diff --git a/api/core/rag/retrieval/dataset_retrieval.py b/api/core/rag/retrieval/dataset_retrieval.py index baf879df95..8f6c620925 100644 --- a/api/core/rag/retrieval/dataset_retrieval.py +++ b/api/core/rag/retrieval/dataset_retrieval.py @@ -7,7 +7,7 @@ from collections.abc import Generator, Mapping from typing import Any, Union, cast from flask import Flask, current_app -from sqlalchemy import and_, or_, select +from sqlalchemy import and_, literal, or_, select from sqlalchemy.orm import Session from core.app.app_config.entities import ( @@ -1036,7 +1036,7 @@ class DatasetRetrieval: if automatic_metadata_filters: conditions = [] for sequence, filter in enumerate(automatic_metadata_filters): - self._process_metadata_filter_func( + self.process_metadata_filter_func( sequence, filter.get("condition"), # type: ignore filter.get("metadata_name"), # type: ignore @@ -1072,7 +1072,7 @@ class DatasetRetrieval: value=expected_value, ) ) - filters = self._process_metadata_filter_func( + filters = self.process_metadata_filter_func( sequence, condition.comparison_operator, metadata_name, @@ -1168,8 +1168,9 @@ class DatasetRetrieval: return None return automatic_metadata_filters - def _process_metadata_filter_func( - self, sequence: int, condition: str, metadata_name: str, value: Any | None, filters: list + @classmethod + def process_metadata_filter_func( + cls, sequence: int, condition: str, metadata_name: str, value: Any | None, filters: list ): if value is None and condition not in ("empty", "not empty"): return filters @@ -1218,6 +1219,18 @@ class DatasetRetrieval: case "≥" | ">=": filters.append(DatasetDocument.doc_metadata[metadata_name].as_float() >= value) + case "in": + if isinstance(value, str): + value_list = [v.strip() for v in value.split(",") if v.strip()] + elif isinstance(value, (list, tuple)): + value_list = [str(v) for v in value if v is not None] + else: + value_list = [str(value)] if value is not None else [] + + if not value_list: + filters.append(literal(False)) + else: + filters.append(json_field.in_(value_list)) case _: pass diff --git a/api/core/workflow/nodes/knowledge_retrieval/knowledge_retrieval_node.py b/api/core/workflow/nodes/knowledge_retrieval/knowledge_retrieval_node.py index adc474bd60..8670a71aa3 100644 --- a/api/core/workflow/nodes/knowledge_retrieval/knowledge_retrieval_node.py +++ b/api/core/workflow/nodes/knowledge_retrieval/knowledge_retrieval_node.py @@ -6,7 +6,7 @@ from collections import defaultdict from collections.abc import Mapping, Sequence from typing import TYPE_CHECKING, Any, cast -from sqlalchemy import and_, func, literal, or_, select +from sqlalchemy import and_, func, or_, select from sqlalchemy.orm import sessionmaker from core.app.app_config.entities import DatasetRetrieveConfigEntity @@ -460,7 +460,7 @@ class KnowledgeRetrievalNode(LLMUsageTrackingMixin, Node[KnowledgeRetrievalNodeD if automatic_metadata_filters: conditions = [] for sequence, filter in enumerate(automatic_metadata_filters): - self._process_metadata_filter_func( + DatasetRetrieval.process_metadata_filter_func( sequence, filter.get("condition", ""), filter.get("metadata_name", ""), @@ -504,7 +504,7 @@ class KnowledgeRetrievalNode(LLMUsageTrackingMixin, Node[KnowledgeRetrievalNodeD value=expected_value, ) ) - filters = self._process_metadata_filter_func( + filters = DatasetRetrieval.process_metadata_filter_func( sequence, condition.comparison_operator, metadata_name, @@ -603,87 +603,6 @@ class KnowledgeRetrievalNode(LLMUsageTrackingMixin, Node[KnowledgeRetrievalNodeD return [], usage return automatic_metadata_filters, usage - def _process_metadata_filter_func( - self, sequence: int, condition: str, metadata_name: str, value: Any, filters: list[Any] - ) -> list[Any]: - if value is None and condition not in ("empty", "not empty"): - return filters - - json_field = Document.doc_metadata[metadata_name].as_string() - - match condition: - case "contains": - filters.append(json_field.like(f"%{value}%")) - - case "not contains": - filters.append(json_field.notlike(f"%{value}%")) - - case "start with": - filters.append(json_field.like(f"{value}%")) - - case "end with": - filters.append(json_field.like(f"%{value}")) - case "in": - if isinstance(value, str): - value_list = [v.strip() for v in value.split(",") if v.strip()] - elif