mirror of https://github.com/langgenius/dify.git
fix bugs and add unit tests
This commit is contained in:
parent
297b33aa41
commit
a44d3c3eda
|
|
@ -133,7 +133,7 @@ class ModelPropertyKey(Enum):
|
|||
DEFAULT_VOICE = "default_voice"
|
||||
VOICES = "voices"
|
||||
WORD_LIMIT = "word_limit"
|
||||
AUDOI_TYPE = "audio_type"
|
||||
AUDIO_TYPE = "audio_type"
|
||||
MAX_WORKERS = "max_workers"
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -94,8 +94,8 @@ class TTSModel(AIModel):
|
|||
"""
|
||||
model_schema = self.get_model_schema(model, credentials)
|
||||
|
||||
if model_schema and ModelPropertyKey.AUDOI_TYPE in model_schema.model_properties:
|
||||
return model_schema.model_properties[ModelPropertyKey.AUDOI_TYPE]
|
||||
if model_schema and ModelPropertyKey.AUDIO_TYPE in model_schema.model_properties:
|
||||
return model_schema.model_properties[ModelPropertyKey.AUDIO_TYPE]
|
||||
|
||||
def _get_model_word_limit(self, model: str, credentials: dict) -> int:
|
||||
"""
|
||||
|
|
|
|||
|
|
@ -45,6 +45,7 @@ class SimplePromptTransform(PromptTransform):
|
|||
"""
|
||||
Simple Prompt Transform for Chatbot App Basic Mode.
|
||||
"""
|
||||
|
||||
def get_prompt(self,
|
||||
prompt_template_entity: PromptTemplateEntity,
|
||||
inputs: dict,
|
||||
|
|
@ -154,12 +155,12 @@ class SimplePromptTransform(PromptTransform):
|
|||
}
|
||||
|
||||
def _get_chat_model_prompt_messages(self, pre_prompt: str,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
files: list[FileObj],
|
||||
memory: Optional[TokenBufferMemory],
|
||||
model_config: ModelConfigEntity) \
|
||||
inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
files: list[FileObj],
|
||||
memory: Optional[TokenBufferMemory],
|
||||
model_config: ModelConfigEntity) \
|
||||
-> tuple[list[PromptMessage], Optional[list[str]]]:
|
||||
prompt_messages = []
|
||||
|
||||
|
|
@ -169,7 +170,7 @@ class SimplePromptTransform(PromptTransform):
|
|||
model_config=model_config,
|
||||
pre_prompt=pre_prompt,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
query=None,
|
||||
context=context
|
||||
)
|
||||
|
||||
|
|
@ -187,12 +188,12 @@ class SimplePromptTransform(PromptTransform):
|
|||
return prompt_messages, None
|
||||
|
||||
def _get_completion_model_prompt_messages(self, pre_prompt: str,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
files: list[FileObj],
|
||||
memory: Optional[TokenBufferMemory],
|
||||
model_config: ModelConfigEntity) \
|
||||
inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
files: list[FileObj],
|
||||
memory: Optional[TokenBufferMemory],
|
||||
model_config: ModelConfigEntity) \
|
||||
-> tuple[list[PromptMessage], Optional[list[str]]]:
|
||||
# get prompt
|
||||
prompt, prompt_rules = self.get_prompt_str_and_rules(
|
||||
|
|
@ -259,7 +260,7 @@ class SimplePromptTransform(PromptTransform):
|
|||
provider=provider,
|
||||
model=model
|
||||
)
|
||||
|
||||
|
||||
# Check if the prompt file is already loaded
|
||||
if prompt_file_name in prompt_file_contents:
|
||||
return prompt_file_contents[prompt_file_name]
|
||||
|
|
@ -267,14 +268,16 @@ class SimplePromptTransform(PromptTransform):
|
|||
# Get the absolute path of the subdirectory
|
||||
prompt_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'generate_prompts')
|
||||
json_file_path = os.path.join(prompt_path, f'{prompt_file_name}.json')
|
||||
|
||||
|
||||
# Open the JSON file and read its content
|
||||
with open(json_file_path, encoding='utf-8') as json_file:
|
||||
content = json.load(json_file)
|
||||
|
||||
|
||||
# Store the content of the prompt file
|
||||
prompt_file_contents[prompt_file_name] = content
|
||||
|
||||
return content
|
||||
|
||||
def _prompt_file_name(self, app_mode: AppMode, provider: str, model: str) -> str:
|
||||
# baichuan
|
||||
is_baichuan = False
|
||||
|
|
|
|||
|
|
@ -5,7 +5,6 @@ from sqlalchemy.dialects.postgresql import UUID
|
|||
|
||||
from extensions.ext_database import db
|
||||
from models.account import Account
|
||||
from models.model import AppMode
|
||||
|
||||
|
||||
class WorkflowType(Enum):
|
||||
|
|
@ -29,13 +28,14 @@ class WorkflowType(Enum):
|
|||
raise ValueError(f'invalid workflow type value {value}')
|
||||
|
||||
@classmethod
|
||||
def from_app_mode(cls, app_mode: Union[str, AppMode]) -> 'WorkflowType':
|
||||
def from_app_mode(cls, app_mode: Union[str, 'AppMode']) -> 'WorkflowType':
|
||||
"""
|
||||
Get workflow type from app mode.
