refactor: port api/controllers/console/datasets/datasets_document.py api/controllers/service_api/app/annotation.py api/core/app/app_config/easy_ui_based_app/agent/manager.py api/core/app/apps/pipeline/pipeline_generator.py api/core/workflow/nodes/knowledge_retrieval/knowledge_retrieval_node.py to match case (#31832)

This commit is contained in:
Asuka Minato 2026-02-02 19:07:30 +09:00 committed by GitHub
parent 920db69ef2
commit ce2c41bbf5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 202 additions and 197 deletions

View File

@ -953,23 +953,24 @@ class DocumentProcessingApi(DocumentResource):
if not current_user.is_dataset_editor:
raise Forbidden()
if action == "pause":
if document.indexing_status != "indexing":
raise InvalidActionError("Document not in indexing state.")
match action:
case "pause":
if document.indexing_status != "indexing":
raise InvalidActionError("Document not in indexing state.")
document.paused_by = current_user.id
document.paused_at = naive_utc_now()
document.is_paused = True
db.session.commit()
document.paused_by = current_user.id
document.paused_at = naive_utc_now()
document.is_paused = True
db.session.commit()
elif action == "resume":
if document.indexing_status not in {"paused", "error"}:
raise InvalidActionError("Document not in paused or error state.")
case "resume":
if document.indexing_status not in {"paused", "error"}:
raise InvalidActionError("Document not in paused or error state.")
document.paused_by = None
document.paused_at = None
document.is_paused = False
db.session.commit()
document.paused_by = None
document.paused_at = None
document.is_paused = False
db.session.commit()
return {"result": "success"}, 200

View File

@ -45,10 +45,11 @@ class AnnotationReplyActionApi(Resource):
def post(self, app_model: App, action: Literal["enable", "disable"]):
"""Enable or disable annotation reply feature."""
args = AnnotationReplyActionPayload.model_validate(service_api_ns.payload or {}).model_dump()
if action == "enable":
result = AppAnnotationService.enable_app_annotation(args, app_model.id)
elif action == "disable":
result = AppAnnotationService.disable_app_annotation(app_model.id)
match action:
case "enable":
result = AppAnnotationService.enable_app_annotation(args, app_model.id)
case "disable":
result = AppAnnotationService.disable_app_annotation(app_model.id)
return result, 200

View File

@ -14,16 +14,17 @@ class AgentConfigManager:
agent_dict = config.get("agent_mode", {})
agent_strategy = agent_dict.get("strategy", "cot")
if agent_strategy == "function_call":
strategy = AgentEntity.Strategy.FUNCTION_CALLING
elif agent_strategy in {"cot", "react"}:
strategy = AgentEntity.Strategy.CHAIN_OF_THOUGHT
else:
# old configs, try to detect default strategy
if config["model"]["provider"] == "openai":
match agent_strategy:
case "function_call":
strategy = AgentEntity.Strategy.FUNCTION_CALLING
else:
case "cot" | "react":
strategy = AgentEntity.Strategy.CHAIN_OF_THOUGHT
case _:
# old configs, try to detect default strategy
if config["model"]["provider"] == "openai":
strategy = AgentEntity.Strategy.FUNCTION_CALLING
else:
strategy = AgentEntity.Strategy.CHAIN_OF_THOUGHT
agent_tools = []
for tool in agent_dict.get("tools", []):

