diff --git a/api/controllers/console/app/conversation.py b/api/controllers/console/app/conversation.py
index 5d312149f7..daf9641121 100644
--- a/api/controllers/console/app/conversation.py
+++ b/api/controllers/console/app/conversation.py
@@ -21,7 +21,7 @@ from fields.conversation_fields import (
)
from libs.helper import datetime_string
from libs.login import login_required
-from models.model import Conversation, Message, MessageAnnotation, AppMode
+from models.model import AppMode, Conversation, Message, MessageAnnotation
class CompletionConversationApi(Resource):
diff --git a/api/controllers/console/app/message.py b/api/controllers/console/app/message.py
index 9a177116ea..c384e878aa 100644
--- a/api/controllers/console/app/message.py
+++ b/api/controllers/console/app/message.py
@@ -26,7 +26,7 @@ from fields.conversation_fields import annotation_fields, message_detail_fields
from libs.helper import uuid_value
from libs.infinite_scroll_pagination import InfiniteScrollPagination
from libs.login import login_required
-from models.model import Conversation, Message, MessageAnnotation, MessageFeedback, AppMode
+from models.model import AppMode, Conversation, Message, MessageAnnotation, MessageFeedback
from services.annotation_service import AppAnnotationService
from services.errors.conversation import ConversationNotExistsError
from services.errors.message import MessageNotExistsError
diff --git a/api/controllers/console/app/workflow.py b/api/controllers/console/app/workflow.py
index 2794735bbb..1bb0ea34c1 100644
--- a/api/controllers/console/app/workflow.py
+++ b/api/controllers/console/app/workflow.py
@@ -1,4 +1,4 @@
-from flask_restful import Resource, reqparse, marshal_with
+from flask_restful import Resource, marshal_with, reqparse
from controllers.console import api
from controllers.console.app.error import DraftWorkflowNotExist
@@ -6,8 +6,8 @@ from controllers.console.app.wraps import get_app_model
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from fields.workflow_fields import workflow_fields
-from libs.login import login_required, current_user
-from models.model import App, ChatbotAppEngine, AppMode
+from libs.login import current_user, login_required
+from models.model import App, AppMode, ChatbotAppEngine
from services.workflow_service import WorkflowService
diff --git a/api/controllers/console/app/wraps.py b/api/controllers/console/app/wraps.py
index fe35e72304..1c2c4cf5c7 100644
--- a/api/controllers/console/app/wraps.py
+++ b/api/controllers/console/app/wraps.py
@@ -5,7 +5,7 @@ from typing import Optional, Union
from controllers.console.app.error import AppNotFoundError
from extensions.ext_database import db
from libs.login import current_user
-from models.model import App, ChatbotAppEngine, AppMode
+from models.model import App, AppMode, ChatbotAppEngine
def get_app_model(view: Optional[Callable] = None, *,
diff --git a/api/core/app_runner/app_runner.py b/api/core/app_runner/app_runner.py
index f9678b372f..c6f6268a7a 100644
--- a/api/core/app_runner/app_runner.py
+++ b/api/core/app_runner/app_runner.py
@@ -22,7 +22,7 @@ from core.model_runtime.entities.message_entities import AssistantPromptMessage,
from core.model_runtime.entities.model_entities import ModelPropertyKey
from core.model_runtime.errors.invoke import InvokeBadRequestError
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
-from core.prompt.prompt_transform import PromptTransform
+from core.prompt.simple_prompt_transform import SimplePromptTransform
from models.model import App, Message, MessageAnnotation
@@ -140,12 +140,11 @@ class AppRunner:
:param memory: memory
:return:
"""
- prompt_transform = PromptTransform()
+ prompt_transform = SimplePromptTransform()
# get prompt without memory and context
if prompt_template_entity.prompt_type == PromptTemplateEntity.PromptType.SIMPLE:
prompt_messages, stop = prompt_transform.get_prompt(
- app_mode=app_record.mode,
prompt_template_entity=prompt_template_entity,
inputs=inputs,
query=query if query else '',
@@ -155,17 +154,7 @@ class AppRunner:
model_config=model_config
)
else:
- prompt_messages = prompt_transform.get_advanced_prompt(
- app_mode=app_record.mode,
- prompt_template_entity=prompt_template_entity,
- inputs=inputs,
- query=query,
- files=files,
- context=context,
- memory=memory,
- model_config=model_config
- )
- stop = model_config.stop
+ raise NotImplementedError("Advanced prompt is not supported yet.")
return prompt_messages, stop
diff --git a/api/core/app_runner/basic_app_runner.py b/api/core/app_runner/basic_app_runner.py
index 26e9cc84aa..0e0fe6e3bf 100644
--- a/api/core/app_runner/basic_app_runner.py
+++ b/api/core/app_runner/basic_app_runner.py
@@ -15,7 +15,7 @@ from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.moderation.base import ModerationException
from extensions.ext_database import db
-from models.model import App, Conversation, Message, AppMode
+from models.model import App, AppMode, Conversation, Message
logger = logging.getLogger(__name__)
diff --git a/api/core/application_manager.py b/api/core/application_manager.py
index 2fde422d47..cf463be1df 100644
--- a/api/core/application_manager.py
+++ b/api/core/application_manager.py
@@ -28,7 +28,8 @@ from core.entities.application_entities import (
ModelConfigEntity,
PromptTemplateEntity,
SensitiveWordAvoidanceEntity,
- TextToSpeechEntity, VariableEntity,
+ TextToSpeechEntity,
+ VariableEntity,
)
from core.entities.model_entities import ModelStatus
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
@@ -541,8 +542,7 @@ class ApplicationManager:
query_variable=query_variable,
retrieve_strategy=DatasetRetrieveConfigEntity.RetrieveStrategy.value_of(
dataset_configs['retrieval_model']
- ),
- single_strategy=datasets.get('strategy', 'router')
+ )
)
)
else:
diff --git a/api/core/entities/application_entities.py b/api/core/entities/application_entities.py
index 092591a73f..f8f293d96a 100644
--- a/api/core/entities/application_entities.py
+++ b/api/core/entities/application_entities.py
@@ -156,7 +156,6 @@ class DatasetRetrieveConfigEntity(BaseModel):
query_variable: Optional[str] = None # Only when app mode is completion
retrieve_strategy: RetrieveStrategy
- single_strategy: Optional[str] = None # for temp
top_k: Optional[int] = None
score_threshold: Optional[float] = None
reranking_model: Optional[dict] = None
diff --git a/api/core/prompt/advanced_prompt_transform.py b/api/core/prompt/advanced_prompt_transform.py
new file mode 100644
index 0000000000..9ca3ef0375
--- /dev/null
+++ b/api/core/prompt/advanced_prompt_transform.py
@@ -0,0 +1,198 @@
+from typing import Optional
+
+from core.entities.application_entities import PromptTemplateEntity, ModelConfigEntity, \
+ AdvancedCompletionPromptTemplateEntity
+from core.file.file_obj import FileObj
+from core.memory.token_buffer_memory import TokenBufferMemory
+from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageRole, UserPromptMessage, \
+ SystemPromptMessage, AssistantPromptMessage, TextPromptMessageContent
+from core.prompt.prompt_template import PromptTemplateParser
+from core.prompt.prompt_transform import PromptTransform
+from core.prompt.simple_prompt_transform import ModelMode
+
+
+class AdvancePromptTransform(PromptTransform):
+ """
+ Advanced Prompt Transform for Workflow LLM Node.
