mirror of https://github.com/langgenius/dify.git
Plugins/fix backend ci errors (#12615)
This commit is contained in:
parent
d56079a549
commit
cb8debee3e
|
|
@ -107,11 +107,46 @@ class LargeLanguageModel(AIModel):
|
|||
content_list = []
|
||||
usage = LLMUsage.empty_usage()
|
||||
system_fingerprint = None
|
||||
tools_calls: list[AssistantPromptMessage.ToolCall] = []
|
||||
|
||||
def increase_tool_call(new_tool_calls: list[AssistantPromptMessage.ToolCall]):
|
||||
def get_tool_call(tool_name: str):
|
||||
if not tool_name:
|
||||
return tools_calls[-1]
|
||||
|
||||
tool_call = next(
|
||||
(tool_call for tool_call in tools_calls if tool_call.function.name == tool_name), None
|
||||
)
|
||||
if tool_call is None:
|
||||
tool_call = AssistantPromptMessage.ToolCall(
|
||||
id="",
|
||||
type="",
|
||||
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name=tool_name, arguments=""),
|
||||
)
|
||||
tools_calls.append(tool_call)
|
||||
|
||||
return tool_call
|
||||
|
||||
for new_tool_call in new_tool_calls:
|
||||
# get tool call
|
||||
tool_call = get_tool_call(new_tool_call.function.name)
|
||||
# update tool call
|
||||
if new_tool_call.id:
|
||||
tool_call.id = new_tool_call.id
|
||||
if new_tool_call.type:
|
||||
tool_call.type = new_tool_call.type
|
||||
if new_tool_call.function.name:
|
||||
tool_call.function.name = new_tool_call.function.name
|
||||
if new_tool_call.function.arguments:
|
||||
tool_call.function.arguments += new_tool_call.function.arguments
|
||||
|
||||
for chunk in result:
|
||||
if isinstance(chunk.delta.message.content, str):
|
||||
content += chunk.delta.message.content
|
||||
elif isinstance(chunk.delta.message.content, list):
|
||||
content_list.extend(chunk.delta.message.content)
|
||||
if chunk.delta.message.tool_calls:
|
||||
increase_tool_call(chunk.delta.message.tool_calls)
|
||||
|
||||
usage = chunk.delta.usage or LLMUsage.empty_usage()
|
||||
system_fingerprint = chunk.system_fingerprint
|
||||
|
|
@ -120,7 +155,10 @@ class LargeLanguageModel(AIModel):
|
|||
result = LLMResult(
|
||||
model=model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=AssistantPromptMessage(content=content or content_list),
|
||||
message=AssistantPromptMessage(
|
||||
content=content or content_list,
|
||||
tool_calls=tools_calls,
|
||||
),
|
||||
usage=usage,
|
||||
system_fingerprint=system_fingerprint,
|
||||
)
|
||||
|
|
|
|||
|
|
@ -48,6 +48,6 @@ class TimezoneConversionTool(BuiltinTool):
|
|||
datetime_with_tz = input_timezone.localize(local_time)
|
||||
# timezone convert
|
||||
converted_datetime = datetime_with_tz.astimezone(output_timezone)
|
||||
return converted_datetime.strftime(format=time_format)
|
||||
return converted_datetime.strftime(format=time_format) # type: ignore
|
||||
except Exception as e:
|
||||
raise ToolInvokeError(str(e))
|
||||
|
|
|
|||
|
|
@ -5,4 +5,7 @@ from core.tools.builtin_tool.provider import BuiltinToolProviderController
|
|||
|
||||
class WebscraperProvider(BuiltinToolProviderController):
|
||||
def _validate_credentials(self, user_id: str, credentials: dict[str, Any]) -> None:
|
||||
"""
|
||||
Validate credentials
|
||||
"""
|
||||
pass
|
||||
|
|
|
|||
|
|
@ -0,0 +1,44 @@
|
|||
import os
|
||||
from collections.abc import Callable
|
||||
|
||||
import pytest
|
||||
|
||||
# import monkeypatch
|
||||
from _pytest.monkeypatch import MonkeyPatch
|
||||
|
||||
from core.plugin.manager.model import PluginModelManager
|
||||
from tests.integration_tests.model_runtime.__mock.plugin_model import MockModelClass
|
||||
|
||||
|
||||
def mock_plugin_daemon(
|
||||
monkeypatch: MonkeyPatch,
|
||||
) -> Callable[[], None]:
|
||||
"""
|
||||
mock openai module
|
||||
|
||||
:param monkeypatch: pytest monkeypatch fixture
|
||||
:return: unpatch function
|
||||
"""
|
||||
|
||||
def unpatch() -> None:
|
||||
monkeypatch.undo()
|
||||
|
||||
monkeypatch.setattr(PluginModelManager, "invoke_llm", MockModelClass.invoke_llm)
|
||||
monkeypatch.setattr(PluginModelManager, "fetch_model_providers", MockModelClass.fetch_model_providers)
|
||||
monkeypatch.setattr(PluginModelManager, "get_model_schema", MockModelClass.get_model_schema)
|
||||
|
||||
return unpatch
|
||||
|
||||
|
||||
MOCK = os.getenv("MOCK_SWITCH", "false").lower() == "true"
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def setup_model_mock(monkeypatch):
|
||||
if MOCK:
|
||||
unpatch = mock_plugin_daemon(monkeypatch)
|
||||
|
||||
yield
|
||||
|
||||
if MOCK:
|
||||
unpatch()
|
||||
|
|
@ -0,0 +1,249 @@
|
|||
import datetime
|
||||
import uuid
|
||||
from collections.abc import Generator, Sequence
|
||||
from decimal import Decimal
|
||||
from json import dumps
|
||||
|
||||
# import monkeypatch
|
||||
from typing import Optional
|
||||
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
||||
from core.model_runtime.entities.message_entities import AssistantPromptMessage, PromptMessage, PromptMessageTool
|
||||
from core.model_runtime.entities.model_entities import (
|
||||
AIModelEntity,
|
||||
FetchFrom,
|
||||
ModelFeature,
|
||||
ModelPropertyKey,
|
||||
ModelType,
|
||||
)
|
||||
from core.model_runtime.entities.provider_entities import ConfigurateMethod, ProviderEntity
|
||||
from core.plugin.entities.plugin_daemon import PluginModelProviderEntity
|
||||
from core.plugin.manager.model import PluginModelManager
|
||||
|
||||
|
||||
class MockModelClass(PluginModelManager):
|
||||
def fetch_model_providers(self, tenant_id: str) -> Sequence[PluginModelProviderEntity]:
|
||||
"""
|
||||
Fetch model providers for the given tenant.
