refactor: refactor from ChatflowHistoryService and ChatflowMemoryService

This commit is contained in:
Stream 2025-08-22 17:44:27 +08:00
parent 4d2fc66a8d
commit 8b68020453
No known key found for this signature in database
GPG Key ID: 033728094B100D70
5 changed files with 310 additions and 511 deletions

View File

@ -425,25 +425,22 @@ class AdvancedChatAppRunner(WorkflowBasedAppRunner):
# Build memory_id -> value mapping
for memory in memories:
if memory.scope == MemoryScope.APP:
if memory.spec.scope == MemoryScope.APP:
# App level: use memory_id directly
memory_blocks_dict[memory.memory_id] = memory.value
memory_blocks_dict[memory.spec.id] = memory.value
else: # NODE scope
node_id = memory.node_id
if not node_id:
logger.warning("Memory block %s has no node_id, skip.", memory.memory_id)
logger.warning("Memory block %s has no node_id, skip.", memory.spec.id)
continue
key = f"{node_id}.{memory.memory_id}"
key = f"{node_id}.{memory.spec.id}"
memory_blocks_dict[key] = memory.value
return memory_blocks_dict
def _sync_conversation_to_chatflow_tables(self, assistant_message: str):
# Get user input and AI response
user_message = self.application_generate_entity.query
ChatflowHistoryService.save_app_message(
prompt_message=UserPromptMessage(content=user_message),
prompt_message=UserPromptMessage(content=(self.application_generate_entity.query)),
conversation_id=self.conversation.id,
app_id=self._workflow.app_id,
tenant_id=self._workflow.tenant_id
@ -456,14 +453,10 @@ class AdvancedChatAppRunner(WorkflowBasedAppRunner):
)
def _check_app_memory_updates(self):
from core.app.entities.app_invoke_entities import InvokeFrom
from services.chatflow_memory_service import ChatflowMemoryService
is_draft = (self.application_generate_entity.invoke_from == InvokeFrom.DEBUGGER)
ChatflowMemoryService.update_app_memory_after_run(
ChatflowMemoryService.update_app_memory_if_needed(
workflow=self._workflow,
conversation_id=self.conversation.id,
variable_pool=VariablePool(), # Make a fake pool to satisfy the signature
is_draft=is_draft
)

View File

@ -1,4 +1,3 @@
from datetime import datetime
from enum import Enum
from typing import Optional
from uuid import uuid4
@ -63,37 +62,12 @@ class MemoryBlock(BaseModel):
These rules implicitly determine scope and term without redundant storage.
"""
id: str
memory_id: str
name: str
spec: MemoryBlockSpec
tenant_id: str
value: str
scope: MemoryScope # Derived from node_id: None=APP, str=NODE
term: MemoryTerm # Derived from conversation_id: None=PERSISTENT, str=SESSION
app_id: str # None=global(future), str=app-specific
conversation_id: Optional[str] = None # None=persistent, str=session
node_id: Optional[str] = None # None=app-scope, str=node-scope
created_at: Optional[datetime] = None
updated_at: Optional[datetime] = None
@property
def is_global(self) -> bool:
"""Check if this is global memory (future feature)"""
return self.app_id is None
@property
def is_persistent(self) -> bool:
"""Check if this is persistent memory (cross-conversation)"""
return self.conversation_id is None
@property
def is_app_scope(self) -> bool:
"""Check if this is app-level scope"""
return self.node_id is None
@property
def is_node_scope(self) -> bool:
"""Check if this is node-level scope"""
return self.node_id is not None
app_id: str
conversation_id: Optional[str] = None
node_id: Optional[str] = None
class MemoryBlockWithVisibility(BaseModel):
id: str

View File

@ -107,7 +107,6 @@ class ChatflowHistoryService:
app_id: str,
tenant_id: str
) -> None:
"""Save PromptMessage to node-specific chatflow conversation."""