+ """
+
+ def get_prompt(self, prompt_template_entity: PromptTemplateEntity,
+ inputs: dict,
+ query: str,
+ files: list[FileObj],
+ context: Optional[str],
+ memory: Optional[TokenBufferMemory],
+ model_config: ModelConfigEntity) -> list[PromptMessage]:
+ prompt_messages = []
+
+ model_mode = ModelMode.value_of(model_config.mode)
+ if model_mode == ModelMode.COMPLETION:
+ prompt_messages = self._get_completion_model_prompt_messages(
+ prompt_template_entity=prompt_template_entity,
+ inputs=inputs,
+ files=files,
+ context=context,
+ memory=memory,
+ model_config=model_config
+ )
+ elif model_mode == ModelMode.CHAT:
+ prompt_messages = self._get_chat_model_prompt_messages(
+ prompt_template_entity=prompt_template_entity,
+ inputs=inputs,
+ query=query,
+ files=files,
+ context=context,
+ memory=memory,
+ model_config=model_config
+ )
+
+ return prompt_messages
+
+ def _get_completion_model_prompt_messages(self,
+ prompt_template_entity: PromptTemplateEntity,
+ inputs: dict,
+ files: list[FileObj],
+ context: Optional[str],
+ memory: Optional[TokenBufferMemory],
+ model_config: ModelConfigEntity) -> list[PromptMessage]:
+ """
+ Get completion model prompt messages.
+ """
+ raw_prompt = prompt_template_entity.advanced_completion_prompt_template.prompt
+
+ prompt_messages = []
+
+ prompt_template = PromptTemplateParser(template=raw_prompt)
+ prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
+
+ self._set_context_variable(context, prompt_template, prompt_inputs)
+
+ role_prefix = prompt_template_entity.advanced_completion_prompt_template.role_prefix
+ self._set_histories_variable(
+ memory=memory,
+ raw_prompt=raw_prompt,
+ role_prefix=role_prefix,
+ prompt_template=prompt_template,
+ prompt_inputs=prompt_inputs,
+ model_config=model_config
+ )
+
+ prompt = prompt_template.format(
+ prompt_inputs
+ )
+
+ if files:
+ prompt_message_contents = [TextPromptMessageContent(data=prompt)]
+ for file in files:
+ prompt_message_contents.append(file.prompt_message_content)
+
+ prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
+ else:
+ prompt_messages.append(UserPromptMessage(content=prompt))
+
+ return prompt_messages
+
+ def _get_chat_model_prompt_messages(self,
+ prompt_template_entity: PromptTemplateEntity,
+ inputs: dict,
+ query: str,
+ files: list[FileObj],
+ context: Optional[str],
+ memory: Optional[TokenBufferMemory],
+ model_config: ModelConfigEntity) -> list[PromptMessage]:
+ """
+ Get chat model prompt messages.
+ """
+ raw_prompt_list = prompt_template_entity.advanced_chat_prompt_template.messages
+
+ prompt_messages = []
+
+ for prompt_item in raw_prompt_list:
+ raw_prompt = prompt_item.text
+
+ prompt_template = PromptTemplateParser(template=raw_prompt)
+ prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
+
+ self._set_context_variable(context, prompt_template, prompt_inputs)
+
+ prompt = prompt_template.format(
+ prompt_inputs
+ )
+
+ if prompt_item.role == PromptMessageRole.USER:
+ prompt_messages.append(UserPromptMessage(content=prompt))
+ elif prompt_item.role == PromptMessageRole.SYSTEM and prompt:
+ prompt_messages.append(SystemPromptMessage(content=prompt))
+ elif prompt_item.role == PromptMessageRole.ASSISTANT:
+ prompt_messages.append(AssistantPromptMessage(content=prompt))
+
+ if memory:
+ self._append_chat_histories(memory, prompt_messages, model_config)
+
+ if files:
+ prompt_message_contents = [TextPromptMessageContent(data=query)]
+ for file in files:
+ prompt_message_contents.append(file.prompt_message_content)
+
+ prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
+ else:
+ prompt_messages.append(UserPromptMessage(content=query))
+ elif files:
+ # get last message
+ last_message = prompt_messages[-1] if prompt_messages else None
+ if last_message and last_message.role == PromptMessageRole.USER:
+ # get last user message content and add files
+ prompt_message_contents = [TextPromptMessageContent(data=last_message.content)]
+ for file in files:
+ prompt_message_contents.append(file.prompt_message_content)
+
+ last_message.content = prompt_message_contents
+ else:
+ prompt_message_contents = [TextPromptMessageContent(data=query)]
+ for file in files:
+ prompt_message_contents.append(file.prompt_message_content)
+
+ prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
+
+ return prompt_messages
+
+ def _set_context_variable(self, context: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
+ if '#context#' in prompt_template.variable_keys:
+ if context:
+ prompt_inputs['#context#'] = context
+ else:
+ prompt_inputs['#context#'] = ''
+
+ def _set_query_variable(self, query: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
+ if '#query#' in prompt_template.variable_keys:
+ if query:
+ prompt_inputs['#query#'] = query
+ else:
+ prompt_inputs['#query#'] = ''
+
+ def _set_histories_variable(self, memory: TokenBufferMemory,
+ raw_prompt: str,
+ role_prefix: AdvancedCompletionPromptTemplateEntity.RolePrefixEntity,
+ prompt_template: PromptTemplateParser,
+ prompt_inputs: dict,
+ model_config: ModelConfigEntity) -> None:
+ if '#histories#' in prompt_template.variable_keys:
+ if memory:
+ inputs = {'#histories#': '', **prompt_inputs}
+ prompt_template = PromptTemplateParser(raw_prompt)
+ prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
+ tmp_human_message = UserPromptMessage(
+ content=prompt_template.format(prompt_inputs)
+ )
+
+ rest_tokens = self._calculate_rest_token([tmp_human_message], model_config)
+
+ histories = self._get_history_messages_from_memory(
+ memory=memory,
+ max_token_limit=rest_tokens,
+ human_prefix=role_prefix.user,
+ ai_prefix=role_prefix.assistant
+ )
+ prompt_inputs['#histories#'] = histories
+ else:
+ prompt_inputs['#histories#'] = ''
diff --git a/api/core/prompt/generate_prompts/baichuan_chat.json b/api/core/prompt/generate_prompts/baichuan_chat.json
index 5bf83cd9c7..03b6a53cff 100644
--- a/api/core/prompt/generate_prompts/baichuan_chat.json
+++ b/api/core/prompt/generate_prompts/baichuan_chat.json
@@ -1,13 +1,13 @@
{
"human_prefix": "用户",
"assistant_prefix": "助手",
- "context_prompt": "用户在与一个客观的助手对话。助手会尊重找到的材料,给出全面专业的解释,但不会过度演绎。同时回答中不会暴露引用的材料:\n\n```\n{{context}}\n```\n\n",
- "histories_prompt": "用户和助手的历史对话内容如下:\n```\n{{histories}}\n```\n\n",
+ "context_prompt": "用户在与一个客观的助手对话。助手会尊重找到的材料,给出全面专业的解释,但不会过度演绎。同时回答中不会暴露引用的材料:\n\n```\n{{#context#}}\n```\n\n",