|
||||
"""
|
||||
return [
|
||||
PluginModelProviderEntity(
|
||||
id=uuid.uuid4().hex,
|
||||
created_at=datetime.datetime.now(),
|
||||
updated_at=datetime.datetime.now(),
|
||||
provider="openai",
|
||||
tenant_id=tenant_id,
|
||||
plugin_unique_identifier="langgenius/openai/openai",
|
||||
plugin_id="langgenius/openai",
|
||||
declaration=ProviderEntity(
|
||||
provider="openai",
|
||||
label=I18nObject(
|
||||
en_US="OpenAI",
|
||||
zh_Hans="OpenAI",
|
||||
),
|
||||
description=I18nObject(
|
||||
en_US="OpenAI",
|
||||
zh_Hans="OpenAI",
|
||||
),
|
||||
icon_small=I18nObject(
|
||||
en_US="https://example.com/icon_small.png",
|
||||
zh_Hans="https://example.com/icon_small.png",
|
||||
),
|
||||
icon_large=I18nObject(
|
||||
en_US="https://example.com/icon_large.png",
|
||||
zh_Hans="https://example.com/icon_large.png",
|
||||
),
|
||||
supported_model_types=[ModelType.LLM],
|
||||
configurate_methods=[ConfigurateMethod.PREDEFINED_MODEL],
|
||||
models=[
|
||||
AIModelEntity(
|
||||
model="gpt-3.5-turbo",
|
||||
label=I18nObject(
|
||||
en_US="gpt-3.5-turbo",
|
||||
zh_Hans="gpt-3.5-turbo",
|
||||
),
|
||||
model_type=ModelType.LLM,
|
||||
fetch_from=FetchFrom.PREDEFINED_MODEL,
|
||||
model_properties={},
|
||||
features=[ModelFeature.TOOL_CALL, ModelFeature.MULTI_TOOL_CALL],
|
||||
),
|
||||
AIModelEntity(
|
||||
model="gpt-3.5-turbo-instruct",
|
||||
label=I18nObject(
|
||||
en_US="gpt-3.5-turbo-instruct",
|
||||
zh_Hans="gpt-3.5-turbo-instruct",
|
||||
),
|
||||
model_type=ModelType.LLM,
|
||||
fetch_from=FetchFrom.PREDEFINED_MODEL,
|
||||
model_properties={
|
||||
ModelPropertyKey.MODE: LLMMode.COMPLETION,
|
||||
},
|
||||
features=[],
|
||||
),
|
||||
],
|
||||
),
|
||||
)
|
||||
]
|
||||
|
||||
def get_model_schema(
|
||||
self,
|
||||
tenant_id: str,
|
||||
user_id: str,
|
||||
plugin_id: str,
|
||||
provider: str,
|
||||
model_type: str,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
) -> AIModelEntity | None:
|
||||
"""
|
||||
Get model schema
|
||||
"""
|
||||
return AIModelEntity(
|
||||
model=model,
|
||||
label=I18nObject(
|
||||
en_US="OpenAI",
|
||||
zh_Hans="OpenAI",
|
||||
),
|
||||
model_type=ModelType(model_type),
|
||||
fetch_from=FetchFrom.PREDEFINED_MODEL,
|
||||
model_properties={},
|
||||
features=[ModelFeature.TOOL_CALL, ModelFeature.MULTI_TOOL_CALL] if model == "gpt-3.5-turbo" else [],
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def generate_function_call(
|
||||
tools: Optional[list[PromptMessageTool]],
|
||||
) -> Optional[AssistantPromptMessage.ToolCall]:
|
||||
if not tools or len(tools) == 0:
|
||||
return None
|
||||
function: PromptMessageTool = tools[0]
|
||||
function_name = function.name
|
||||
function_parameters = function.parameters
|
||||
function_parameters_type = function_parameters["type"]
|
||||
if function_parameters_type != "object":
|
||||
return None
|
||||
function_parameters_properties = function_parameters["properties"]
|
||||
function_parameters_required = function_parameters["required"]
|
||||
parameters = {}
|
||||
for parameter_name, parameter in function_parameters_properties.items():
|
||||
if parameter_name not in function_parameters_required:
|
||||
continue
|
||||
parameter_type = parameter["type"]
|
||||
if parameter_type == "string":
|
||||
if "enum" in parameter:
|
||||
if len(parameter["enum"]) == 0:
|
||||
continue
|
||||
parameters[parameter_name] = parameter["enum"][0]
|
||||
else:
|
||||
parameters[parameter_name] = "kawaii"
|
||||
elif parameter_type == "integer":
|
||||
parameters[parameter_name] = 114514
|
||||
elif parameter_type == "number":
|
||||
parameters[parameter_name] = 1919810.0
|
||||
elif parameter_type == "boolean":
|
||||
parameters[parameter_name] = True
|
||||
|
||||
return AssistantPromptMessage.ToolCall(
|
||||
id=str(uuid.uuid4()),
|
||||
type="function",
|
||||
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
|
||||
name=function_name,
|
||||
arguments=dumps(parameters),
|
||||
),
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def mocked_chat_create_sync(
|
||||
model: str,
|
||||
prompt_messages: list[PromptMessage],
|
||||
tools: Optional[list[PromptMessageTool]] = None,
|
||||
) -> LLMResult:
|
||||
tool_call = MockModelClass.generate_function_call(tools=tools)
|
||||
|
||||
return LLMResult(
|
||||
id=str(uuid.uuid4()),
|
||||
model=model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=AssistantPromptMessage(content="elaina", tool_calls=[tool_call] if tool_call else []),