ChatflowHistoryService.save_message(
prompt_message=prompt_message,
conversation_id=conversation_id,
@ -116,50 +115,6 @@ class ChatflowHistoryService:
node_id=node_id
)
@staticmethod
def save_message_version(
prompt_message: PromptMessage,
message_index: int,
conversation_id: str,
app_id: str,
tenant_id: str,
node_id: Optional[str] = None
) -> None:
"""
Save a new version of an existing message (for message editing scenarios).
"""
with Session(db.engine) as session:
chatflow_conv = ChatflowHistoryService._get_or_create_chatflow_conversation(
session, conversation_id, app_id, tenant_id, node_id, create_if_missing=True
)
# Get the maximum version number for this index
max_version = session.execute(
select(func.max(ChatflowMessage.version)).where(
and_(
ChatflowMessage.conversation_id == chatflow_conv.id,
ChatflowMessage.index == message_index
)
)
).scalar() or 0
next_version = max_version + 1
# Save new version of the message
message_data = {
'role': prompt_message.role.value,
'content': prompt_message.get_text_content(),
'timestamp': time.time()
}
new_message_version = ChatflowMessage(
conversation_id=chatflow_conv.id,
index=message_index,
version=next_version,
data=json.dumps(message_data)
)
session.add(new_message_version)
session.commit()
@staticmethod
def update_visible_count(
conversation_id: str,
@ -168,20 +123,6 @@ class ChatflowHistoryService:
app_id: str,
tenant_id: str
) -> None:
"""
Update visible_count metadata for specific scope.
Args:
node_id: None for app-level updates, specific node_id for node-level updates
new_visible_count: The new visible_count value (typically preserved_turns)
Usage Examples:
# Update app-level visible_count
ChatflowHistoryService.update_visible_count(conv_id, None, 10, app_id, tenant_id)
# Update node-specific visible_count
ChatflowHistoryService.update_visible_count(conv_id, "node-123", 8, app_id, tenant_id)
"""
with Session(db.engine) as session:
chatflow_conv = ChatflowHistoryService._get_or_create_chatflow_conversation(
session, conversation_id, app_id, tenant_id, node_id, create_if_missing=True

View File

@ -2,7 +2,7 @@ import logging
import threading
import time
from collections.abc import Sequence
from typing import Optional, cast
from typing import Optional
from sqlalchemy import and_, select
from sqlalchemy.orm import Session
@ -24,25 +24,13 @@ from extensions.ext_database import db
from extensions.ext_redis import redis_client
from models import App
from models.chatflow_memory import ChatflowMemoryVariable
from models.workflow import WorkflowDraftVariable
from models.workflow import Workflow, WorkflowDraftVariable
from services.chatflow_history_service import ChatflowHistoryService
from services.workflow_draft_variable_service import WorkflowDraftVariableService
from services.workflow_service import WorkflowService
logger = logging.getLogger(__name__)
def _get_memory_sync_lock_key(app_id: str, conversation_id: str) -> str:
"""Generate Redis lock key for memory sync updates
Args:
app_id: Application ID
conversation_id: Conversation ID
Returns:
Formatted lock key
"""
return f"memory_sync_update:{app_id}:{conversation_id}"
class ChatflowMemoryService:
@staticmethod
def get_persistent_memories(app: App) -> Sequence[MemoryBlockWithVisibility]:
@ -71,12 +59,34 @@ class ChatflowMemoryService:
return ChatflowMemoryService._with_visibility(app, [result[0] for result in db_results])
@staticmethod
def save_memory(memory: MemoryBlock, tenant_id: str, variable_pool: VariablePool, is_draft: bool) -> None:
key = f"{memory.node_id}:{memory.memory_id}" if memory.node_id else memory.memory_id
def save_memory(memory: MemoryBlock, variable_pool: VariablePool, is_draft: bool) -> None:
key = f"{memory.node_id}:{memory.spec.id}" if memory.node_id else memory.spec.id
variable_pool.add([MEMORY_BLOCK_VARIABLE_NODE_ID, key], memory.value)
with db.session() as session:
session.merge(ChatflowMemoryService._to_chatflow_memory_variable(memory))
with Session(db.engine) as session:
existing = session.query(ChatflowMemoryVariable).filter_by(
memory_id=memory.spec.id,
tenant_id=memory.tenant_id,
app_id=memory.app_id,
node_id=memory.node_id,
conversation_id=memory.conversation_id
).first()
if existing:
existing.value = memory.value
else:
session.add(
ChatflowMemoryVariable(
memory_id=memory.spec.id,
tenant_id=memory.tenant_id,
app_id=memory.app_id,
node_id=memory.node_id,
conversation_id=memory.conversation_id,
name=memory.spec.name,
value=memory.value,
term=memory.spec.term,
scope=memory.spec.scope,
)
)
session.commit()
if is_draft:
@ -84,7 +94,7 @@ class ChatflowMemoryService:
draft_var_service = WorkflowDraftVariableService(session)
existing_vars = draft_var_service.get_draft_variables_by_selectors(
app_id=memory.app_id,
selectors=[['memory_block', memory.memory_id]]
selectors=[['memory_block', memory.spec.id]]
)
if existing_vars:
draft_var = existing_vars[0]
@ -92,8 +102,8 @@ class ChatflowMemoryService:
else:
draft_var = WorkflowDraftVariable.new_memory_block_variable(
app_id=memory.app_id,
memory_id=memory.memory_id,
name=memory.name,
memory_id=memory.spec.id,
name=memory.spec.name,
value=memory.value,
description=""
)
@ -101,25 +111,30 @@ class ChatflowMemoryService:
session.commit()
@staticmethod
def get_memories_by_specs(memory_block_specs: Sequence[MemoryBlockSpec],
tenant_id: str, app_id: str,
conversation_id: Optional[str],
node_id: Optional[str],
is_draft: bool) -> Sequence[MemoryBlock]:
return [ChatflowMemoryService.get_memory_by_spec(
def get_memories_by_specs(
memory_block_specs: Sequence[MemoryBlockSpec],
tenant_id: str, app_id: str,
conversation_id: Optional[str],
node_id: Optional[str],
is_draft: bool
) -> Sequence[MemoryBlock]:
return [ChatflowMemoryService.get_memory_by_spec(
spec, tenant_id, app_id, conversation_id, node_id, is_draft
) for spec in memory_block_specs]
@staticmethod
def get_memory_by_spec(spec: MemoryBlockSpec,
tenant_id: str, app_id: str,
conversation_id: Optional[str],
node_id: Optional[str],
is_draft: bool) -> MemoryBlock:
with (Session(bind=db.engine) as session):
def get_memory_by_spec(
spec: MemoryBlockSpec,
tenant_id: str,
app_id: str,
conversation_id: Optional[str],
node_id: Optional[str],
is_draft: bool
) -> MemoryBlock:
with Session(db.engine) as session:
if is_draft:
draft_var_service = WorkflowDraftVariableService(session)
selector = [MEMORY_BLOCK_VARIABLE_NODE_ID, f"{spec.id}.{node_id}"]\
selector = [MEMORY_BLOCK_VARIABLE_NODE_ID, f"{spec.id}.{node_id}"] \
if node_id else [MEMORY_BLOCK_VARIABLE_NODE_ID, spec.id]
draft_vars = draft_var_service.get_draft_variables_by_selectors(
app_id=app_id,
@ -128,38 +143,92 @@ class ChatflowMemoryService:
if draft_vars:
draft_var = draft_vars[0]
return MemoryBlock(
id=draft_var.id,
memory_id=draft_var.name,
name=spec.name,
value=draft_var.value,
scope=spec.scope,
term=spec.term,
tenant_id=tenant_id,
app_id=app_id,
conversation_id=conversation_id,
node_id=node_id
node_id=node_id,
spec=spec
)
stmt = select(ChatflowMemoryVariable).where(
and_(
ChatflowMemoryVariable.memory_id == spec.id,
ChatflowMemoryVariable.tenant_id == tenant_id,
ChatflowMemoryVariable.app_id == app_id,
ChatflowMemoryVariable.node_id == node_id,
ChatflowMemoryVariable.conversation_id == conversation_id
ChatflowMemoryVariable.node_id == \
(node_id if spec.term == MemoryScope.NODE else None),