+ "histories_prompt": "用户和助手的历史对话内容如下:\n```\n{{#histories#}}\n```\n\n",
"system_prompt_orders": [
"context_prompt",
"pre_prompt",
"histories_prompt"
],
- "query_prompt": "\n\n用户:{{query}}",
+ "query_prompt": "\n\n用户:{{#query#}}",
"stops": ["用户:"]
}
\ No newline at end of file
diff --git a/api/core/prompt/generate_prompts/baichuan_completion.json b/api/core/prompt/generate_prompts/baichuan_completion.json
index a3a2054e83..ae8c0dac53 100644
--- a/api/core/prompt/generate_prompts/baichuan_completion.json
+++ b/api/core/prompt/generate_prompts/baichuan_completion.json
@@ -1,9 +1,9 @@
{
- "context_prompt": "用户在与一个客观的助手对话。助手会尊重找到的材料,给出全面专业的解释,但不会过度演绎。同时回答中不会暴露引用的材料:\n\n```\n{{context}}\n```\n",
+ "context_prompt": "用户在与一个客观的助手对话。助手会尊重找到的材料,给出全面专业的解释,但不会过度演绎。同时回答中不会暴露引用的材料:\n\n```\n{{#context#}}\n```\n",
"system_prompt_orders": [
"context_prompt",
"pre_prompt"
],
- "query_prompt": "{{query}}",
+ "query_prompt": "{{#query#}}",
"stops": null
}
\ No newline at end of file
diff --git a/api/core/prompt/generate_prompts/common_chat.json b/api/core/prompt/generate_prompts/common_chat.json
index 709a8d8866..d398a512e6 100644
--- a/api/core/prompt/generate_prompts/common_chat.json
+++ b/api/core/prompt/generate_prompts/common_chat.json
@@ -1,13 +1,13 @@
{
"human_prefix": "Human",
"assistant_prefix": "Assistant",
- "context_prompt": "Use the following context as your learned knowledge, inside XML tags.\n\n\n{{context}}\n\n\nWhen answer to user:\n- If you don't know, just say that you don't know.\n- If you don't know when you are not sure, ask for clarification.\nAvoid mentioning that you obtained the information from the context.\nAnd answer according to the language of the user's question.\n\n",
- "histories_prompt": "Here is the chat histories between human and assistant, inside XML tags.\n\n\n{{histories}}\n\n\n",
+ "context_prompt": "Use the following context as your learned knowledge, inside XML tags.\n\n\n{{#context#}}\n\n\nWhen answer to user:\n- If you don't know, just say that you don't know.\n- If you don't know when you are not sure, ask for clarification.\nAvoid mentioning that you obtained the information from the context.\nAnd answer according to the language of the user's question.\n\n",
+ "histories_prompt": "Here is the chat histories between human and assistant, inside XML tags.\n\n\n{{#histories#}}\n\n\n",
"system_prompt_orders": [
"context_prompt",
"pre_prompt",
"histories_prompt"
],
- "query_prompt": "\n\nHuman: {{query}}\n\nAssistant: ",
+ "query_prompt": "\n\nHuman: {{#query#}}\n\nAssistant: ",
"stops": ["\nHuman:", ""]
}
diff --git a/api/core/prompt/generate_prompts/common_completion.json b/api/core/prompt/generate_prompts/common_completion.json
index 9e7e8d68ef..c148772010 100644
--- a/api/core/prompt/generate_prompts/common_completion.json
+++ b/api/core/prompt/generate_prompts/common_completion.json
@@ -1,9 +1,9 @@
{
- "context_prompt": "Use the following context as your learned knowledge, inside XML tags.\n\n\n{{context}}\n\n\nWhen answer to user:\n- If you don't know, just say that you don't know.\n- If you don't know when you are not sure, ask for clarification.\nAvoid mentioning that you obtained the information from the context.\nAnd answer according to the language of the user's question.\n\n",
+ "context_prompt": "Use the following context as your learned knowledge, inside XML tags.\n\n\n{{#context#}}\n\n\nWhen answer to user:\n- If you don't know, just say that you don't know.\n- If you don't know when you are not sure, ask for clarification.\nAvoid mentioning that you obtained the information from the context.\nAnd answer according to the language of the user's question.\n\n",
"system_prompt_orders": [
"context_prompt",
"pre_prompt"
],
- "query_prompt": "{{query}}",
+ "query_prompt": "{{#query#}}",
"stops": null
}
\ No newline at end of file
diff --git a/api/core/prompt/prompt_builder.py b/api/core/prompt/prompt_builder.py
deleted file mode 100644
index 7727b0f92e..0000000000
--- a/api/core/prompt/prompt_builder.py
+++ /dev/null
@@ -1,10 +0,0 @@
-from core.prompt.prompt_template import PromptTemplateParser
-
-
-class PromptBuilder:
- @classmethod
- def parse_prompt(cls, prompt: str, inputs: dict) -> str:
- prompt_template = PromptTemplateParser(prompt)
- prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
- prompt = prompt_template.format(prompt_inputs)
- return prompt
diff --git a/api/core/prompt/prompt_template.py b/api/core/prompt/prompt_template.py
index 32c5a791de..454f92e3b7 100644
--- a/api/core/prompt/prompt_template.py
+++ b/api/core/prompt/prompt_template.py
@@ -32,7 +32,8 @@ class PromptTemplateParser:
return PromptTemplateParser.remove_template_variables(value)
return value
- return re.sub(REGEX, replacer, self.template)
+ prompt = re.sub(REGEX, replacer, self.template)
+ return re.sub(r'<\|.*?\|>', '', prompt)
@classmethod
def remove_template_variables(cls, text: str):
diff --git a/api/core/prompt/prompt_transform.py b/api/core/prompt/prompt_transform.py
index abbfa96249..c0f70ae0bb 100644
--- a/api/core/prompt/prompt_transform.py
+++ b/api/core/prompt/prompt_transform.py
@@ -1,393 +1,13 @@
-import enum
-import json
-import os
-import re
from typing import Optional, cast
-from core.entities.application_entities import (
- AdvancedCompletionPromptTemplateEntity,
- ModelConfigEntity,
- PromptTemplateEntity,
-)
-from core.file.file_obj import FileObj
+from core.entities.application_entities import ModelConfigEntity
from core.memory.token_buffer_memory import TokenBufferMemory
-from core.model_runtime.entities.message_entities import (
- AssistantPromptMessage,
- PromptMessage,
- PromptMessageRole,
- SystemPromptMessage,
- TextPromptMessageContent,
- UserPromptMessage,
-)
+from core.model_runtime.entities.message_entities import PromptMessage
from core.model_runtime.entities.model_entities import ModelPropertyKey
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
-from core.prompt.prompt_builder import PromptBuilder
-from core.prompt.prompt_template import PromptTemplateParser
-from models.model import AppMode
-
-
-class ModelMode(enum.Enum):
- COMPLETION = 'completion'
- CHAT = 'chat'
-
- @classmethod
- def value_of(cls, value: str) -> 'ModelMode':
- """
- Get value of given mode.