|
||||
usage=LLMUsage(
|
||||
prompt_tokens=2,
|
||||
completion_tokens=1,
|
||||
total_tokens=3,
|
||||
prompt_unit_price=Decimal(0.0001),
|
||||
completion_unit_price=Decimal(0.0002),
|
||||
prompt_price_unit=Decimal(1),
|
||||
prompt_price=Decimal(0.0001),
|
||||
completion_price_unit=Decimal(1),
|
||||
completion_price=Decimal(0.0002),
|
||||
total_price=Decimal(0.0003),
|
||||
currency="USD",
|
||||
latency=0.001,
|
||||
),
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def mocked_chat_create_stream(
|
||||
model: str,
|
||||
prompt_messages: list[PromptMessage],
|
||||
tools: Optional[list[PromptMessageTool]] = None,
|
||||
) -> Generator[LLMResultChunk, None, None]:
|
||||
tool_call = MockModelClass.generate_function_call(tools=tools)
|
||||
|
||||
full_text = "Hello, world!\n\n```python\nprint('Hello, world!')\n```"
|
||||
for i in range(0, len(full_text) + 1):
|
||||
if i == len(full_text):
|
||||
yield LLMResultChunk(
|
||||
model=model,
|
||||
prompt_messages=prompt_messages,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=AssistantPromptMessage(
|
||||
content="",
|
||||
tool_calls=[tool_call] if tool_call else [],
|
||||
),
|
||||
),
|
||||
)
|
||||
else:
|
||||
yield LLMResultChunk(
|
||||
model=model,
|
||||
prompt_messages=prompt_messages,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=AssistantPromptMessage(
|
||||
content=full_text[i],
|
||||
tool_calls=[tool_call] if tool_call else [],
|
||||
),
|
||||
usage=LLMUsage(
|
||||
prompt_tokens=2,
|
||||
completion_tokens=17,
|
||||
total_tokens=19,
|
||||
prompt_unit_price=Decimal(0.0001),
|
||||
completion_unit_price=Decimal(0.0002),
|
||||
prompt_price_unit=Decimal(1),
|
||||
prompt_price=Decimal(0.0001),
|
||||
completion_price_unit=Decimal(1),
|
||||
completion_price=Decimal(0.0002),
|
||||
total_price=Decimal(0.0003),
|
||||
currency="USD",
|
||||
latency=0.001,
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
def invoke_llm(
|
||||
self: PluginModelManager,
|
||||
*,
|
||||
tenant_id: str,
|
||||
user_id: str,
|
||||
plugin_id: str,
|
||||
provider: str,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
prompt_messages: list[PromptMessage],
|
||||
model_parameters: Optional[dict] = None,
|
||||
tools: Optional[list[PromptMessageTool]] = None,
|
||||
stop: Optional[list[str]] = None,
|
||||
stream: bool = True,
|
||||
):
|
||||
return MockModelClass.mocked_chat_create_stream(model=model, prompt_messages=prompt_messages, tools=tools)
|
||||
|
|
@ -0,0 +1,50 @@
|
|||
from unittest.mock import MagicMock
|
||||
|
||||
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
|
||||
from core.entities.provider_configuration import ProviderConfiguration, ProviderModelBundle
|
||||
from core.entities.provider_entities import CustomConfiguration, CustomProviderConfiguration, SystemConfiguration
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.model_runtime.model_providers.model_provider_factory import ModelProviderFactory
|
||||
from models.provider import ProviderType
|
||||
|
||||
|
||||
def get_mocked_fetch_model_config(
|
||||
provider: str,
|
||||
model: str,
|
||||
mode: str,
|
||||
credentials: dict,
|
||||
):
|
||||
model_provider_factory = ModelProviderFactory(tenant_id="test_tenant")
|
||||
model_type_instance = model_provider_factory.get_model_type_instance(provider, ModelType.LLM)
|
||||
provider_model_bundle = ProviderModelBundle(
|
||||
configuration=ProviderConfiguration(
|
||||
tenant_id="1",
|
||||
provider=model_provider_factory.get_provider_schema(provider),
|
||||
preferred_provider_type=ProviderType.CUSTOM,
|
||||
using_provider_type=ProviderType.CUSTOM,
|
||||
system_configuration=SystemConfiguration(enabled=False),
|
||||
custom_configuration=CustomConfiguration(provider=CustomProviderConfiguration(credentials=credentials)),
|
||||
model_settings=[],
|
||||
),
|
||||
model_type_instance=model_type_instance,
|
||||
)
|
||||
model_instance = ModelInstance(provider_model_bundle=provider_model_bundle, model=model)
|
||||
model_schema = model_provider_factory.get_model_schema(
|
||||
provider=provider,
|
||||
model_type=model_type_instance.model_type,
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
)
|
||||
assert model_schema is not None
|
||||
model_config = ModelConfigWithCredentialsEntity(
|
||||
model=model,
|
||||
provider=provider,
|
||||
mode=mode,
|
||||
credentials=credentials,
|
||||
parameters={},
|
||||
model_schema=model_schema,
|
||||