ChatflowMemoryVariable.conversation_id == \
(conversation_id if spec.term == MemoryTerm.SESSION else None),
)
)
result = session.execute(stmt).scalar()
if result:
return ChatflowMemoryService._to_memory_block(result)
return MemoryBlock(
value=result.value,
tenant_id=tenant_id,
app_id=app_id,
conversation_id=conversation_id,
node_id=node_id,
spec=spec
)
return MemoryBlock(
id="", # Will be assigned when saved
memory_id=spec.id,
name=spec.name,
tenant_id=tenant_id,
value=spec.template,
scope=spec.scope,
term=spec.term,
app_id=app_id,
conversation_id=conversation_id,
node_id=node_id
node_id=node_id,
spec=spec
)
@staticmethod
def update_app_memory_if_needed(
workflow: Workflow,
conversation_id: str,
is_draft: bool
):
visible_messages = ChatflowHistoryService.get_visible_chat_history(
conversation_id=conversation_id,
app_id=workflow.app_id,
tenant_id=workflow.tenant_id,
node_id=None,
)
sync_blocks: list[MemoryBlock] = []
async_blocks: list[MemoryBlock] = []
for memory_spec in workflow.memory_blocks:
if memory_spec.scope == MemoryScope.APP:
memory = ChatflowMemoryService.get_memory_by_spec(
spec=memory_spec,
tenant_id=workflow.tenant_id,
app_id=workflow.app_id,
conversation_id=conversation_id,
node_id=None,
is_draft=is_draft
)
if ChatflowMemoryService._should_update_memory(memory, visible_messages):
if memory.spec.schedule_mode == MemoryScheduleMode.SYNC:
sync_blocks.append(memory)
else:
async_blocks.append(memory)
if not sync_blocks and not async_blocks:
return
# async mode: submit individual async tasks directly
for memory_block in async_blocks:
ChatflowMemoryService._app_submit_async_memory_update(
block=memory_block,
is_draft=is_draft,
visible_messages=visible_messages
)
# sync mode: submit a batch update task
if sync_blocks:
ChatflowMemoryService._app_submit_sync_memory_batch_update(
sync_blocks=sync_blocks,
is_draft=is_draft,
conversation_id=conversation_id,
app_id=workflow.app_id,
visible_messages=visible_messages
)
@staticmethod
@ -172,307 +241,47 @@ class ChatflowMemoryService:
variable_pool: VariablePool,
is_draft: bool
) -> bool:
if not ChatflowMemoryService._should_update_memory(
tenant_id=tenant_id,
app_id=app_id,
memory_block_spec=memory_block_spec,
conversation_id=conversation_id,
node_id=node_id
):
return False
if memory_block_spec.schedule_mode == MemoryScheduleMode.SYNC:
# Node-level sync: blocking execution
ChatflowMemoryService._update_node_memory_sync(
tenant_id=tenant_id,
app_id=app_id,
memory_block_spec=memory_block_spec,
node_id=node_id,
conversation_id=conversation_id,
variable_pool=variable_pool,
is_draft=is_draft
)
else:
# Node-level async: execute asynchronously
ChatflowMemoryService._update_node_memory_async(
tenant_id=tenant_id,
app_id=app_id,
memory_block_spec=memory_block_spec,
node_id=node_id,
conversation_id=conversation_id,
variable_pool=variable_pool,
is_draft=is_draft
)
return True
@staticmethod
def _get_memory_from_chatflow_table(memory_id: str, tenant_id: str,
app_id: Optional[str] = None,
conversation_id: Optional[str] = None,
node_id: Optional[str] = None) -> Optional[MemoryBlock]:
stmt = select(ChatflowMemoryVariable).where(
and_(
ChatflowMemoryVariable.app_id == app_id,
ChatflowMemoryVariable.memory_id == memory_id,
ChatflowMemoryVariable.tenant_id == tenant_id,
ChatflowMemoryVariable.conversation_id == conversation_id,
ChatflowMemoryVariable.node_id == node_id
)
)
with db.session() as session:
result = session.execute(stmt).first()
return ChatflowMemoryService._to_memory_block(result[0]) if result else None
@staticmethod
def _to_memory_block(entity: ChatflowMemoryVariable) -> MemoryBlock:
scope = MemoryScope(entity.scope) if not isinstance(entity.scope, MemoryScope) else entity.scope
