Plugin/merge main to plugin/beta 20250122 (#12962)

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
Signed-off-by: -LAN- <laipz8200@outlook.com>
Co-authored-by: kurokobo <kuro664@gmail.com>
Co-authored-by: Hiroshi Fujita <fujita-h@users.noreply.github.com>
Co-authored-by: NFish <douxc512@gmail.com>
Co-authored-by: Gen Sato <52241300+halogen22@users.noreply.github.com>
Co-authored-by: eux <euxuuu@gmail.com>
Co-authored-by: huangzhuo1949 <167434202+huangzhuo1949@users.noreply.github.com>
Co-authored-by: huangzhuo <huangzhuo1@xiaomi.com>
Co-authored-by: lotsik <lotsik@mail.ru>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
Co-authored-by: Wu Tianwei <30284043+WTW0313@users.noreply.github.com>
Co-authored-by: nite-knite <nkCoding@gmail.com>
Co-authored-by: Jyong <76649700+JohnJyong@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: gakkiyomi <gakkiyomi@aliyun.com>
Co-authored-by: CN-P5 <heibai2006@gmail.com>
Co-authored-by: CN-P5 <heibai2006@qq.com>
Co-authored-by: Chuehnone <1897025+chuehnone@users.noreply.github.com>
Co-authored-by: yihong <zouzou0208@gmail.com>
Co-authored-by: Kevin9703 <51311316+Kevin9703@users.noreply.github.com>
Co-authored-by: -LAN- <laipz8200@outlook.com>
Co-authored-by: Boris Feld <lothiraldan@gmail.com>
Co-authored-by: mbo <himabo@gmail.com>
Co-authored-by: mabo <mabo@aeyes.ai>
Co-authored-by: Warren Chen <warren.chen830@gmail.com>
Co-authored-by: KVOJJJin <jzongcode@gmail.com>
Co-authored-by: JzoNgKVO <27049666+JzoNgKVO@users.noreply.github.com>
Co-authored-by: jiandanfeng <chenjh3@wangsu.com>
Co-authored-by: zhu-an <70234959+xhdd123321@users.noreply.github.com>
Co-authored-by: zhaoqingyu.1075 <zhaoqingyu.1075@bytedance.com>
Co-authored-by: 海狸大師 <86974027+yenslife@users.noreply.github.com>
Co-authored-by: Xu Song <xusong.vip@gmail.com>
Co-authored-by: rayshaw001 <396301947@163.com>
Co-authored-by: Ding Jiatong <dingjiatong@gmail.com>
Co-authored-by: Bowen Liang <liangbowen@gf.com.cn>
Co-authored-by: JasonVV <jasonwangiii@outlook.com>
Co-authored-by: le0zh <newlight@qq.com>
Co-authored-by: zhuxinliang <zhuxinliang@didiglobal.com>
Co-authored-by: k-zaku <zaku99@outlook.jp>
Co-authored-by: Joel <iamjoel007@gmail.com>
Co-authored-by: luckylhb90 <luckylhb90@gmail.com>
Co-authored-by: hobo.l <hobo.l@binance.com>
Co-authored-by: jiangbo721 <365065261@qq.com>
Co-authored-by: 刘江波 <jiangbo721@163.com>
Co-authored-by: Shun Miyazawa <34241526+miya@users.noreply.github.com>
Co-authored-by: EricPan <30651140+Egfly@users.noreply.github.com>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: zxhlyh <jasonapring2015@outlook.com>
Co-authored-by: sino <sino2322@gmail.com>
Co-authored-by: Jhvcc <37662342+Jhvcc@users.noreply.github.com>
Co-authored-by: lowell <lowell.hu@zkteco.in>
This commit is contained in:
Yeuoly 2025-01-23 14:48:16 +08:00 committed by GitHub
parent 8d8d3e3f2f
commit 899df30bf6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
238 changed files with 4121 additions and 890 deletions

View File

@ -8,7 +8,7 @@ inputs:
poetry-version:
description: Poetry version to set up
required: true
default: '1.8.4'
default: '2.0.1'
poetry-lockfile:
description: Path to the Poetry lockfile to restore cache from
required: true

View File

@ -43,19 +43,17 @@ jobs:
run: poetry install -C api --with dev
- name: Check dependencies in pyproject.toml
run: poetry run -C api bash dev/pytest/pytest_artifacts.sh
run: poetry run -P api bash dev/pytest/pytest_artifacts.sh
- name: Run Unit tests
run: poetry run -C api bash dev/pytest/pytest_unit_tests.sh
run: poetry run -P api bash dev/pytest/pytest_unit_tests.sh
- name: Run dify config tests
run: poetry run -C api python dev/pytest/pytest_config_tests.py
run: poetry run -P api python dev/pytest/pytest_config_tests.py
- name: Run mypy
run: |
pushd api
poetry run python -m mypy --install-types --non-interactive .
popd
poetry run -C api python -m mypy --install-types --non-interactive .
- name: Set up dotenvs
run: |
@ -75,4 +73,4 @@ jobs:
ssrf_proxy
- name: Run Workflow
run: poetry run -C api bash dev/pytest/pytest_workflow.sh
run: poetry run -P api bash dev/pytest/pytest_workflow.sh

View File

@ -39,12 +39,12 @@ jobs:
if: steps.changed-files.outputs.any_changed == 'true'
run: |
poetry run -C api ruff --version
poetry run -C api ruff check ./api
poetry run -C api ruff format --check ./api
poetry run -C api ruff check ./
poetry run -C api ruff format --check ./
- name: Dotenv check
if: steps.changed-files.outputs.any_changed == 'true'
run: poetry run -C api dotenv-linter ./api/.env.example ./web/.env.example
run: poetry run -P api dotenv-linter ./api/.env.example ./web/.env.example
- name: Lint hints
if: failure()
@ -87,7 +87,35 @@ jobs:
- name: Web style check
if: steps.changed-files.outputs.any_changed == 'true'
run: echo "${{ steps.changed-files.outputs.all_changed_files }}" | sed 's|web/||g' | xargs pnpm eslint # wait for next lint support eslint v9
run: yarn run lint
docker-compose-template:
name: Docker Compose Template
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Check changed files
id: changed-files
uses: tj-actions/changed-files@v45
with:
files: |
docker/generate_docker_compose
docker/.env.example
docker/docker-compose-template.yaml
docker/docker-compose.yaml
- name: Generate Docker Compose
if: steps.changed-files.outputs.any_changed == 'true'
run: |
cd docker
./generate_docker_compose
- name: Check for changes
if: steps.changed-files.outputs.any_changed == 'true'
run: git diff --exit-code
superlinter:
name: SuperLinter

View File

@ -70,4 +70,4 @@ jobs:
tidb
- name: Test Vector Stores
run: poetry run -C api bash dev/pytest/pytest_vdb.sh
run: poetry run -P api bash dev/pytest/pytest_vdb.sh

View File

@ -53,10 +53,12 @@ ignore = [
"FURB152", # math-constant
"UP007", # non-pep604-annotation
"UP032", # f-string
"UP045", # non-pep604-annotation-optional
"B005", # strip-with-multi-characters
"B006", # mutable-argument-default
"B007", # unused-loop-control-variable
"B026", # star-arg-unpacking-after-keyword-arg
"B903", # class-as-data-structure
"B904", # raise-without-from-inside-except
"B905", # zip-without-explicit-strict
"N806", # non-lowercase-variable-in-function

View File

@ -4,7 +4,7 @@ FROM python:3.12-slim-bookworm AS base
WORKDIR /app/api
# Install Poetry
ENV POETRY_VERSION=1.8.4
ENV POETRY_VERSION=2.0.1
# if you located in China, you can use aliyun mirror to speed up
# RUN pip install --no-cache-dir poetry==${POETRY_VERSION} -i https://mirrors.aliyun.com/pypi/simple/

View File

@ -79,5 +79,5 @@
2. Run the tests locally with mocked system environment variables in `tool.pytest_env` section in `pyproject.toml`
```bash
poetry run -C api bash dev/pytest/pytest_all_tests.sh
poetry run -P api bash dev/pytest/pytest_all_tests.sh
```

View File

@ -200,7 +200,7 @@ class EndpointConfig(BaseSettings):
)
CONSOLE_WEB_URL: str = Field(
description="Base URL for the console web interface," "used for frontend references and CORS configuration",
description="Base URL for the console web interface,used for frontend references and CORS configuration",
default="",
)

View File

@ -181,7 +181,7 @@ class HostedFetchAppTemplateConfig(BaseSettings):
"""
HOSTED_FETCH_APP_TEMPLATES_MODE: str = Field(
description="Mode for fetching app templates: remote, db, or builtin" " default to remote,",
description="Mode for fetching app templates: remote, db, or builtin default to remote,",
default="remote",
)

View File

@ -59,7 +59,7 @@ class InsertExploreAppListApi(Resource):
with Session(db.engine) as session:
app = session.execute(select(App).filter(App.id == args["app_id"])).scalar_one_or_none()
if not app:
raise NotFound(f'App \'{args["app_id"]}\' is not found')
raise NotFound(f"App '{args['app_id']}' is not found")
site = app.site
if not site:

View File

@ -22,7 +22,7 @@ from controllers.console.wraps import account_initialization_required, setup_req
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from libs.login import login_required
from models.model import AppMode
from models import App, AppMode
from services.audio_service import AudioService
from services.errors.audio import (
AudioTooLargeServiceError,
@ -79,7 +79,7 @@ class ChatMessageTextApi(Resource):
@login_required
@account_initialization_required
@get_app_model
def post(self, app_model):
def post(self, app_model: App):
from werkzeug.exceptions import InternalServerError
try:
@ -98,9 +98,13 @@ class ChatMessageTextApi(Resource):
and app_model.workflow.features_dict
):
text_to_speech = app_model.workflow.features_dict.get("text_to_speech")
if text_to_speech is None:
raise ValueError("TTS is not enabled")
voice = args.get("voice") or text_to_speech.get("voice")
else:
try:
if app_model.app_model_config is None:
raise ValueError("AppModelConfig not found")
voice = args.get("voice") or app_model.app_model_config.text_to_speech_dict.get("voice")
except Exception:
voice = None

View File

@ -52,12 +52,12 @@ class DatasetListApi(Resource):
# provider = request.args.get("provider", default="vendor")
search = request.args.get("keyword", default=None, type=str)
tag_ids = request.args.getlist("tag_ids")
include_all = request.args.get("include_all", default="false").lower() == "true"
if ids:
datasets, total = DatasetService.get_datasets_by_ids(ids, current_user.current_tenant_id)
else:
datasets, total = DatasetService.get_datasets(
page, limit, current_user.current_tenant_id, current_user, search, tag_ids
page, limit, current_user.current_tenant_id, current_user, search, tag_ids, include_all
)
# check embedding setting
@ -457,7 +457,7 @@ class DatasetIndexingEstimateApi(Resource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider " "in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -619,8 +619,7 @@ class DatasetRetrievalSettingApi(Resource):
vector_type = dify_config.VECTOR_STORE
match vector_type:
case (
VectorType.MILVUS
| VectorType.RELYT
VectorType.RELYT
| VectorType.PGVECTOR
| VectorType.TIDB_VECTOR
| VectorType.CHROMA
@ -645,6 +644,7 @@ class DatasetRetrievalSettingApi(Resource):
| VectorType.TIDB_ON_QDRANT
| VectorType.LINDORM
| VectorType.COUCHBASE
| VectorType.MILVUS
):
return {
"retrieval_method": [

View File

@ -362,8 +362,7 @@ class DatasetInitApi(Resource):
)
except InvokeAuthorizationError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -540,8 +539,7 @@ class DocumentBatchIndexingEstimateApi(DocumentResource):
return response.model_dump(), 200
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)

View File

@ -168,8 +168,7 @@ class DatasetDocumentSegmentApi(Resource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -217,8 +216,7 @@ class DatasetDocumentSegmentAddApi(Resource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -267,8 +265,7 @@ class DatasetDocumentSegmentUpdateApi(Resource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -368,9 +365,9 @@ class DatasetDocumentSegmentBatchImportApi(Resource):
result = []
for index, row in df.iterrows():
if document.doc_form == "qa_model":
data = {"content": row[0], "answer": row[1]}
data = {"content": row.iloc[0], "answer": row.iloc[1]}
else:
data = {"content": row[0]}
data = {"content": row.iloc[0]}
result.append(data)
if len(result) == 0:
raise ValueError("The CSV file is empty.")
@ -437,8 +434,7 @@ class ChildChunkAddApi(Resource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)

View File

@ -32,7 +32,7 @@ class ConversationListApi(InstalledAppResource):
pinned = None
if "pinned" in args and args["pinned"] is not None:
pinned = True if args["pinned"] == "true" else False
pinned = args["pinned"] == "true"
try:
with Session(db.engine) as session:

View File

@ -7,4 +7,4 @@ api = ExternalApi(bp)
from . import index
from .app import app, audio, completion, conversation, file, message, workflow
from .dataset import dataset, document, hit_testing, segment
from .dataset import dataset, document, hit_testing, segment, upload_file

View File

@ -31,8 +31,11 @@ class DatasetListApi(DatasetApiResource):
# provider = request.args.get("provider", default="vendor")
search = request.args.get("keyword", default=None, type=str)
tag_ids = request.args.getlist("tag_ids")
include_all = request.args.get("include_all", default="false").lower() == "true"
datasets, total = DatasetService.get_datasets(page, limit, tenant_id, current_user, search, tag_ids)
datasets, total = DatasetService.get_datasets(
page, limit, tenant_id, current_user, search, tag_ids, include_all
)
# check embedding setting
provider_manager = ProviderManager()
configurations = provider_manager.get_configurations(tenant_id=current_user.current_tenant_id)

View File

@ -53,8 +53,7 @@ class SegmentApi(DatasetApiResource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -95,8 +94,7 @@ class SegmentApi(DatasetApiResource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -175,8 +173,7 @@ class DatasetSegmentApi(DatasetApiResource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)

View File

@ -0,0 +1,54 @@
from werkzeug.exceptions import NotFound
from controllers.service_api import api
from controllers.service_api.wraps import (
DatasetApiResource,
)
from core.file import helpers as file_helpers
from extensions.ext_database import db
from models.dataset import Dataset
from models.model import UploadFile
from services.dataset_service import DocumentService
class UploadFileApi(DatasetApiResource):
def get(self, tenant_id, dataset_id, document_id):
"""Get upload file."""
# check dataset
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
if not dataset:
raise NotFound("Dataset not found.")
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset.id, document_id)
if not document:
raise NotFound("Document not found.")
# check upload file
if document.data_source_type != "upload_file":
raise ValueError(f"Document data source type ({document.data_source_type}) is not upload_file.")
data_source_info = document.data_source_info_dict
if data_source_info and "upload_file_id" in data_source_info:
file_id = data_source_info["upload_file_id"]
upload_file = db.session.query(UploadFile).filter(UploadFile.id == file_id).first()
if not upload_file:
raise NotFound("UploadFile not found.")
else:
raise ValueError("Upload file id not found in document data source info.")
url = file_helpers.get_signed_file_url(upload_file_id=upload_file.id)
return {
"id": upload_file.id,
"name": upload_file.name,
"size": upload_file.size,
"extension": upload_file.extension,
"url": url,
"download_url": f"{url}&as_attachment=true",
"mime_type": upload_file.mime_type,
"created_by": upload_file.created_by,
"created_at": upload_file.created_at.timestamp(),
}, 200
api.add_resource(UploadFileApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/upload-file")