View File

@ -120,7 +120,7 @@ class PipelineGenerator(BaseAppGenerator):
raise ValueError("Pipeline dataset is required")
inputs: Mapping[str, Any] = args["inputs"]
start_node_id: str = args["start_node_id"]
datasource_type: str = args["datasource_type"]
datasource_type = DatasourceProviderType(args["datasource_type"])
datasource_info_list: list[Mapping[str, Any]] = self._format_datasource_info_list(
datasource_type, args["datasource_info_list"], pipeline, workflow, start_node_id, user
)
@ -660,7 +660,7 @@ class PipelineGenerator(BaseAppGenerator):
tenant_id: str,
dataset_id: str,
built_in_field_enabled: bool,
datasource_type: str,
datasource_type: DatasourceProviderType,
datasource_info: Mapping[str, Any],
created_from: str,
position: int,
@ -668,17 +668,17 @@ class PipelineGenerator(BaseAppGenerator):
batch: str,
document_form: str,
):
if datasource_type == "local_file":
name = datasource_info.get("name", "untitled")
elif datasource_type == "online_document":
name = datasource_info.get("page", {}).get("page_name", "untitled")
elif datasource_type == "website_crawl":
name = datasource_info.get("title", "untitled")
elif datasource_type == "online_drive":
name = datasource_info.get("name", "untitled")
else:
raise ValueError(f"Unsupported datasource type: {datasource_type}")
match datasource_type:
case DatasourceProviderType.LOCAL_FILE:
name = datasource_info.get("name", "untitled")
case DatasourceProviderType.ONLINE_DOCUMENT:
name = datasource_info.get("page", {}).get("page_name", "untitled")
case DatasourceProviderType.WEBSITE_CRAWL:
name = datasource_info.get("title", "untitled")
case DatasourceProviderType.ONLINE_DRIVE:
name = datasource_info.get("name", "untitled")
case _:
raise ValueError(f"Unsupported datasource type: {datasource_type}")
document = Document(
tenant_id=tenant_id,
dataset_id=dataset_id,
@ -706,7 +706,7 @@ class PipelineGenerator(BaseAppGenerator):
def _format_datasource_info_list(
self,
datasource_type: str,
datasource_type: DatasourceProviderType,
datasource_info_list: list[Mapping[str, Any]],
pipeline: Pipeline,
workflow: Workflow,
@ -716,7 +716,7 @@ class PipelineGenerator(BaseAppGenerator):
"""
Format datasource info list.
"""
if datasource_type == "online_drive":
if datasource_type == DatasourceProviderType.ONLINE_DRIVE:
all_files: list[Mapping[str, Any]] = []
datasource_node_data = None
datasource_nodes = workflow.graph_dict.get("nodes", [])

View File

@ -378,70 +378,69 @@ class IndexingRunner:
def _extract(
self, index_processor: BaseIndexProcessor, dataset_document: DatasetDocument, process_rule: dict
) -> list[Document]:
# load file
if dataset_document.data_source_type not in {"upload_file", "notion_import", "website_crawl"}:
return []
data_source_info = dataset_document.data_source_info_dict
text_docs = []
if dataset_document.data_source_type == "upload_file":
if not data_source_info or "upload_file_id" not in data_source_info:
raise ValueError("no upload file found")
stmt = select(UploadFile).where(UploadFile.id == data_source_info["upload_file_id"])
file_detail = db.session.scalars(stmt).one_or_none()
match dataset_document.data_source_type:
case "upload_file":
if not data_source_info or "upload_file_id" not in data_source_info:
raise ValueError("no upload file found")
stmt = select(UploadFile).where(UploadFile.id == data_source_info["upload_file_id"])