term = MemoryTerm(entity.term) if not isinstance(entity.term, MemoryTerm) else entity.term
return MemoryBlock(
id=entity.id,
memory_id=entity.memory_id,
name=entity.name,
value=entity.value,
scope=scope,
term=term,
app_id=cast(str, entity.app_id), # It's supposed to be not nullable for now
conversation_id=entity.conversation_id,
node_id=entity.node_id,
created_at=entity.created_at,
updated_at=entity.updated_at,
)
@staticmethod
def _to_chatflow_memory_variable(memory_block: MemoryBlock) -> ChatflowMemoryVariable:
return ChatflowMemoryVariable(
id=memory_block.id,
node_id=memory_block.node_id,
memory_id=memory_block.memory_id,
name=memory_block.name,
value=memory_block.value,
scope=memory_block.scope,
term=memory_block.term,
app_id=memory_block.app_id,
conversation_id=memory_block.conversation_id,
)
@staticmethod
def _with_visibility(
app: App,
raw_results: Sequence[ChatflowMemoryVariable]
) -> Sequence[MemoryBlockWithVisibility]:
workflow = WorkflowService().get_published_workflow(app)
if not workflow:
return []
results = []
for db_result in raw_results:
spec = next((spec for spec in workflow.memory_blocks if spec.id == db_result.memory_id), None)
if spec:
results.append(
MemoryBlockWithVisibility(
id=db_result.memory_id,
name=db_result.name,
value=db_result.value,
end_user_editable=spec.end_user_editable,
end_user_visible=spec.end_user_visible,
)
)
return results
@staticmethod
def _should_update_memory(tenant_id: str, app_id: str,
memory_block_spec: MemoryBlockSpec,
conversation_id: str, node_id: Optional[str] = None) -> bool:
"""Check if memory should be updated based on strategy"""
# Currently, `memory_block_spec.strategy != MemoryStrategy.ON_TURNS` is not possible, but possible in the future
# Check turn count
turn_key = f"memory_turn_count:{tenant_id}:{app_id}:{conversation_id}"
if node_id:
turn_key += f":{node_id}"
current_turns = redis_client.get(turn_key)
current_turns = int(current_turns) if current_turns else 0
current_turns += 1
# Update count
redis_client.set(turn_key, current_turns)
return current_turns % memory_block_spec.update_turns == 0
# App-level async update method
@staticmethod
def _submit_async_memory_update(tenant_id: str, app_id: str,
block: MemoryBlockSpec,
conversation_id: str,
variable_pool: VariablePool,
is_draft: bool = False):
"""Submit async memory update task"""
# Execute update asynchronously using thread
thread = threading.Thread(
target=ChatflowMemoryService._update_app_single_memory,
kwargs={
'tenant_id': tenant_id,
'app_id': app_id,
'memory_block_spec': block,
'conversation_id': conversation_id,
'variable_pool': variable_pool,
'is_draft': is_draft
},
daemon=True
)
thread.start()
# Node-level sync update method
@staticmethod
def _update_node_memory_sync(tenant_id: str, app_id: str,
memory_block_spec: MemoryBlockSpec,
node_id: str, conversation_id: str,
variable_pool: VariablePool,
is_draft: bool = False):
"""Synchronously update node memory (blocking execution)"""
ChatflowMemoryService._perform_memory_update(
tenant_id=tenant_id,
app_id=app_id,
memory_block_spec=memory_block_spec,
conversation_id=conversation_id,
variable_pool=variable_pool,
node_id=node_id,
is_draft=is_draft
)
# Wait for update to complete before returning
# Node-level async update method
@staticmethod
def _update_node_memory_async(
tenant_id: str,
app_id: str,
memory_block_spec: MemoryBlockSpec,
node_id: str,
conversation_id: str,
variable_pool: VariablePool,
is_draft: bool = False):
"""Asynchronously update node memory (submit task)"""
# Execute update asynchronously using thread
thread = threading.Thread(
target=ChatflowMemoryService._perform_node_memory_update,