provider_model_bundle=provider_model_bundle,
|
||||
)
|
||||
|
||||
return MagicMock(return_value=(model_instance, model_config))
|
||||
|
|
@ -7,12 +7,7 @@ from unittest.mock import MagicMock
|
|||
|
||||
import pytest
|
||||
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
|
||||
from core.entities.provider_configuration import ProviderConfiguration, ProviderModelBundle
|
||||
from core.entities.provider_entities import CustomConfiguration, CustomProviderConfiguration, SystemConfiguration
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.model_runtime.model_providers import ModelProviderFactory
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.workflow.entities.variable_pool import VariablePool
|
||||
from core.workflow.enums import SystemVariableKey
|
||||
from core.workflow.graph_engine.entities.graph import Graph
|
||||
|
|
@ -22,11 +17,11 @@ from core.workflow.nodes.event import RunCompletedEvent
|
|||
from core.workflow.nodes.llm.node import LLMNode
|
||||
from extensions.ext_database import db
|
||||
from models.enums import UserFrom
|
||||
from models.provider import ProviderType
|
||||
from models.workflow import WorkflowNodeExecutionStatus, WorkflowType
|
||||
from tests.integration_tests.workflow.nodes.__mock.model import get_mocked_fetch_model_config
|
||||
|
||||
"""FOR MOCK FIXTURES, DO NOT REMOVE"""
|
||||
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock
|
||||
from tests.integration_tests.model_runtime.__mock.plugin_daemon import setup_model_mock
|
||||
from tests.integration_tests.workflow.nodes.__mock.code_executor import setup_code_executor_mock
|
||||
|
||||
|
||||
|
|
@ -81,15 +76,19 @@ def init_llm_node(config: dict) -> LLMNode:
|
|||
return node
|
||||
|
||||
|
||||
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
|
||||
def test_execute_llm(setup_openai_mock):
|
||||
def test_execute_llm(setup_model_mock):
|
||||
node = init_llm_node(
|
||||
config={
|
||||
"id": "llm",
|
||||
"data": {
|
||||
"title": "123",
|
||||
"type": "llm",
|
||||
"model": {"provider": "openai", "name": "gpt-3.5-turbo", "mode": "chat", "completion_params": {}},
|
||||
"model": {
|
||||
"provider": "langgenius/openai/openai",
|
||||
"name": "gpt-3.5-turbo",
|
||||
"mode": "chat",
|
||||
"completion_params": {},
|
||||
},
|
||||
"prompt_template": [
|
||||
{"role": "system", "text": "you are a helpful assistant.\ntoday's weather is {{#abc.output#}}."},
|
||||
{"role": "user", "text": "{{#sys.query#}}"},
|
||||
|
|
@ -103,37 +102,15 @@ def test_execute_llm(setup_openai_mock):
|
|||
|
||||
credentials = {"openai_api_key": os.environ.get("OPENAI_API_KEY")}
|
||||
|
||||
provider_instance = ModelProviderFactory().get_provider_instance("openai")
|
||||
model_type_instance = provider_instance.get_model_instance(ModelType.LLM)
|
||||
provider_model_bundle = ProviderModelBundle(
|
||||
configuration=ProviderConfiguration(
|
||||
tenant_id="1",
|
||||
provider=provider_instance.get_provider_schema(),
|
||||
preferred_provider_type=ProviderType.CUSTOM,
|
||||
using_provider_type=ProviderType.CUSTOM,
|
||||
system_configuration=SystemConfiguration(enabled=False),
|
||||
custom_configuration=CustomConfiguration(provider=CustomProviderConfiguration(credentials=credentials)),
|
||||
model_settings=[],
|
||||
),
|
||||
model_type_instance=model_type_instance,
|
||||
)
|
||||
model_instance = ModelInstance(provider_model_bundle=provider_model_bundle, model="gpt-3.5-turbo")
|
||||
model_schema = model_type_instance.get_model_schema("gpt-3.5-turbo")
|
||||
assert model_schema is not None
|
||||
model_config = ModelConfigWithCredentialsEntity(
|
||||
model="gpt-3.5-turbo",
|
||||
provider="openai",
|
||||
mode="chat",
|
||||
credentials=credentials,
|
||||
parameters={},
|
||||
model_schema=model_schema,
|
||||
provider_model_bundle=provider_model_bundle,
|
||||
)
|
||||
|
||||
# Mock db.session.close()
|
||||
db.session.close = MagicMock()
|
||||
|
||||
node._fetch_model_config = MagicMock(return_value=(model_instance, model_config))
|
||||
node._fetch_model_config = get_mocked_fetch_model_config(
|
||||
provider="langgenius/openai/openai",
|
||||
model="gpt-3.5-turbo",
|
||||
mode="chat",
|
||||
credentials=credentials,
|
||||
)
|
||||
|
||||
# execute node
|
||||
result = node._run()
|
||||
|
|
@ -149,8 +126,7 @@ def test_execute_llm(setup_openai_mock):
|
|||
|
||||
|
||||
@pytest.mark.parametrize("setup_code_executor_mock", [["none"]], indirect=True)
|
||||
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
