feat: add independent memory

This commit is contained in:
Novice 2025-04-27 13:30:53 +08:00
parent 48be8fb6cc
commit a9bae7aafd
6 changed files with 206 additions and 194 deletions

View File

View File

@ -1,18 +1,64 @@
from abc import ABC, abstractmethod
from abc import abstractmethod
from collections.abc import Sequence
from typing import Optional
from core.model_runtime.entities.message_entities import PromptMessage
from core.model_runtime.entities import (
ImagePromptMessageContent,
PromptMessage,
PromptMessageRole,
TextPromptMessageContent,
)
class BaseMemory(ABC):
class BaseMemory:
@abstractmethod
def get_history_prompt_messages(self) -> Sequence[PromptMessage]:
def get_history_prompt_messages(
self, max_token_limit: int = 2000, message_limit: Optional[int] = None
) -> Sequence[PromptMessage]:
"""
Get the history prompt messages
Get history prompt messages.
:param max_token_limit: max token limit
:param message_limit: message limit
:return:
"""
@abstractmethod
def get_history_prompt_text(self) -> str:
def get_history_prompt_text(
self,
human_prefix: str = "Human",
ai_prefix: str = "Assistant",
max_token_limit: int = 2000,
message_limit: Optional[int] = None,
) -> str:
"""
Get the history prompt text
Get history prompt text.
:param human_prefix: human prefix
:param ai_prefix: ai prefix
:param max_token_limit: max token limit
:param message_limit: message limit
:return:
"""
prompt_messages = self.get_history_prompt_messages(max_token_limit=max_token_limit, message_limit=message_limit)
string_messages = []
for m in prompt_messages:
if m.role == PromptMessageRole.USER:
role = human_prefix
elif m.role == PromptMessageRole.ASSISTANT:
role = ai_prefix
else:
continue
if isinstance(m.content, list):
inner_msg = ""
for content in m.content:
if isinstance(content, TextPromptMessageContent):
inner_msg += f"{content.data}\n"
elif isinstance(content, ImagePromptMessageContent):
inner_msg += "[image]\n"
string_messages.append(f"{role}: {inner_msg.strip()}")
else:
message = f"{role}: {m.content}"
string_messages.append(message)
return "\n".join(string_messages)