-
- :param value: mode value
- :return: mode
- """
- for mode in cls:
- if mode.value == value:
- return mode
- raise ValueError(f'invalid mode value {value}')
class PromptTransform:
- def get_prompt(self,
- app_mode: str,
- prompt_template_entity: PromptTemplateEntity,
- inputs: dict,
- query: str,
- files: list[FileObj],
- context: Optional[str],
- memory: Optional[TokenBufferMemory],
- model_config: ModelConfigEntity) -> \
- tuple[list[PromptMessage], Optional[list[str]]]:
- app_mode = AppMode.value_of(app_mode)
- model_mode = ModelMode.value_of(model_config.mode)
-
- prompt_rules = self._read_prompt_rules_from_file(self._prompt_file_name(
- app_mode=app_mode,
- provider=model_config.provider,
- model=model_config.model
- ))
-
- if app_mode == AppMode.CHAT and model_mode == ModelMode.CHAT:
- stops = None
-
- prompt_messages = self._get_simple_chat_app_chat_model_prompt_messages(
- prompt_rules=prompt_rules,
- pre_prompt=prompt_template_entity.simple_prompt_template,
- inputs=inputs,
- query=query,
- files=files,
- context=context,
- memory=memory,
- model_config=model_config
- )
- else:
- stops = prompt_rules.get('stops')
- if stops is not None and len(stops) == 0:
- stops = None
-
- prompt_messages = self._get_simple_others_prompt_messages(
- prompt_rules=prompt_rules,
- pre_prompt=prompt_template_entity.simple_prompt_template,
- inputs=inputs,
- query=query,
- files=files,
- context=context,
- memory=memory,
- model_config=model_config
- )
- return prompt_messages, stops
-
- def get_advanced_prompt(self, app_mode: str,
- prompt_template_entity: PromptTemplateEntity,
- inputs: dict,
- query: str,
- files: list[FileObj],
- context: Optional[str],
- memory: Optional[TokenBufferMemory],
- model_config: ModelConfigEntity) -> list[PromptMessage]:
- app_mode = AppMode.value_of(app_mode)
- model_mode = ModelMode.value_of(model_config.mode)
-
- prompt_messages = []
-
- if app_mode == AppMode.CHAT:
- if model_mode == ModelMode.COMPLETION:
- prompt_messages = self._get_chat_app_completion_model_prompt_messages(
- prompt_template_entity=prompt_template_entity,
- inputs=inputs,
- query=query,
- files=files,
- context=context,
- memory=memory,
- model_config=model_config
- )
- elif model_mode == ModelMode.CHAT:
- prompt_messages = self._get_chat_app_chat_model_prompt_messages(
- prompt_template_entity=prompt_template_entity,
- inputs=inputs,
- query=query,
- files=files,
- context=context,
- memory=memory,
- model_config=model_config
- )
- elif app_mode == AppMode.COMPLETION:
- if model_mode == ModelMode.CHAT:
- prompt_messages = self._get_completion_app_chat_model_prompt_messages(
- prompt_template_entity=prompt_template_entity,
- inputs=inputs,
- files=files,
- context=context,
- )
- elif model_mode == ModelMode.COMPLETION:
- prompt_messages = self._get_completion_app_completion_model_prompt_messages(
- prompt_template_entity=prompt_template_entity,
- inputs=inputs,
- context=context,
- )
-
- return prompt_messages
-
- def _get_history_messages_from_memory(self, memory: TokenBufferMemory,
- max_token_limit: int,
- human_prefix: Optional[str] = None,
- ai_prefix: Optional[str] = None) -> str:
- """Get memory messages."""
- kwargs = {
- "max_token_limit": max_token_limit
- }
-
- if human_prefix:
- kwargs['human_prefix'] = human_prefix
-
- if ai_prefix:
- kwargs['ai_prefix'] = ai_prefix
-
- return memory.get_history_prompt_text(
- **kwargs
- )
-
- def _get_history_messages_list_from_memory(self, memory: TokenBufferMemory,
- max_token_limit: int) -> list[PromptMessage]:
- """Get memory messages."""
- return memory.get_history_prompt_messages(
- max_token_limit=max_token_limit
- )
-
- def _prompt_file_name(self, app_mode: AppMode, provider: str, model: str) -> str:
- # baichuan
- if provider == 'baichuan':
- return self._prompt_file_name_for_baichuan(app_mode)
-
- baichuan_supported_providers = ["huggingface_hub", "openllm", "xinference"]
- if provider in baichuan_supported_providers and 'baichuan' in model.lower():
- return self._prompt_file_name_for_baichuan(app_mode)
-
- # common
- if app_mode == AppMode.COMPLETION:
- return 'common_completion'
- else:
- return 'common_chat'
-
- def _prompt_file_name_for_baichuan(self, app_mode: AppMode) -> str:
- if app_mode == AppMode.COMPLETION:
- return 'baichuan_completion'
- else:
- return 'baichuan_chat'
-
- def _read_prompt_rules_from_file(self, prompt_name: str) -> dict:
- # Get the absolute path of the subdirectory
- prompt_path = os.path.join(
- os.path.dirname(os.path.realpath(__file__)),
- 'generate_prompts')
-
- json_file_path = os.path.join(prompt_path, f'{prompt_name}.json')
- # Open the JSON file and read its content
- with open(json_file_path, encoding='utf-8') as json_file:
- return json.load(json_file)
-
- def _get_simple_chat_app_chat_model_prompt_messages(self, prompt_rules: dict,
- pre_prompt: str,
- inputs: dict,
- query: str,
- context: Optional[str],
- files: list[FileObj],
- memory: Optional[TokenBufferMemory],
- model_config: ModelConfigEntity) -> list[PromptMessage]:
- prompt_messages = []
-
- context_prompt_content = ''
- if context and 'context_prompt' in prompt_rules:
- prompt_template = PromptTemplateParser(template=prompt_rules['context_prompt'])
- context_prompt_content = prompt_template.format(
- {'context': context}
- )
-
- pre_prompt_content = ''
- if pre_prompt:
- prompt_template = PromptTemplateParser(template=pre_prompt)
- prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
- pre_prompt_content = prompt_template.format(
- prompt_inputs
- )
-
- prompt = ''
- for order in prompt_rules['system_prompt_orders']:
- if order == 'context_prompt':
- prompt += context_prompt_content
- elif order == 'pre_prompt':
- prompt += pre_prompt_content
-
- prompt = re.sub(r'<\|.*?\|>', '', prompt)
-
- if prompt:
- prompt_messages.append(SystemPromptMessage(content=prompt))
-
- self._append_chat_histories(
- memory=memory,
- prompt_messages=prompt_messages,
- model_config=model_config
- )
-
- if files:
- prompt_message_contents = [TextPromptMessageContent(data=query)]
- for file in files:
- prompt_message_contents.append(file.prompt_message_content)
-
- prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
- else:
- prompt_messages.append(UserPromptMessage(content=query))
-