|
||||
def test_execute_llm_with_jinja2(setup_code_executor_mock, setup_openai_mock):
|
||||
def test_execute_llm_with_jinja2(setup_code_executor_mock, setup_model_mock):
|
||||
"""
|
||||
Test execute LLM node with jinja2
|
||||
"""
|
||||
|
|
@ -190,38 +166,15 @@ def test_execute_llm_with_jinja2(setup_code_executor_mock, setup_openai_mock):
|
|||
|
||||
credentials = {"openai_api_key": os.environ.get("OPENAI_API_KEY")}
|
||||
|
||||
provider_instance = ModelProviderFactory().get_provider_instance("openai")
|
||||
model_type_instance = provider_instance.get_model_instance(ModelType.LLM)
|
||||
provider_model_bundle = ProviderModelBundle(
|
||||
configuration=ProviderConfiguration(
|
||||
tenant_id="1",
|
||||
provider=provider_instance.get_provider_schema(),
|
||||
preferred_provider_type=ProviderType.CUSTOM,
|
||||
using_provider_type=ProviderType.CUSTOM,
|
||||
system_configuration=SystemConfiguration(enabled=False),
|
||||
custom_configuration=CustomConfiguration(provider=CustomProviderConfiguration(credentials=credentials)),
|
||||
model_settings=[],
|
||||
),
|
||||
model_type_instance=model_type_instance,
|
||||
)
|
||||
|
||||
model_instance = ModelInstance(provider_model_bundle=provider_model_bundle, model="gpt-3.5-turbo")
|
||||
model_schema = model_type_instance.get_model_schema("gpt-3.5-turbo")
|
||||
assert model_schema is not None
|
||||
model_config = ModelConfigWithCredentialsEntity(
|
||||
model="gpt-3.5-turbo",
|
||||
provider="openai",
|
||||
mode="chat",
|
||||
credentials=credentials,
|
||||
parameters={},
|
||||
model_schema=model_schema,
|
||||
provider_model_bundle=provider_model_bundle,
|
||||
)
|
||||
|
||||
# Mock db.session.close()
|
||||
db.session.close = MagicMock()
|
||||
|
||||
node._fetch_model_config = MagicMock(return_value=(model_instance, model_config))
|
||||
node._fetch_model_config = get_mocked_fetch_model_config(
|
||||
provider="langgenius/openai/openai",
|
||||
model="gpt-3.5-turbo",
|
||||
mode="chat",
|
||||
credentials=credentials,
|
||||
)
|
||||
|
||||
# execute node
|
||||
result = node._run()
|
||||
|
|
|
|||
|
|
@ -4,14 +4,7 @@ import uuid
|
|||
from typing import Optional
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import pytest
|
||||
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
|
||||
from core.entities.provider_configuration import ProviderConfiguration, ProviderModelBundle
|
||||
from core.entities.provider_entities import CustomConfiguration, CustomProviderConfiguration, SystemConfiguration
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.model_runtime.model_providers.model_provider_factory import ModelProviderFactory
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.workflow.entities.variable_pool import VariablePool
|
||||
from core.workflow.enums import SystemVariableKey
|
||||
from core.workflow.graph_engine.entities.graph import Graph
|
||||
|
|
@ -20,53 +13,11 @@ from core.workflow.graph_engine.entities.graph_runtime_state import GraphRuntime
|
|||
from core.workflow.nodes.parameter_extractor.parameter_extractor_node import ParameterExtractorNode
|
||||
from extensions.ext_database import db
|
||||
from models.enums import UserFrom
|
||||
from models.provider import ProviderType
|
||||
from tests.integration_tests.workflow.nodes.__mock.model import get_mocked_fetch_model_config
|
||||
|
||||
"""FOR MOCK FIXTURES, DO NOT REMOVE"""
|
||||
from models.workflow import WorkflowNodeExecutionStatus, WorkflowType
|
||||
from tests.integration_tests.model_runtime.__mock.anthropic import setup_anthropic_mock
|
||||
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock
|
||||
|
||||
|
||||
def get_mocked_fetch_model_config(
|
||||
provider: str,
|
||||
model: str,
|
||||
mode: str,
|
||||
credentials: dict,
|
||||
):
|
||||
model_provider_factory = ModelProviderFactory(tenant_id="test_tenant")
|
||||
model_type_instance = model_provider_factory.get_model_type_instance(provider, ModelType.LLM)
|
||||
provider_model_bundle = ProviderModelBundle(
|
||||
configuration=ProviderConfiguration(
|
||||
tenant_id="1",
|
||||
provider=model_provider_factory.get_provider_schema(provider),
|
||||
preferred_provider_type=ProviderType.CUSTOM,
|
||||
using_provider_type=ProviderType.CUSTOM,
|
||||
system_configuration=SystemConfiguration(enabled=False),
|
||||
custom_configuration=CustomConfiguration(provider=CustomProviderConfiguration(credentials=credentials)),
|
||||
model_settings=[],
|
||||
),
|
||||