isinstance(value, (list, tuple)): - value_list = [str(v) for v in value if v is not None] - else: - value_list = [str(value)] if value is not None else [] - - if not value_list: - filters.append(literal(False)) - else: - filters.append(json_field.in_(value_list)) - - case "not in": - if isinstance(value, str): - value_list = [v.strip() for v in value.split(",") if v.strip()] - elif isinstance(value, (list, tuple)): - value_list = [str(v) for v in value if v is not None] - else: - value_list = [str(value)] if value is not None else [] - - if not value_list: - filters.append(literal(True)) - else: - filters.append(json_field.notin_(value_list)) - - case "is" | "=": - if isinstance(value, str): - filters.append(json_field == value) - elif isinstance(value, (int, float)): - filters.append(Document.doc_metadata[metadata_name].as_float() == value) - - case "is not" | "≠": - if isinstance(value, str): - filters.append(json_field != value) - elif isinstance(value, (int, float)): - filters.append(Document.doc_metadata[metadata_name].as_float() != value) - - case "empty": - filters.append(Document.doc_metadata[metadata_name].is_(None)) - - case "not empty": - filters.append(Document.doc_metadata[metadata_name].isnot(None)) - - case "before" | "<": - filters.append(Document.doc_metadata[metadata_name].as_float() < value) - - case "after" | ">": - filters.append(Document.doc_metadata[metadata_name].as_float() > value) - - case "≤" | "<=": - filters.append(Document.doc_metadata[metadata_name].as_float() <= value) - - case "≥" | ">=": - filters.append(Document.doc_metadata[metadata_name].as_float() >= value) - - case _: - pass - - return filters - @classmethod def _extract_variable_selector_to_variable_mapping( cls, diff --git a/api/tests/unit_tests/core/rag/retrieval/test_dataset_retrieval_metadata_filter.py b/api/tests/unit_tests/core/rag/retrieval/test_dataset_retrieval_metadata_filter.py new file mode 100644 index 0000000000..07d6e51e4b --- /dev/null +++ b/api/tests/unit_tests/core/rag/retrieval/test_dataset_retrieval_metadata_filter.py @@ -0,0 +1,873 @@ +""" +Unit tests for DatasetRetrieval.process_metadata_filter_func. + +This module provides comprehensive test coverage for the process_metadata_filter_func +method in the DatasetRetrieval class, which is responsible for building SQLAlchemy +filter expressions based on metadata filtering conditions. + +Conditions Tested: +================== +1. **String Conditions**: contains, not contains, start with, end with +2. **Equality Conditions**: is / =, is not / ≠ +3. **Null Conditions**: empty, not empty +4. **Numeric Comparisons**: before / <, after / >, ≤ / <=, ≥ / >= +5. **List Conditions**: in +6. **Edge Cases**: None values, different data types (str, int, float) + +Test Architecture: +================== +- Direct instantiation of DatasetRetrieval +- Mocking of DatasetDocument model attributes +- Verification of SQLAlchemy filter expressions +- Follows Arrange-Act-Assert (AAA) pattern + +Running Tests: +============== + # Run all tests in this module + uv run --project api pytest \ + api/tests/unit_tests/core/rag/retrieval/test_dataset_retrieval_metadata_filter.py -v + + # Run a specific test + uv run --project api pytest \ + api/tests/unit_tests/core/rag/retrieval/test_dataset_retrieval_metadata_filter.py::\ +TestProcessMetadataFilterFunc::test_contains_condition -v +""" + +from unittest.mock import MagicMock + +import pytest + +from core.rag.retrieval.dataset_retrieval import DatasetRetrieval + + +class TestProcessMetadataFilterFunc: + """ + Comprehensive test suite for process_metadata_filter_func method. + + This test class validates all metadata filtering conditions supported by + the DatasetRetrieval class, including string operations, numeric comparisons, + null checks, and list operations. + + Method Signature: + ================== + def process_metadata_filter_func( + self, sequence: int, condition: str, metadata_name: str, value: Any | None, filters: list + ) -> list: + + The method builds SQLAlchemy filter expressions by: + 1. Validating value is not None (except for empty/not empty conditions) + 2. Using DatasetDocument.doc_metadata JSON field operations + 3. Adding appropriate SQLAlchemy expressions to the filters list + 4. Returning the updated filters list + + Mocking