View File

@ -1,26 +1,28 @@
import json
from collections.abc import Sequence
from typing import Optional
from typing import Optional, cast
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.file import file_manager
from core.memory.base_memory import BaseMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities import (
ImagePromptMessageContent,
PromptMessageRole,
TextPromptMessageContent,
)
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
ImagePromptMessageContent,
PromptMessage,
PromptMessageContentUnionTypes,
TextPromptMessageContent,
UserPromptMessage,
)
from core.prompt.entities.advanced_prompt_entities import LLMMemoryType
from core.prompt.utils.extract_thread_messages import extract_thread_messages
from extensions.ext_database import db
from models.model import Conversation, Message
from models.workflow import WorkflowNodeExecution, WorkflowNodeExecutionStatus
from factories import file_factory
from models.model import AppMode, Conversation, Message, MessageFile
from models.workflow import WorkflowNodeExecution, WorkflowNodeExecutionStatus, WorkflowRun
class ModelContextMemory:
class ModelContextMemory(BaseMemory):
def __init__(self, conversation: Conversation, node_id: str, model_instance: ModelInstance) -> None:
self.conversation = conversation
self.node_id = node_id
@ -34,8 +36,104 @@ class ModelContextMemory:
:param max_token_limit: max token limit
:param message_limit: message limit
"""
thread_messages = list(reversed(self._fetch_thread_messages(message_limit)))
if not thread_messages:
return []
# Get all required workflow_run_ids
workflow_run_ids = [msg.workflow_run_id for msg in thread_messages]
# fetch limited messages, and return reversed
# Batch query all related WorkflowNodeExecution records
node_executions = (
db.session.query(WorkflowNodeExecution)
.filter(
WorkflowNodeExecution.workflow_run_id.in_(workflow_run_ids),
WorkflowNodeExecution.node_id == self.node_id,
WorkflowNodeExecution.status.in_(
[WorkflowNodeExecutionStatus.SUCCEEDED, WorkflowNodeExecutionStatus.EXCEPTION]
),
)
.all()
)
# Create mapping from workflow_run_id to node_execution
node_execution_map = {ne.workflow_run_id: ne for ne in node_executions}
# Get the last node_execution
last_node_execution = node_execution_map.get(thread_messages[-1].workflow_run_id)
prompt_messages = self._get_prompt_messages_in_process_data(last_node_execution)
# Batch query all message-related files
message_ids = [msg.id for msg in thread_messages]
all_files = db.session.query(MessageFile).filter(MessageFile.message_id.in_(message_ids)).all()
# Create mapping from message_id to files
files_map = {}
for file in all_files:
if file.message_id not in files_map:
files_map[file.message_id] = []
files_map[file.message_id].append(file)
for message in thread_messages:
files = files_map.get(message.id, [])
node_execution = node_execution_map.get(message.workflow_run_id)
if node_execution and files:
file_objs, detail = self._handle_file(message, files)
if file_objs:
outputs = node_execution.outputs_dict.get("text", "") if node_execution.outputs_dict else ""
if not outputs:
continue
if outputs not in [prompt.content for prompt in prompt_messages]:
continue
outputs_index = [prompt.content for prompt in prompt_messages].index(outputs)
prompt_index = outputs_index - 1
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
content = cast(str, prompt_messages[prompt_index].content)
prompt_message_contents.append(TextPromptMessageContent(data=content))
for file in file_objs:
prompt_message = file_manager.to_prompt_message_content(
file,
image_detail_config=detail,
)
prompt_message_contents.append(prompt_message)
prompt_messages[prompt_index].content = prompt_message_contents
return prompt_messages
def _get_prompt_messages_in_process_data(
self,
node_execution: WorkflowNodeExecution,
) -> list[PromptMessage]:
"""
Get prompt messages in process data.
:param node_execution: node execution
:return: prompt messages
"""
prompt_messages = []
if not node_execution.process_data:
return []
try:
process_data = json.loads(node_execution.process_data)
if process_data.get("memory_type", "") != LLMMemoryType.INDEPENDENT:
return []
prompts = process_data.get("prompts", [])
for prompt in prompts:
prompt_content = prompt.get("text", "")
if prompt.get("role", "") == "user":
prompt_messages.append(UserPromptMessage(content=prompt_content))
elif prompt.get("role", "") == "assistant":
prompt_messages.append(AssistantPromptMessage(content=prompt_content))
output = node_execution.outputs_dict.get("text", "") if node_execution.outputs_dict else ""
prompt_messages.append(AssistantPromptMessage(content=output))
except json.JSONDecodeError:
return []
return prompt_messages
def _fetch_thread_messages(self, message_limit: int | None = None) -> list[Message]:
"""
Fetch thread messages.
:param message_limit: message limit
:return: thread messages
"""
query = (
db.session.query(
Message.id,
@ -59,147 +157,44 @@ class ModelContextMemory:
messages = query.limit(message_limit).all()
# instead of all messages from the conversation, we only need to extract messages
# that belong to the thread of last message
# fetch the thread messages
thread_messages = extract_thread_messages(messages)
# for newly created message, its answer is temporarily empty, we don't need to add it to memory
if thread_messages and not thread_messages[0].answer and thread_messages[0].answer_tokens == 0:
thread_messages.pop(0)
if len(thread_messages) == 0:
if not thread_messages:
return []
last_thread_message = list(reversed(thread_messages))[0]
last_node_execution = (
db.session.query(WorkflowNodeExecution)
.filter(
WorkflowNodeExecution.workflow_run_id == last_thread_message.workflow_run_id,
WorkflowNodeExecution.node_id == self.node_id,
WorkflowNodeExecution.status.in_(
[WorkflowNodeExecutionStatus.SUCCEEDED, WorkflowNodeExecutionStatus.EXCEPTION]
),
)
.order_by(WorkflowNodeExecution.created_at.desc())
.first()
)
prompt_messages: list[PromptMessage] = []
return thread_messages
# files = db.session.query(MessageFile).filter(MessageFile.message_id == message.id).all()
# if files:
# file_extra_config = None
# if self.conversation.mode not in {AppMode.ADVANCED_CHAT, AppMode.WORKFLOW}:
# file_extra_config = FileUploadConfigManager.convert(self.conversation.model_config)
# else:
# if message.workflow_run_id:
# workflow_run = (
# db.session.query(WorkflowRun).filter(WorkflowRun.id == message.workflow_run_id).first()
# )
def _handle_file(self, message: Message, files: list[MessageFile]):
"""
Handle file for memory.
:param message: message
:param files: files
:return: file objects and detail
"""
file_extra_config = None
if self.conversation.mode not in {AppMode.ADVANCED_CHAT, AppMode.WORKFLOW}:
file_extra_config = FileUploadConfigManager.convert(self.conversation.model_config)
else:
if message.workflow_run_id:
workflow_run = db.session.query(WorkflowRun).filter(WorkflowRun.id == message.workflow_run_id).first()
# if workflow_run and workflow_run.workflow:
# file_extra_config = FileUploadConfigManager.convert(
# workflow_run.workflow.features_dict, is_vision=False
# )
# detail = ImagePromptMessageContent.DETAIL.LOW
# if file_extra_config and app_record:
# file_objs = file_factory.build_from_message_files(
# message_files=files, tenant_id=app_record.tenant_id, config=file_extra_config
# )
# if file_extra_config.image_config and file_extra_config.image_config.detail:
# detail = file_extra_config.image_config.detail
# else:
# file_objs = []
# if not file_objs:
# prompt_messages.append(UserPromptMessage(content=message.query))
# else:
# prompt_message_contents: list[PromptMessageContentUnionTypes] = []
# prompt_message_contents.append(TextPromptMessageContent(data=message.query))
# for file in file_objs:
# prompt_message = file_manager.to_prompt_message_content(
# file,
# image_detail_config=detail,
# )
# prompt_message_contents.append(prompt_message)
# prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
# else:
# prompt_messages.append(UserPromptMessage(content=message.query))
if last_node_execution and last_node_execution.process_data:
try:
process_data = json.loads(last_node_execution.process_data)
if process_data.get("memory_type", "") == LLMMemoryType.INDEPENDENT:
for prompt in process_data.get("prompts", []):
if prompt.get("role") == "user":
prompt_messages.append(
UserPromptMessage(
content=prompt.get("content"),
)
)
elif prompt.get("role") == "assistant":
prompt_messages.append(
AssistantPromptMessage(
content=prompt.get("content"),
)
)
output = (
json.loads(last_node_execution.outputs).get("text", "") if last_node_execution.outputs else ""
if workflow_run and workflow_run.workflow:
file_extra_config = FileUploadConfigManager.convert(
workflow_run.workflow.features_dict, is_vision=False
)
prompt_messages.append(AssistantPromptMessage(content=output))
except json.JSONDecodeError:
pass
if not prompt_messages:
return []
detail = ImagePromptMessageContent.DETAIL.LOW
app_record = self.conversation.app
# prune the chat message if it exceeds the max token limit
curr_message_tokens = self.model_instance.get_llm_num_tokens(prompt_messages)
if curr_message_tokens > max_token_limit:
pruned_memory = []
while curr_message_tokens > max_token_limit and len(prompt_messages) > 1:
pruned_memory.append(prompt_messages.pop(0))
curr_message_tokens = self.model_instance.get_llm_num_tokens(prompt_messages)
return prompt_messages
def get_history_prompt_text(
self,
human_prefix: str = "Human",
ai_prefix: str = "Assistant",
max_token_limit: int = 2000,
message_limit: Optional[int] = None,
) -> str:
"""
Get history prompt text.
:param human_prefix: human prefix
:param ai_prefix: ai prefix
:param max_token_limit: max token limit
:param message_limit: message limit
:return:
"""
prompt_messages = self.get_history_prompt_messages(max_token_limit=max_token_limit, message_limit=message_limit)
string_messages = []
for m in prompt_messages:
if m.role == PromptMessageRole.USER:
role = human_prefix
elif m.role == PromptMessageRole.ASSISTANT:
role = ai_prefix
else:
continue
if isinstance(m.content, list):
inner_msg = ""
for content in m.content:
if isinstance(content, TextPromptMessageContent):
inner_msg += f"{content.data}\n"
elif isinstance(content, ImagePromptMessageContent):
inner_msg += "[image]\n"
string_messages.append(f"{role}: {inner_msg.strip()}")
else:
message = f"{role}: {m.content}"
string_messages.append(message)
return "\n".join(string_messages)
if file_extra_config and app_record:
file_objs = file_factory.build_from_message_files(
message_files=files, tenant_id=app_record.tenant_id, config=file_extra_config
)
if file_extra_config.image_config and file_extra_config.image_config.detail:
detail = file_extra_config.image_config.detail
else:
file_objs = []
return file_objs, detail