model_type_instance=model_type_instance,
|
||||
)
|
||||
model_instance = ModelInstance(provider_model_bundle=provider_model_bundle, model=model)
|
||||
model_schema = model_provider_factory.get_model_schema(
|
||||
provider=provider,
|
||||
model_type=model_type_instance.model_type,
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
)
|
||||
assert model_schema is not None
|
||||
model_config = ModelConfigWithCredentialsEntity(
|
||||
model=model,
|
||||
provider=provider,
|
||||
mode=mode,
|
||||
credentials=credentials,
|
||||
parameters={},
|
||||
model_schema=model_schema,
|
||||
provider_model_bundle=provider_model_bundle,
|
||||
)
|
||||
|
||||
return MagicMock(return_value=(model_instance, model_config))
|
||||
from tests.integration_tests.model_runtime.__mock.plugin_daemon import setup_model_mock
|
||||
|
||||
|
||||
def get_mocked_fetch_memory(memory_text: str):
|
||||
|
|
@ -133,8 +84,7 @@ def init_parameter_extractor_node(config: dict):
|
|||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
|
||||
def test_function_calling_parameter_extractor(setup_openai_mock):
|
||||
def test_function_calling_parameter_extractor(setup_model_mock):
|
||||
"""
|
||||
Test function calling for parameter extractor.
|
||||
"""
|
||||
|
|
@ -144,7 +94,12 @@ def test_function_calling_parameter_extractor(setup_openai_mock):
|
|||
"data": {
|
||||
"title": "123",
|
||||
"type": "parameter-extractor",
|
||||
"model": {"provider": "openai", "name": "gpt-3.5-turbo", "mode": "chat", "completion_params": {}},
|
||||
"model": {
|
||||
"provider": "langgenius/openai/openai",
|
||||
"name": "gpt-3.5-turbo",
|
||||
"mode": "chat",
|
||||
"completion_params": {},
|
||||
},
|
||||
"query": ["sys", "query"],
|
||||
"parameters": [{"name": "location", "type": "string", "description": "location", "required": True}],
|
||||
"instruction": "",
|
||||
|
|
@ -155,25 +110,13 @@ def test_function_calling_parameter_extractor(setup_openai_mock):
|
|||
)
|
||||
|
||||
node._fetch_model_config = get_mocked_fetch_model_config(
|
||||
provider="openai",
|
||||
provider="langgenius/openai/openai",
|
||||
model="gpt-3.5-turbo",
|
||||
mode="chat",
|
||||
credentials={"openai_api_key": os.environ.get("OPENAI_API_KEY")},
|
||||
)
|
||||
db.session.close = MagicMock()
|
||||
|
||||
# construct variable pool
|
||||
pool = VariablePool(
|
||||
system_variables={
|
||||
SystemVariableKey.QUERY: "what's the weather in SF",
|
||||
SystemVariableKey.FILES: [],
|
||||
SystemVariableKey.CONVERSATION_ID: "abababa",
|
||||
SystemVariableKey.USER_ID: "aaa",
|
||||
},
|
||||
user_inputs={},
|
||||
environment_variables=[],
|
||||
)
|
||||
|
||||
result = node._run()
|
||||
|
||||
assert result.status == WorkflowNodeExecutionStatus.SUCCEEDED
|
||||
|
|
@ -182,8 +125,7 @@ def test_function_calling_parameter_extractor(setup_openai_mock):
|
|||
assert result.outputs.get("__reason") == None
|
||||
|
||||
|
||||
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
|
||||
def test_instructions(setup_openai_mock):
|
||||
def test_instructions(setup_model_mock):
|
||||
"""
|
||||
Test chat parameter extractor.
|
||||
"""
|
||||
|
|
@ -193,7 +135,12 @@ def test_instructions(setup_openai_mock):
|
|||
"data": {
|
||||
"title": "123",
|
||||
"type": "parameter-extractor",
|
||||
"model": {"provider": "openai", "name": "gpt-3.5-turbo", "mode": "chat", "completion_params": {}},
|
||||
"model": {
|
||||
"provider": "langgenius/openai/openai",
|
||||
"name": "gpt-3.5-turbo",
|
||||
"mode": "chat",
|
||||
"completion_params": {},
|
||||
},
|
||||
"query": ["sys", "query"],
|
||||
"parameters": [{"name": "location", "type": "string", "description": "location", "required": True}],
|
||||
"reasoning_mode": "function_call",
|
||||
|
|
@ -204,7 +151,7 @@ def test_instructions(setup_openai_mock):
|
|||
)
|
||||
|
||||
node._fetch_model_config = get_mocked_fetch_model_config(
|
||||
provider="openai",
|
||||
provider="langgenius/openai/openai",
|
||||
model="gpt-3.5-turbo",
|
||||
mode="chat",
|
||||
credentials={"openai_api_key": os.environ.get("OPENAI_API_KEY")},
|
||||
|
|
@ -228,8 +175,7 @@ def test_instructions(setup_openai_mock):
|
|||
assert "what's the weather in SF" in prompt.get("text")
|
||||
|
||||
|
||||
@pytest.mark.parametrize("setup_anthropic_mock", [["none"]], indirect=True)
|
||||
def test_chat_parameter_extractor(setup_anthropic_mock):
|
||||
def test_chat_parameter_extractor(setup_model_mock):
|
||||
"""
|
||||
Test chat parameter extractor.