- return prompt_messages
-
- def _get_simple_others_prompt_messages(self, prompt_rules: dict,
- pre_prompt: str,
- inputs: dict,
- query: str,
- context: Optional[str],
- memory: Optional[TokenBufferMemory],
- files: list[FileObj],
- model_config: ModelConfigEntity) -> list[PromptMessage]:
- context_prompt_content = ''
- if context and 'context_prompt' in prompt_rules:
- prompt_template = PromptTemplateParser(template=prompt_rules['context_prompt'])
- context_prompt_content = prompt_template.format(
- {'context': context}
- )
-
- pre_prompt_content = ''
- if pre_prompt:
- prompt_template = PromptTemplateParser(template=pre_prompt)
- prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
- pre_prompt_content = prompt_template.format(
- prompt_inputs
- )
-
- prompt = ''
- for order in prompt_rules['system_prompt_orders']:
- if order == 'context_prompt':
- prompt += context_prompt_content
- elif order == 'pre_prompt':
- prompt += pre_prompt_content
-
- query_prompt = prompt_rules['query_prompt'] if 'query_prompt' in prompt_rules else '{{query}}'
-
- if memory and 'histories_prompt' in prompt_rules:
- # append chat histories
- tmp_human_message = UserPromptMessage(
- content=PromptBuilder.parse_prompt(
- prompt=prompt + query_prompt,
- inputs={
- 'query': query
- }
- )
- )
-
- rest_tokens = self._calculate_rest_token([tmp_human_message], model_config)
-
- histories = self._get_history_messages_from_memory(
- memory=memory,
- max_token_limit=rest_tokens,
- ai_prefix=prompt_rules['human_prefix'] if 'human_prefix' in prompt_rules else 'Human',
- human_prefix=prompt_rules['assistant_prefix'] if 'assistant_prefix' in prompt_rules else 'Assistant'
- )
- prompt_template = PromptTemplateParser(template=prompt_rules['histories_prompt'])
- histories_prompt_content = prompt_template.format({'histories': histories})
-
- prompt = ''
- for order in prompt_rules['system_prompt_orders']:
- if order == 'context_prompt':
- prompt += context_prompt_content
- elif order == 'pre_prompt':
- prompt += (pre_prompt_content + '\n') if pre_prompt_content else ''
- elif order == 'histories_prompt':
- prompt += histories_prompt_content
-
- prompt_template = PromptTemplateParser(template=query_prompt)
- query_prompt_content = prompt_template.format({'query': query})
-
- prompt += query_prompt_content
-
- prompt = re.sub(r'<\|.*?\|>', '', prompt)
-
- model_mode = ModelMode.value_of(model_config.mode)
-
- if model_mode == ModelMode.CHAT and files:
- prompt_message_contents = [TextPromptMessageContent(data=prompt)]
- for file in files:
- prompt_message_contents.append(file.prompt_message_content)
-
- prompt_message = UserPromptMessage(content=prompt_message_contents)
- else:
- if files:
- prompt_message_contents = [TextPromptMessageContent(data=prompt)]
- for file in files:
- prompt_message_contents.append(file.prompt_message_content)
-
- prompt_message = UserPromptMessage(content=prompt_message_contents)
- else:
- prompt_message = UserPromptMessage(content=prompt)
-
- return [prompt_message]
-
- def _set_context_variable(self, context: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
- if '#context#' in prompt_template.variable_keys:
- if context:
- prompt_inputs['#context#'] = context
- else:
- prompt_inputs['#context#'] = ''
-
- def _set_query_variable(self, query: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
- if '#query#' in prompt_template.variable_keys:
- if query:
- prompt_inputs['#query#'] = query
- else:
- prompt_inputs['#query#'] = ''
-
- def _set_histories_variable(self, memory: TokenBufferMemory,
- raw_prompt: str,
- role_prefix: AdvancedCompletionPromptTemplateEntity.RolePrefixEntity,
- prompt_template: PromptTemplateParser,
- prompt_inputs: dict,
- model_config: ModelConfigEntity) -> None:
- if '#histories#' in prompt_template.variable_keys:
- if memory:
- tmp_human_message = UserPromptMessage(
- content=PromptBuilder.parse_prompt(
- prompt=raw_prompt,
- inputs={'#histories#': '', **prompt_inputs}
- )
- )
-
- rest_tokens = self._calculate_rest_token([tmp_human_message], model_config)
-
- histories = self._get_history_messages_from_memory(
- memory=memory,
- max_token_limit=rest_tokens,
- human_prefix=role_prefix.user,
- ai_prefix=role_prefix.assistant
- )
- prompt_inputs['#histories#'] = histories
- else:
- prompt_inputs['#histories#'] = ''
-
def _append_chat_histories(self, memory: TokenBufferMemory,
prompt_messages: list[PromptMessage],
model_config: ModelConfigEntity) -> None:
@@ -422,152 +42,28 @@ class PromptTransform:
return rest_tokens
- def _format_prompt(self, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> str:
- prompt = prompt_template.format(
- prompt_inputs
+ def _get_history_messages_from_memory(self, memory: TokenBufferMemory,
+ max_token_limit: int,
+ human_prefix: Optional[str] = None,
+ ai_prefix: Optional[str] = None) -> str:
+ """Get memory messages."""
+ kwargs = {
+ "max_token_limit": max_token_limit
+ }
+
+ if human_prefix:
+ kwargs['human_prefix'] = human_prefix
+
+ if ai_prefix:
+ kwargs['ai_prefix'] = ai_prefix
+
+ return memory.get_history_prompt_text(
+ **kwargs
)
- prompt = re.sub(r'<\|.*?\|>', '', prompt)
- return prompt
-
- def _get_chat_app_completion_model_prompt_messages(self,
- prompt_template_entity: PromptTemplateEntity,
- inputs: dict,
- query: str,
- files: list[FileObj],
- context: Optional[str],
- memory: Optional[TokenBufferMemory],
- model_config: ModelConfigEntity) -> list[PromptMessage]:
-
- raw_prompt = prompt_template_entity.advanced_completion_prompt_template.prompt
- role_prefix = prompt_template_entity.advanced_completion_prompt_template.role_prefix
-
- prompt_messages = []
-
- prompt_template = PromptTemplateParser(template=raw_prompt)
- prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
-
- self._set_context_variable(context, prompt_template, prompt_inputs)
-
- self._set_query_variable(query, prompt_template, prompt_inputs)
-
- self._set_histories_variable(
- memory=memory,
- raw_prompt=raw_prompt,
- role_prefix=role_prefix,
- prompt_template=prompt_template,
- prompt_inputs=prompt_inputs,
- model_config=model_config
+ def _get_history_messages_list_from_memory(self, memory: TokenBufferMemory,
+ max_token_limit: int) -> list[PromptMessage]:
+ """Get memory messages."""