View File

@ -195,7 +195,11 @@ def validate_and_get_api_token(scope: str | None = None):
with Session(db.engine, expire_on_commit=False) as session:
update_stmt = (
update(ApiToken)
.where(ApiToken.token == auth_token, ApiToken.last_used_at < cutoff_time, ApiToken.type == scope)
.where(
ApiToken.token == auth_token,
(ApiToken.last_used_at.is_(None) | (ApiToken.last_used_at < cutoff_time)),
ApiToken.type == scope,
)
.values(last_used_at=current_time)
.returning(ApiToken)
)
@ -236,7 +240,7 @@ def create_or_update_end_user_for_user_id(app_model: App, user_id: Optional[str]
tenant_id=app_model.tenant_id,
app_id=app_model.id,
type="service_api",
is_anonymous=True if user_id == "DEFAULT-USER" else False,
is_anonymous=user_id == "DEFAULT-USER",
session_id=user_id,
)
db.session.add(end_user)

View File

@ -39,7 +39,7 @@ class ConversationListApi(WebApiResource):
pinned = None
if "pinned" in args and args["pinned"] is not None:
pinned = True if args["pinned"] == "true" else False
pinned = args["pinned"] == "true"
try:
with Session(db.engine) as session:

View File

@ -168,7 +168,7 @@ class CotAgentRunner(BaseAgentRunner, ABC):
self.save_agent_thought(
agent_thought=agent_thought,
tool_name=scratchpad.action.action_name if scratchpad.action else "",
tool_name=(scratchpad.action.action_name if scratchpad.action and not scratchpad.is_final() else ""),
tool_input={scratchpad.action.action_name: scratchpad.action.action_input} if scratchpad.action else {},
tool_invoke_meta={},
thought=scratchpad.thought or "",

View File

@ -167,8 +167,7 @@ class AppQueueManager:
else:
if isinstance(data, DeclarativeMeta) or hasattr(data, "_sa_instance_state"):
raise TypeError(
"Critical Error: Passing SQLAlchemy Model instances "
"that cause thread safety issues is not allowed."
"Critical Error: Passing SQLAlchemy Model instances that cause thread safety issues is not allowed."
)

View File

@ -89,6 +89,7 @@ class MessageBasedAppGenerator(BaseAppGenerator):
Conversation.id == conversation_id,
Conversation.app_id == app_model.id,
Conversation.status == "normal",
Conversation.is_deleted.is_(False),
]
if isinstance(user, Account):

View File

@ -145,7 +145,7 @@ class MessageCycleManage:
# get extension
if "." in message_file.url:
extension = f'.{message_file.url.split(".")[-1]}'
extension = f".{message_file.url.split('.')[-1]}"
if len(extension) > 10:
extension = ".bin"
else:

View File

@ -62,8 +62,9 @@ class ApiExternalDataTool(ExternalDataTool):
if not api_based_extension:
raise ValueError(
"[External data tool] API query failed, variable: {}, "
"error: api_based_extension_id is invalid".format(self.variable)
"[External data tool] API query failed, variable: {}, error: api_based_extension_id is invalid".format(
self.variable
)
)
# decrypt api_key

View File

@ -90,7 +90,7 @@ class File(BaseModel):
def markdown(self) -> str:
url = self.generate_url()
if self.type == FileType.IMAGE:
text = f'![{self.filename or ""}]({url})'
text = f"![{self.filename or ''}]({url})"
else:
text = f"[{self.filename or url}]({url})"

View File

@ -530,7 +530,6 @@ class IndexingRunner:
# chunk nodes by chunk size
indexing_start_at = time.perf_counter()
tokens = 0
chunk_size = 10
if dataset_document.doc_form != IndexType.PARENT_CHILD_INDEX:
# create keyword index
create_keyword_thread = threading.Thread(
@ -539,11 +538,22 @@ class IndexingRunner:
)
create_keyword_thread.start()
max_workers = 10
if dataset.indexing_technique == "high_quality":
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = []
for i in range(0, len(documents), chunk_size):
chunk_documents = documents[i : i + chunk_size]
# Distribute documents into multiple groups based on the hash values of page_content
# This is done to prevent multiple threads from processing the same document,
# Thereby avoiding potential database insertion deadlocks
document_groups: list[list[Document]] = [[] for _ in range(max_workers)]
for document in documents:
hash = helper.generate_text_hash(document.page_content)
group_index = int(hash, 16) % max_workers
document_groups[group_index].append(document)
for chunk_documents in document_groups:
if len(chunk_documents) == 0:
continue
futures.append(
executor.submit(
self._process_chunk,

View File

@ -131,7 +131,7 @@ JAVASCRIPT_CODE_GENERATOR_PROMPT_TEMPLATE = (
SUGGESTED_QUESTIONS_AFTER_ANSWER_INSTRUCTION_PROMPT = (
"Please help me predict the three most likely questions that human would ask, "
"and keeping each question under 20 characters.\n"
"MAKE SURE your output is the SAME language as the Assistant's latest response"
"MAKE SURE your output is the SAME language as the Assistant's latest response. "
"The output must be an array in JSON format following the specified schema:\n"
'["question1","question2","question3"]\n'
)

View File

@ -1,6 +1,9 @@
import logging
from threading import Lock
from typing import Any
logger = logging.getLogger(__name__)
_tokenizer: Any = None
_lock = Lock()
@ -43,5 +46,6 @@ class GPT2Tokenizer:
base_path = abspath(__file__)
gpt2_tokenizer_path = join(dirname(base_path), "gpt2")
_tokenizer = TransformerGPT2Tokenizer.from_pretrained(gpt2_tokenizer_path)
logger.info("Fallback to Transformers' GPT-2 tokenizer from tiktoken")
return _tokenizer

View File

@ -1,42 +0,0 @@
model: ernie-lite-pro-128k
label:
en_US: Ernie-Lite-Pro-128K
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 128000
parameter_rules:
- name: temperature
use_template: temperature
min: 0.1
max: 1.0
default: 0.8
- name: top_p
use_template: top_p
- name: min_output_tokens
label:
en_US: "Min Output Tokens"
zh_Hans: "最小输出Token数"
use_template: max_tokens
min: 2
max: 2048
help:
zh_Hans: 指定模型最小输出token数
en_US: Specifies the lower limit on the length of generated results.
- name: max_output_tokens
label:
en_US: "Max Output Tokens"
zh_Hans: "最大输出Token数"
use_template: max_tokens
min: 2
max: 2048
default: 2048
help:
zh_Hans: 指定模型最大输出token数
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty
use_template: frequency_penalty

View File

@ -87,6 +87,6 @@ class CommonValidator:
if value.lower() not in {"true", "false"}:
raise ValueError(f"Variable {credential_form_schema.variable} should be true or false")
value = True if value.lower() == "true" else False
value = value.lower() == "true"
return value

View File

@ -6,6 +6,7 @@ from pydantic import BaseModel, ValidationInfo, field_validator
class TracingProviderEnum(Enum):
LANGFUSE = "langfuse"
LANGSMITH = "langsmith"
OPIK = "opik"
class BaseTracingConfig(BaseModel):
@ -56,5 +57,36 @@ class LangSmithConfig(BaseTracingConfig):
return v
class OpikConfig(BaseTracingConfig):
"""
Model class for Opik tracing config.
"""
api_key: str | None = None
project: str | None = None
workspace: str | None = None
url: str = "https://www.comet.com/opik/api/"
@field_validator("project")
@classmethod
def project_validator(cls, v, info: ValidationInfo):
if v is None or v == "":
v = "Default Project"
return v
@field_validator("url")
@classmethod
def url_validator(cls, v, info: ValidationInfo):
if v is None or v == "":
v = "https://www.comet.com/opik/api/"
if not v.startswith(("https://", "http://")):
raise ValueError("url must start with https:// or http://")
if not v.endswith("/api/"):
raise ValueError("url should ends with /api/")
return v
OPS_FILE_PATH = "ops_trace/"
OPS_TRACE_FAILED_KEY = "FAILED_OPS_TRACE"

View File

View File

@ -0,0 +1,469 @@
import json
import logging
import os
import uuid
from datetime import datetime, timedelta
from typing import Optional, cast
from opik import Opik, Trace
from opik.id_helpers import uuid4_to_uuid7
from core.ops.base_trace_instance import BaseTraceInstance
from core.ops.entities.config_entity import OpikConfig
from core.ops.entities.trace_entity import (
BaseTraceInfo,
DatasetRetrievalTraceInfo,
GenerateNameTraceInfo,
MessageTraceInfo,
ModerationTraceInfo,
SuggestedQuestionTraceInfo,
ToolTraceInfo,
TraceTaskName,
WorkflowTraceInfo,
)
from extensions.ext_database import db
from models.model import EndUser, MessageFile
from models.workflow import WorkflowNodeExecution
logger = logging.getLogger(__name__)
def wrap_dict(key_name, data):
"""Make sure that the input data is a dict"""
if not isinstance(data, dict):
return {key_name: data}
return data
def wrap_metadata(metadata, **kwargs):
"""Add common metatada to all Traces and Spans"""
metadata["created_from"] = "dify"
metadata.update(kwargs)
return metadata
def prepare_opik_uuid(user_datetime: Optional[datetime], user_uuid: Optional[str]):
"""Opik needs UUIDv7 while Dify uses UUIDv4 for identifier of most
messages and objects. The type-hints of BaseTraceInfo indicates that
objects start_time and message_id could be null which means we cannot map
it to a UUIDv7. Given that we have no way to identify that object
uniquely, generate a new random one UUIDv7 in that case.
"""
if user_datetime is None:
user_datetime = datetime.now()
if user_uuid is None:
user_uuid = str(uuid.uuid4())
return uuid4_to_uuid7(user_datetime, user_uuid)
class OpikDataTrace(BaseTraceInstance):
def __init__(
self,
opik_config: OpikConfig,
):
super().__init__(opik_config)
self.opik_client = Opik(
project_name=opik_config.project,
workspace=opik_config.workspace,
host=opik_config.url,
api_key=opik_config.api_key,
)
self.project = opik_config.project
self.file_base_url = os.getenv("FILES_URL", "http://127.0.0.1:5001")
def trace(self, trace_info: BaseTraceInfo):
if isinstance(trace_info, WorkflowTraceInfo):
self.workflow_trace(trace_info)
if isinstance(trace_info, MessageTraceInfo):
self.message_trace(trace_info)
if isinstance(trace_info, ModerationTraceInfo):
self.moderation_trace(trace_info)
if isinstance(trace_info, SuggestedQuestionTraceInfo):
self.suggested_question_trace(trace_info)
if isinstance(trace_info, DatasetRetrievalTraceInfo):
self.dataset_retrieval_trace(trace_info)
if isinstance(trace_info, ToolTraceInfo):
self.tool_trace(trace_info)
if isinstance(trace_info, GenerateNameTraceInfo):
self.generate_name_trace(trace_info)
def workflow_trace(self, trace_info: WorkflowTraceInfo):
dify_trace_id = trace_info.workflow_run_id
opik_trace_id = prepare_opik_uuid(trace_info.start_time, dify_trace_id)
workflow_metadata = wrap_metadata(
trace_info.metadata, message_id=trace_info.message_id, workflow_app_log_id=trace_info.workflow_app_log_id
)
root_span_id = None
if trace_info.message_id:
dify_trace_id = trace_info.message_id
opik_trace_id = prepare_opik_uuid(trace_info.start_time, dify_trace_id)
trace_data = {
"id": opik_trace_id,
"name": TraceTaskName.MESSAGE_TRACE.value,
"start_time": trace_info.start_time,
"end_time": trace_info.end_time,
"metadata": workflow_metadata,
"input": wrap_dict("input", trace_info.workflow_run_inputs),
"output": wrap_dict("output", trace_info.workflow_run_outputs),
"tags": ["message", "workflow"],
"project_name": self.project,
}
self.add_trace(trace_data)
root_span_id = prepare_opik_uuid(trace_info.start_time, trace_info.workflow_run_id)
span_data = {
"id": root_span_id,
"parent_span_id": None,
"trace_id": opik_trace_id,
"name": TraceTaskName.WORKFLOW_TRACE.value,
"input": wrap_dict("input", trace_info.workflow_run_inputs),
"output": wrap_dict("output", trace_info.workflow_run_outputs),
"start_time": trace_info.start_time,
"end_time": trace_info.end_time,
"metadata": workflow_metadata,
"tags": ["workflow"],
"project_name": self.project,
}
self.add_span(span_data)
else:
trace_data = {
"id": opik_trace_id,
"name": TraceTaskName.MESSAGE_TRACE.value,
"start_time": trace_info.start_time,
"end_time": trace_info.end_time,
"metadata": workflow_metadata,
"input": wrap_dict("input", trace_info.workflow_run_inputs),
"output": wrap_dict("output", trace_info.workflow_run_outputs),
"tags": ["workflow"],
"project_name": self.project,
}
self.add_trace(trace_data)
# through workflow_run_id get all_nodes_execution
workflow_nodes_execution_id_records = (
db.session.query(WorkflowNodeExecution.id)
.filter(WorkflowNodeExecution.workflow_run_id == trace_info.workflow_run_id)
.all()
)
for node_execution_id_record in workflow_nodes_execution_id_records:
node_execution = (
db.session.query(
WorkflowNodeExecution.id,
WorkflowNodeExecution.tenant_id,
WorkflowNodeExecution.app_id,
WorkflowNodeExecution.title,
WorkflowNodeExecution.node_type,
WorkflowNodeExecution.status,
WorkflowNodeExecution.inputs,
WorkflowNodeExecution.outputs,
WorkflowNodeExecution.created_at,
WorkflowNodeExecution.elapsed_time,
WorkflowNodeExecution.process_data,
WorkflowNodeExecution.execution_metadata,
)
.filter(WorkflowNodeExecution.id == node_execution_id_record.id)
.first()
)
if not node_execution:
continue
node_execution_id = node_execution.id
tenant_id = node_execution.tenant_id
app_id = node_execution.app_id
node_name = node_execution.title
node_type = node_execution.node_type
status = node_execution.status
if node_type == "llm":
inputs = (
json.loads(node_execution.process_data).get("prompts", {}) if node_execution.process_data else {}
)
else:
inputs = json.loads(node_execution.inputs) if node_execution.inputs else {}
outputs = json.loads(node_execution.outputs) if node_execution.outputs else {}
created_at = node_execution.created_at or datetime.now()
elapsed_time = node_execution.elapsed_time
finished_at = created_at + timedelta(seconds=elapsed_time)
execution_metadata = (
json.loads(node_execution.execution_metadata) if node_execution.execution_metadata else {}
)
metadata = execution_metadata.copy()
metadata.update(
{
"workflow_run_id": trace_info.workflow_run_id,
"node_execution_id": node_execution_id,
"tenant_id": tenant_id,
"app_id": app_id,
"app_name": node_name,
"node_type": node_type,
"status": status,
}
)
process_data = json.loads(node_execution.process_data) if node_execution.process_data else {}
provider = None
model = None
total_tokens = 0
completion_tokens = 0
prompt_tokens = 0
if process_data and process_data.get("model_mode") == "chat":
run_type = "llm"
provider = process_data.get("model_provider", None)
model = process_data.get("model_name", "")
metadata.update(
{
"ls_provider": provider,
"ls_model_name": model,
}
)
try:
if outputs.get("usage"):
total_tokens = outputs["usage"].get("total_tokens", 0)
prompt_tokens = outputs["usage"].get("prompt_tokens", 0)
completion_tokens = outputs["usage"].get("completion_tokens", 0)
except Exception:
logger.error("Failed to extract usage", exc_info=True)
else:
run_type = "tool"
parent_span_id = trace_info.workflow_app_log_id or trace_info.workflow_run_id
if not total_tokens:
total_tokens = execution_metadata.get("total_tokens", 0)
span_data = {
"trace_id": opik_trace_id,
"id": prepare_opik_uuid(created_at, node_execution_id),
"parent_span_id": prepare_opik_uuid(trace_info.start_time, parent_span_id),
"name": node_type,
"type": run_type,
"start_time": created_at,
"end_time": finished_at,
"metadata": wrap_metadata(metadata),
"input": wrap_dict("input", inputs),
"output": wrap_dict("output", outputs),
"tags": ["node_execution"],
"project_name": self.project,
"usage": {
"total_tokens": total_tokens,
"completion_tokens": completion_tokens,
"prompt_tokens": prompt_tokens,
},
"model": model,
"provider": provider,
}
self.add_span(span_data)
def message_trace(self, trace_info: MessageTraceInfo):
# get message file data
file_list = cast(list[str], trace_info.file_list) or []
message_file_data: Optional[MessageFile] = trace_info.message_file_data
if message_file_data is not None:
file_url = f"{self.file_base_url}/{message_file_data.url}" if message_file_data else ""
file_list.append(file_url)
message_data = trace_info.message_data
if message_data is None:
return
metadata = trace_info.metadata
message_id = trace_info.message_id
user_id = message_data.from_account_id
metadata["user_id"] = user_id
metadata["file_list"] = file_list
if message_data.from_end_user_id:
end_user_data: Optional[EndUser] = (
db.session.query(EndUser).filter(EndUser.id == message_data.from_end_user_id).first()
)
if end_user_data is not None:
end_user_id = end_user_data.session_id
metadata["end_user_id"] = end_user_id
trace_data = {
"id": prepare_opik_uuid(trace_info.start_time, message_id),
"name": TraceTaskName.MESSAGE_TRACE.value,
"start_time": trace_info.start_time,
"end_time": trace_info.end_time,
"metadata": wrap_metadata(metadata),
"input": trace_info.inputs,
"output": message_data.answer,
"tags": ["message", str(trace_info.conversation_mode)],
"project_name": self.project,
}
trace = self.add_trace(trace_data)
span_data = {
"trace_id": trace.id,
"name": "llm",
"type": "llm",
"start_time": trace_info.start_time,
"end_time": trace_info.end_time,
"metadata": wrap_metadata(metadata),
"input": {"input": trace_info.inputs},
"output": {"output": message_data.answer},
"tags": ["llm", str(trace_info.conversation_mode)],
"usage": {
"completion_tokens": trace_info.answer_tokens,
"prompt_tokens": trace_info.message_tokens,
"total_tokens": trace_info.total_tokens,
},
"project_name": self.project,
}
self.add_span(span_data)
def moderation_trace(self, trace_info: ModerationTraceInfo):
if trace_info.message_data is None:
return
start_time = trace_info.start_time or trace_info.message_data.created_at
span_data = {
"trace_id": prepare_opik_uuid(start_time, trace_info.message_id),
"name": TraceTaskName.MODERATION_TRACE.value,
"type": "tool",
"start_time": start_time,
"end_time": trace_info.end_time or trace_info.message_data.updated_at,
"metadata": wrap_metadata(trace_info.metadata),
"input": wrap_dict("input", trace_info.inputs),
"output": {
"action": trace_info.action,
"flagged": trace_info.flagged,
"preset_response": trace_info.preset_response,
"inputs": trace_info.inputs,
},
"tags": ["moderation"],
}
self.add_span(span_data)
def suggested_question_trace(self, trace_info: SuggestedQuestionTraceInfo):
message_data = trace_info.message_data
if message_data is None:
return
start_time = trace_info.start_time or message_data.created_at
span_data = {
"trace_id": prepare_opik_uuid(start_time, trace_info.message_id),
"name": TraceTaskName.SUGGESTED_QUESTION_TRACE.value,
"type": "tool",
"start_time": start_time,
"end_time": trace_info.end_time or message_data.updated_at,
"metadata": wrap_metadata(trace_info.metadata),
"input": wrap_dict("input", trace_info.inputs),
"output": wrap_dict("output", trace_info.suggested_question),
"tags": ["suggested_question"],
}
self.add_span(span_data)
def dataset_retrieval_trace(self, trace_info: DatasetRetrievalTraceInfo):
if trace_info.message_data is None:
return
start_time = trace_info.start_time or trace_info.message_data.created_at
span_data = {
"trace_id": prepare_opik_uuid(start_time, trace_info.message_id),
"name": TraceTaskName.DATASET_RETRIEVAL_TRACE.value,
"type": "tool",
"start_time": start_time,
"end_time": trace_info.end_time or trace_info.message_data.updated_at,
"metadata": wrap_metadata(trace_info.metadata),
"input": wrap_dict("input", trace_info.inputs),
"output": {"documents": trace_info.documents},
"tags": ["dataset_retrieval"],
}
self.add_span(span_data)
def tool_trace(self, trace_info: ToolTraceInfo):
span_data = {
"trace_id": prepare_opik_uuid(trace_info.start_time, trace_info.message_id),
"name": trace_info.tool_name,
"type": "tool",
"start_time": trace_info.start_time,
"end_time": trace_info.end_time,
"metadata": wrap_metadata(trace_info.metadata),
"input": wrap_dict("input", trace_info.tool_inputs),
"output": wrap_dict("output", trace_info.tool_outputs),
"tags": ["tool", trace_info.tool_name],
}
self.add_span(span_data)
def generate_name_trace(self, trace_info: GenerateNameTraceInfo):
trace_data = {
"id": prepare_opik_uuid(trace_info.start_time, trace_info.message_id),
"name": TraceTaskName.GENERATE_NAME_TRACE.value,
"start_time": trace_info.start_time,
"end_time": trace_info.end_time,
"metadata": wrap_metadata(trace_info.metadata),
"input": trace_info.inputs,
"output": trace_info.outputs,
"tags": ["generate_name"],
"project_name": self.project,
}
trace = self.add_trace(trace_data)
span_data = {
"trace_id": trace.id,
"name": TraceTaskName.GENERATE_NAME_TRACE.value,
"start_time": trace_info.start_time,
"end_time": trace_info.end_time,
"metadata": wrap_metadata(trace_info.metadata),
"input": wrap_dict("input", trace_info.inputs),
"output": wrap_dict("output", trace_info.outputs),
"tags": ["generate_name"],
}
self.add_span(span_data)
def add_trace(self, opik_trace_data: dict) -> Trace:
try:
trace = self.opik_client.trace(**opik_trace_data)
logger.debug("Opik Trace created successfully")
return trace
except Exception as e:
raise ValueError(f"Opik Failed to create trace: {str(e)}")
def add_span(self, opik_span_data: dict):
try:
self.opik_client.span(**opik_span_data)
logger.debug("Opik Span created successfully")
except Exception as e:
raise ValueError(f"Opik Failed to create span: {str(e)}")
def api_check(self):
try:
self.opik_client.auth_check()
return True
except Exception as e:
logger.info(f"Opik API check failed: {str(e)}", exc_info=True)
raise ValueError(f"Opik API check failed: {str(e)}")
def get_project_url(self):
try:
return self.opik_client.get_project_url(project_name=self.project)
except Exception as e:
logger.info(f"Opik get run url failed: {str(e)}", exc_info=True)
raise ValueError(f"Opik get run url failed: {str(e)}")

