enumerate(f, 1):
line = line.strip()
# Ignore empty lines and comments
if not line or line.startswith("#"):
continue
# Use regex to parse KEY=VALUE
match = re.match(r"^([^=]+)=(.*)$", line)
if match:
key = match.group(1).strip()
value = match.group(2).strip()
# Remove possible quotes around the value
if (value.startswith('"') and value.endswith('"')) or (
value.startswith("'") and value.endswith("'")
):
value = value[1:-1]
env_vars[key] = value
else:
print(f"Warning: Unable to parse line {line_number}: {line}")
return env_vars
def generate_shared_env_block(env_vars, anchor_name="shared-api-worker-env"):
"""
Generates a shared environment variables block as a YAML string.
"""
lines = [f"x-shared-env: &{anchor_name}"]
for key, default in env_vars.items():
# If default value is empty, use ${KEY:-}
if default == "":
lines.append(f" {key}: ${{{key}:-}}")
else:
# If default value contains special characters, wrap it in quotes
if re.search(r"[:\s]", default):
default = f'"{default}"'
lines.append(f" {key}: ${{{key}:-{default}}}")
return "\n".join(lines)
def insert_shared_env(template_path, output_path, shared_env_block, header_comments):
"""
Inserts the shared environment variables block and header comments into the template file,
removing any existing x-shared-env anchors, and generates the final docker-compose.yaml file.
"""
with open(template_path, "r") as f:
template_content = f.read()
# Remove existing x-shared-env: &shared-api-worker-env lines
template_content = re.sub(
r"^x-shared-env: &shared-api-worker-env\s*\n?",
"",
template_content,
flags=re.MULTILINE,
)
# Prepare the final content with header comments and shared env block
final_content = f"{header_comments}\n{shared_env_block}\n\n{template_content}"
with open(output_path, "w") as f:
f.write(final_content)
print(f"Generated {output_path}")
def main():
env_example_path = ".env.example"
template_path = "docker-compose-template.yaml"
output_path = "docker-compose.yaml"
anchor_name = "shared-api-worker-env" # Can be modified as needed
# Define header comments to be added at the top of docker-compose.yaml
header_comments = (
"# ==================================================================\n"
"# WARNING: This file is auto-generated by generate_docker_compose\n"
"# Do not modify this file directly. Instead, update the .env.example\n"
"# or docker-compose-template.yaml and regenerate this file.\n"
"# ==================================================================\n"
)
# Check if required files exist
for path in [env_example_path, template_path]:
if not os.path.isfile(path):
print(f"Error: File {path} does not exist.")
sys.exit(1)
# Parse .env.example file
env_vars = parse_env_example(env_example_path)
if not env_vars:
print("Warning: No environment variables found in .env.example.")
# Generate shared environment variables block
shared_env_block = generate_shared_env_block(env_vars, anchor_name)
# Insert shared environment variables block and header comments into the template
insert_shared_env(template_path, output_path, shared_env_block, header_comments)
if __name__ == "__main__":
main()