+ return memory.get_history_prompt_messages(
+ max_token_limit=max_token_limit
)
-
- prompt = self._format_prompt(prompt_template, prompt_inputs)
-
- if files:
- prompt_message_contents = [TextPromptMessageContent(data=prompt)]
- for file in files:
- prompt_message_contents.append(file.prompt_message_content)
-
- prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
- else:
- prompt_messages.append(UserPromptMessage(content=prompt))
-
- return prompt_messages
-
- def _get_chat_app_chat_model_prompt_messages(self,
- prompt_template_entity: PromptTemplateEntity,
- inputs: dict,
- query: str,
- files: list[FileObj],
- context: Optional[str],
- memory: Optional[TokenBufferMemory],
- model_config: ModelConfigEntity) -> list[PromptMessage]:
- raw_prompt_list = prompt_template_entity.advanced_chat_prompt_template.messages
-
- prompt_messages = []
-
- for prompt_item in raw_prompt_list:
- raw_prompt = prompt_item.text
-
- prompt_template = PromptTemplateParser(template=raw_prompt)
- prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
-
- self._set_context_variable(context, prompt_template, prompt_inputs)
-
- prompt = self._format_prompt(prompt_template, prompt_inputs)
-
- if prompt_item.role == PromptMessageRole.USER:
- prompt_messages.append(UserPromptMessage(content=prompt))
- elif prompt_item.role == PromptMessageRole.SYSTEM and prompt:
- prompt_messages.append(SystemPromptMessage(content=prompt))
- elif prompt_item.role == PromptMessageRole.ASSISTANT:
- prompt_messages.append(AssistantPromptMessage(content=prompt))
-
- self._append_chat_histories(memory, prompt_messages, model_config)
-
- if files:
- prompt_message_contents = [TextPromptMessageContent(data=query)]
- for file in files:
- prompt_message_contents.append(file.prompt_message_content)
-
- prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
- else:
- prompt_messages.append(UserPromptMessage(content=query))
-
- return prompt_messages
-
- def _get_completion_app_completion_model_prompt_messages(self,
- prompt_template_entity: PromptTemplateEntity,
- inputs: dict,
- context: Optional[str]) -> list[PromptMessage]:
- raw_prompt = prompt_template_entity.advanced_completion_prompt_template.prompt
-
- prompt_messages = []
-
- prompt_template = PromptTemplateParser(template=raw_prompt)
- prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
-
- self._set_context_variable(context, prompt_template, prompt_inputs)
-
- prompt = self._format_prompt(prompt_template, prompt_inputs)
-
- prompt_messages.append(UserPromptMessage(content=prompt))
-
- return prompt_messages
-
- def _get_completion_app_chat_model_prompt_messages(self,
- prompt_template_entity: PromptTemplateEntity,
- inputs: dict,
- files: list[FileObj],
- context: Optional[str]) -> list[PromptMessage]:
- raw_prompt_list = prompt_template_entity.advanced_chat_prompt_template.messages
-
- prompt_messages = []
-
- for prompt_item in raw_prompt_list:
- raw_prompt = prompt_item.text
-
- prompt_template = PromptTemplateParser(template=raw_prompt)
- prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
-
- self._set_context_variable(context, prompt_template, prompt_inputs)
-
- prompt = self._format_prompt(prompt_template, prompt_inputs)
-
- if prompt_item.role == PromptMessageRole.USER:
- prompt_messages.append(UserPromptMessage(content=prompt))
- elif prompt_item.role == PromptMessageRole.SYSTEM and prompt:
- prompt_messages.append(SystemPromptMessage(content=prompt))
- elif prompt_item.role == PromptMessageRole.ASSISTANT:
- prompt_messages.append(AssistantPromptMessage(content=prompt))
-
- for prompt_message in prompt_messages[::-1]:
- if prompt_message.role == PromptMessageRole.USER:
- if files:
- prompt_message_contents = [TextPromptMessageContent(data=prompt_message.content)]
- for file in files:
- prompt_message_contents.append(file.prompt_message_content)
-
- prompt_message.content = prompt_message_contents
- break
-
- return prompt_messages
diff --git a/api/core/prompt/simple_prompt_transform.py b/api/core/prompt/simple_prompt_transform.py
new file mode 100644
index 0000000000..a898c37c4a
--- /dev/null
+++ b/api/core/prompt/simple_prompt_transform.py
@@ -0,0 +1,298 @@
+import enum
+import json
+import os
+from typing import Optional, Tuple
+
+from core.entities.application_entities import (
+ ModelConfigEntity,
+ PromptTemplateEntity,
+)
+from core.file.file_obj import FileObj
+from core.memory.token_buffer_memory import TokenBufferMemory
+from core.model_runtime.entities.message_entities import (
+ PromptMessage,
+ SystemPromptMessage,
+ TextPromptMessageContent,
+ UserPromptMessage,
+)
+from core.prompt.prompt_template import PromptTemplateParser
+from core.prompt.prompt_transform import PromptTransform
+from models.model import AppMode
+
+
+class ModelMode(enum.Enum):
+ COMPLETION = 'completion'
+ CHAT = 'chat'
+
+ @classmethod
+ def value_of(cls, value: str) -> 'ModelMode':
+ """
+ Get value of given mode.
+
+ :param value: mode value
+ :return: mode
+ """
+ for mode in cls:
+ if mode.value == value:
+ return mode
+ raise ValueError(f'invalid mode value {value}')
+
+
+prompt_file_contents = {}
+
+
+class SimplePromptTransform(PromptTransform):
+ """
+ Simple Prompt Transform for Chatbot App Basic Mode.
+ """
+ def get_prompt(self,
+ prompt_template_entity: PromptTemplateEntity,
+ inputs: dict,
+ query: str,
+ files: list[FileObj],
+ context: Optional[str],
+ memory: Optional[TokenBufferMemory],
+ model_config: ModelConfigEntity) -> \
+ tuple[list[PromptMessage], Optional[list[str]]]:
+ model_mode = ModelMode.value_of(model_config.mode)
+ if model_mode == ModelMode.CHAT:
+ prompt_messages, stops = self._get_chat_model_prompt_messages(
+ pre_prompt=prompt_template_entity.simple_prompt_template,
+ inputs=inputs,
+ query=query,
+ files=files,
+ context=context,
+ memory=memory,
+ model_config=model_config
+ )
+ else:
+ prompt_messages, stops = self._get_completion_model_prompt_messages(
+ pre_prompt=prompt_template_entity.simple_prompt_template,
+ inputs=inputs,
+ query=query,
+ files=files,
+ context=context,
+ memory=memory,
+ model_config=model_config
+ )
+
+ return prompt_messages, stops
+
+ def get_prompt_str_and_rules(self, app_mode: AppMode,
+ model_config: ModelConfigEntity,
+ pre_prompt: str,
+ inputs: dict,
+ query: Optional[str] = None,
+ context: Optional[str] = None,
+ histories: Optional[str] = None,
+ ) -> Tuple[str, dict]:
+ # get prompt template
+ prompt_template_config = self.get_prompt_template(
+ app_mode=app_mode,
+ provider=model_config.provider,
+ model=model_config.model,
+ pre_prompt=pre_prompt,
+ has_context=context is not None,
+ query_in_prompt=query is not None,
+ with_memory_prompt=histories is not None
+ )
+
+ variables = {k: inputs[k] for k in prompt_template_config['custom_variable_keys'] if k in inputs}
+
+ for v in prompt_template_config['special_variable_keys']:
+ # support #context#, #query# and #histories#
+ if v == '#context#':
+ variables['#context#'] = context if context else ''
+ elif v == '#query#':
+ variables['#query#'] = query if query else ''
+ elif v == '#histories#':
+ variables['#histories#'] = histories if histories else ''
+
+ prompt_template = prompt_template_config['prompt_template']
+ prompt = prompt_template.format(variables)