View File

@ -17,6 +17,7 @@ from core.ops.entities.config_entity import (
OPS_FILE_PATH,
LangfuseConfig,
LangSmithConfig,
OpikConfig,
TracingProviderEnum,
)
from core.ops.entities.trace_entity import (
@ -32,6 +33,7 @@ from core.ops.entities.trace_entity import (
)
from core.ops.langfuse_trace.langfuse_trace import LangFuseDataTrace
from core.ops.langsmith_trace.langsmith_trace import LangSmithDataTrace
from core.ops.opik_trace.opik_trace import OpikDataTrace
from core.ops.utils import get_message_data
from extensions.ext_database import db
from extensions.ext_storage import storage
@ -52,6 +54,12 @@ provider_config_map: dict[str, dict[str, Any]] = {
"other_keys": ["project", "endpoint"],
"trace_instance": LangSmithDataTrace,
},
TracingProviderEnum.OPIK.value: {
"config_class": OpikConfig,
"secret_keys": ["api_key"],
"other_keys": ["project", "url", "workspace"],
"trace_instance": OpikDataTrace,
},
}

View File

@ -23,7 +23,12 @@ from core.helper import encrypter
from core.helper.model_provider_cache import ProviderCredentialsCache, ProviderCredentialsCacheType
from core.helper.position_helper import is_filtered
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.entities.provider_entities import CredentialFormSchema, FormType, ProviderEntity
from core.model_runtime.entities.provider_entities import (
ConfigurateMethod,
CredentialFormSchema,
FormType,
ProviderEntity,
)
from core.model_runtime.model_providers.model_provider_factory import ModelProviderFactory
from extensions import ext_hosting_provider
from extensions.ext_database import db
@ -839,11 +844,18 @@ class ProviderManager:
:return:
"""
# Get provider model credential secret variables
model_credential_secret_variables = self._extract_secret_variables(
provider_entity.model_credential_schema.credential_form_schemas
if provider_entity.model_credential_schema
else []
)
if ConfigurateMethod.PREDEFINED_MODEL in provider_entity.configurate_methods:
model_credential_secret_variables = self._extract_secret_variables(
provider_entity.provider_credential_schema.credential_form_schemas
if provider_entity.provider_credential_schema
else []
)
else:
model_credential_secret_variables = self._extract_secret_variables(
provider_entity.model_credential_schema.credential_form_schemas
if provider_entity.model_credential_schema
else []
)
model_settings: list[ModelSettings] = []
if not provider_model_settings:

View File

@ -258,7 +258,7 @@ class LindormVectorStore(BaseVector):
hnsw_ef_construction = kwargs.pop("hnsw_ef_construction", 500)
ivfpq_m = kwargs.pop("ivfpq_m", dimension)
nlist = kwargs.pop("nlist", 1000)
centroids_use_hnsw = kwargs.pop("centroids_use_hnsw", True if nlist >= 5000 else False)
centroids_use_hnsw = kwargs.pop("centroids_use_hnsw", nlist >= 5000)
centroids_hnsw_m = kwargs.pop("centroids_hnsw_m", 24)
centroids_hnsw_ef_construct = kwargs.pop("centroids_hnsw_ef_construct", 500)
centroids_hnsw_ef_search = kwargs.pop("centroids_hnsw_ef_search", 100)
@ -305,7 +305,7 @@ def default_text_mapping(dimension: int, method_name: str, **kwargs: Any) -> dic
if method_name == "ivfpq":
ivfpq_m = kwargs["ivfpq_m"]
nlist = kwargs["nlist"]
centroids_use_hnsw = True if nlist > 10000 else False
centroids_use_hnsw = nlist > 10000
centroids_hnsw_m = 24
centroids_hnsw_ef_construct = 500
centroids_hnsw_ef_search = 100

View File

@ -57,6 +57,11 @@ CREATE TABLE IF NOT EXISTS {table_name} (
) using heap;
"""
SQL_CREATE_INDEX = """
CREATE INDEX IF NOT EXISTS embedding_cosine_v1_idx ON {table_name}
USING hnsw (embedding vector_cosine_ops) WITH (m = 16, ef_construction = 64);
"""
class PGVector(BaseVector):
def __init__(self, collection_name: str, config: PGVectorConfig):
@ -205,7 +210,10 @@ class PGVector(BaseVector):
with self._get_cursor() as cur:
cur.execute("CREATE EXTENSION IF NOT EXISTS vector")
cur.execute(SQL_CREATE_TABLE.format(table_name=self.table_name, dimension=dimension))
# TODO: create index https://github.com/pgvector/pgvector?tab=readme-ov-file#indexing
# PG hnsw index only support 2000 dimension or less
# ref: https://github.com/pgvector/pgvector?tab=readme-ov-file#indexing
if dimension <= 2000:
cur.execute(SQL_CREATE_INDEX.format(table_name=self.table_name))
redis_client.set(collection_exist_cache_key, 1, ex=3600)

View File

@ -31,7 +31,7 @@ class FirecrawlApp:
"markdown": data.get("markdown"),
}
else:
raise Exception(f'Failed to scrape URL. Error: {response_data["error"]}')
raise Exception(f"Failed to scrape URL. Error: {response_data['error']}")
elif response.status_code in {402, 409, 500}:
error_message = response.json().get("error", "Unknown error occurred")

View File

@ -358,8 +358,7 @@ class NotionExtractor(BaseExtractor):
if not data_source_binding:
raise Exception(
f"No notion data source binding found for tenant {tenant_id} "
f"and notion workspace {notion_workspace_id}"
f"No notion data source binding found for tenant {tenant_id} and notion workspace {notion_workspace_id}"
)
return cast(str, data_source_binding.access_token)

View File

@ -112,7 +112,7 @@ class QAIndexProcessor(BaseIndexProcessor):
df = pd.read_csv(file)
text_docs = []
for index, row in df.iterrows():
data = Document(page_content=row[0], metadata={"answer": row[1]})
data = Document(page_content=row.iloc[0], metadata={"answer": row.iloc[1]})
text_docs.append(data)
if len(text_docs) == 0:
raise ValueError("The CSV file is empty.")

View File

@ -94,9 +94,9 @@ class ApiTool(Tool):
if "api_key_header_prefix" in credentials:
api_key_header_prefix = credentials["api_key_header_prefix"]
if api_key_header_prefix == "basic" and credentials["api_key_value"]:
credentials["api_key_value"] = f'Basic {credentials["api_key_value"]}'
credentials["api_key_value"] = f"Basic {credentials['api_key_value']}"
elif api_key_header_prefix == "bearer" and credentials["api_key_value"]:
credentials["api_key_value"] = f'Bearer {credentials["api_key_value"]}'
credentials["api_key_value"] = f"Bearer {credentials['api_key_value']}"
elif api_key_header_prefix == "custom":
pass

View File

@ -39,7 +39,7 @@ class ToolFileMessageTransformer:
conversation_id=conversation_id,
)
url = f'/files/tools/{file.id}{guess_extension(file.mimetype) or ".png"}'
url = f"/files/tools/{file.id}{guess_extension(file.mimetype) or '.png'}"
yield ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.IMAGE_LINK,
@ -115,4 +115,4 @@ class ToolFileMessageTransformer:
@classmethod
def get_tool_file_url(cls, tool_file_id: str, extension: Optional[str]) -> str:
return f'/files/tools/{tool_file_id}{extension or ".bin"}'
return f"/files/tools/{tool_file_id}{extension or '.bin'}"

View File

@ -5,6 +5,7 @@ from json import loads as json_loads
from json.decoder import JSONDecodeError
from typing import Optional
from flask import request
from requests import get
from yaml import YAMLError, safe_load # type: ignore
@ -29,6 +30,10 @@ class ApiBasedToolSchemaParser:
raise ToolProviderNotFoundError("No server found in the openapi yaml.")
server_url = openapi["servers"][0]["url"]
request_env = request.headers.get("X-Request-Env")
if request_env:
matched_servers = [server["url"] for server in openapi["servers"] if server["env"] == request_env]
server_url = matched_servers[0] if matched_servers else server_url
# list all interfaces
interfaces = []
@ -112,7 +117,7 @@ class ApiBasedToolSchemaParser:
llm_description=property.get("description", ""),
default=property.get("default", None),
placeholder=I18nObject(
en_US=parameter.get("description", ""), zh_Hans=parameter.get("description", "")
en_US=property.get("description", ""), zh_Hans=property.get("description", "")
),
)
@ -144,7 +149,7 @@ class ApiBasedToolSchemaParser:
if not path:
path = str(uuid.uuid4())
interface["operation"]["operationId"] = f'{path}_{interface["method"]}'
interface["operation"]["operationId"] = f"{path}_{interface['method']}"
bundles.append(
ApiToolBundle(

View File

@ -134,6 +134,10 @@ class ArrayStringSegment(ArraySegment):
value_type: SegmentType = SegmentType.ARRAY_STRING
value: Sequence[str]
@property
def text(self) -> str:
return json.dumps(self.value)
class ArrayNumberSegment(ArraySegment):
value_type: SegmentType = SegmentType.ARRAY_NUMBER