|
||||
|
||||
:param app_mode: app mode
|
||||
:return: workflow type
|
||||
"""
|
||||
from models.model import AppMode
|
||||
app_mode = app_mode if isinstance(app_mode, AppMode) else AppMode.value_of(app_mode)
|
||||
return cls.WORKFLOW if app_mode == AppMode.WORKFLOW else cls.CHAT
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1 @@
|
|||
.env.test
|
||||
|
|
@ -0,0 +1,7 @@
|
|||
import os
|
||||
|
||||
# Getting the absolute path of the current file's directory
|
||||
ABS_PATH = os.path.dirname(os.path.abspath(__file__))
|
||||
|
||||
# Getting the absolute path of the project's root directory
|
||||
PROJECT_DIR = os.path.abspath(os.path.join(ABS_PATH, os.pardir, os.pardir))
|
||||
|
|
@ -0,0 +1,47 @@
|
|||
from unittest.mock import MagicMock
|
||||
|
||||
from core.entities.application_entities import ModelConfigEntity
|
||||
from core.entities.provider_configuration import ProviderModelBundle
|
||||
from core.model_runtime.entities.message_entities import UserPromptMessage
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey, AIModelEntity, ParameterRule
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.prompt.prompt_transform import PromptTransform
|
||||
|
||||
|
||||
def test__calculate_rest_token():
|
||||
model_schema_mock = MagicMock(spec=AIModelEntity)
|
||||
parameter_rule_mock = MagicMock(spec=ParameterRule)
|
||||
parameter_rule_mock.name = 'max_tokens'
|
||||
model_schema_mock.parameter_rules = [
|
||||
parameter_rule_mock
|
||||
]
|
||||
model_schema_mock.model_properties = {
|
||||
ModelPropertyKey.CONTEXT_SIZE: 62
|
||||
}
|
||||
|
||||
large_language_model_mock = MagicMock(spec=LargeLanguageModel)
|
||||
large_language_model_mock.get_num_tokens.return_value = 6
|
||||
|
||||
provider_model_bundle_mock = MagicMock(spec=ProviderModelBundle)
|
||||
provider_model_bundle_mock.model_type_instance = large_language_model_mock
|
||||
|
||||
model_config_mock = MagicMock(spec=ModelConfigEntity)
|
||||
model_config_mock.model = 'gpt-4'
|
||||
model_config_mock.credentials = {}
|
||||
model_config_mock.parameters = {
|
||||
'max_tokens': 50
|
||||
}
|
||||
model_config_mock.model_schema = model_schema_mock
|
||||
model_config_mock.provider_model_bundle = provider_model_bundle_mock
|
||||
|
||||
prompt_transform = PromptTransform()
|
||||
|
||||
prompt_messages = [UserPromptMessage(content="Hello, how are you?")]
|
||||
rest_tokens = prompt_transform._calculate_rest_token(prompt_messages, model_config_mock)
|
||||
|
||||
# Validate based on the mock configuration and expected logic
|
||||
expected_rest_tokens = (model_schema_mock.model_properties[ModelPropertyKey.CONTEXT_SIZE]
|
||||
- model_config_mock.parameters['max_tokens']
|
||||
- large_language_model_mock.get_num_tokens.return_value)
|
||||
assert rest_tokens == expected_rest_tokens
|
||||
assert rest_tokens == 6
|
||||
|
|
@ -0,0 +1,216 @@
|
|||
from unittest.mock import MagicMock
|
||||
|
||||
from core.entities.application_entities import ModelConfigEntity
|
||||
from core.prompt.simple_prompt_transform import SimplePromptTransform
|
||||
from models.model import AppMode
|
||||
|
||||
|
||||
def test_get_common_chat_app_prompt_template_with_pcqm():
|
||||
prompt_transform = SimplePromptTransform()
|
||||
pre_prompt = "You are a helpful assistant."