file_detail = db.session.scalars(stmt).one_or_none()
if file_detail:
if file_detail:
extract_setting = ExtractSetting(
datasource_type=DatasourceType.FILE,
upload_file=file_detail,
document_model=dataset_document.doc_form,
)
text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule["mode"])
case "notion_import":
if (
not data_source_info
or "notion_workspace_id" not in data_source_info
or "notion_page_id" not in data_source_info
):
raise ValueError("no notion import info found")
extract_setting = ExtractSetting(
datasource_type=DatasourceType.FILE,
upload_file=file_detail,
datasource_type=DatasourceType.NOTION,
notion_info=NotionInfo.model_validate(
{
"credential_id": data_source_info.get("credential_id"),
"notion_workspace_id": data_source_info["notion_workspace_id"],
"notion_obj_id": data_source_info["notion_page_id"],
"notion_page_type": data_source_info["type"],
"document": dataset_document,
"tenant_id": dataset_document.tenant_id,
}
),
document_model=dataset_document.doc_form,
)
text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule["mode"])
elif dataset_document.data_source_type == "notion_import":
if (
not data_source_info
or "notion_workspace_id" not in data_source_info
or "notion_page_id" not in data_source_info
):
raise ValueError("no notion import info found")
extract_setting = ExtractSetting(
datasource_type=DatasourceType.NOTION,
notion_info=NotionInfo.model_validate(
{
"credential_id": data_source_info.get("credential_id"),
"notion_workspace_id": data_source_info["notion_workspace_id"],
"notion_obj_id": data_source_info["notion_page_id"],
"notion_page_type": data_source_info["type"],
"document": dataset_document,
"tenant_id": dataset_document.tenant_id,
}
),
document_model=dataset_document.doc_form,
)
text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule["mode"])
elif dataset_document.data_source_type == "website_crawl":
if (
not data_source_info
or "provider" not in data_source_info
or "url" not in data_source_info
or "job_id" not in data_source_info
):
raise ValueError("no website import info found")
extract_setting = ExtractSetting(
datasource_type=DatasourceType.WEBSITE,
website_info=WebsiteInfo.model_validate(
{
"provider": data_source_info["provider"],
"job_id": data_source_info["job_id"],
"tenant_id": dataset_document.tenant_id,
"url": data_source_info["url"],
"mode": data_source_info["mode"],
"only_main_content": data_source_info["only_main_content"],
}
),
document_model=dataset_document.doc_form,
)
text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule["mode"])
case "website_crawl":
if (
not data_source_info
or "provider" not in data_source_info
or "url" not in data_source_info
or "job_id" not in data_source_info
):
raise ValueError("no website import info found")
extract_setting = ExtractSetting(
datasource_type=DatasourceType.WEBSITE,
website_info=WebsiteInfo.model_validate(
{
"provider": data_source_info["provider"],
"job_id": data_source_info["job_id"],
"tenant_id": dataset_document.tenant_id,
"url": data_source_info["url"],
"mode": data_source_info["mode"],
"only_main_content": data_source_info["only_main_content"],
}
),
document_model=dataset_document.doc_form,
)
text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule["mode"])
case _:
return []
# update document status to splitting
self._update_document_index_status(
document_id=dataset_document.id,