View File

@ -1,6 +1,7 @@
import logging
from abc import ABC, abstractmethod
from collections.abc import Generator
from typing import Optional
from core.workflow.entities.variable_pool import VariablePool
from core.workflow.graph_engine.entities.event import GraphEngineEvent, NodeRunExceptionEvent, NodeRunSucceededEvent
@ -48,25 +49,35 @@ class StreamProcessor(ABC):
# we remove the node maybe shortcut the answer node, so comment this code for now
# there is not effect on the answer node and the workflow, when we have a better solution
# we can open this code. Issues: #11542 #9560 #10638 #10564
ids = self._fetch_node_ids_in_reachable_branch(edge.target_node_id)
if "answer" in ids:
continue
else:
reachable_node_ids.extend(ids)
# ids = self._fetch_node_ids_in_reachable_branch(edge.target_node_id)
# if "answer" in ids:
# continue
# else:
# reachable_node_ids.extend(ids)
# The branch_identify parameter is added to ensure that
# only nodes in the correct logical branch are included.
ids = self._fetch_node_ids_in_reachable_branch(edge.target_node_id, run_result.edge_source_handle)
reachable_node_ids.extend(ids)
else:
unreachable_first_node_ids.append(edge.target_node_id)
for node_id in unreachable_first_node_ids:
self._remove_node_ids_in_unreachable_branch(node_id, reachable_node_ids)
def _fetch_node_ids_in_reachable_branch(self, node_id: str) -> list[str]:
def _fetch_node_ids_in_reachable_branch(self, node_id: str, branch_identify: Optional[str] = None) -> list[str]:
node_ids = []
for edge in self.graph.edge_mapping.get(node_id, []):
if edge.target_node_id == self.graph.root_node_id:
continue
# Only follow edges that match the branch_identify or have no run_condition
if edge.run_condition and edge.run_condition.branch_identify:
if not branch_identify or edge.run_condition.branch_identify != branch_identify:
continue
node_ids.append(edge.target_node_id)
node_ids.extend(self._fetch_node_ids_in_reachable_branch(edge.target_node_id))
node_ids.extend(self._fetch_node_ids_in_reachable_branch(edge.target_node_id, branch_identify))
return node_ids
def _remove_node_ids_in_unreachable_branch(self, node_id: str, reachable_node_ids: list[str]) -> None:

View File

@ -253,9 +253,9 @@ class Executor:
)
if executor_response.size > threshold_size:
raise ResponseSizeError(
f'{"File" if executor_response.is_file else "Text"} size is too large,'
f' max size is {threshold_size / 1024 / 1024:.2f} MB,'
f' but current size is {executor_response.readable_size}.'
f"{'File' if executor_response.is_file else 'Text'} size is too large,"
f" max size is {threshold_size / 1024 / 1024:.2f} MB,"
f" but current size is {executor_response.readable_size}."
)
return executor_response
@ -338,7 +338,7 @@ class Executor:
if self.auth.config and self.auth.config.header:
authorization_header = self.auth.config.header
if k.lower() == authorization_header.lower():
raw += f'{k}: {"*" * len(v)}\r\n'
raw += f"{k}: {'*' * len(v)}\r\n"
continue
raw += f"{k}: {v}\r\n"

View File

@ -1,4 +1,5 @@
import json
from collections.abc import Sequence
from typing import Any, cast
from core.variables import SegmentType, Variable
@ -31,7 +32,7 @@ class VariableAssignerNode(BaseNode[VariableAssignerNodeData]):
inputs = self.node_data.model_dump()
process_data: dict[str, Any] = {}
# NOTE: This node has no outputs
updated_variables: list[Variable] = []
updated_variable_selectors: list[Sequence[str]] = []
try:
for item in self.node_data.items:
@ -98,7 +99,8 @@ class VariableAssignerNode(BaseNode[VariableAssignerNodeData]):
value=item.value,
)
variable = variable.model_copy(update={"value": updated_value})
updated_variables.append(variable)
self.graph_runtime_state.variable_pool.add(variable.selector, variable)
updated_variable_selectors.append(variable.selector)
except VariableOperatorNodeError as e:
return NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
@ -107,9 +109,15 @@ class VariableAssignerNode(BaseNode[VariableAssignerNodeData]):
error=str(e),
)
# The `updated_variable_selectors` is a list contains list[str] which not hashable,
# remove the duplicated items first.
updated_variable_selectors = list(set(map(tuple, updated_variable_selectors)))
# Update variables
for variable in updated_variables:
self.graph_runtime_state.variable_pool.add(variable.selector, variable)
for selector in updated_variable_selectors:
variable = self.graph_runtime_state.variable_pool.get(selector)
if not isinstance(variable, Variable):
raise VariableNotFoundError(variable_selector=selector)
process_data[variable.name] = variable.value
if variable.selector[0] == CONVERSATION_VARIABLE_NODE_ID:

View File

@ -26,7 +26,7 @@ def handle(sender, **kwargs):
tool_runtime=tool_runtime,
provider_name=tool_entity.provider_name,
provider_type=tool_entity.provider_type,
identity_id=f'WORKFLOW.{app.id}.{node_data.get("id")}',
identity_id=f"WORKFLOW.{app.id}.{node_data.get('id')}",
)
manager.delete_tool_parameters_cache()
except:

View File

@ -34,7 +34,7 @@ class OpenDALStorage(BaseStorage):
root = kwargs.get("root", "storage")
Path(root).mkdir(parents=True, exist_ok=True)
self.op = opendal.Operator(scheme=scheme, **kwargs)
self.op = opendal.Operator(scheme=scheme, **kwargs) # type: ignore
logger.debug(f"opendal operator created with scheme {scheme}")
retry_layer = opendal.layers.RetryLayer(max_times=3, factor=2.0, jitter=True)
self.op = self.op.layer(retry_layer)

View File

@ -1,6 +1,6 @@
from flask_restful import fields # type: ignore
from libs.helper import TimestampField
from libs.helper import AvatarUrlField, TimestampField
simple_account_fields = {"id": fields.String, "name": fields.String, "email": fields.String}
@ -8,6 +8,7 @@ account_fields = {
"id": fields.String,
"name": fields.String,
"avatar": fields.String,
"avatar_url": AvatarUrlField,
"email": fields.String,
"is_password_set": fields.Boolean,
"interface_language": fields.String,
@ -22,6 +23,7 @@ account_with_role_fields = {
"id": fields.String,
"name": fields.String,
"avatar": fields.String,
"avatar_url": AvatarUrlField,
"email": fields.String,
"last_login_at": TimestampField,
"last_active_at": TimestampField,

View File

@ -43,6 +43,18 @@ class AppIconUrlField(fields.Raw):
return None
class AvatarUrlField(fields.Raw):
def output(self, key, obj):
if obj is None:
return None
from models.account import Account
if isinstance(obj, Account) and obj.avatar is not None:
return file_helpers.get_signed_file_url(obj.avatar)
return None
class TimestampField(fields.Raw):
def format(self, value) -> int:
return int(value.timestamp())

View File

@ -13,6 +13,7 @@ from typing import Any, cast
from sqlalchemy import func
from sqlalchemy.dialects.postgresql import JSONB
from sqlalchemy.orm import Mapped
from configs import dify_config
from core.rag.retrieval.retrieval_methods import RetrievalMethod
@ -515,7 +516,7 @@ class DocumentSegment(db.Model): # type: ignore[name-defined]
tenant_id = db.Column(StringUUID, nullable=False)
dataset_id = db.Column(StringUUID, nullable=False)
document_id = db.Column(StringUUID, nullable=False)
position = db.Column(db.Integer, nullable=False)
position: Mapped[int]
content = db.Column(db.Text, nullable=False)
answer = db.Column(db.Text, nullable=True)
word_count = db.Column(db.Integer, nullable=False)

View File

@ -1486,9 +1486,8 @@ class ApiToken(Base):
def generate_api_key(prefix, n):
while True:
result = prefix + generate_string(n)
while db.session.query(ApiToken).filter(ApiToken.token == result).count() > 0:
result = prefix + generate_string(n)
if db.session.query(ApiToken).filter(ApiToken.token == result).count() > 0:
continue
return result

1714
api/poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -1,9 +1,10 @@
[project]
name = "dify-api"
requires-python = ">=3.11,<3.13"
dynamic = [ "dependencies" ]
[build-system]
requires = ["poetry-core"]
requires = ["poetry-core>=2.0.0"]
build-backend = "poetry.core.masonry.api"
[tool.poetry]
@ -48,6 +49,7 @@ numpy = "~1.26.4"
oci = "~2.135.1"
openai = "~1.52.0"
openpyxl = "~3.1.5"
opik = "~1.3.4"
pandas = { version = "~2.2.2", extras = ["performance", "excel"] }
pandas-stubs = "~2.2.3.241009"
psycogreen = "~1.0.2"
@ -157,4 +159,4 @@ pytest-mock = "~3.14.0"
optional = true
[tool.poetry.group.lint.dependencies]
dotenv-linter = "~0.5.0"
ruff = "~0.8.1"
ruff = "~0.9.2"

View File

@ -286,7 +286,7 @@ class AppAnnotationService:
df = pd.read_csv(file)
result = []
for index, row in df.iterrows():
content = {"question": row[0], "answer": row[1]}
content = {"question": row.iloc[0], "answer": row.iloc[1]}
result.append(content)
if len(result) == 0:
raise ValueError("The CSV file is empty.")

View File

@ -1,7 +1,7 @@
import logging
import uuid
from enum import StrEnum
from typing import Optional, cast
from typing import Optional
from urllib.parse import urlparse
from uuid import uuid4
@ -159,15 +159,6 @@ class AppDslService:
status=ImportStatus.FAILED,
error="Empty content from url",
)
try:
content = cast(bytes, content).decode("utf-8")
except UnicodeDecodeError as e:
return Import(
id=import_id,
status=ImportStatus.FAILED,
error=f"Error decoding content: {e}",
)
except Exception as e:
return Import(
id=import_id,

View File

@ -82,7 +82,7 @@ class AudioService:
from app import app
from extensions.ext_database import db
def invoke_tts(text_content: str, app_model, voice: Optional[str] = None):
def invoke_tts(text_content: str, app_model: App, voice: Optional[str] = None):
with app.app_context():
if app_model.mode in {AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value}:
workflow = app_model.workflow
@ -95,6 +95,8 @@ class AudioService:
voice = features_dict["text_to_speech"].get("voice") if voice is None else voice
else:
if app_model.app_model_config is None:
raise ValueError("AppModelConfig not found")
text_to_speech_dict = app_model.app_model_config.text_to_speech_dict
if not text_to_speech_dict.get("enabled"):

View File

@ -4,6 +4,7 @@ import logging
import random
import time
import uuid
from collections import Counter
from typing import Any, Optional
from flask_login import current_user # type: ignore
@ -73,7 +74,7 @@ from tasks.sync_website_document_indexing_task import sync_website_document_inde
class DatasetService:
@staticmethod
def get_datasets(page, per_page, tenant_id=None, user=None, search=None, tag_ids=None):
def get_datasets(page, per_page, tenant_id=None, user=None, search=None, tag_ids=None, include_all=False):
query = Dataset.query.filter(Dataset.tenant_id == tenant_id).order_by(Dataset.created_at.desc())
if user:
@ -88,7 +89,7 @@ class DatasetService:
else:
return [], 0
else:
if user.current_role != TenantAccountRole.OWNER:
if user.current_role != TenantAccountRole.OWNER or not include_all:
# show all datasets that the user has permission to access
if permitted_dataset_ids:
query = query.filter(
@ -223,8 +224,7 @@ class DatasetService:
)
except LLMBadRequestError:
raise ValueError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ValueError(f"The dataset in unavailable, due to: {ex.description}")
@ -880,7 +880,7 @@ class DocumentService:
position = DocumentService.get_documents_position(dataset.id)
document_ids = []
duplicate_document_ids = []
if knowledge_config.data_source.info_list.data_source_type == "upload_file":
if knowledge_config.data_source.info_list.data_source_type == "upload_file": # type: ignore
upload_file_list = knowledge_config.data_source.info_list.file_info_list.file_ids # type: ignore
for file_id in upload_file_list:
file = (
@ -922,7 +922,7 @@ class DocumentService:
document = DocumentService.build_document(
dataset,
dataset_process_rule.id, # type: ignore
knowledge_config.data_source.info_list.data_source_type,
knowledge_config.data_source.info_list.data_source_type, # type: ignore
knowledge_config.doc_form,
knowledge_config.doc_language,
data_source_info,
@ -937,8 +937,8 @@ class DocumentService:
document_ids.append(document.id)
documents.append(document)
position += 1
elif knowledge_config.data_source.info_list.data_source_type == "notion_import":
notion_info_list = knowledge_config.data_source.info_list.notion_info_list
elif knowledge_config.data_source.info_list.data_source_type == "notion_import": # type: ignore
notion_info_list = knowledge_config.data_source.info_list.notion_info_list # type: ignore
if not notion_info_list:
raise ValueError("No notion info list found.")
exist_page_ids = []
@ -977,7 +977,7 @@ class DocumentService:
document = DocumentService.build_document(
dataset,
dataset_process_rule.id, # type: ignore
knowledge_config.data_source.info_list.data_source_type,
knowledge_config.data_source.info_list.data_source_type, # type: ignore
knowledge_config.doc_form,
knowledge_config.doc_language,
data_source_info,
@ -997,8 +997,8 @@ class DocumentService:
# delete not selected documents
if len(exist_document) > 0:
clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
elif knowledge_config.data_source.info_list.data_source_type == "website_crawl":
website_info = knowledge_config.data_source.info_list.website_info_list
elif knowledge_config.data_source.info_list.data_source_type == "website_crawl": # type: ignore
website_info = knowledge_config.data_source.info_list.website_info_list # type: ignore
if not website_info:
raise ValueError("No website info list found.")
urls = website_info.urls
@ -1017,7 +1017,7 @@ class DocumentService:
document = DocumentService.build_document(
dataset,
dataset_process_rule.id, # type: ignore
knowledge_config.data_source.info_list.data_source_type,
knowledge_config.data_source.info_list.data_source_type, # type: ignore
knowledge_config.doc_form,
knowledge_config.doc_language,
data_source_info,
@ -1216,20 +1216,20 @@ class DocumentService:
if features.billing.enabled:
count = 0
if knowledge_config.data_source.info_list.data_source_type == "upload_file":
if knowledge_config.data_source.info_list.data_source_type == "upload_file": # type: ignore
upload_file_list = (
knowledge_config.data_source.info_list.file_info_list.file_ids
if knowledge_config.data_source.info_list.file_info_list
knowledge_config.data_source.info_list.file_info_list.file_ids # type: ignore
if knowledge_config.data_source.info_list.file_info_list # type: ignore
else []
)
count = len(upload_file_list)
elif knowledge_config.data_source.info_list.data_source_type == "notion_import":
notion_info_list = knowledge_config.data_source.info_list.notion_info_list
elif knowledge_config.data_source.info_list.data_source_type == "notion_import": # type: ignore
notion_info_list = knowledge_config.data_source.info_list.notion_info_list # type: ignore
if notion_info_list:
for notion_info in notion_info_list:
count = count + len(notion_info.pages)
elif knowledge_config.data_source.info_list.data_source_type == "website_crawl":
website_info = knowledge_config.data_source.info_list.website_info_list
elif knowledge_config.data_source.info_list.data_source_type == "website_crawl": # type: ignore
website_info = knowledge_config.data_source.info_list.website_info_list # type: ignore
if website_info:
count = len(website_info.urls)
batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
@ -1260,7 +1260,7 @@ class DocumentService:
dataset = Dataset(
tenant_id=tenant_id,
name="",
data_source_type=knowledge_config.data_source.info_list.data_source_type,
data_source_type=knowledge_config.data_source.info_list.data_source_type, # type: ignore
indexing_technique=knowledge_config.indexing_technique,
created_by=account.id,
embedding_model=knowledge_config.embedding_model,
@ -1635,8 +1635,11 @@ class SegmentService:
segment.answer = args.answer
segment.word_count += len(args.answer) if args.answer else 0
word_count_change = segment.word_count - word_count_change
keyword_changed = False
if args.keywords:
segment.keywords = args.keywords
if Counter(segment.keywords) != Counter(args.keywords):
segment.keywords = args.keywords
keyword_changed = True
segment.enabled = True
segment.disabled_at = None
segment.disabled_by = None
@ -1647,13 +1650,6 @@ class SegmentService:
document.word_count = max(0, document.word_count + word_count_change)
db.session.add(document)
# update segment index task
if args.enabled:
VectorService.create_segments_vector(
[args.keywords] if args.keywords else None,
[segment],
dataset,
document.doc_form,
)
if document.doc_form == IndexType.PARENT_CHILD_INDEX and args.regenerate_child_chunks:
# regenerate child chunks
# get embedding model instance
@ -1686,6 +1682,14 @@ class SegmentService:
VectorService.generate_child_chunks(
segment, document, dataset, embedding_model_instance, processing_rule, True
)
elif document.doc_form in (IndexType.PARAGRAPH_INDEX, IndexType.QA_INDEX):
if args.enabled or keyword_changed:
VectorService.create_segments_vector(
[args.keywords] if args.keywords else None,
[segment],
dataset,
document.doc_form,
)
else:
segment_hash = helper.generate_text_hash(content)
tokens = 0