+
+ return prompt, prompt_template_config['prompt_rules']
+
+ def get_prompt_template(self, app_mode: AppMode,
+ provider: str,
+ model: str,
+ pre_prompt: str,
+ has_context: bool,
+ query_in_prompt: bool,
+ with_memory_prompt: bool = False) -> dict:
+ prompt_rules = self._get_prompt_rule(
+ app_mode=app_mode,
+ provider=provider,
+ model=model
+ )
+
+ custom_variable_keys = []
+ special_variable_keys = []
+
+ prompt = ''
+ for order in prompt_rules['system_prompt_orders']:
+ if order == 'context_prompt' and has_context:
+ prompt += prompt_rules['context_prompt']
+ special_variable_keys.append('#context#')
+ elif order == 'pre_prompt' and pre_prompt:
+ prompt += pre_prompt + '\n'
+ pre_prompt_template = PromptTemplateParser(template=pre_prompt)
+ custom_variable_keys = pre_prompt_template.variable_keys
+ elif order == 'histories_prompt' and with_memory_prompt:
+ prompt += prompt_rules['histories_prompt']
+ special_variable_keys.append('#histories#')
+
+ if query_in_prompt:
+ prompt += prompt_rules['query_prompt'] if 'query_prompt' in prompt_rules else '{{#query#}}'
+ special_variable_keys.append('#query#')
+
+ return {
+ "prompt_template": PromptTemplateParser(template=prompt),
+ "custom_variable_keys": custom_variable_keys,
+ "special_variable_keys": special_variable_keys,
+ "prompt_rules": prompt_rules
+ }
+
+ def _get_chat_model_prompt_messages(self, pre_prompt: str,
+ inputs: dict,
+ query: str,
+ context: Optional[str],
+ files: list[FileObj],
+ memory: Optional[TokenBufferMemory],
+ model_config: ModelConfigEntity) \
+ -> Tuple[list[PromptMessage], Optional[list[str]]]:
+ prompt_messages = []
+
+ # get prompt
+ prompt, _ = self.get_prompt_str_and_rules(
+ app_mode=AppMode.CHAT,
+ model_config=model_config,
+ pre_prompt=pre_prompt,
+ inputs=inputs,
+ query=query,
+ context=context
+ )
+
+ if prompt:
+ prompt_messages.append(SystemPromptMessage(content=prompt))
+
+ self._append_chat_histories(
+ memory=memory,
+ prompt_messages=prompt_messages,
+ model_config=model_config
+ )
+
+ prompt_messages.append(self.get_last_user_message(query, files))
+
+ return prompt_messages, None
+
+ def _get_completion_model_prompt_messages(self, pre_prompt: str,
+ inputs: dict,
+ query: str,
+ context: Optional[str],
+ files: list[FileObj],
+ memory: Optional[TokenBufferMemory],
+ model_config: ModelConfigEntity) \
+ -> Tuple[list[PromptMessage], Optional[list[str]]]:
+ # get prompt
+ prompt, prompt_rules = self.get_prompt_str_and_rules(
+ app_mode=AppMode.CHAT,
+ model_config=model_config,
+ pre_prompt=pre_prompt,
+ inputs=inputs,
+ query=query,
+ context=context
+ )
+
+ if memory:
+ tmp_human_message = UserPromptMessage(
+ content=prompt
+ )
+
+ rest_tokens = self._calculate_rest_token([tmp_human_message], model_config)
+ histories = self._get_history_messages_from_memory(
+ memory=memory,
+ max_token_limit=rest_tokens,
+ ai_prefix=prompt_rules['human_prefix'] if 'human_prefix' in prompt_rules else 'Human',
+ human_prefix=prompt_rules['assistant_prefix'] if 'assistant_prefix' in prompt_rules else 'Assistant'
+ )
+
+ # get prompt
+ prompt, prompt_rules = self.get_prompt_str_and_rules(
+ app_mode=AppMode.CHAT,
+ model_config=model_config,
+ pre_prompt=pre_prompt,
+ inputs=inputs,
+ query=query,
+ context=context,
+ histories=histories
+ )
+
+ stops = prompt_rules.get('stops')
+ if stops is not None and len(stops) == 0:
+ stops = None
+
+ return [self.get_last_user_message(prompt, files)], stops
+
+ def get_last_user_message(self, prompt: str, files: list[FileObj]) -> UserPromptMessage:
+ if files:
+ prompt_message_contents = [TextPromptMessageContent(data=prompt)]
+ for file in files:
+ prompt_message_contents.append(file.prompt_message_content)
+
+ prompt_message = UserPromptMessage(content=prompt_message_contents)
+ else:
+ prompt_message = UserPromptMessage(content=prompt)
+
+ return prompt_message
+
+ def _get_prompt_rule(self, app_mode: AppMode, provider: str, model: str) -> dict:
+ """
+ Get simple prompt rule.
+ :param app_mode: app mode
+ :param provider: model provider
+ :param model: model name
+ :return:
+ """
+ prompt_file_name = self._prompt_file_name(
+ app_mode=app_mode,
+ provider=provider,
+ model=model
+ )
+
+ # Check if the prompt file is already loaded
+ if prompt_file_name in prompt_file_contents:
+ return prompt_file_contents[prompt_file_name]
+
+ # Get the absolute path of the subdirectory
+ prompt_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'generate_prompts')
+ json_file_path = os.path.join(prompt_path, f'{prompt_file_name}.json')
+
+ # Open the JSON file and read its content
+ with open(json_file_path, encoding='utf-8') as json_file:
+ content = json.load(json_file)
+
+ # Store the content of the prompt file
+ prompt_file_contents[prompt_file_name] = content
+
+ def _prompt_file_name(self, app_mode: AppMode, provider: str, model: str) -> str:
+ # baichuan
+ is_baichuan = False
+ if provider == 'baichuan':
+ is_baichuan = True
+ else:
+ baichuan_supported_providers = ["huggingface_hub", "openllm", "xinference"]
+ if provider in baichuan_supported_providers and 'baichuan' in model.lower():
+ is_baichuan = True
+
+ if is_baichuan:
+ if app_mode == AppMode.WORKFLOW:
+ return 'baichuan_completion'
+ else:
+ return 'baichuan_chat'
+
+ # common
+ if app_mode == AppMode.WORKFLOW:
+ return 'common_completion'
+ else:
+ return 'common_chat'
diff --git a/api/fields/annotation_fields.py b/api/fields/annotation_fields.py
index d9cd6c03bb..c778084475 100644
--- a/api/fields/annotation_fields.py
+++ b/api/fields/annotation_fields.py
@@ -2,7 +2,6 @@ from flask_restful import fields
from libs.helper import TimestampField
-
annotation_fields = {
"id": fields.String,
"question": fields.String,
diff --git a/api/fields/workflow_fields.py b/api/fields/workflow_fields.py
index 9dc92ea43b..decdc0567f 100644
--- a/api/fields/workflow_fields.py
+++ b/api/fields/workflow_fields.py
@@ -5,7 +5,6 @@ from flask_restful import fields
from fields.member_fields import simple_account_fields
from libs.helper import TimestampField
-
workflow_fields = {
'id': fields.String,
'graph': fields.Raw(attribute=lambda x: json.loads(x.graph) if hasattr(x, 'graph') else None),
diff --git a/api/services/workflow/workflow_converter.py b/api/services/workflow/workflow_converter.py
index c2fad83aaf..7d18f4f675 100644
--- a/api/services/workflow/workflow_converter.py
+++ b/api/services/workflow/workflow_converter.py
@@ -2,9 +2,17 @@ import json
from typing import Optional
from core.application_manager import ApplicationManager
-from core.entities.application_entities import ModelConfigEntity, PromptTemplateEntity, FileUploadEntity, \
- ExternalDataVariableEntity, DatasetEntity, VariableEntity
+from core.entities.application_entities import (
+ DatasetEntity,
+ ExternalDataVariableEntity,
+ FileUploadEntity,
+ ModelConfigEntity,
+ PromptTemplateEntity,
+ VariableEntity, DatasetRetrieveConfigEntity,
+)
+from core.model_runtime.entities.llm_entities import LLMMode
from core.model_runtime.utils import helper
+from core.prompt.simple_prompt_transform import SimplePromptTransform
from core.workflow.entities.NodeEntities import NodeType
from core.workflow.nodes.end.entities import EndNodeOutputType
from extensions.ext_database import db