kwargs={
'memory_block_spec': memory_block_spec,
'tenant_id': tenant_id,
'app_id': app_id,
'node_id': node_id,
'variable_pool': variable_pool,
'is_draft': is_draft
},
daemon=True
)
thread.start()
# Return immediately without waiting
@staticmethod
def _perform_node_memory_update(
*,
memory_block_spec: MemoryBlockSpec,
tenant_id: str,
app_id: str,
node_id: str,
variable_pool: VariablePool,
is_draft: bool = False
):
ChatflowMemoryService._perform_memory_update(
tenant_id=tenant_id,
app_id=app_id,
memory_block_spec=memory_block_spec,
conversation_id=str(variable_pool.get(('sys', 'conversation_id'))),
variable_pool=variable_pool,
node_id=node_id,
is_draft=is_draft
)
@staticmethod
def _update_app_single_memory(*, tenant_id: str, app_id: str,
memory_block_spec: MemoryBlockSpec,
conversation_id: str,
variable_pool: VariablePool,
is_draft: bool = False):
"""Update single memory"""
ChatflowMemoryService._perform_memory_update(
tenant_id=tenant_id,
app_id=app_id,
memory_block_spec=memory_block_spec,
conversation_id=conversation_id,
variable_pool=variable_pool,
node_id=None, # App-level memory doesn't have node_id
is_draft=is_draft
)
@staticmethod
def _perform_memory_update(
tenant_id: str, app_id: str,
memory_block_spec: MemoryBlockSpec,
conversation_id: str,
variable_pool: VariablePool,
node_id: Optional[str],
is_draft: bool):
history = ChatflowHistoryService.get_visible_chat_history(
visible_messages = ChatflowHistoryService.get_visible_chat_history(
conversation_id=conversation_id,
app_id=app_id,
tenant_id=tenant_id,
node_id=node_id,
)
memory_block = ChatflowMemoryService.get_memory_by_spec(
tenant_id=tenant_id,
spec=memory_block_spec,
tenant_id=tenant_id,
app_id=app_id,
conversation_id=conversation_id,
node_id=node_id,
is_draft=is_draft
)
updated_value = LLMGenerator.update_memory_block(
tenant_id=tenant_id,
visible_history=ChatflowMemoryService._format_chat_history(history),
if not ChatflowMemoryService._should_update_memory(
memory_block=memory_block,
memory_spec=memory_block_spec,
)
# Save updated memory
updated_memory = MemoryBlock(
id=memory_block.id,
memory_id=memory_block_spec.id,
name=memory_block_spec.name,
value=updated_value,
scope=memory_block_spec.scope,
term=memory_block_spec.term,
app_id=app_id,
conversation_id=conversation_id if memory_block_spec.term == MemoryTerm.SESSION else None,
node_id=node_id
)
ChatflowMemoryService.save_memory(updated_memory, tenant_id, variable_pool, is_draft)
visible_history=visible_messages
):
return False
# Not implemented yet: Send success event
# self._send_memory_update_event(memory_block_spec.id, "completed", updated_value)
if memory_block_spec.schedule_mode == MemoryScheduleMode.SYNC:
# Node-level sync: blocking execution
ChatflowMemoryService._update_node_memory_sync(
visible_messages=visible_messages,
memory_block=memory_block,
variable_pool=variable_pool,
is_draft=is_draft
)
else:
# Node-level async: execute asynchronously
ChatflowMemoryService._update_node_memory_async(
memory_block=memory_block,
visible_messages=visible_messages,
variable_pool=variable_pool,
is_draft=is_draft
)
return True
@staticmethod
def _format_chat_history(messages: Sequence[PromptMessage]) -> Sequence[tuple[str, str]]:
result = []
for message in messages:
result.append((str(message.role.value), message.get_text_content()))
return result
# App-level sync batch update related methods
@staticmethod
def wait_for_sync_memory_completion(workflow, conversation_id: str):
"""Wait for sync memory update to complete, maximum 50 seconds
Args:
workflow: Workflow object
conversation_id: Conversation ID
Raises:
MemorySyncTimeoutError: Raised when timeout is reached
"""