|
||||
prompt_template = prompt_transform.get_prompt_template(
|
||||
app_mode=AppMode.CHAT,
|
||||
provider="openai",
|
||||
model="gpt-4",
|
||||
pre_prompt=pre_prompt,
|
||||
has_context=True,
|
||||
query_in_prompt=True,
|
||||
with_memory_prompt=True,
|
||||
)
|
||||
prompt_rules = prompt_template['prompt_rules']
|
||||
assert prompt_template['prompt_template'].template == (prompt_rules['context_prompt']
|
||||
+ pre_prompt + '\n'
|
||||
+ prompt_rules['histories_prompt']
|
||||
+ prompt_rules['query_prompt'])
|
||||
assert prompt_template['special_variable_keys'] == ['#context#', '#histories#', '#query#']
|
||||
|
||||
|
||||
def test_get_baichuan_chat_app_prompt_template_with_pcqm():
|
||||
prompt_transform = SimplePromptTransform()
|
||||
pre_prompt = "You are a helpful assistant."
|
||||
prompt_template = prompt_transform.get_prompt_template(
|
||||
app_mode=AppMode.CHAT,
|
||||
provider="baichuan",
|
||||
model="Baichuan2-53B",
|
||||
pre_prompt=pre_prompt,
|
||||
has_context=True,
|
||||
query_in_prompt=True,
|
||||
with_memory_prompt=True,
|
||||
)
|
||||
prompt_rules = prompt_template['prompt_rules']
|
||||
assert prompt_template['prompt_template'].template == (prompt_rules['context_prompt']
|
||||
+ pre_prompt + '\n'
|
||||
+ prompt_rules['histories_prompt']
|
||||
+ prompt_rules['query_prompt'])
|
||||
assert prompt_template['special_variable_keys'] == ['#context#', '#histories#', '#query#']
|
||||
|
||||
|
||||
def test_get_common_completion_app_prompt_template_with_pcq():
|
||||
prompt_transform = SimplePromptTransform()
|
||||
pre_prompt = "You are a helpful assistant."
|
||||
prompt_template = prompt_transform.get_prompt_template(
|
||||
app_mode=AppMode.WORKFLOW,
|
||||
provider="openai",
|
||||
model="gpt-4",
|
||||
pre_prompt=pre_prompt,
|
||||
has_context=True,
|
||||
query_in_prompt=True,
|
||||
with_memory_prompt=False,
|
||||
)
|
||||
prompt_rules = prompt_template['prompt_rules']
|
||||
assert prompt_template['prompt_template'].template == (prompt_rules['context_prompt']
|
||||
+ pre_prompt + '\n'
|
||||
+ prompt_rules['query_prompt'])
|
||||
assert prompt_template['special_variable_keys'] == ['#context#', '#query#']
|
||||
|
||||
|
||||
def test_get_baichuan_completion_app_prompt_template_with_pcq():
|
||||
prompt_transform = SimplePromptTransform()
|
||||
pre_prompt = "You are a helpful assistant."
|
||||
prompt_template = prompt_transform.get_prompt_template(
|
||||
app_mode=AppMode.WORKFLOW,
|
||||
provider="baichuan",
|
||||
model="Baichuan2-53B",
|
||||
pre_prompt=pre_prompt,
|
||||
has_context=True,
|
||||
query_in_prompt=True,
|
||||
with_memory_prompt=False,
|
||||
)
|
||||
print(prompt_template['prompt_template'].template)
|
||||
prompt_rules = prompt_template['prompt_rules']
|
||||
assert prompt_template['prompt_template'].template == (prompt_rules['context_prompt']
|
||||
+ pre_prompt + '\n'
|
||||
+ prompt_rules['query_prompt'])
|
||||
assert prompt_template['special_variable_keys'] == ['#context#', '#query#']
|
||||
|
||||
|
||||
def test_get_common_chat_app_prompt_template_with_q():
|
||||
prompt_transform = SimplePromptTransform()
|
||||
pre_prompt = ""
|
||||
prompt_template = prompt_transform.get_prompt_template(
|
||||
app_mode=AppMode.CHAT,
|
||||
provider="openai",
|
||||
model="gpt-4",
|
||||
pre_prompt=pre_prompt,
|
||||
has_context=False,
|
||||
query_in_prompt=True,
|
||||
with_memory_prompt=False,
|
||||
)
|
||||
prompt_rules = prompt_template['prompt_rules']
|
||||
assert prompt_template['prompt_template'].template == prompt_rules['query_prompt']
|
||||
assert prompt_template['special_variable_keys'] == ['#query#']
|
||||
|
||||
|
||||
def test_get_common_chat_app_prompt_template_with_cq():
|
||||
prompt_transform = SimplePromptTransform()
|
||||
pre_prompt = ""
|
||||
prompt_template = prompt_transform.get_prompt_template(