View File

@ -97,7 +97,7 @@ class KnowledgeConfig(BaseModel):
original_document_id: Optional[str] = None
duplicate: bool = True
indexing_technique: Literal["high_quality", "economy"]
data_source: DataSource
data_source: Optional[DataSource] = None
process_rule: Optional[ProcessRule] = None
retrieval_model: Optional[RetrievalModel] = None
doc_form: str = "text_model"

View File

@ -155,7 +155,7 @@ class ExternalDatasetService:
if custom_parameters:
for parameter in custom_parameters:
if parameter.get("required", False) and not process_parameter.get(parameter.get("name")):
raise ValueError(f'{parameter.get("name")} is required')
raise ValueError(f"{parameter.get('name')} is required")
@staticmethod
def process_external_api(

View File

@ -59,6 +59,15 @@ class OpsService:
except Exception:
new_decrypt_tracing_config.update({"project_url": "https://smith.langchain.com/"})
if tracing_provider == "opik" and (
"project_url" not in decrypt_tracing_config or not decrypt_tracing_config.get("project_url")
):
try:
project_url = OpsTraceManager.get_trace_config_project_url(decrypt_tracing_config, tracing_provider)
new_decrypt_tracing_config.update({"project_url": project_url})
except Exception:
new_decrypt_tracing_config.update({"project_url": "https://www.comet.com/opik/"})
trace_config_data.tracing_config = new_decrypt_tracing_config
return trace_config_data.to_dict()
@ -92,7 +101,7 @@ class OpsService:
if tracing_provider == "langfuse":
project_key = OpsTraceManager.get_trace_config_project_key(tracing_config, tracing_provider)
project_url = "{host}/project/{key}".format(host=tracing_config.get("host"), key=project_key)
elif tracing_provider == "langsmith":
elif tracing_provider in ("langsmith", "opik"):
project_url = OpsTraceManager.get_trace_config_project_url(tracing_config, tracing_provider)
else:
project_url = None

View File

@ -5,7 +5,8 @@ import uuid
import click
from celery import shared_task # type: ignore
from sqlalchemy import func
from sqlalchemy import func, select
from sqlalchemy.orm import Session
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
@ -18,7 +19,12 @@ from services.vector_service import VectorService
@shared_task(queue="dataset")
def batch_create_segment_to_index_task(
job_id: str, content: list, dataset_id: str, document_id: str, tenant_id: str, user_id: str
job_id: str,
content: list,
dataset_id: str,
document_id: str,
tenant_id: str,
user_id: str,
):
"""
Async batch create segment to index
@ -37,25 +43,35 @@ def batch_create_segment_to_index_task(
indexing_cache_key = "segment_batch_import_{}".format(job_id)
try:
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
if not dataset:
raise ValueError("Dataset not exist.")
with Session(db.engine) as session:
dataset = session.get(Dataset, dataset_id)
if not dataset:
raise ValueError("Dataset not exist.")
dataset_document = db.session.query(Document).filter(Document.id == document_id).first()
if not dataset_document:
raise ValueError("Document not exist.")
dataset_document = session.get(Document, document_id)
if not dataset_document:
raise ValueError("Document not exist.")
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != "completed":
raise ValueError("Document is not available.")
document_segments = []
embedding_model = None
if dataset.indexing_technique == "high_quality":
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model,
if (
not dataset_document.enabled
or dataset_document.archived
or dataset_document.indexing_status != "completed"
):
raise ValueError("Document is not available.")
document_segments = []
embedding_model = None
if dataset.indexing_technique == "high_quality":
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model,
)
word_count_change = 0
segments_to_insert: list[str] = []
max_position_stmt = select(func.max(DocumentSegment.position)).where(
DocumentSegment.document_id == dataset_document.id
)
word_count_change = 0
if embedding_model:
@ -103,7 +119,10 @@ def batch_create_segment_to_index_task(
redis_client.setex(indexing_cache_key, 600, "completed")
end_at = time.perf_counter()
logging.info(
click.style("Segment batch created job: {} latency: {}".format(job_id, end_at - start_at), fg="green")
click.style(
"Segment batch created job: {} latency: {}".format(job_id, end_at - start_at),
fg="green",
)
)
except Exception:
logging.exception("Segments batch created index failed")

View File

@ -44,6 +44,6 @@ def test_duplicated_dependency_crossing_groups() -> None:
dependency_names = list(dependencies.keys())
all_dependency_names.extend(dependency_names)
expected_all_dependency_names = set(all_dependency_names)
assert sorted(expected_all_dependency_names) == sorted(
all_dependency_names
), "Duplicated dependencies crossing groups are found"
assert sorted(expected_all_dependency_names) == sorted(all_dependency_names), (
"Duplicated dependencies crossing groups are found"
)

View File

@ -4,7 +4,6 @@ from app_fixture import mock_user # type: ignore
def test_post_requires_login(app):
with app.test_client() as client:
with patch("flask_login.utils._get_user", mock_user):
response = client.get("/console/api/data-source/integrates")
assert response.status_code == 200
with app.test_client() as client, patch("flask_login.utils._get_user", mock_user):
response = client.get("/console/api/data-source/integrates")
assert response.status_code == 200

View File

@ -89,9 +89,9 @@ class TestOpenSearchVector:
print("Actual document ID:", hits_by_vector[0].metadata["document_id"] if hits_by_vector else "No hits")
assert len(hits_by_vector) > 0, f"Expected at least one hit, got {len(hits_by_vector)}"
assert (
hits_by_vector[0].metadata["document_id"] == self.example_doc_id
), f"Expected document ID {self.example_doc_id}, got {hits_by_vector[0].metadata['document_id']}"
assert hits_by_vector[0].metadata["document_id"] == self.example_doc_id, (
f"Expected document ID {self.example_doc_id}, got {hits_by_vector[0].metadata['document_id']}"
)
def test_get_ids_by_metadata_field(self):
mock_response = {"hits": {"total": {"value": 1}, "hits": [{"_id": "mock_id"}]}}

View File

@ -434,11 +434,11 @@ def test_fetch_files_with_non_existent_variable(llm_node):
# jinja2_variables=[],
# )
# # Verify the result
# assert len(prompt_messages) == len(scenario.expected_messages), f"Scenario failed: {scenario.description}"
# assert (
# prompt_messages == scenario.expected_messages
# ), f"Message content mismatch in scenario: {scenario.description}"
# # Verify the result
# assert len(prompt_messages) == len(scenario.expected_messages), f"Scenario failed: {scenario.description}"
# assert prompt_messages == scenario.expected_messages, (
# f"Message content mismatch in scenario: {scenario.description}"
# )
def test_handle_list_messages_basic(llm_node):

View File

@ -401,8 +401,7 @@ def test__convert_to_llm_node_for_workflow_advanced_completion_model(default_var
prompt_template = PromptTemplateEntity(
prompt_type=PromptTemplateEntity.PromptType.ADVANCED,
advanced_completion_prompt_template=AdvancedCompletionPromptTemplateEntity(
prompt="You are a helpful assistant named {{name}}.\n\nContext:\n{{#context#}}\n\n"
"Human: hi\nAssistant: ",
prompt="You are a helpful assistant named {{name}}.\n\nContext:\n{{#context#}}\n\nHuman: hi\nAssistant: ",
role_prefix=AdvancedCompletionPromptTemplateEntity.RolePrefixEntity(user="Human", assistant="Assistant"),
),
)

View File

@ -9,10 +9,10 @@ if ! command -v ruff &> /dev/null || ! command -v dotenv-linter &> /dev/null; th
fi
# run ruff linter
poetry run -C api ruff check --fix ./api
poetry run -C api ruff check --fix ./
# run ruff formatter
poetry run -C api ruff format ./api
poetry run -C api ruff format ./
# run dotenv-linter linter
poetry run -C api dotenv-linter ./api/.env.example ./web/.env.example
poetry run -P api dotenv-linter ./api/.env.example ./web/.env.example

View File

@ -12,7 +12,7 @@ if [ $? -ne 0 ]; then
# update poetry.lock
# refreshing lockfile only without updating locked versions
echo "poetry.lock is outdated, refreshing without updating locked versions ..."
poetry lock -C api --no-update
poetry lock -C api
else
echo "poetry.lock is ready."
fi

View File

@ -65,6 +65,7 @@ services:
MARKETPLACE_API_URL: ${MARKETPLACE_API_URL:-https://marketplace.dify.ai}
MARKETPLACE_URL: ${MARKETPLACE_URL:-https://marketplace.dify.ai}
TOP_K_MAX_VALUE: ${TOP_K_MAX_VALUE:-}
INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH: ${INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH:-}
# The postgres database.
db:

View File

@ -473,6 +473,7 @@ services:
MARKETPLACE_API_URL: ${MARKETPLACE_API_URL:-https://marketplace.dify.ai}
MARKETPLACE_URL: ${MARKETPLACE_URL:-https://marketplace.dify.ai}
TOP_K_MAX_VALUE: ${TOP_K_MAX_VALUE:-}
INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH: ${INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH:-}
# The postgres database.
db:

View File

@ -34,3 +34,6 @@ NEXT_PUBLIC_CSP_WHITELIST=
NEXT_PUBLIC_GITHUB_ACCESS_TOKEN=
# The maximum number of top-k value for RAG.
NEXT_PUBLIC_TOP_K_MAX_VALUE=10
# The maximum number of tokens for segmentation
NEXT_PUBLIC_INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH=4000

View File

@ -5,7 +5,7 @@ import { useTranslation } from 'react-i18next'
import { useBoolean } from 'ahooks'
import TracingIcon from './tracing-icon'
import ProviderPanel from './provider-panel'
import type { LangFuseConfig, LangSmithConfig } from './type'
import type { LangFuseConfig, LangSmithConfig, OpikConfig } from './type'
import { TracingProvider } from './type'
import ProviderConfigModal from './provider-config-modal'
import Indicator from '@/app/components/header/indicator'
@ -25,7 +25,8 @@ export type PopupProps = {
onChooseProvider: (provider: TracingProvider) => void
langSmithConfig: LangSmithConfig | null
langFuseConfig: LangFuseConfig | null
onConfigUpdated: (provider: TracingProvider, payload: LangSmithConfig | LangFuseConfig) => void
opikConfig: OpikConfig | null
onConfigUpdated: (provider: TracingProvider, payload: LangSmithConfig | LangFuseConfig | OpikConfig) => void
onConfigRemoved: (provider: TracingProvider) => void
}
@ -38,6 +39,7 @@ const ConfigPopup: FC<PopupProps> = ({
onChooseProvider,
langSmithConfig,
langFuseConfig,
opikConfig,
onConfigUpdated,
onConfigRemoved,
}) => {
@ -61,7 +63,7 @@ const ConfigPopup: FC<PopupProps> = ({
}
}, [onChooseProvider])
const handleConfigUpdated = useCallback((payload: LangSmithConfig | LangFuseConfig) => {
const handleConfigUpdated = useCallback((payload: LangSmithConfig | LangFuseConfig | OpikConfig) => {
onConfigUpdated(currentProvider!, payload)
hideConfigModal()
}, [currentProvider, hideConfigModal, onConfigUpdated])
@ -71,8 +73,8 @@ const ConfigPopup: FC<PopupProps> = ({
hideConfigModal()
}, [currentProvider, hideConfigModal, onConfigRemoved])
const providerAllConfigured = langSmithConfig && langFuseConfig
const providerAllNotConfigured = !langSmithConfig && !langFuseConfig
const providerAllConfigured = langSmithConfig && langFuseConfig && opikConfig
const providerAllNotConfigured = !langSmithConfig && !langFuseConfig && !opikConfig
const switchContent = (
<Switch
@ -91,6 +93,7 @@ const ConfigPopup: FC<PopupProps> = ({
onConfig={handleOnConfig(TracingProvider.langSmith)}
isChosen={chosenProvider === TracingProvider.langSmith}
onChoose={handleOnChoose(TracingProvider.langSmith)}
key="langSmith-provider-panel"
/>
)
@ -103,9 +106,61 @@ const ConfigPopup: FC<PopupProps> = ({
onConfig={handleOnConfig(TracingProvider.langfuse)}
isChosen={chosenProvider === TracingProvider.langfuse}
onChoose={handleOnChoose(TracingProvider.langfuse)}
key="langfuse-provider-panel"
/>
)
const opikPanel = (
<ProviderPanel
type={TracingProvider.opik}
readOnly={readOnly}
config={opikConfig}
hasConfigured={!!opikConfig}
onConfig={handleOnConfig(TracingProvider.opik)}
isChosen={chosenProvider === TracingProvider.opik}
onChoose={handleOnChoose(TracingProvider.opik)}
key="opik-provider-panel"
/>
)
const configuredProviderPanel = () => {
const configuredPanels: ProviderPanel[] = []
if (langSmithConfig)
configuredPanels.push(langSmithPanel)
if (langFuseConfig)
configuredPanels.push(langfusePanel)
if (opikConfig)
configuredPanels.push(opikPanel)
return configuredPanels
}
const moreProviderPanel = () => {
const notConfiguredPanels: ProviderPanel[] = []
if (!langSmithConfig)
notConfiguredPanels.push(langSmithPanel)
if (!langFuseConfig)
notConfiguredPanels.push(langfusePanel)
if (!opikConfig)
notConfiguredPanels.push(opikPanel)
return notConfiguredPanels
}
const configuredProviderConfig = () => {
if (currentProvider === TracingProvider.langSmith)
return langSmithConfig
if (currentProvider === TracingProvider.langfuse)
return langFuseConfig
return opikConfig
}
return (
<div className='w-[420px] p-4 rounded-2xl bg-components-panel-bg border-[0.5px] border-components-panel-border shadow-xl'>
<div className='flex justify-between items-center'>
@ -146,6 +201,7 @@ const ConfigPopup: FC<PopupProps> = ({
<div className='mt-2 space-y-2'>
{langSmithPanel}
{langfusePanel}
{opikPanel}
</div>
</>
)
@ -167,7 +223,7 @@ const ConfigPopup: FC<PopupProps> = ({
<ProviderConfigModal
appId={appId}
type={currentProvider!}
payload={currentProvider === TracingProvider.langSmith ? langSmithConfig : langFuseConfig}
payload={configuredProviderConfig()}
onCancel={hideConfigModal}
onSaved={handleConfigUpdated}
onChosen={onChooseProvider}