@@ -32,6 +40,9 @@ class WorkflowConverter:
:param account: Account instance
:return: workflow instance
"""
+ # get new app mode
+ new_app_mode = self._get_new_app_mode(app_model)
+
# get original app config
app_model_config = app_model.app_model_config
@@ -75,14 +86,17 @@ class WorkflowConverter:
# convert to knowledge retrieval node
if app_model_config.dataset:
knowledge_retrieval_node = self._convert_to_knowledge_retrieval_node(
- dataset=app_model_config.dataset,
- show_retrieve_source=app_model_config.show_retrieve_source
+ new_app_mode=new_app_mode,
+ dataset_config=app_model_config.dataset
)
- graph = self._append_node(graph, knowledge_retrieval_node)
+ if knowledge_retrieval_node:
+ graph = self._append_node(graph, knowledge_retrieval_node)
# convert to llm node
llm_node = self._convert_to_llm_node(
+ new_app_mode=new_app_mode,
+ graph=graph,
model_config=app_model_config.model_config,
prompt_template=app_model_config.prompt_template,
file_upload=app_model_config.file_upload
@@ -95,14 +109,11 @@ class WorkflowConverter:
graph = self._append_node(graph, end_node)
- # get new app mode
- app_mode = self._get_new_app_mode(app_model)
-
# create workflow record
workflow = Workflow(
tenant_id=app_model.tenant_id,
app_id=app_model.id,
- type=WorkflowType.from_app_mode(app_mode).value,
+ type=WorkflowType.from_app_mode(new_app_mode).value,
version='draft',
graph=json.dumps(graph),
created_by=account.id
@@ -124,7 +135,7 @@ class WorkflowConverter:
new_app_model_config.completion_prompt_config = ''
new_app_model_config.dataset_configs = ''
new_app_model_config.chatbot_app_engine = ChatbotAppEngine.WORKFLOW.value \
- if app_mode == AppMode.CHAT else ChatbotAppEngine.NORMAL.value
+ if new_app_mode == AppMode.CHAT else ChatbotAppEngine.NORMAL.value
new_app_model_config.workflow_id = workflow.id
db.session.add(new_app_model_config)
@@ -157,18 +168,22 @@ class WorkflowConverter:
# TODO: implement
pass
- def _convert_to_knowledge_retrieval_node(self, new_app_mode: AppMode, dataset: DatasetEntity) -> dict:
+ def _convert_to_knowledge_retrieval_node(self, new_app_mode: AppMode, dataset_config: DatasetEntity) \
+ -> Optional[dict]:
"""
Convert datasets to Knowledge Retrieval Node
:param new_app_mode: new app mode
- :param dataset: dataset
+ :param dataset_config: dataset
:return:
"""
- # TODO: implement
+ retrieve_config = dataset_config.retrieve_config
if new_app_mode == AppMode.CHAT:
query_variable_selector = ["start", "sys.query"]
+ elif retrieve_config.query_variable:
+ # fetch query variable
+ query_variable_selector = ["start", retrieve_config.query_variable]
else:
- pass
+ return None
return {
"id": "knowledge-retrieval",
@@ -176,20 +191,139 @@ class WorkflowConverter:
"data": {
"title": "KNOWLEDGE RETRIEVAL",
"type": NodeType.KNOWLEDGE_RETRIEVAL.value,
+ "query_variable_selector": query_variable_selector,
+ "dataset_ids": dataset_config.dataset_ids,
+ "retrieval_mode": retrieve_config.retrieve_strategy.value,
+ "multiple_retrieval_config": {
+ "top_k": retrieve_config.top_k,
+ "score_threshold": retrieve_config.score_threshold,
+ "reranking_model": retrieve_config.reranking_model
+ }
+ if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE
+ else None,
}
}
- def _convert_to_llm_node(self, model_config: ModelConfigEntity,
+ def _convert_to_llm_node(self, new_app_mode: AppMode,
+ graph: dict,
+ model_config: ModelConfigEntity,
prompt_template: PromptTemplateEntity,
file_upload: Optional[FileUploadEntity] = None) -> dict:
"""
Convert to LLM Node
+ :param new_app_mode: new app mode
+ :param graph: graph
:param model_config: model config
:param prompt_template: prompt template
:param file_upload: file upload config (optional)
"""
- # TODO: implement
- pass
+ # fetch start and knowledge retrieval node
+ start_node = next(filter(lambda n: n['data']['type'] == NodeType.START.value, graph['nodes']))
+ knowledge_retrieval_node = next(filter(
+ lambda n: n['data']['type'] == NodeType.KNOWLEDGE_RETRIEVAL.value,
+ graph['nodes']
+ ), None)
+
+ role_prefix = None
+
+ # Chat Model
+ if model_config.mode == LLMMode.CHAT.value:
+ if prompt_template.prompt_type == PromptTemplateEntity.PromptType.SIMPLE:
+ # get prompt template
+ prompt_transform = SimplePromptTransform()
+ prompt_template_config = prompt_transform.get_prompt_template(
+ app_mode=AppMode.WORKFLOW,
+ provider=model_config.provider,
+ model=model_config.model,
+ pre_prompt=prompt_template.simple_prompt_template,
+ has_context=knowledge_retrieval_node is not None,
+ query_in_prompt=False
+ )
+ prompts = [
+ {
+ "role": 'user',
+ "text": prompt_template_config['prompt_template'].template
+ }
+ ]
+ else:
+ advanced_chat_prompt_template = prompt_template.advanced_chat_prompt_template
+ prompts = [helper.dump_model(m) for m in advanced_chat_prompt_template.messages] \
+ if advanced_chat_prompt_template else []
+ # Completion Model
+ else:
+ if prompt_template.prompt_type == PromptTemplateEntity.PromptType.SIMPLE:
+ # get prompt template
+ prompt_transform = SimplePromptTransform()
+ prompt_template_config = prompt_transform.get_prompt_template(
+ app_mode=AppMode.WORKFLOW,
+ provider=model_config.provider,
+ model=model_config.model,
+ pre_prompt=prompt_template.simple_prompt_template,
+ has_context=knowledge_retrieval_node is not None,
+ query_in_prompt=False
+ )
+ prompts = {
+ "text": prompt_template_config['prompt_template'].template
+ }
+
+ prompt_rules = prompt_template_config['prompt_rules']
+ role_prefix = {
+ "user": prompt_rules['human_prefix'] if 'human_prefix' in prompt_rules else 'Human',
+ "assistant": prompt_rules['assistant_prefix'] if 'assistant_prefix' in prompt_rules else 'Assistant'
+ }
+ else:
+ advanced_completion_prompt_template = prompt_template.advanced_completion_prompt_template
+ prompts = {
+ "text": advanced_completion_prompt_template.prompt,
+ } if advanced_completion_prompt_template else {"text": ""}
+
+ if advanced_completion_prompt_template.role_prefix:
+ role_prefix = {
+ "user": advanced_completion_prompt_template.role_prefix.user,
+ "assistant": advanced_completion_prompt_template.role_prefix.assistant
+ }
+
+ memory = None
+ if new_app_mode == AppMode.CHAT:
+ memory = {
+ "role_prefix": role_prefix,
+ "window": {
+ "enabled": False
+ }
+ }
+
+ return {
+ "id": "llm",
+ "position": None,
+ "data": {
+ "title": "LLM",
+ "type": NodeType.LLM.value,
+ "model": {
+ "provider": model_config.provider,
+ "name": model_config.model,
+ "mode": model_config.mode,
+ "completion_params": model_config.parameters.update({"stop": model_config.stop})
+ },
+ "variables": [{
+ "variable": v['variable'],
+ "value_selector": ["start", v['variable']]
+ } for v in start_node['data']['variables']],
+ "prompts": prompts,
+ "memory": memory,
+ "context": {
+ "enabled": knowledge_retrieval_node is not None,
+ "variable_selector": ["knowledge-retrieval", "result"]
+ if knowledge_retrieval_node is not None else None
+ },
+ "vision": {
+ "enabled": file_upload is not None,
+ "variable_selector": ["start", "sys.files"] if file_upload is not None else None,
+ "configs": {
+ "detail": file_upload.image_config['detail']
+ } if file_upload is not None else None
+ }
+ }
+ }
def _convert_to_end_node(self, app_model: App) -> dict:
"""