|
||||
app_mode=AppMode.CHAT,
|
||||
provider="openai",
|
||||
model="gpt-4",
|
||||
pre_prompt=pre_prompt,
|
||||
has_context=True,
|
||||
query_in_prompt=True,
|
||||
with_memory_prompt=False,
|
||||
)
|
||||
prompt_rules = prompt_template['prompt_rules']
|
||||
assert prompt_template['prompt_template'].template == (prompt_rules['context_prompt']
|
||||
+ prompt_rules['query_prompt'])
|
||||
assert prompt_template['special_variable_keys'] == ['#context#', '#query#']
|
||||
|
||||
|
||||
def test_get_common_chat_app_prompt_template_with_p():
|
||||
prompt_transform = SimplePromptTransform()
|
||||
pre_prompt = "you are {{name}}"
|
||||
prompt_template = prompt_transform.get_prompt_template(
|
||||
app_mode=AppMode.CHAT,
|
||||
provider="openai",
|
||||
model="gpt-4",
|
||||
pre_prompt=pre_prompt,
|
||||
has_context=False,
|
||||
query_in_prompt=False,
|
||||
with_memory_prompt=False,
|
||||
)
|
||||
assert prompt_template['prompt_template'].template == pre_prompt + '\n'
|
||||
assert prompt_template['custom_variable_keys'] == ['name']
|
||||
assert prompt_template['special_variable_keys'] == []
|
||||
|
||||
|
||||
def test__get_chat_model_prompt_messages():
|
||||
model_config_mock = MagicMock(spec=ModelConfigEntity)
|
||||
model_config_mock.provider = 'openai'
|
||||
model_config_mock.model = 'gpt-4'
|
||||
|
||||
prompt_transform = SimplePromptTransform()
|
||||
pre_prompt = "You are a helpful assistant {{name}}."
|
||||
inputs = {
|
||||
"name": "John"
|
||||
}
|
||||
context = "yes or no."
|
||||
query = "How are you?"
|
||||
prompt_messages, _ = prompt_transform._get_chat_model_prompt_messages(
|
||||
pre_prompt=pre_prompt,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
files=[],
|
||||
context=context,
|
||||
memory=None,
|
||||
model_config=model_config_mock
|
||||
)
|
||||
|
||||
prompt_template = prompt_transform.get_prompt_template(
|
||||
app_mode=AppMode.CHAT,
|
||||
provider=model_config_mock.provider,
|
||||
model=model_config_mock.model,
|
||||
pre_prompt=pre_prompt,
|
||||
has_context=True,
|
||||
query_in_prompt=False,
|
||||
with_memory_prompt=False,
|
||||
)
|
||||
|
||||
full_inputs = {**inputs, '#context#': context}
|
||||
real_system_prompt = prompt_template['prompt_template'].format(full_inputs)
|
||||
|
||||
assert len(prompt_messages) == 2
|
||||
assert prompt_messages[0].content == real_system_prompt
|
||||
assert prompt_messages[1].content == query
|
||||
|
||||
|
||||
def test__get_completion_model_prompt_messages():
|
||||
model_config_mock = MagicMock(spec=ModelConfigEntity)
|
||||
model_config_mock.provider = 'openai'
|
||||
model_config_mock.model = 'gpt-3.5-turbo-instruct'
|
||||
|
||||
prompt_transform = SimplePromptTransform()
|
||||
pre_prompt = "You are a helpful assistant {{name}}."
|
||||
inputs = {
|
||||
"name": "John"
|
||||
}
|
||||
context = "yes or no."
|
||||
query = "How are you?"
|
||||
prompt_messages, stops = prompt_transform._get_completion_model_prompt_messages(
|
||||
pre_prompt=pre_prompt,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
files=[],
|
||||
context=context,
|
||||
memory=None,
|
||||
model_config=model_config_mock
|
||||
)
|
||||
|
||||
prompt_template = prompt_transform.get_prompt_template(
|
||||
app_mode=AppMode.CHAT,
|
||||
provider=model_config_mock.provider,
|
||||
model=model_config_mock.model,
|
||||
pre_prompt=pre_prompt,
|
||||
has_context=True,
|
||||
query_in_prompt=True,
|
||||
with_memory_prompt=False,
|
||||
)
|
||||
|
||||
full_inputs = {**inputs, '#context#': context, '#query#': query}
|
||||
real_prompt = prompt_template['prompt_template'].format(full_inputs)
|
||||
|
||||
assert len(prompt_messages) == 1
|
||||
assert stops == prompt_template['prompt_rules'].get('stops')
|
||||
assert prompt_messages[0].content == real_prompt
|
||||
Loading…
Reference in New Issue