View File

@ -3,12 +3,12 @@ from typing import Optional
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.file import file_manager
from core.memory.base_memory import BaseMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities import (
AssistantPromptMessage,
ImagePromptMessageContent,
PromptMessage,
PromptMessageRole,
TextPromptMessageContent,
UserPromptMessage,
)
@ -20,7 +20,7 @@ from models.model import AppMode, Conversation, Message, MessageFile
from models.workflow import WorkflowRun
class TokenBufferMemory:
class TokenBufferMemory(BaseMemory):
def __init__(self, conversation: Conversation, model_instance: ModelInstance) -> None:
self.conversation = conversation
self.model_instance = model_instance
@ -129,44 +129,3 @@ class TokenBufferMemory:
curr_message_tokens = self.model_instance.get_llm_num_tokens(prompt_messages)
return prompt_messages
def get_history_prompt_text(
self,
human_prefix: str = "Human",
ai_prefix: str = "Assistant",
max_token_limit: int = 2000,
message_limit: Optional[int] = None,
) -> str:
"""
Get history prompt text.
:param human_prefix: human prefix
:param ai_prefix: ai prefix
:param max_token_limit: max token limit
:param message_limit: message limit
:return:
"""
prompt_messages = self.get_history_prompt_messages(max_token_limit=max_token_limit, message_limit=message_limit)
string_messages = []
for m in prompt_messages:
if m.role == PromptMessageRole.USER:
role = human_prefix
elif m.role == PromptMessageRole.ASSISTANT:
role = ai_prefix
else:
continue
if isinstance(m.content, list):
inner_msg = ""
for content in m.content:
if isinstance(content, TextPromptMessageContent):
inner_msg += f"{content.data}\n"
elif isinstance(content, ImagePromptMessageContent):
inner_msg += "[image]\n"
string_messages.append(f"{role}: {inner_msg.strip()}")
else:
message = f"{role}: {m.content}"
string_messages.append(message)
return "\n".join(string_messages)

View File

@ -606,6 +606,17 @@ class WorkflowNodeExecution(Base):
"triggered_from",
"node_execution_id",
),
db.Index(
"workflow_node_execution_run_node_status_idx",
"workflow_run_id",
"node_id",
"status",
),
db.Index(
"workflow_node_execution_run_status_idx",
"workflow_run_id",
"status",
),
)
id: Mapped[str] = mapped_column(StringUUID, server_default=db.text("uuid_generate_v4()"))

View File

@ -195,6 +195,7 @@ const MemoryConfig: FC<Props> = ({
})
onChange(newPayload)
}}
defaultValue={payload.type}
/>
</div>
{canSetRoleName && (