feat(qdrant): implement full-text search with multi-keyword support (#31658)

This commit is contained in:
eux 2026-01-29 11:12:18 +08:00 committed by GitHub
parent 91532ef429
commit b48a10d7ec
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 142 additions and 33 deletions

View File

@ -391,46 +391,78 @@ class QdrantVector(BaseVector):
return docs
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
"""Return docs most similar by bm25.
"""Return docs most similar by full-text search.
Searches each keyword separately and merges results to ensure documents
matching ANY keyword are returned (OR logic). Results are capped at top_k.
Args:
query: Search query text. Multi-word queries are split into keywords,
with each keyword searched separately. Limited to 10 keywords.
**kwargs: Additional search parameters (top_k, document_ids_filter)
Returns:
List of documents most similar to the query text and distance for each.
List of up to top_k unique documents matching any query keyword.
"""
from qdrant_client.http import models
scroll_filter = models.Filter(
must=[
models.FieldCondition(
key="group_id",
match=models.MatchValue(value=self._group_id),
),
models.FieldCondition(
key="page_content",
match=models.MatchText(text=query),
),
]
)
# Build base must conditions (AND logic) for metadata filters
base_must_conditions: list = [
models.FieldCondition(
key="group_id",
match=models.MatchValue(value=self._group_id),
),
]
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
if scroll_filter.must:
scroll_filter.must.append(
models.FieldCondition(
key="metadata.document_id",
match=models.MatchAny(any=document_ids_filter),
)
base_must_conditions.append(
models.FieldCondition(
key="metadata.document_id",
match=models.MatchAny(any=document_ids_filter),
)
response = self._client.scroll(
collection_name=self._collection_name,
scroll_filter=scroll_filter,
limit=kwargs.get("top_k", 2),
with_payload=True,
with_vectors=True,
)
results = response[0]
documents = []
for result in results:
if result:
document = self._document_from_scored_point(result, Field.CONTENT_KEY, Field.METADATA_KEY)
documents.append(document)
)
# Split query into keywords, deduplicate and limit to prevent DoS
keywords = list(dict.fromkeys(kw.strip() for kw in query.strip().split() if kw.strip()))[:10]
if not keywords:
return []
top_k = kwargs.get("top_k", 2)
seen_ids: set[str | int] = set()
documents: list[Document] = []
# Search each keyword separately and merge results.
# This ensures each keyword gets its own search, preventing one keyword's
# results from completely overshadowing another's due to scroll ordering.
for keyword in keywords:
scroll_filter = models.Filter(
must=[
*base_must_conditions,
models.FieldCondition(
key="page_content",
match=models.MatchText(text=keyword),
),
]
)
response = self._client.scroll(
collection_name=self._collection_name,
scroll_filter=scroll_filter,
limit=top_k,
with_payload=True,
with_vectors=True,
)
results = response[0]
for result in results:
if result and result.id not in seen_ids:
seen_ids.add(result.id)
document = self._document_from_scored_point(result, Field.CONTENT_KEY, Field.METADATA_KEY)
documents.append(document)
if len(documents) >= top_k:
return documents
return documents

View File

@ -1,3 +1,5 @@
import uuid
from core.rag.datasource.vdb.qdrant.qdrant_vector import QdrantConfig, QdrantVector
from core.rag.models.document import Document
from tests.integration_tests.vdb.test_vector_store import (
@ -18,6 +20,10 @@ class QdrantVectorTest(AbstractVectorTest):
api_key="difyai123456",
),
)
# Additional doc IDs for multi-keyword search tests
self.doc_apple_id = ""
self.doc_banana_id = ""
self.doc_both_id = ""
def search_by_vector(self):
super().search_by_vector()
@ -27,6 +33,77 @@ class QdrantVectorTest(AbstractVectorTest):
)
assert len(hits_by_vector) == 0
def _create_document(self, content: str, doc_id: str) -> Document:
"""Create a document with the given content and doc_id."""
return Document(
page_content=content,
metadata={
"doc_id": doc_id,
"doc_hash": doc_id,
"document_id": doc_id,
"dataset_id": self.dataset_id,
},
)
def setup_multi_keyword_documents(self):
"""Create test documents with different keyword combinations for multi-keyword search tests."""
self.doc_apple_id = str(uuid.uuid4())
self.doc_banana_id = str(uuid.uuid4())
self.doc_both_id = str(uuid.uuid4())
documents = [
self._create_document("This document contains apple only", self.doc_apple_id),
self._create_document("This document contains banana only", self.doc_banana_id),
self._create_document("This document contains both apple and banana", self.doc_both_id),
]
embeddings = [self.example_embedding] * len(documents)
self.vector.add_texts(documents=documents, embeddings=embeddings)
def search_by_full_text_multi_keyword(self):
"""Test multi-keyword search returns docs matching ANY keyword (OR logic)."""
# First verify single keyword searches work correctly
hits_apple = self.vector.search_by_full_text(query="apple", top_k=10)
apple_ids = {doc.metadata["doc_id"] for doc in hits_apple}
assert self.doc_apple_id in apple_ids, "Document with 'apple' should be found"
assert self.doc_both_id in apple_ids, "Document with 'apple and banana' should be found"
hits_banana = self.vector.search_by_full_text(query="banana", top_k=10)
banana_ids = {doc.metadata["doc_id"] for doc in hits_banana}
assert self.doc_banana_id in banana_ids, "Document with 'banana' should be found"
assert self.doc_both_id in banana_ids, "Document with 'apple and banana' should be found"
# Test multi-keyword search returns all matching documents
hits = self.vector.search_by_full_text(query="apple banana", top_k=10)
doc_ids = {doc.metadata["doc_id"] for doc in hits}
assert self.doc_apple_id in doc_ids, "Document with 'apple' should be found in multi-keyword search"
assert self.doc_banana_id in doc_ids, "Document with 'banana' should be found in multi-keyword search"
assert self.doc_both_id in doc_ids, "Document with both keywords should be found"
# Expect 3 results: doc_apple (apple only), doc_banana (banana only), doc_both (contains both)
assert len(hits) == 3, f"Expected 3 documents, got {len(hits)}"
# Test keyword order independence
hits_ba = self.vector.search_by_full_text(query="banana apple", top_k=10)
ids_ba = {doc.metadata["doc_id"] for doc in hits_ba}
assert doc_ids == ids_ba, "Keyword order should not affect search results"
# Test no duplicates in results
doc_id_list = [doc.metadata["doc_id"] for doc in hits]
assert len(doc_id_list) == len(set(doc_id_list)), "Search results should not contain duplicates"
def run_all_tests(self):
self.create_vector()
self.search_by_vector()
self.search_by_full_text()
self.text_exists()
self.get_ids_by_metadata_field()
# Multi-keyword search tests
self.setup_multi_keyword_documents()
self.search_by_full_text_multi_keyword()
# Cleanup - delete_vector() removes the entire collection
self.delete_vector()
def test_qdrant_vector(setup_mock_redis):
QdrantVectorTest().run_all_tests()