View File

@ -25,6 +25,7 @@ import { fetchAppDetail, fetchAppSSO } from '@/service/apps'
import AppContext, { useAppContext } from '@/context/app-context'
import Loading from '@/app/components/base/loading'
import useBreakpoints, { MediaType } from '@/hooks/use-breakpoints'
import type { App } from '@/types/app'
export type IAppDetailLayoutProps = {
children: React.ReactNode
@ -41,12 +42,14 @@ const AppDetailLayout: FC<IAppDetailLayoutProps> = (props) => {
const pathname = usePathname()
const media = useBreakpoints()
const isMobile = media === MediaType.mobile
const { isCurrentWorkspaceEditor } = useAppContext()
const { isCurrentWorkspaceEditor, isLoadingCurrentWorkspace } = useAppContext()
const { appDetail, setAppDetail, setAppSiderbarExpand } = useStore(useShallow(state => ({
appDetail: state.appDetail,
setAppDetail: state.setAppDetail,
setAppSiderbarExpand: state.setAppSiderbarExpand,
})))
const [isLoadingAppDetail, setIsLoadingAppDetail] = useState(false)
const [appDetailRes, setAppDetailRes] = useState<App | null>(null)
const [navigation, setNavigation] = useState<Array<{
name: string
href: string
@ -107,33 +110,43 @@ const AppDetailLayout: FC<IAppDetailLayoutProps> = (props) => {
useEffect(() => {
setAppDetail()
setIsLoadingAppDetail(true)
fetchAppDetail({ url: '/apps', id: appId }).then((res) => {
// redirection
const canIEditApp = isCurrentWorkspaceEditor
if (!canIEditApp && (pathname.endsWith('configuration') || pathname.endsWith('workflow') || pathname.endsWith('logs'))) {
router.replace(`/app/${appId}/overview`)
return
}
if ((res.mode === 'workflow' || res.mode === 'advanced-chat') && (pathname).endsWith('configuration')) {
router.replace(`/app/${appId}/workflow`)
}
else if ((res.mode !== 'workflow' && res.mode !== 'advanced-chat') && (pathname).endsWith('workflow')) {
router.replace(`/app/${appId}/configuration`)
}
else {
setAppDetail({ ...res, enable_sso: false })
setNavigation(getNavigations(appId, isCurrentWorkspaceEditor, res.mode))
if (systemFeatures.enable_web_sso_switch_component && canIEditApp) {
fetchAppSSO({ appId }).then((ssoRes) => {
setAppDetail({ ...res, enable_sso: ssoRes.enabled })
})
}
}
setAppDetailRes(res)
}).catch((e: any) => {
if (e.status === 404)
router.replace('/apps')
}).finally(() => {
setIsLoadingAppDetail(false)
})
}, [appId, isCurrentWorkspaceEditor, systemFeatures, getNavigations, pathname, router, setAppDetail])
}, [appId, router, setAppDetail])
useEffect(() => {
if (!appDetailRes || isLoadingCurrentWorkspace || isLoadingAppDetail)
return
const res = appDetailRes
// redirection
const canIEditApp = isCurrentWorkspaceEditor
if (!canIEditApp && (pathname.endsWith('configuration') || pathname.endsWith('workflow') || pathname.endsWith('logs'))) {
router.replace(`/app/${appId}/overview`)
return
}
if ((res.mode === 'workflow' || res.mode === 'advanced-chat') && (pathname).endsWith('configuration')) {
router.replace(`/app/${appId}/workflow`)
}
else if ((res.mode !== 'workflow' && res.mode !== 'advanced-chat') && (pathname).endsWith('workflow')) {
router.replace(`/app/${appId}/configuration`)
}
else {
setAppDetail({ ...res, enable_sso: false })
setNavigation(getNavigations(appId, isCurrentWorkspaceEditor, res.mode))
if (systemFeatures.enable_web_sso_switch_component && canIEditApp) {
fetchAppSSO({ appId }).then((ssoRes) => {
setAppDetail({ ...res, enable_sso: ssoRes.enabled })
})
}
}
}, [appDetailRes, appId, getNavigations, isCurrentWorkspaceEditor, isLoadingAppDetail, isLoadingCurrentWorkspace, pathname, router, setAppDetail, systemFeatures.enable_web_sso_switch_component])
useUnmount(() => {
setAppDetail()

View File

@ -25,10 +25,10 @@ const AppCard = ({
<div className='relative shrink-0'>
<AppIcon
size='large'
iconType={app.app.icon_type}
icon={app.app.icon}
background={app.app.icon_background}
imageUrl={app.app.icon_url}
iconType={appBasicInfo.icon_type}
icon={appBasicInfo.icon}
background={appBasicInfo.icon_background}
imageUrl={appBasicInfo.icon_url}
/>
<AppTypeIcon wrapperClassName='absolute -bottom-0.5 -right-0.5 w-4 h-4 rounded-[4px] border border-divider-regular outline outline-components-panel-on-panel-item-bg'
className='w-3 h-3' type={appBasicInfo.mode} />

View File

@ -3,7 +3,6 @@
import type { FC } from 'react'
import { init } from 'emoji-mart'
import data from '@emoji-mart/data'
import Image from 'next/image'
import { cva } from 'class-variance-authority'
import type { AppIconType } from '@/types/app'
import classNames from '@/utils/classnames'
@ -62,7 +61,8 @@ const AppIcon: FC<AppIconProps> = ({
onClick={onClick}
>
{isValidImageIcon
? <Image src={imageUrl} className="w-full h-full" alt="app icon" />
// eslint-disable-next-line @next/next/no-img-element
? <img src={imageUrl} className="w-full h-full" alt="app icon" />
: (innerIcon || ((icon && icon !== '') ? <em-emoji id={icon} /> : <em-emoji id='🤖' />))
}
</span>

View File

@ -675,7 +675,7 @@ Chat applications support session persistence, allowing previous chat history to
</Col>
<Col sticky>
<CodeGroup title="Request" tag="GET" label="/conversations" targetCode={`curl -X GET '${props.appDetail.api_base_url}/conversations?user=abc-123&last_id=&limit=20'`}>
<CodeGroup title="Request" tag="GET" label="/conversations" targetCode={`curl -X GET '${props.appDetail.api_base_url}/conversations?user=abc-123&last_id=&limit=20' \\\n --header 'Authorization: Bearer {api_key}'`}>
```bash {{ title: 'cURL' }}
curl -X GET '${props.appDetail.api_base_url}/conversations?user=abc-123&last_id=&limit=20' \

Some files were not shown because too many files have changed in this diff Show More