View File

@ -3,4 +3,5 @@ import { TracingProvider } from './type'
export const docURL = {
[TracingProvider.langSmith]: 'https://docs.smith.langchain.com/',
[TracingProvider.langfuse]: 'https://docs.langfuse.com',
[TracingProvider.opik]: 'https://www.comet.com/docs/opik/tracing/integrations/dify#setup-instructions',
}

View File

@ -74,11 +74,20 @@ const Panel: FC = () => {
})
}
const inUseTracingProvider: TracingProvider | null = tracingStatus?.tracing_provider || null
const InUseProviderIcon = inUseTracingProvider === TracingProvider.langSmith ? LangsmithIcon : LangfuseIcon
const InUseProviderIcon
= inUseTracingProvider === TracingProvider.langSmith
? LangsmithIcon
: inUseTracingProvider === TracingProvider.langfuse
? LangfuseIcon
: inUseTracingProvider === TracingProvider.opik
? OpikIcon
: null
const [langSmithConfig, setLangSmithConfig] = useState<LangSmithConfig | null>(null)
const [langFuseConfig, setLangFuseConfig] = useState<LangFuseConfig | null>(null)
const hasConfiguredTracing = !!(langSmithConfig || langFuseConfig)
const [opikConfig, setOpikConfig] = useState<OpikConfig | null>(null)
const hasConfiguredTracing = !!(langSmithConfig || langFuseConfig || opikConfig)
const fetchTracingConfig = async () => {
const { tracing_config: langSmithConfig, has_not_configured: langSmithHasNotConfig } = await doFetchTracingConfig({ appId, provider: TracingProvider.langSmith })
@ -87,6 +96,9 @@ const Panel: FC = () => {
const { tracing_config: langFuseConfig, has_not_configured: langFuseHasNotConfig } = await doFetchTracingConfig({ appId, provider: TracingProvider.langfuse })
if (!langFuseHasNotConfig)
setLangFuseConfig(langFuseConfig as LangFuseConfig)
const { tracing_config: opikConfig, has_not_configured: OpikHasNotConfig } = await doFetchTracingConfig({ appId, provider: TracingProvider.opik })
if (!OpikHasNotConfig)
setOpikConfig(opikConfig as OpikConfig)
}
const handleTracingConfigUpdated = async (provider: TracingProvider) => {
@ -94,15 +106,19 @@ const Panel: FC = () => {
const { tracing_config } = await doFetchTracingConfig({ appId, provider })
if (provider === TracingProvider.langSmith)
setLangSmithConfig(tracing_config as LangSmithConfig)
else
else if (provider === TracingProvider.langSmith)
setLangFuseConfig(tracing_config as LangFuseConfig)
else if (provider === TracingProvider.opik)
setOpikConfig(tracing_config as OpikConfig)
}
const handleTracingConfigRemoved = (provider: TracingProvider) => {
if (provider === TracingProvider.langSmith)
setLangSmithConfig(null)
else
else if (provider === TracingProvider.langSmith)
setLangFuseConfig(null)
else if (provider === TracingProvider.opik)
setOpikConfig(null)
if (provider === inUseTracingProvider) {
handleTracingStatusChange({
enabled: false,
@ -201,6 +217,24 @@ const Panel: FC = () => {
</div>
</>
)}
<div className='flex items-center' onClick={e => e.stopPropagation()}>
<ConfigButton
appId={appId}
readOnly={readOnly}
hasConfigured
className='ml-2'
enabled={enabled}
onStatusChange={handleTracingEnabledChange}
chosenProvider={inUseTracingProvider}
onChooseProvider={handleChooseProvider}
langSmithConfig={langSmithConfig}
langFuseConfig={langFuseConfig}
opikConfig={opikConfig}
onConfigUpdated={handleTracingConfigUpdated}
onConfigRemoved={handleTracingConfigRemoved}
controlShowPopup={controlShowPopup}
/>
</div>
</div>
</div>
)

View File

@ -4,7 +4,7 @@ import React, { useCallback, useState } from 'react'
import { useTranslation } from 'react-i18next'
import { useBoolean } from 'ahooks'
import Field from './field'
import type { LangFuseConfig, LangSmithConfig } from './type'
import type { LangFuseConfig, LangSmithConfig, OpikConfig } from './type'
import { TracingProvider } from './type'
import { docURL } from './config'
import {
@ -22,10 +22,10 @@ import Divider from '@/app/components/base/divider'
type Props = {
appId: string
type: TracingProvider
payload?: LangSmithConfig | LangFuseConfig | null
payload?: LangSmithConfig | LangFuseConfig | OpikConfig | null
onRemoved: () => void
onCancel: () => void
onSaved: (payload: LangSmithConfig | LangFuseConfig) => void
onSaved: (payload: LangSmithConfig | LangFuseConfig | OpikConfig) => void
onChosen: (provider: TracingProvider) => void
}
@ -43,6 +43,13 @@ const langFuseConfigTemplate = {
host: '',
}
const opikConfigTemplate = {
api_key: '',
project: '',
url: '',
workspace: '',
}
const ProviderConfigModal: FC<Props> = ({
appId,
type,
@ -56,14 +63,17 @@ const ProviderConfigModal: FC<Props> = ({
const isEdit = !!payload
const isAdd = !isEdit
const [isSaving, setIsSaving] = useState(false)
const [config, setConfig] = useState<LangSmithConfig | LangFuseConfig>((() => {
const [config, setConfig] = useState<LangSmithConfig | LangFuseConfig | OpikConfig>((() => {
if (isEdit)
return payload
if (type === TracingProvider.langSmith)
return langSmithConfigTemplate
return langFuseConfigTemplate
else if (type === TracingProvider.langfuse)
return langFuseConfigTemplate
return opikConfigTemplate
})())
const [isShowRemoveConfirm, {
setTrue: showRemoveConfirm,
@ -112,6 +122,10 @@ const ProviderConfigModal: FC<Props> = ({
errorMessage = t('common.errorMsg.fieldRequired', { field: 'Host' })
}
if (type === TracingProvider.opik) {
const postData = config as OpikConfig
}
return errorMessage
}, [config, t, type])
const handleSave = useCallback(async () => {
@ -216,6 +230,38 @@ const ProviderConfigModal: FC<Props> = ({
/>
</>
)}
{type === TracingProvider.opik && (
<>
<Field
label='API Key'
labelClassName='!text-sm'
value={(config as OpikConfig).api_key}
onChange={handleConfigChange('api_key')}
placeholder={t(`${I18N_PREFIX}.placeholder`, { key: 'API Key' })!}
/>
<Field
label={t(`${I18N_PREFIX}.project`)!}
labelClassName='!text-sm'
value={(config as OpikConfig).project}
onChange={handleConfigChange('project')}
placeholder={t(`${I18N_PREFIX}.placeholder`, { key: t(`${I18N_PREFIX}.project`) })!}
/>
<Field
label='Workspace'
labelClassName='!text-sm'
value={(config as OpikConfig).workspace}
onChange={handleConfigChange('workspace')}
placeholder={'default'}
/>
<Field
label='Url'
labelClassName='!text-sm'
value={(config as OpikConfig).url}
onChange={handleConfigChange('url')}
placeholder={'https://www.comet.com/opik/api/'}
/>
</>
)}
</div>
<div className='my-8 flex justify-between items-center h-8'>

View File

@ -7,7 +7,8 @@ import {
import { useTranslation } from 'react-i18next'
import { TracingProvider } from './type'
import cn from '@/utils/classnames'
import { LangfuseIconBig, LangsmithIconBig } from '@/app/components/base/icons/src/public/tracing'
import { LangfuseIconBig, LangsmithIconBig, OpikIconBig } from '@/app/components/base/icons/src/public/tracing'
import { Settings04 } from '@/app/components/base/icons/src/vender/line/general'
import { Eye as View } from '@/app/components/base/icons/src/vender/solid/general'
const I18N_PREFIX = 'app.tracing'
@ -26,6 +27,7 @@ const getIcon = (type: TracingProvider) => {
return ({
[TracingProvider.langSmith]: LangsmithIconBig,
[TracingProvider.langfuse]: LangfuseIconBig,
[TracingProvider.opik]: OpikIconBig,
})[type]
}
@ -79,7 +81,7 @@ const ProviderPanel: FC<Props> = ({
<div className={'flex justify-between items-center space-x-1'}>
{hasConfigured && (
<div className='flex px-2 items-center h-6 bg-components-button-secondary-bg rounded-md border-[0.5px] border-components-button-secondary-border shadow-xs cursor-pointer text-text-secondary space-x-1' onClick={viewBtnClick} >
<View className='w-3 h-3'/>
<View className='w-3 h-3' />
<div className='text-xs font-medium'>{t(`${I18N_PREFIX}.view`)}</div>
</div>
)}

View File

@ -1,6 +1,7 @@
export enum TracingProvider {
langSmith = 'langsmith',
langfuse = 'langfuse',
opik = 'opik',
}
export type LangSmithConfig = {
@ -14,3 +15,10 @@ export type LangFuseConfig = {
secret_key: string
host: string
}
export type OpikConfig = {
api_key: string
project: string
workspace: string
url: string
}

View File

@ -4,7 +4,8 @@
import { useEffect, useMemo, useRef, useState } from 'react'
import { useRouter } from 'next/navigation'
import { useTranslation } from 'react-i18next'
import { useDebounceFn } from 'ahooks'
import { useBoolean, useDebounceFn } from 'ahooks'
import { useQuery } from '@tanstack/react-query'
// Components
import ExternalAPIPanel from '../../components/datasets/external-api/external-api-panel'
@ -16,7 +17,9 @@ import TabSliderNew from '@/app/components/base/tab-slider-new'
import TagManagementModal from '@/app/components/base/tag-management'
import TagFilter from '@/app/components/base/tag-management/filter'
import Button from '@/app/components/base/button'
import Input from '@/app/components/base/input'
import { ApiConnectionMod } from '@/app/components/base/icons/src/vender/solid/development'
import CheckboxWithLabel from '@/app/components/datasets/create/website/base/checkbox-with-label'
// Services
import { fetchDatasetApiBaseUrl } from '@/service/datasets'
@ -27,15 +30,13 @@ import { useStore as useTagStore } from '@/app/components/base/tag-management/st
import { useAppContext } from '@/context/app-context'
import { useExternalApiPanel } from '@/context/external-api-panel-context'
import { useQuery } from '@tanstack/react-query'
import Input from '@/app/components/base/input'
const Container = () => {
const { t } = useTranslation()
const router = useRouter()
const { currentWorkspace } = useAppContext()
const { currentWorkspace, isCurrentWorkspaceOwner } = useAppContext()
const showTagManagementModal = useTagStore(s => s.showTagManagementModal)
const { showExternalApiPanel, setShowExternalApiPanel } = useExternalApiPanel()
const [includeAll, { toggle: toggleIncludeAll }] = useBoolean(false)
const options = useMemo(() => {
return [
@ -81,7 +82,7 @@ const Container = () => {
}, [currentWorkspace, router])
return (
<div ref={containerRef} className='grow relative flex flex-col bg-background-body overflow-y-auto'>
<div ref={containerRef} className='grow relative flex flex-col bg-background-body overflow-y-auto scroll-container'>
<div className='sticky top-0 flex justify-between pt-4 px-12 pb-2 leading-[56px] bg-background-body z-10 flex-wrap gap-y-2'>
<TabSliderNew
value={activeTab}
@ -90,6 +91,14 @@ const Container = () => {
/>
{activeTab === 'dataset' && (
<div className='flex items-center justify-center gap-2'>
{isCurrentWorkspaceOwner && <CheckboxWithLabel
isChecked={includeAll}
onChange={toggleIncludeAll}
label={t('dataset.allKnowledge')}
labelClassName='system-md-regular text-text-secondary'
className='mr-2'
tooltip={t('dataset.allKnowledgeDescription') as string}
/>}
<TagFilter type='knowledge' value={tagFilterValue} onChange={handleTagsChange} />
<Input
showLeftIcon
@ -113,7 +122,7 @@ const Container = () => {
</div>
{activeTab === 'dataset' && (
<>
<Datasets containerRef={containerRef} tags={tagIDs} keywords={searchKeywords} />
<Datasets containerRef={containerRef} tags={tagIDs} keywords={searchKeywords} includeAll={includeAll} />
<DatasetFooter />
{showTagManagementModal && (
<TagManagementModal type='knowledge' show={showTagManagementModal} />

View File

@ -6,7 +6,7 @@ import { debounce } from 'lodash-es'
import { useTranslation } from 'react-i18next'
import NewDatasetCard from './NewDatasetCard'
import DatasetCard from './DatasetCard'
import type { DataSetListResponse } from '@/models/datasets'
import type { DataSetListResponse, FetchDatasetsParams } from '@/models/datasets'
import { fetchDatasets } from '@/service/datasets'
import { useAppContext } from '@/context/app-context'
@ -15,13 +15,15 @@ const getKey = (
previousPageData: DataSetListResponse,
tags: string[],
keyword: string,
includeAll: boolean,
) => {
if (!pageIndex || previousPageData.has_more) {
const params: any = {
const params: FetchDatasetsParams = {
url: 'datasets',
params: {
page: pageIndex + 1,
limit: 30,
include_all: includeAll,
},
}
if (tags.length)
@ -37,16 +39,18 @@ type Props = {
containerRef: React.RefObject<HTMLDivElement>
tags: string[]
keywords: string
includeAll: boolean
}
const Datasets = ({
containerRef,
tags,
keywords,
includeAll,
}: Props) => {
const { isCurrentWorkspaceEditor } = useAppContext()
const { data, isLoading, setSize, mutate } = useSWRInfinite(
(pageIndex: number, previousPageData: DataSetListResponse) => getKey(pageIndex, previousPageData, tags, keywords),
(pageIndex: number, previousPageData: DataSetListResponse) => getKey(pageIndex, previousPageData, tags, keywords, includeAll),
fetchDatasets,
{ revalidateFirstPage: false, revalidateAll: true },
)