|
||||
"""
|
||||
|
|
@ -239,7 +185,12 @@ def test_chat_parameter_extractor(setup_anthropic_mock):
|
|||
"data": {
|
||||
"title": "123",
|
||||
"type": "parameter-extractor",
|
||||
"model": {"provider": "anthropic", "name": "claude-2", "mode": "chat", "completion_params": {}},
|
||||
"model": {
|
||||
"provider": "langgenius/openai/openai",
|
||||
"name": "gpt-3.5-turbo",
|
||||
"mode": "chat",
|
||||
"completion_params": {},
|
||||
},
|
||||
"query": ["sys", "query"],
|
||||
"parameters": [{"name": "location", "type": "string", "description": "location", "required": True}],
|
||||
"reasoning_mode": "prompt",
|
||||
|
|
@ -250,10 +201,10 @@ def test_chat_parameter_extractor(setup_anthropic_mock):
|
|||
)
|
||||
|
||||
node._fetch_model_config = get_mocked_fetch_model_config(
|
||||
provider="anthropic",
|
||||
model="claude-2",
|
||||
provider="langgenius/openai/openai",
|
||||
model="gpt-3.5-turbo",
|
||||
mode="chat",
|
||||
credentials={"anthropic_api_key": os.environ.get("ANTHROPIC_API_KEY")},
|
||||
credentials={"openai_api_key": os.environ.get("OPENAI_API_KEY")},
|
||||
)
|
||||
db.session.close = MagicMock()
|
||||
|
||||
|
|
@ -275,8 +226,7 @@ def test_chat_parameter_extractor(setup_anthropic_mock):
|
|||
assert '<structure>\n{"type": "object"' in prompt.get("text")
|
||||
|
||||
|
||||
@pytest.mark.parametrize("setup_openai_mock", [["completion"]], indirect=True)
|
||||
def test_completion_parameter_extractor(setup_openai_mock):
|
||||
def test_completion_parameter_extractor(setup_model_mock):
|
||||
"""
|
||||
Test completion parameter extractor.
|
||||
"""
|
||||
|
|
@ -287,7 +237,7 @@ def test_completion_parameter_extractor(setup_openai_mock):
|
|||
"title": "123",
|
||||
"type": "parameter-extractor",
|
||||
"model": {
|
||||
"provider": "openai",
|
||||
"provider": "langgenius/openai/openai",
|
||||
"name": "gpt-3.5-turbo-instruct",
|
||||
"mode": "completion",
|
||||
"completion_params": {},
|
||||
|
|
@ -302,7 +252,7 @@ def test_completion_parameter_extractor(setup_openai_mock):
|
|||
)
|
||||
|
||||
node._fetch_model_config = get_mocked_fetch_model_config(
|
||||
provider="openai",
|
||||
provider="langgenius/openai/openai",
|
||||
model="gpt-3.5-turbo-instruct",
|
||||
mode="completion",
|
||||
credentials={"openai_api_key": os.environ.get("OPENAI_API_KEY")},
|
||||
|
|
@ -335,7 +285,7 @@ def test_extract_json_response():
|
|||
"title": "123",
|
||||
"type": "parameter-extractor",
|
||||
"model": {
|
||||
"provider": "openai",
|
||||
"provider": "langgenius/openai/openai",
|
||||
"name": "gpt-3.5-turbo-instruct",
|
||||
"mode": "completion",
|
||||
"completion_params": {},
|
||||
|
|
@ -361,8 +311,7 @@ def test_extract_json_response():
|
|||
assert result["location"] == "kawaii"
|
||||
|
||||
|
||||
@pytest.mark.parametrize("setup_anthropic_mock", [["none"]], indirect=True)
|
||||
def test_chat_parameter_extractor_with_memory(setup_anthropic_mock):
|
||||
def test_chat_parameter_extractor_with_memory(setup_model_mock):
|
||||
"""
|
||||
Test chat parameter extractor with memory.