Strategy: + ================== + - Mock DatasetDocument.doc_metadata to avoid database dependencies + - Verify filter expressions are created correctly + - Test with various data types (str, int, float, list) + """ + + @pytest.fixture + def retrieval(self): + """ + Create a DatasetRetrieval instance for testing. + + Returns: + DatasetRetrieval: Instance to test process_metadata_filter_func + """ + return DatasetRetrieval() + + @pytest.fixture + def mock_doc_metadata(self): + """ + Mock the DatasetDocument.doc_metadata JSON field. + + The method uses DatasetDocument.doc_metadata[metadata_name] to access + JSON fields. We mock this to avoid database dependencies. + + Returns: + Mock: Mocked doc_metadata attribute + """ + mock_metadata_field = MagicMock() + + # Create mock for string access + mock_string_access = MagicMock() + mock_string_access.like = MagicMock() + mock_string_access.notlike = MagicMock() + mock_string_access.__eq__ = MagicMock(return_value=MagicMock()) + mock_string_access.__ne__ = MagicMock(return_value=MagicMock()) + mock_string_access.in_ = MagicMock(return_value=MagicMock()) + + # Create mock for float access (for numeric comparisons) + mock_float_access = MagicMock() + mock_float_access.__eq__ = MagicMock(return_value=MagicMock()) + mock_float_access.__ne__ = MagicMock(return_value=MagicMock()) + mock_float_access.__lt__ = MagicMock(return_value=MagicMock()) + mock_float_access.__gt__ = MagicMock(return_value=MagicMock()) + mock_float_access.__le__ = MagicMock(return_value=MagicMock()) + mock_float_access.__ge__ = MagicMock(return_value=MagicMock()) + + # Create mock for null checks + mock_null_access = MagicMock() + mock_null_access.is_ = MagicMock(return_value=MagicMock()) + mock_null_access.isnot = MagicMock(return_value=MagicMock()) + + # Setup __getitem__ to return appropriate mock based on usage + def getitem_side_effect(name): + if name in ["author", "title", "category"]: + return mock_string_access + elif name in ["year", "price", "rating"]: + return mock_float_access + else: + return mock_string_access + + mock_metadata_field.__getitem__ = MagicMock(side_effect=getitem_side_effect) + mock_metadata_field.as_string.return_value = mock_string_access + mock_metadata_field.as_float.return_value = mock_float_access + mock_metadata_field[metadata_name:str].is_ = mock_null_access.is_ + mock_metadata_field[metadata_name:str].isnot = mock_null_access.isnot + + return mock_metadata_field + + # ==================== String Condition Tests ==================== + + def test_contains_condition_string_value(self, retrieval): + """ + Test 'contains' condition with string value. + + Verifies: + - Filters list is populated with LIKE expression + - Pattern matching uses %value% syntax + """ + filters = [] + sequence = 0 + condition = "contains" + metadata_name = "author" + value = "John" + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + def test_not_contains_condition(self, retrieval): + """ + Test 'not contains' condition. + + Verifies: + - Filters list is populated with NOT LIKE expression + - Pattern matching uses %value% syntax with negation + """ + filters = [] + sequence = 0 + condition = "not contains" + metadata_name = "title" + value = "banned" + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + def test_start_with_condition(self, retrieval): + """ + Test 'start with' condition. + + Verifies: + - Filters list is populated with LIKE expression + - Pattern matching uses value% syntax + """ + filters = [] + sequence = 0 + condition = "start with" + metadata_name = "category" + value = "tech" + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + def test_end_with_condition(self, retrieval): + """ + Test 'end with' condition. + + Verifies: + - Filters list is populated with LIKE expression + - Pattern matching uses %value syntax + """ + filters = [] + sequence = 0 + condition = "end with" + metadata_name = "filename" + value = ".pdf" + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + # ==================== Equality Condition Tests ==================== + + def test_is_condition_with_string_value(self, retrieval): + """ + Test 'is' (=) condition with string value. + + Verifies: + - Filters list is populated with equality expression + - String comparison is used + """ + filters = [] + sequence = 0 + condition = "is" + metadata_name = "author" + value = "Jane Doe" + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + def test_equals_condition_with_string_value(self, retrieval): + """ + Test '=' condition with string value. + + Verifies: + - Same behavior as 'is' condition + - String comparison is used + """ + filters = [] + sequence = 0 + condition = "=" + metadata_name = "category" + value = "technology" + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + def test_is_condition_with_int_value(self, retrieval): + """ + Test 'is' condition with integer value. + + Verifies: + - Numeric comparison is used + - as_float() is called on the metadata field + """ + filters = [] + sequence = 0 + condition = "is" + metadata_name = "year" + value = 2023 + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + def test_is_condition_with_float_value(self, retrieval): + """ + Test 'is' condition with float value. + + Verifies: + - Numeric comparison is used + - as_float() is called on the metadata field + """ + filters = [] + sequence = 0 + condition = "is" + metadata_name = "price" + value = 19.99 + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + def test_is_not_condition_with_string_value(self, retrieval): + """ + Test 'is not' (≠) condition with string value. + + Verifies: + - Filters list is populated with inequality expression + - String comparison is used + """ + filters = [] + sequence = 0 + condition = "is not" + metadata_name = "author" + value = "Unknown" + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + def test_not_equals_condition(self, retrieval): + """ + Test '≠' condition with string value. + + Verifies: + - Same behavior as 'is not' condition + - Inequality expression is used + """ + filters = [] + sequence = 0 + condition = "≠" + metadata_name = "category" + value = "archived" + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + def test_is_not_condition_with_numeric_value(self, retrieval): + """ + Test 'is not' condition with numeric value. + + Verifies: + - Numeric inequality comparison is used + - as_float() is called on the metadata field + """ + filters = [] + sequence = 0 + condition = "is not" + metadata_name = "year" + value = 2000 + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + # ==================== Null Condition Tests ==================== + + def test_empty_condition(self, retrieval): + """ + Test 'empty' condition (null check). + + Verifies: + - Filters list is populated with IS NULL expression + - Value can be None for this condition + """ + filters = [] + sequence = 0 + condition = "empty" + metadata_name = "author" + value = None + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + def test_not_empty_condition(self, retrieval): + """ + Test 'not empty' condition (not null check). + + Verifies: + - Filters list is populated with IS NOT NULL expression + - Value can be None for this condition + """ + filters = [] + sequence = 0 + condition = "not empty" + metadata_name = "description" + value = None + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + # ==================== Numeric Comparison Tests ==================== + + def test_before_condition(self, retrieval): + """ + Test 'before' (<) condition. + + Verifies: + - Filters list is populated with less than expression + - Numeric comparison is used + """ + filters = [] + sequence = 0 + condition = "before" + metadata_name = "year" + value = 2020 + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + def test_less_than_condition(self, retrieval): + """ + Test '<' condition. + + Verifies: + - Same behavior as 'before' condition + - Less than expression is used + """ + filters = [] + sequence = 0 + condition = "<" + metadata_name = "price" + value = 100.0 + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + def test_after_condition(self, retrieval): + """ + Test 'after' (>) condition. + + Verifies: + - Filters list is populated with greater than expression + - Numeric comparison is used + """ + filters = [] + sequence = 0 + condition = "after" + metadata_name = "year" + value = 2020 + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + def test_greater_than_condition(self, retrieval): + """ + Test '>' condition. + + Verifies: + - Same behavior as 'after' condition + - Greater than expression is used + """ + filters = [] + sequence = 0 + condition = ">" + metadata_name = "rating" + value = 4.5 + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + def test_less_than_or_equal_condition_unicode(self, retrieval): + """ + Test '≤' condition. + + Verifies: + - Filters list is populated with less than or equal expression + - Numeric comparison is used + """ + filters = [] + sequence = 0 + condition = "≤" + metadata_name = "price" + value = 50.0 + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + def test_less_than_or_equal_condition_ascii(self, retrieval): + """ + Test '<=' condition. + + Verifies: + - Same behavior as '≤' condition + - Less than or equal expression is used + """ + filters = [] + sequence = 0 + condition = "<=" + metadata_name = "year" + value = 2023 + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + def test_greater_than_or_equal_condition_unicode(self, retrieval): + """ + Test '≥' condition. + + Verifies: + - Filters list is populated with greater than or equal expression + - Numeric comparison is used + """ + filters = [] + sequence = 0 + condition = "≥" + metadata_name = "rating" + value = 3.5 + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + def test_greater_than_or_equal_condition_ascii(self, retrieval): + """ + Test '>=' condition. + + Verifies: + - Same behavior as '≥' condition + - Greater than or equal expression is used + """ + filters = [] + sequence = 0 + condition = ">=" + metadata_name = "year" + value = 2000 + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + # ==================== List/In Condition Tests ==================== + + def test_in_condition_with_comma_separated_string(self, retrieval): + """ + Test 'in' condition with comma-separated string value. + + Verifies: + - String is split into list + - Whitespace is trimmed from each value + - IN expression is created + """ + filters = [] + sequence = 0 + condition = "in" + metadata_name = "category" + value = "tech, science, AI " + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + def test_in_condition_with_list_value(self, retrieval): + """ + Test 'in' condition with list value. + + Verifies: + - List is processed correctly + - None values are filtered out + - IN expression is created with valid values + """ + filters = [] + sequence = 0 + condition = "in" + metadata_name = "tags" + value = ["python", "javascript", None, "golang"] + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + def test_in_condition_with_tuple_value(self, retrieval): + """ + Test 'in' condition with tuple value. + + Verifies: + - Tuple is processed like a list + - IN expression is created + """ + filters = [] + sequence = 0 + condition = "in" + metadata_name = "category" + value = ("tech", "science", "ai") + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + def test_in_condition_with_empty_string(self, retrieval): + """ + Test 'in' condition with empty string value. + + Verifies: + - Empty string results in literal(False) filter + - No valid values to match + """ + filters = [] + sequence = 0 + condition = "in" + metadata_name = "category" + value = "" + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + # Verify it's a literal(False) expression + # This is a bit tricky to test without access to the actual expression + + def test_in_condition_with_only_whitespace(self, retrieval): + """ + Test 'in' condition with whitespace-only string value. + + Verifies: + - Whitespace-only string results in literal(False) filter + - All values are stripped and filtered out + """ + filters = [] + sequence = 0 + condition = "in" + metadata_name = "category" + value = " , , " + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + def test_in_condition_with_single_string(self, retrieval): + """ + Test 'in' condition with single non-comma string. + + Verifies: + - Single string is treated as single-item list + - IN expression is created with one value + """ + filters = [] + sequence = 0 + condition = "in" + metadata_name = "category" + value = "technology" + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + # ==================== Edge Case Tests ==================== + + def test_none_value_with_non_empty_condition(self, retrieval): + """ + Test None value with conditions that require value. + + Verifies: + - Original filters list is returned unchanged + - No filter is added for