View File

@ -1,7 +1,9 @@
'use client'
import { type FC, useEffect } from 'react'
import { useEffect, useState } from 'react'
import { useContext } from 'use-context-selector'
import { useTranslation } from 'react-i18next'
import { RiListUnordered } from '@remixicon/react'
import TemplateEn from './template/template.en.mdx'
import TemplateZh from './template/template.zh.mdx'
import I18n from '@/context/i18n'
@ -10,25 +12,106 @@ import { LanguagesSupported } from '@/i18n/language'
type DocProps = {
apiBaseUrl: string
}
const Doc: FC<DocProps> = ({
apiBaseUrl,
}) => {
const { locale } = useContext(I18n)
const Doc = ({ apiBaseUrl }: DocProps) => {
const { locale } = useContext(I18n)
const { t } = useTranslation()
const [toc, setToc] = useState<Array<{ href: string; text: string }>>([])
const [isTocExpanded, setIsTocExpanded] = useState(false)
// Set initial TOC expanded state based on screen width
useEffect(() => {
const hash = location.hash
if (hash)
document.querySelector(hash)?.scrollIntoView()
const mediaQuery = window.matchMedia('(min-width: 1280px)')
setIsTocExpanded(mediaQuery.matches)
}, [])
// Extract TOC from article content
useEffect(() => {
const extractTOC = () => {
const article = document.querySelector('article')
if (article) {
const headings = article.querySelectorAll('h2')
const tocItems = Array.from(headings).map((heading) => {
const anchor = heading.querySelector('a')
if (anchor) {
return {
href: anchor.getAttribute('href') || '',
text: anchor.textContent || '',
}
}
return null
}).filter((item): item is { href: string; text: string } => item !== null)
setToc(tocItems)
}
}
setTimeout(extractTOC, 0)
}, [locale])
// Handle TOC item click
const handleTocClick = (e: React.MouseEvent<HTMLAnchorElement>, item: { href: string; text: string }) => {
e.preventDefault()
const targetId = item.href.replace('#', '')
const element = document.getElementById(targetId)
if (element) {
const scrollContainer = document.querySelector('.scroll-container')
if (scrollContainer) {
const headerOffset = -40
const elementTop = element.offsetTop - headerOffset
scrollContainer.scrollTo({
top: elementTop,
behavior: 'smooth',
})
}
}
}
return (
<article className='mx-1 px-4 sm:mx-12 pt-16 bg-white rounded-t-xl prose prose-xl'>
{
locale !== LanguagesSupported[1]
<div className="flex">
<div className={`fixed right-16 top-32 z-10 transition-all ${isTocExpanded ? 'w-64' : 'w-10'}`}>
{isTocExpanded
? (
<nav className="toc w-full bg-gray-50 p-4 rounded-lg shadow-md max-h-[calc(100vh-150px)] overflow-y-auto">
<div className="flex justify-between items-center mb-4">
<h3 className="text-lg font-semibold">{t('appApi.develop.toc')}</h3>
<button
onClick={() => setIsTocExpanded(false)}
className="text-gray-500 hover:text-gray-700"
>
</button>
</div>
<ul className="space-y-2">
{toc.map((item, index) => (
<li key={index}>
<a
href={item.href}
className="text-gray-600 hover:text-gray-900 hover:underline transition-colors duration-200"
onClick={e => handleTocClick(e, item)}
>
{item.text}
</a>
</li>
))}
</ul>
</nav>
)
: (
<button
onClick={() => setIsTocExpanded(true)}
className="w-10 h-10 bg-gray-50 rounded-full shadow-md flex items-center justify-center hover:bg-gray-100 transition-colors duration-200"
>
<RiListUnordered className="w-6 h-6" />
</button>
)}
</div>
<article className='mx-1 px-4 sm:mx-12 pt-16 bg-white rounded-t-xl prose prose-xl'>
{locale !== LanguagesSupported[1]
? <TemplateEn apiBaseUrl={apiBaseUrl} />
: <TemplateZh apiBaseUrl={apiBaseUrl} />
}
</article>
}
</article>
</div>
)
}

View File

@ -1,5 +1,5 @@
import { CodeGroup } from '@/app/components/develop/code.tsx'
import { Row, Col, Properties, Property, Heading, SubProperty, Paragraph } from '@/app/components/develop/md.tsx'
import { Row, Col, Properties, Property, Heading, SubProperty, PropertyInstruction, Paragraph } from '@/app/components/develop/md.tsx'
# Knowledge API
@ -80,6 +80,27 @@ import { Row, Col, Properties, Property, Heading, SubProperty, Paragraph } from
- <code>max_tokens</code> The maximum length (tokens) must be validated to be shorter than the length of the parent chunk
- <code>chunk_overlap</code> Define the overlap between adjacent chunks (optional)
</Property>
<PropertyInstruction>When no parameters are set for the knowledge base, the first upload requires the following parameters to be provided; if not provided, the default parameters will be used.</PropertyInstruction>
<Property name='retrieval_model' type='object' key='retrieval_model'>
Retrieval model
- <code>search_method</code> (string) Search method
- <code>hybrid_search</code> Hybrid search
- <code>semantic_search</code> Semantic search
- <code>full_text_search</code> Full-text search
- <code>reranking_enable</code> (bool) Whether to enable reranking
- <code>reranking_mode</code> (object) Rerank model configuration
- <code>reranking_provider_name</code> (string) Rerank model provider
- <code>reranking_model_name</code> (string) Rerank model name
- <code>top_k</code> (int) Number of results to return
- <code>score_threshold_enabled</code> (bool) Whether to enable score threshold
- <code>score_threshold</code> (float) Score threshold
</Property>
<Property name='embedding_model' type='string' key='embedding_model'>
Embedding model name
</Property>
<Property name='embedding_model_provider' type='string' key='embedding_model_provider'>
Embedding model provider
</Property>
</Properties>
</Col>
<Col sticky>
@ -197,6 +218,27 @@ import { Row, Col, Properties, Property, Heading, SubProperty, Paragraph } from
<Property name='file' type='multipart/form-data' key='file'>
Files that need to be uploaded.
</Property>
<PropertyInstruction>When no parameters are set for the knowledge base, the first upload requires the following parameters to be provided; if not provided, the default parameters will be used.</PropertyInstruction>
<Property name='retrieval_model' type='object' key='retrieval_model'>
Retrieval model
- <code>search_method</code> (string) Search method
- <code>hybrid_search</code> Hybrid search
- <code>semantic_search</code> Semantic search
- <code>full_text_search</code> Full-text search
- <code>reranking_enable</code> (bool) Whether to enable reranking
- <code>reranking_mode</code> (object) Rerank model configuration
- <code>reranking_provider_name</code> (string) Rerank model provider
- <code>reranking_model_name</code> (string) Rerank model name
- <code>top_k</code> (int) Number of results to return
- <code>score_threshold_enabled</code> (bool) Whether to enable score threshold
- <code>score_threshold</code> (float) Score threshold
</Property>
<Property name='embedding_model' type='string' key='embedding_model'>
Embedding model name
</Property>
<Property name='embedding_model_provider' type='string' key='embedding_model_provider'>
Embedding model provider
</Property>
</Properties>
</Col>
<Col sticky>
@ -1106,6 +1148,57 @@ import { Row, Col, Properties, Property, Heading, SubProperty, Paragraph } from
<hr className='ml-0 mr-0' />
<Heading
url='/datasets/{dataset_id}/documents/{document_id}/upload-file'
method='GET'
title='Get Upload File'
name='#get_upload_file'
/>
<Row>
<Col>
### Path
<Properties>
<Property name='dataset_id' type='string' key='dataset_id'>
Knowledge ID
</Property>
<Property name='document_id' type='string' key='document_id'>
Document ID
</Property>
</Properties>
</Col>
<Col sticky>
<CodeGroup
title="Request"
tag="GET"
label="/datasets/{dataset_id}/documents/{document_id}/upload-file"
targetCode={`curl --location --request GET '${props.apiBaseUrl}/datasets/{dataset_id}/documents/{document_id}/upload-file' \\\n--header 'Authorization: Bearer {api_key}' \\\n--header 'Content-Type: application/json'`}
>
```bash {{ title: 'cURL' }}
curl --location --request GET '${props.apiBaseUrl}/datasets/{dataset_id}/documents/{document_id}/upload-file' \
--header 'Authorization: Bearer {api_key}' \
--header 'Content-Type: application/json'
```
</CodeGroup>
<CodeGroup title="Response">
```json {{ title: 'Response' }}
{
"id": "file_id",
"name": "file_name",
"size": 1024,
"extension": "txt",
"url": "preview_url",
"download_url": "download_url",
"mime_type": "text/plain",
"created_by": "user_id",
"created_at": 1728734540,
}
```
</CodeGroup>
</Col>
</Row>
<hr className='ml-0 mr-0' />
<Heading
url='/datasets/{dataset_id}/retrieve'
method='POST'
@ -1137,10 +1230,10 @@ import { Row, Col, Properties, Property, Heading, SubProperty, Paragraph } from
- <code>reranking_mode</code> (object) Rerank model configuration, required if reranking is enabled
- <code>reranking_provider_name</code> (string) Rerank model provider
- <code>reranking_model_name</code> (string) Rerank model name
- <code>weights</code> (double) Semantic search weight setting in hybrid search mode
- <code>weights</code> (float) Semantic search weight setting in hybrid search mode
- <code>top_k</code> (integer) Number of results to return (optional)
- <code>score_threshold_enabled</code> (bool) Whether to enable score threshold
- <code>score_threshold</code> (double) Score threshold
- <code>score_threshold</code> (float) Score threshold
</Property>
<Property name='external_retrieval_model' type='object' key='external_retrieval_model'>
Unused field

View File

@ -1,5 +1,5 @@
import { CodeGroup } from '@/app/components/develop/code.tsx'
import { Row, Col, Properties, Property, Heading, SubProperty, Paragraph } from '@/app/components/develop/md.tsx'
import { Row, Col, Properties, Property, Heading, SubProperty, PropertyInstruction, Paragraph } from '@/app/components/develop/md.tsx'
# 知识库 API
@ -80,6 +80,27 @@ import { Row, Col, Properties, Property, Heading, SubProperty, Paragraph } from
- <code>max_tokens</code> 最大长度 (token) 需要校验小于父级的长度
- <code>chunk_overlap</code> 分段重叠指的是在对数据进行分段时,段与段之间存在一定的重叠部分(选填)
</Property>
<PropertyInstruction>当知识库未设置任何参数的时候,首次上传需要提供以下参数,未提供则使用默认选项:</PropertyInstruction>
<Property name='retrieval_model' type='object' key='retrieval_model'>
检索模式
- <code>search_method</code> (string) 检索方法
- <code>hybrid_search</code> 混合检索
- <code>semantic_search</code> 语义检索
- <code>full_text_search</code> 全文检索
- <code>reranking_enable</code> (bool) 是否开启rerank
- <code>reranking_model</code> (object) Rerank 模型配置
- <code>reranking_provider_name</code> (string) Rerank 模型的提供商
- <code>reranking_model_name</code> (string) Rerank 模型的名称
- <code>top_k</code> (int) 召回条数
- <code>score_threshold_enabled</code> (bool)是否开启召回分数限制
- <code>score_threshold</code> (float) 召回分数限制
</Property>
<Property name='embedding_model' type='string' key='embedding_model'>
Embedding 模型名称
</Property>
<Property name='embedding_model_provider' type='string' key='embedding_model_provider'>
Embedding 模型供应商
</Property>
</Properties>
</Col>
<Col sticky>
@ -197,6 +218,27 @@ import { Row, Col, Properties, Property, Heading, SubProperty, Paragraph } from
<Property name='file' type='multipart/form-data' key='file'>
需要上传的文件。
</Property>
<PropertyInstruction>当知识库未设置任何参数的时候,首次上传需要提供以下参数,未提供则使用默认选项:</PropertyInstruction>
<Property name='retrieval_model' type='object' key='retrieval_model'>
检索模式
- <code>search_method</code> (string) 检索方法
- <code>hybrid_search</code> 混合检索
- <code>semantic_search</code> 语义检索
- <code>full_text_search</code> 全文检索
- <code>reranking_enable</code> (bool) 是否开启rerank
- <code>reranking_model</code> (object) Rerank 模型配置
- <code>reranking_provider_name</code> (string) Rerank 模型的提供商
- <code>reranking_model_name</code> (string) Rerank 模型的名称
- <code>top_k</code> (int) 召回条数
- <code>score_threshold_enabled</code> (bool)是否开启召回分数限制
- <code>score_threshold</code> (float) 召回分数限制
</Property>
<Property name='embedding_model' type='string' key='embedding_model'>
Embedding 模型名称
</Property>
<Property name='embedding_model_provider' type='string' key='embedding_model_provider'>
Embedding 模型供应商
</Property>
</Properties>
</Col>
<Col sticky>
@ -1107,6 +1149,57 @@ import { Row, Col, Properties, Property, Heading, SubProperty, Paragraph } from
<hr className='ml-0 mr-0' />
<Heading
url='/datasets/{dataset_id}/documents/{document_id}/upload-file'
method='GET'
title='获取上传文件'
name='#get_upload_file'
/>
<Row>
<Col>
### Path
<Properties>
<Property name='dataset_id' type='string' key='dataset_id'>
知识库 ID
</Property>
<Property name='document_id' type='string' key='document_id'>
文档 ID
</Property>
</Properties>
</Col>
<Col sticky>
<CodeGroup
title="Request"
tag="GET"
label="/datasets/{dataset_id}/documents/{document_id}/upload-file"
targetCode={`curl --location --request GET '${props.apiBaseUrl}/datasets/{dataset_id}/documents/{document_id}/upload-file' \\\n--header 'Authorization: Bearer {api_key}' \\\n--header 'Content-Type: application/json'`}
>
```bash {{ title: 'cURL' }}
curl --location --request GET '${props.apiBaseUrl}/datasets/{dataset_id}/documents/{document_id}/upload-file' \
--header 'Authorization: Bearer {api_key}' \
--header 'Content-Type: application/json'
```
</CodeGroup>
<CodeGroup title="Response">
```json {{ title: 'Response' }}
{
"id": "file_id",
"name": "file_name",
"size": 1024,
"extension": "txt",
"url": "preview_url",
"download_url": "download_url",
"mime_type": "text/plain",
"created_by": "user_id",
"created_at": 1728734540,
}
```
</CodeGroup>
</Col>
</Row>
<hr className='ml-0 mr-0' />
<Heading
url='/datasets/{dataset_id}/retrieve'
method='POST'
@ -1135,13 +1228,13 @@ import { Row, Col, Properties, Property, Heading, SubProperty, Paragraph } from
- <code>full_text_search</code> 全文检索
- <code>hybrid_search</code> 混合检索
- <code>reranking_enable</code> (bool) 是否启用 Reranking非必填如果检索模式为 semantic_search 模式或者 hybrid_search 则传值
- <code>reranking_mode</code> (object) Rerank模型配置非必填如果启用了 reranking 则传值
- <code>reranking_mode</code> (object) Rerank 模型配置,非必填,如果启用了 reranking 则传值
- <code>reranking_provider_name</code> (string) Rerank 模型提供商
- <code>reranking_model_name</code> (string) Rerank 模型名称
- <code>weights</code> (double) 混合检索模式下语意检索的权重设置
- <code>weights</code> (float) 混合检索模式下语意检索的权重设置
- <code>top_k</code> (integer) 返回结果数量,非必填
- <code>score_threshold_enabled</code> (bool) 是否开启 score 阈值
- <code>score_threshold</code> (double) Score 阈值
- <code>score_threshold</code> (float) Score 阈值
</Property>
<Property name='external_retrieval_model' type='object' key='external_retrieval_model'>
未启用字段

View File

@ -1,7 +1,6 @@
import React from 'react'
import type { FC } from 'react'
import type { Metadata } from 'next'
import GA, { GaType } from '@/app/components/base/ga'
export const metadata: Metadata = {
icons: 'data:,', // prevent browser from using default favicon
@ -12,7 +11,6 @@ const Layout: FC<{
}> = ({ children }) => {
return (
<div className="min-w-[300px] h-full pb-[env(safe-area-inset-bottom)]">
<GA gaType={GaType.webapp} />
{children}
</div>
)