from core.memory.entities import MemoryScope
"""Wait for sync memory update to complete, maximum 50 seconds"""
memory_blocks = workflow.memory_blocks
sync_memory_blocks = [
@ -505,54 +314,132 @@ class ChatflowMemoryService:
)
@staticmethod
def update_app_memory_after_run(workflow, conversation_id: str, variable_pool: VariablePool,
is_draft: bool = False):
"""Update app-level memory after run completion"""
sync_blocks = []
async_blocks = []
for block in workflow.memory_blocks:
if block.scope == MemoryScope.APP:
if block.update_mode == "sync":
sync_blocks.append(block)
else:
async_blocks.append(block)
# async mode: submit individual async tasks directly
for block in async_blocks:
ChatflowMemoryService._submit_async_memory_update(
tenant_id=workflow.tenant_id,
app_id=workflow.app_id,
block=block,
conversation_id=conversation_id,
variable_pool=variable_pool,
is_draft=is_draft
)
# sync mode: submit a batch update task
if sync_blocks:
ChatflowMemoryService._submit_sync_memory_batch_update(
workflow=workflow,
sync_blocks=sync_blocks,
conversation_id=conversation_id,
variable_pool=variable_pool,
is_draft=is_draft
def _with_visibility(
app: App,
raw_results: Sequence[ChatflowMemoryVariable]
) -> Sequence[MemoryBlockWithVisibility]:
workflow = WorkflowService().get_published_workflow(app)
if not workflow:
return []
results = []
for chatflow_memory_variable in raw_results:
spec = next(
(spec for spec in workflow.memory_blocks if spec.id == chatflow_memory_variable.memory_id),
None
)
if spec:
results.append(
MemoryBlockWithVisibility(
id=chatflow_memory_variable.memory_id,
name=chatflow_memory_variable.name,
value=chatflow_memory_variable.value,
end_user_editable=spec.end_user_editable,
end_user_visible=spec.end_user_visible,
)
)
return results
@staticmethod
def _submit_sync_memory_batch_update(workflow,
sync_blocks: list[MemoryBlockSpec],
conversation_id: str,
variable_pool: VariablePool,
is_draft: bool = False):
"""Submit sync memory batch update task"""
def _should_update_memory(
memory_block: MemoryBlock,
visible_history: Sequence[PromptMessage]
) -> bool:
return len(visible_history) > memory_block.spec.update_turns
# Execute batch update asynchronously using thread
@staticmethod
def _app_submit_async_memory_update(
block: MemoryBlock,
visible_messages: Sequence[PromptMessage],
is_draft: bool
):
thread = threading.Thread(
target=ChatflowMemoryService._perform_memory_update,
kwargs={
'memory_block': block,
'visible_messages': visible_messages,
'variable_pool': VariablePool(),
'is_draft': is_draft
},
)
thread.start()
@staticmethod
def _app_submit_sync_memory_batch_update(
sync_blocks: Sequence[MemoryBlock],
app_id: str,
conversation_id: str,
visible_messages: Sequence[PromptMessage],
is_draft: bool
):
"""Submit sync memory batch update task"""
thread = threading.Thread(
target=ChatflowMemoryService._batch_update_sync_memory,
kwargs={
'workflow': workflow,
'sync_blocks': sync_blocks,
'app_id': app_id,
'conversation_id': conversation_id,
'visible_messages': visible_messages,
'is_draft': is_draft
},
)
thread.start()
@staticmethod
def _batch_update_sync_memory(
sync_blocks: Sequence[MemoryBlock],
app_id: str,
conversation_id: str,
visible_messages: Sequence[PromptMessage],
is_draft: bool
):
try:
lock_key = _get_memory_sync_lock_key(app_id, conversation_id)
with redis_client.lock(lock_key, timeout=120):
threads = []
for block in sync_blocks:
thread = threading.Thread(
target=ChatflowMemoryService._perform_memory_update,
kwargs={
'memory_block': block,
'visible_messages': visible_messages,
'variable_pool': VariablePool(),
'is_draft': is_draft
},
)
threads.append(thread)
for thread in threads:
thread.start()
for thread in threads:
thread.join()
except Exception as e:
logger.exception("Error batch updating memory", exc_info=e)
@staticmethod
def _update_node_memory_sync(
memory_block: MemoryBlock,
visible_messages: Sequence[PromptMessage],
variable_pool: VariablePool,
is_draft: bool
):
ChatflowMemoryService._perform_memory_update(
memory_block=memory_block,
visible_messages=visible_messages,
variable_pool=variable_pool,
is_draft=is_draft
)
@staticmethod
def _update_node_memory_async(
memory_block: MemoryBlock,
visible_messages: Sequence[PromptMessage],
variable_pool: VariablePool,
is_draft: bool = False
):
thread = threading.Thread(
target=ChatflowMemoryService._perform_memory_update,
kwargs={
'memory_block': memory_block,
'visible_messages': visible_messages,
'variable_pool': variable_pool,
'is_draft': is_draft
},
@ -561,39 +448,43 @@ class ChatflowMemoryService:
thread.start()
@staticmethod
def _batch_update_sync_memory(*, workflow,
sync_blocks: list[MemoryBlockSpec],
conversation_id: str,
variable_pool: VariablePool,
is_draft: bool = False):
"""Batch update sync memory (with Redis lock)"""
from concurrent.futures import ThreadPoolExecutor
def _perform_memory_update(
memory_block: MemoryBlock,
variable_pool: VariablePool,
visible_messages: Sequence[PromptMessage],
is_draft: bool
):
updated_value = LLMGenerator.update_memory_block(
tenant_id=memory_block.tenant_id,
visible_history=ChatflowMemoryService._format_chat_history(visible_messages),
memory_block=memory_block,
memory_spec=memory_block.spec,
)
updated_memory = MemoryBlock(
tenant_id=memory_block.tenant_id,
value=updated_value,
spec=memory_block.spec,
app_id=memory_block.app_id,
conversation_id=memory_block.conversation_id,
node_id=memory_block.node_id
)
ChatflowMemoryService.save_memory(updated_memory, variable_pool, is_draft)
lock_key = _get_memory_sync_lock_key(workflow.app_id, conversation_id)
@staticmethod
def _format_chat_history(messages: Sequence[PromptMessage]) -> Sequence[tuple[str, str]]:
result = []
for message in messages:
result.append((str(message.role.value), message.get_text_content()))
return result
# Use Redis lock context manager (30 seconds timeout)
with redis_client.lock(lock_key, timeout=30):
try:
# Update all sync memory in parallel
with ThreadPoolExecutor(max_workers=5) as executor:
futures = []
for block in sync_blocks:
future = executor.submit(
ChatflowMemoryService._update_app_single_memory,
tenant_id=workflow.tenant_id,
app_id=workflow.app_id,
memory_block_spec=block,
conversation_id=conversation_id,
variable_pool=variable_pool,
is_draft=is_draft
)
futures.append(future)
def _get_memory_sync_lock_key(app_id: str, conversation_id: str) -> str:
"""Generate Redis lock key for memory sync updates
# Wait for all updates to complete
for future in futures:
try:
future.result()
except Exception as e:
logger.exception("Failed to update memory", exc_info=e)
except Exception as e:
logger.exception("Failed to update sync memory for app %s", workflow.app_id, exc_info=e)
Args:
app_id: Application ID
conversation_id: Conversation ID
Returns:
Formatted lock key
"""
return f"memory_sync_update:{app_id}:{conversation_id}"

View File

@ -761,9 +761,9 @@ def _fetch_memory_blocks(workflow: Workflow, conversation_id: str, is_draft: boo
is_draft=is_draft,
)
for memory in memories:
if memory.scope == MemoryScope.APP:
memory_blocks[memory.memory_id] = memory.value
if memory.spec.scope == MemoryScope.APP:
memory_blocks[memory.spec.id] = memory.value
else: # NODE scope
memory_blocks[f"{memory.node_id}.{memory.memory_id}"] = memory.value
memory_blocks[f"{memory.node_id}.{memory.spec.id}"] = memory.value
return memory_blocks