|
||||
"""
|
||||
|
|
@ -372,7 +321,12 @@ def test_chat_parameter_extractor_with_memory(setup_anthropic_mock):
|
|||
"data": {
|
||||
"title": "123",
|
||||
"type": "parameter-extractor",
|
||||
"model": {"provider": "anthropic", "name": "claude-2", "mode": "chat", "completion_params": {}},
|
||||
"model": {
|
||||
"provider": "langgenius/openai/openai",
|
||||
"name": "gpt-3.5-turbo",
|
||||
"mode": "chat",
|
||||
"completion_params": {},
|
||||
},
|
||||
"query": ["sys", "query"],
|
||||
"parameters": [{"name": "location", "type": "string", "description": "location", "required": True}],
|
||||
"reasoning_mode": "prompt",
|
||||
|
|
@ -383,10 +337,10 @@ def test_chat_parameter_extractor_with_memory(setup_anthropic_mock):
|
|||
)
|
||||
|
||||
node._fetch_model_config = get_mocked_fetch_model_config(
|
||||
provider="anthropic",
|
||||
model="claude-2",
|
||||
provider="langgenius/openai/openai",
|
||||
model="gpt-3.5-turbo",
|
||||
mode="chat",
|
||||
credentials={"anthropic_api_key": os.environ.get("ANTHROPIC_API_KEY")},
|
||||
credentials={"openai_api_key": os.environ.get("OPENAI_API_KEY")},
|
||||
)
|
||||
node._fetch_memory = get_mocked_fetch_memory("customized memory")
|
||||
db.session.close = MagicMock()
|
||||
|
|
|
|||
|
|
@ -1,13 +1,15 @@
|
|||
import time
|
||||
import uuid
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.workflow.entities.node_entities import NodeRunResult
|
||||
from core.tools.utils.configuration import ToolParameterConfigurationManager
|
||||
from core.workflow.entities.variable_pool import VariablePool
|
||||
from core.workflow.enums import SystemVariableKey
|
||||
from core.workflow.graph_engine.entities.graph import Graph
|
||||
from core.workflow.graph_engine.entities.graph_init_params import GraphInitParams
|
||||
from core.workflow.graph_engine.entities.graph_runtime_state import GraphRuntimeState
|
||||
from core.workflow.nodes.event.event import RunCompletedEvent
|
||||
from core.workflow.nodes.tool.tool_node import ToolNode
|
||||
from models.enums import UserFrom
|
||||
from models.workflow import WorkflowNodeExecutionStatus, WorkflowType
|
||||
|
|
@ -63,31 +65,28 @@ def test_tool_variable_invoke():
|
|||
"data": {
|
||||
"title": "a",
|
||||
"desc": "a",
|
||||
"provider_id": "maths",
|
||||
"provider_id": "time",
|
||||
"provider_type": "builtin",
|
||||
"provider_name": "maths",
|
||||
"tool_name": "eval_expression",
|
||||
"tool_label": "eval_expression",
|
||||
"provider_name": "time",
|
||||
"tool_name": "current_time",
|
||||
"tool_label": "current_time",
|
||||
"tool_configurations": {},
|
||||
"tool_parameters": {
|
||||
"expression": {
|
||||
"type": "variable",
|
||||
"value": ["1", "123", "args1"],
|
||||
}
|
||||
},
|
||||
"tool_parameters": {},
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
ToolParameterConfigurationManager.decrypt_tool_parameters = MagicMock(return_value={"format": "%Y-%m-%d %H:%M:%S"})
|
||||
|
||||
node.graph_runtime_state.variable_pool.add(["1", "123", "args1"], "1+1")
|
||||
|
||||
# execute node
|
||||
result = node._run()
|
||||
assert isinstance(result, NodeRunResult)
|
||||
assert result.status == WorkflowNodeExecutionStatus.SUCCEEDED
|
||||
assert result.outputs is not None
|
||||
assert "2" in result.outputs["text"]
|
||||
assert result.outputs["files"] == []
|
||||
for item in result:
|
||||
if isinstance(item, RunCompletedEvent):
|
||||
assert item.run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED
|
||||
assert item.run_result.outputs is not None
|
||||
assert item.run_result.outputs.get("text") is not None
|
||||
|
||||
|
||||
def test_tool_mixed_invoke():
|
||||
|
|
@ -97,28 +96,25 @@ def test_tool_mixed_invoke():
|
|||
"data": {
|
||||
"title": "a",
|
||||
"desc": "a",
|
||||
"provider_id": "maths",
|
||||
"provider_id": "time",
|
||||
"provider_type": "builtin",
|
||||
"provider_name": "maths",
|
||||
"tool_name": "eval_expression",
|
||||
"tool_label": "eval_expression",
|
||||
"tool_configurations": {},
|
||||
"tool_parameters": {
|
||||
"expression": {
|
||||
"type": "mixed",
|
||||
"value": "{{#1.args1#}}",
|
||||
}
|
||||
"provider_name": "time",
|
||||
"tool_name": "current_time",
|
||||
"tool_label": "current_time",
|
||||
"tool_configurations": {
|
||||
"format": "%Y-%m-%d %H:%M:%S",
|
||||
},
|
||||
"tool_parameters": {},
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
node.graph_runtime_state.variable_pool.add(["1", "args1"], "1+1")
|
||||
ToolParameterConfigurationManager.decrypt_tool_parameters = MagicMock(return_value={"format": "%Y-%m-%d %H:%M:%S"})
|
||||
|
||||
# execute node
|
||||
result = node._run()
|
||||
assert isinstance(result, NodeRunResult)
|
||||
assert result.status == WorkflowNodeExecutionStatus.SUCCEEDED
|
||||
assert result.outputs is not None
|
||||
assert "2" in result.outputs["text"]
|
||||
assert result.outputs["files"] == []
|
||||
for item in result:
|
||||
if isinstance(item, RunCompletedEvent):
|
||||
assert item.run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED
|
||||
assert item.run_result.outputs is not None
|
||||
assert item.run_result.outputs.get("text") is not None
|
||||
|
|
|
|||
Loading…
Reference in New Issue