View File

@ -0,0 +1,122 @@
'use client'
import type { Area } from 'react-easy-crop'
import React, { useCallback, useState } from 'react'
import { useTranslation } from 'react-i18next'
import { useContext } from 'use-context-selector'
import { RiPencilLine } from '@remixicon/react'
import { updateUserProfile } from '@/service/common'
import { ToastContext } from '@/app/components/base/toast'
import ImageInput, { type OnImageInput } from '@/app/components/base/app-icon-picker/ImageInput'
import Modal from '@/app/components/base/modal'
import Divider from '@/app/components/base/divider'
import Button from '@/app/components/base/button'
import Avatar, { type AvatarProps } from '@/app/components/base/avatar'
import { useLocalFileUploader } from '@/app/components/base/image-uploader/hooks'
import type { ImageFile } from '@/types/app'
import getCroppedImg from '@/app/components/base/app-icon-picker/utils'
import { DISABLE_UPLOAD_IMAGE_AS_ICON } from '@/config'
type InputImageInfo = { file: File } | { tempUrl: string; croppedAreaPixels: Area; fileName: string }
type AvatarWithEditProps = AvatarProps & { onSave?: () => void }
const AvatarWithEdit = ({ onSave, ...props }: AvatarWithEditProps) => {
const { t } = useTranslation()
const { notify } = useContext(ToastContext)
const [inputImageInfo, setInputImageInfo] = useState<InputImageInfo>()
const [isShowAvatarPicker, setIsShowAvatarPicker] = useState(false)
const [uploading, setUploading] = useState(false)
const handleImageInput: OnImageInput = useCallback(async (isCropped: boolean, fileOrTempUrl: string | File, croppedAreaPixels?: Area, fileName?: string) => {
setInputImageInfo(
isCropped
? { tempUrl: fileOrTempUrl as string, croppedAreaPixels: croppedAreaPixels!, fileName: fileName! }
: { file: fileOrTempUrl as File },
)
}, [setInputImageInfo])
const handleSaveAvatar = useCallback(async (uploadedFileId: string) => {
try {
await updateUserProfile({ url: 'account/avatar', body: { avatar: uploadedFileId } })
notify({ type: 'success', message: t('common.actionMsg.modifiedSuccessfully') })
setIsShowAvatarPicker(false)
onSave?.()
}
catch (e) {
notify({ type: 'error', message: (e as Error).message })
}
}, [notify, onSave, t])
const { handleLocalFileUpload } = useLocalFileUploader({
limit: 3,
disabled: false,
onUpload: (imageFile: ImageFile) => {
if (imageFile.progress === 100) {
setUploading(false)
setInputImageInfo(undefined)
handleSaveAvatar(imageFile.fileId)
}
// Error
if (imageFile.progress === -1)
setUploading(false)
},
})
const handleSelect = useCallback(async () => {
if (!inputImageInfo)
return
setUploading(true)
if ('file' in inputImageInfo) {
handleLocalFileUpload(inputImageInfo.file)
return
}
const blob = await getCroppedImg(inputImageInfo.tempUrl, inputImageInfo.croppedAreaPixels, inputImageInfo.fileName)
const file = new File([blob], inputImageInfo.fileName, { type: blob.type })
handleLocalFileUpload(file)
}, [handleLocalFileUpload, inputImageInfo])
if (DISABLE_UPLOAD_IMAGE_AS_ICON)
return <Avatar {...props} />
return (
<>
<div>
<div className="relative group">
<Avatar {...props} />
<div
onClick={() => { setIsShowAvatarPicker(true) }}
className="absolute inset-0 bg-black bg-opacity-50 rounded-full opacity-0 group-hover:opacity-100 transition-opacity cursor-pointer flex items-center justify-center"
>
<span className="text-white text-xs">
<RiPencilLine />
</span>
</div>
</div>
</div>
<Modal
closable
className="!w-[362px] !p-0"
isShow={isShowAvatarPicker}
onClose={() => setIsShowAvatarPicker(false)}
>
<ImageInput onImageInput={handleImageInput} cropShape='round' />
<Divider className='m-0' />
<div className='w-full flex items-center justify-center p-3 gap-2'>
<Button className='w-full' onClick={() => setIsShowAvatarPicker(false)}>
{t('app.iconPicker.cancel')}
</Button>
<Button variant="primary" className='w-full' disabled={uploading || !inputImageInfo} loading={uploading} onClick={handleSelect}>
{t('app.iconPicker.ok')}
</Button>
</div>
</Modal>
</>
)
}
export default AvatarWithEdit

View File

@ -5,6 +5,7 @@ import { useTranslation } from 'react-i18next'
import { useContext } from 'use-context-selector'
import DeleteAccount from '../delete-account'
import s from './index.module.css'
import AvatarWithEdit from './AvatarWithEdit'
import Collapse from '@/app/components/header/account-setting/collapse'
import type { IItem } from '@/app/components/header/account-setting/collapse'
import Modal from '@/app/components/base/modal'
@ -13,7 +14,6 @@ import { updateUserProfile } from '@/service/common'
import { useAppContext } from '@/context/app-context'
import { ToastContext } from '@/app/components/base/toast'
import AppIcon from '@/app/components/base/app-icon'
import Avatar from '@/app/components/base/avatar'
import { IS_CE_EDITION } from '@/config'
import Input from '@/app/components/base/input'
@ -133,7 +133,7 @@ export default function AccountPage() {
<h4 className='title-2xl-semi-bold text-text-primary'>{t('common.account.myAccount')}</h4>
</div>
<div className='mb-8 p-6 rounded-xl flex items-center bg-gradient-to-r from-background-gradient-bg-fill-chat-bg-2 to-background-gradient-bg-fill-chat-bg-1'>
<Avatar name={userProfile.name} size={64} />
<AvatarWithEdit avatar={userProfile.avatar_url} name={userProfile.name} onSave={ mutateUserProfile } size={64} />
<div className='ml-4'>
<p className='system-xl-semibold text-text-primary'>{userProfile.name}</p>
<p className='system-xs-regular text-text-tertiary'>{userProfile.email}</p>

View File

@ -45,7 +45,7 @@ export default function AppSelector() {
${open && 'bg-components-panel-bg-blur'}
`}
>
<Avatar name={userProfile.name} size={32} />
<Avatar avatar={userProfile.avatar_url} name={userProfile.name} size={32} />
</Menu.Button>
</div>
<Transition
@ -71,7 +71,7 @@ export default function AppSelector() {
<div className='system-md-medium text-text-primary break-all'>{userProfile.name}</div>
<div className='system-xs-regular text-text-tertiary break-all'>{userProfile.email}</div>
</div>
<Avatar name={userProfile.name} size={32} />
<Avatar avatar={userProfile.avatar_url} name={userProfile.name} size={32} />
</div>
</div>
</Menu.Item>

View File

@ -12,7 +12,7 @@ import Divider from '@/app/components/base/divider'
import Button from '@/app/components/base/button'
import Input from '@/app/components/base/input'
import Textarea from '@/app/components/base/textarea'
import { type DataSet } from '@/models/datasets'
import type { DataSet } from '@/models/datasets'
import { useToastContext } from '@/app/components/base/toast'
import { updateDatasetSetting } from '@/service/datasets'
import { useAppContext } from '@/context/app-context'
@ -33,7 +33,7 @@ import { ModelTypeEnum } from '@/app/components/header/account-setting/model-pro
import { fetchMembers } from '@/service/common'
import type { Member } from '@/models/common'
interface SettingsModalProps {
type SettingsModalProps = {
currentDataset: DataSet
onCancel: () => void
onSave: (newDataset: DataSet) => void

View File

@ -149,7 +149,7 @@ const ChatItem: FC<ChatItemProps> = ({
suggestedQuestions={suggestedQuestions}
onSend={doSend}
showPromptLog
questionIcon={<Avatar name={userProfile.name} size={40} />}
questionIcon={<Avatar avatar={userProfile.avatar_url} name={userProfile.name} size={40} />}
allToolIcons={allToolIcons}
hideLogModal
noSpacing

View File

@ -175,7 +175,7 @@ const DebugWithSingleModel = forwardRef<DebugWithSingleModelRefType, DebugWithSi
onRegenerate={doRegenerate}
onStopResponding={handleStop}
showPromptLog
questionIcon={<Avatar name={userProfile.name} size={40} />}
questionIcon={<Avatar avatar={userProfile.avatar_url} name={userProfile.name} size={40} />}
allToolIcons={allToolIcons}
onAnnotationEdited={handleAnnotationEdited}
onAnnotationAdded={handleAnnotationAdded}

View File

@ -39,7 +39,7 @@ const VarPanel: FC<Props> = ({
}
</div>
{!isCollapse && (
<div className='p-3 flex flex-col gap-2'>
<div className='p-3 flex flex-col gap-2 max-h-[500px] overflow-y-auto'>
{varList.map(({ label, value }, index) => (
<div key={index} className='flex py-2 system-xs-medium'>
<div className='shrink-0 w-[128px] flex text-text-accent'>

View File

@ -6,6 +6,7 @@ import type { EChartsOption } from 'echarts'
import useSWR from 'swr'
import dayjs from 'dayjs'
import { get } from 'lodash-es'
import Decimal from 'decimal.js'
import { useTranslation } from 'react-i18next'
import { formatNumber } from '@/utils/format'
import Basic from '@/app/components/app-sidebar/basic'
@ -60,10 +61,8 @@ const CHART_TYPE_CONFIG: Record<string, IChartConfigType> = {
},
}
const sum = (arr: number[]): number => {
return arr.reduce((acr, cur) => {
return acr + cur
})
const sum = (arr: Decimal.Value[]): number => {
return Decimal.sum(...arr).toNumber()
}
const defaultPeriod = {

View File

@ -1,12 +1,12 @@
'use client'
import type { FC } from 'react'
import React, { useEffect, useState } from 'react'
import { ChevronRightIcon } from '@heroicons/react/20/solid'
import React, { useCallback, useEffect, useState } from 'react'
import Link from 'next/link'
import { Trans, useTranslation } from 'react-i18next'
import { useContextSelector } from 'use-context-selector'
import { useContext, useContextSelector } from 'use-context-selector'
import Modal from '@/app/components/base/modal'
import Button from '@/app/components/base/button'
import Divider from '@/app/components/base/divider'
import Input from '@/app/components/base/input'
import Textarea from '@/app/components/base/textarea'
import AppIcon from '@/app/components/base/app-icon'
@ -18,10 +18,13 @@ import { useToastContext } from '@/app/components/base/toast'
import { languages } from '@/i18n/language'
import Tooltip from '@/app/components/base/tooltip'
import AppContext, { useAppContext } from '@/context/app-context'
import { useProviderContext } from '@/context/provider-context'
import { useModalContext } from '@/context/modal-context'
import type { AppIconSelection } from '@/app/components/base/app-icon-picker'
import AppIconPicker from '@/app/components/base/app-icon-picker'
import Divider from '@/app/components/base/divider'
import I18n from '@/context/i18n'
import cn from '@/utils/classnames'
import { ChevronRightIcon } from '@heroicons/react/24/outline'
export type ISettingsModalProps = {
isChat: boolean
@ -85,6 +88,7 @@ const SettingsModal: FC<ISettingsModalProps> = ({
chatColorTheme: chat_color_theme,
chatColorThemeInverted: chat_color_theme_inverted,
copyright,
copyrightSwitchValue: !!copyright,
privacyPolicy: privacy_policy,
customDisclaimer: custom_disclaimer,
show_workflow_steps,
@ -94,6 +98,7 @@ const SettingsModal: FC<ISettingsModalProps> = ({
const [language, setLanguage] = useState(default_language)
const [saveLoading, setSaveLoading] = useState(false)
const { t } = useTranslation()
const { locale } = useContext(I18n)
const [showAppIconPicker, setShowAppIconPicker] = useState(false)
const [appIcon, setAppIcon] = useState<AppIconSelection>(
@ -101,7 +106,16 @@ const SettingsModal: FC<ISettingsModalProps> = ({
? { type: 'image', url: icon_url!, fileId: icon }
: { type: 'emoji', icon, background: icon_background! },
)
const isChatBot = appInfo.mode === 'chat' || appInfo.mode === 'advanced-chat' || appInfo.mode === 'agent-chat'
const { enableBilling, plan } = useProviderContext()
const { setShowPricingModal, setShowAccountSettingModal } = useModalContext()
const isFreePlan = plan.type === 'sandbox'
const handlePlanClick = useCallback(() => {
if (isFreePlan)
setShowPricingModal()
else
setShowAccountSettingModal({ payload: 'billing' })
}, [isFreePlan, setShowAccountSettingModal, setShowPricingModal])
useEffect(() => {
setInputInfo({
@ -110,6 +124,7 @@ const SettingsModal: FC<ISettingsModalProps> = ({
chatColorTheme: chat_color_theme,
chatColorThemeInverted: chat_color_theme_inverted,
copyright,
copyrightSwitchValue: !!copyright,
privacyPolicy: privacy_policy,
customDisclaimer: custom_disclaimer,
show_workflow_steps,
@ -159,7 +174,11 @@ const SettingsModal: FC<ISettingsModalProps> = ({
chat_color_theme: inputInfo.chatColorTheme,
chat_color_theme_inverted: inputInfo.chatColorThemeInverted,
prompt_public: false,
copyright: inputInfo.copyright,
copyright: isFreePlan
? ''
: inputInfo.copyrightSwitchValue
? inputInfo.copyright
: '',
privacy_policy: inputInfo.privacyPolicy,
custom_disclaimer: inputInfo.customDisclaimer,
icon_type: appIcon.type,
@ -193,8 +212,8 @@ const SettingsModal: FC<ISettingsModalProps> = ({
return (
<>
<Modal
title={t(`${prefixSettings}.title`)}
isShow={isShow}
closable={false}
onClose={onHide}
className='max-w-[520px]'
>
@ -327,7 +346,9 @@ const SettingsModal: FC<ISettingsModalProps> = ({
<Button className='mr-2' onClick={onHide}>{t('common.operation.cancel')}</Button>
<Button variant='primary' onClick={onClickSave} loading={saveLoading}>{t('common.operation.save')}</Button>
</div>
{showAppIconPicker && <AppIconPicker
</Modal >
{showAppIconPicker && (
<AppIconPicker
onSelect={(payload) => {
setAppIcon(payload)
setShowAppIconPicker(false)
@ -338,8 +359,8 @@ const SettingsModal: FC<ISettingsModalProps> = ({
: { type: 'emoji', icon, background: icon_background! })
setShowAppIconPicker(false)
}}
/>}
</Modal >
/>
)}
</>
)

View File

@ -306,8 +306,14 @@ const GenerationItem: FC<IGenerationItemProps> = ({
}
<div className={`flex ${contentClassName}`}>
<div className='grow w-0'>
{siteInfo && siteInfo.show_workflow_steps && workflowProcessData && (
<WorkflowProcessItem data={workflowProcessData} expand={workflowProcessData.expand} hideProcessDetail={hideProcessDetail} />
{siteInfo && workflowProcessData && (
<WorkflowProcessItem
data={workflowProcessData}
expand={workflowProcessData.expand}
hideProcessDetail={hideProcessDetail}
hideInfo={hideProcessDetail}
readonly={!siteInfo.show_workflow_steps}
/>
)}
{workflowProcessData && !isError && (
<ResultTab data={workflowProcessData} content={content} currentTab={currentTab} onCurrentTabChange={setCurrentTab} />

View File

@ -9,7 +9,7 @@ import {
PortalToFollowElemTrigger,
} from '@/app/components/base/portal-to-follow-elem'
import { BubbleTextMod, ChatBot, ListSparkle, Logic } from '@/app/components/base/icons/src/vender/solid/communication'
import { type AppMode } from '@/types/app'
import type { AppMode } from '@/types/app'
export type AppSelectorProps = {
value: Array<AppMode>
onChange: (value: AppSelectorProps['value']) => void

View File

@ -2,8 +2,7 @@
import type { ChangeEvent, FC } from 'react'
import { createRef, useEffect, useState } from 'react'
import type { Area } from 'react-easy-crop'
import Cropper from 'react-easy-crop'
import Cropper, { type Area, type CropperProps } from 'react-easy-crop'
import classNames from 'classnames'
import { ImagePlus } from '../icons/src/vender/line/images'
@ -18,11 +17,13 @@ export type OnImageInput = {
type UploaderProps = {
className?: string
cropShape?: CropperProps['cropShape']
onImageInput?: OnImageInput
}
const ImageInput: FC<UploaderProps> = ({
className,
cropShape,
onImageInput,
}) => {
const [inputImage, setInputImage] = useState<{ file: File; url: string }>()
@ -78,6 +79,7 @@ const ImageInput: FC<UploaderProps> = ({
crop={crop}
zoom={zoom}
aspect={1}
cropShape={cropShape}
onCropChange={setCrop}
onCropComplete={onCropComplete}
onZoomChange={setZoom}

View File

@ -2,9 +2,9 @@
import { useState } from 'react'
import cn from '@/utils/classnames'
type AvatarProps = {
export type AvatarProps = {
name: string
avatar?: string
avatar: string | null
size?: number
className?: string
textClassName?: string

Some files were not shown because too many files have changed in this diff Show More