None values (except empty/not empty) + """ + filters = [] + sequence = 0 + condition = "contains" + metadata_name = "author" + value = None + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 0 # No filter added + + def test_none_value_with_equals_condition(self, retrieval): + """ + Test None value with 'is' (=) condition. + + Verifies: + - Original filters list is returned unchanged + - No filter is added for None values + """ + filters = [] + sequence = 0 + condition = "is" + metadata_name = "author" + value = None + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 0 + + def test_none_value_with_numeric_condition(self, retrieval): + """ + Test None value with numeric comparison condition. + + Verifies: + - Original filters list is returned unchanged + - No filter is added for None values + """ + filters = [] + sequence = 0 + condition = ">" + metadata_name = "year" + value = None + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 0 + + def test_existing_filters_preserved(self, retrieval): + """ + Test that existing filters are preserved. + + Verifies: + - Existing filters in the list are not removed + - New filters are appended to the list + """ + existing_filter = MagicMock() + filters = [existing_filter] + sequence = 0 + condition = "contains" + metadata_name = "author" + value = "test" + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 2 + assert filters[0] == existing_filter + + def test_multiple_filters_accumulated(self, retrieval): + """ + Test multiple calls to accumulate filters. + + Verifies: + - Each call adds a new filter to the list + - All filters are preserved across calls + """ + filters = [] + + # First filter + retrieval.process_metadata_filter_func(0, "contains", "author", "John", filters) + assert len(filters) == 1 + + # Second filter + retrieval.process_metadata_filter_func(1, ">", "year", 2020, filters) + assert len(filters) == 2 + + # Third filter + retrieval.process_metadata_filter_func(2, "is", "category", "tech", filters) + assert len(filters) == 3 + + def test_unknown_condition(self, retrieval): + """ + Test unknown/unsupported condition. + + Verifies: + - Original filters list is returned unchanged + - No filter is added for unknown conditions + """ + filters = [] + sequence = 0 + condition = "unknown_condition" + metadata_name = "author" + value = "test" + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 0 + + def test_empty_string_value_with_contains(self, retrieval): + """ + Test empty string value with 'contains' condition. + + Verifies: + - Filter is added even with empty string + - LIKE expression is created + """ + filters = [] + sequence = 0 + condition = "contains" + metadata_name = "author" + value = "" + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + def test_special_characters_in_value(self, retrieval): + """ + Test special characters in value string. + + Verifies: + - Special characters are handled in value + - LIKE expression is created correctly + """ + filters = [] + sequence = 0 + condition = "contains" + metadata_name = "title" + value = "C++ & Python's features" + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + def test_zero_value_with_numeric_condition(self, retrieval): + """ + Test zero value with numeric comparison condition. + + Verifies: + - Zero is treated as valid value + - Numeric comparison is performed + """ + filters = [] + sequence = 0 + condition = ">" + metadata_name = "price" + value = 0 + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + def test_negative_value_with_numeric_condition(self, retrieval): + """ + Test negative value with numeric comparison condition. + + Verifies: + - Negative numbers are handled correctly + - Numeric comparison is performed + """ + filters = [] + sequence = 0 + condition = "<" + metadata_name = "temperature" + value = -10.5 + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1 + + def test_float_value_with_integer_comparison(self, retrieval): + """ + Test float value with numeric comparison condition. + + Verifies: + - Float values work correctly + - Numeric comparison is performed + """ + filters = [] + sequence = 0 + condition = ">=" + metadata_name = "rating" + value = 4.5 + + result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters) + + assert result == filters + assert len(filters) == 1