View File

@ -303,33 +303,34 @@ class KnowledgeRetrievalNode(LLMUsageTrackingMixin, Node[KnowledgeRetrievalNodeD
elif str(node_data.retrieval_mode) == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
if node_data.multiple_retrieval_config is None:
raise ValueError("multiple_retrieval_config is required")
if node_data.multiple_retrieval_config.reranking_mode == "reranking_model":
if node_data.multiple_retrieval_config.reranking_model:
reranking_model = {
"reranking_provider_name": node_data.multiple_retrieval_config.reranking_model.provider,
"reranking_model_name": node_data.multiple_retrieval_config.reranking_model.model,
}
else:
match node_data.multiple_retrieval_config.reranking_mode:
case "reranking_model":
if node_data.multiple_retrieval_config.reranking_model:
reranking_model = {
"reranking_provider_name": node_data.multiple_retrieval_config.reranking_model.provider,
"reranking_model_name": node_data.multiple_retrieval_config.reranking_model.model,
}
else:
reranking_model = None
weights = None
case "weighted_score":
if node_data.multiple_retrieval_config.weights is None:
raise ValueError("weights is required")
reranking_model = None
weights = None
elif node_data.multiple_retrieval_config.reranking_mode == "weighted_score":
if node_data.multiple_retrieval_config.weights is None:
raise ValueError("weights is required")
reranking_model = None
vector_setting = node_data.multiple_retrieval_config.weights.vector_setting
weights = {
"vector_setting": {
"vector_weight": vector_setting.vector_weight,
"embedding_provider_name": vector_setting.embedding_provider_name,
"embedding_model_name": vector_setting.embedding_model_name,
},
"keyword_setting": {
"keyword_weight": node_data.multiple_retrieval_config.weights.keyword_setting.keyword_weight
},
}
else:
reranking_model = None
weights = None
vector_setting = node_data.multiple_retrieval_config.weights.vector_setting
weights = {
"vector_setting": {
"vector_weight": vector_setting.vector_weight,
"embedding_provider_name": vector_setting.embedding_provider_name,
"embedding_model_name": vector_setting.embedding_model_name,
},
"keyword_setting": {
"keyword_weight": node_data.multiple_retrieval_config.weights.keyword_setting.keyword_weight
},
}
case _:
reranking_model = None
weights = None
all_documents = dataset_retrieval.multiple_retrieve(
app_id=self.app_id,
tenant_id=self.tenant_id,
@ -453,73 +454,74 @@ class KnowledgeRetrievalNode(LLMUsageTrackingMixin, Node[KnowledgeRetrievalNodeD
)
filters: list[Any] = []
metadata_condition = None
if node_data.metadata_filtering_mode == "disabled":
return None, None, usage
elif node_data.metadata_filtering_mode == "automatic":
automatic_metadata_filters, automatic_usage = self._automatic_metadata_filter_func(
dataset_ids, query, node_data
)
usage = self._merge_usage(usage, automatic_usage)
if automatic_metadata_filters:
conditions = []
for sequence, filter in enumerate(automatic_metadata_filters):
DatasetRetrieval.process_metadata_filter_func(
sequence,
filter.get("condition", ""),
filter.get("metadata_name", ""),
filter.get("value"),
filters,
)
conditions.append(
Condition(
name=filter.get("metadata_name"), # type: ignore
comparison_operator=filter.get("condition"), # type: ignore
value=filter.get("value"),
)
)
metadata_condition = MetadataCondition(
logical_operator=node_data.metadata_filtering_conditions.logical_operator
if node_data.metadata_filtering_conditions
else "or",
conditions=conditions,
match node_data.metadata_filtering_mode:
case "disabled":
return None, None, usage
case "automatic":
automatic_metadata_filters, automatic_usage = self._automatic_metadata_filter_func(
dataset_ids, query, node_data
)
elif node_data.metadata_filtering_mode == "manual":
if node_data.metadata_filtering_conditions:
conditions = []
for sequence, condition in enumerate(node_data.metadata_filtering_conditions.conditions): # type: ignore
metadata_name = condition.name
expected_value = condition.value
if expected_value is not None and condition.comparison_operator not in ("empty", "not empty"):
if isinstance(expected_value, str):
expected_value = self.graph_runtime_state.variable_pool.convert_template(
expected_value
).value[0]
if expected_value.value_type in {"number", "integer", "float"}:
expected_value = expected_value.value
elif expected_value.value_type == "string":
expected_value = re.sub(r"[\r\n\t]+", " ", expected_value.text).strip()
else:
raise ValueError("Invalid expected metadata value type")
conditions.append(
Condition(
name=metadata_name,
comparison_operator=condition.comparison_operator,
value=expected_value,
usage = self._merge_usage(usage, automatic_usage)
if automatic_metadata_filters:
conditions = []
for sequence, filter in enumerate(automatic_metadata_filters):
DatasetRetrieval.process_metadata_filter_func(
sequence,
filter.get("condition", ""),
filter.get("metadata_name", ""),
filter.get("value"),
filters,
)
conditions.append(
Condition(
name=filter.get("metadata_name"), # type: ignore
comparison_operator=filter.get("condition"), # type: ignore
value=filter.get("value"),
)
)
metadata_condition = MetadataCondition(
logical_operator=node_data.metadata_filtering_conditions.logical_operator
if node_data.metadata_filtering_conditions
else "or",
conditions=conditions,
)
filters = DatasetRetrieval.process_metadata_filter_func(
sequence,
condition.comparison_operator,
metadata_name,
expected_value,
filters,
case "manual":
if node_data.metadata_filtering_conditions:
conditions = []
for sequence, condition in enumerate(node_data.metadata_filtering_conditions.conditions): # type: ignore
metadata_name = condition.name
expected_value = condition.value
if expected_value is not None and condition.comparison_operator not in ("empty", "not empty"):
if isinstance(expected_value, str):
expected_value = self.graph_runtime_state.variable_pool.convert_template(
expected_value
).value[0]
if expected_value.value_type in {"number", "integer", "float"}:
expected_value = expected_value.value
elif expected_value.value_type == "string":
expected_value = re.sub(r"[\r\n\t]+", " ", expected_value.text).strip()
else:
raise ValueError("Invalid expected metadata value type")
conditions.append(
Condition(
name=metadata_name,
comparison_operator=condition.comparison_operator,
value=expected_value,
)
)
filters = DatasetRetrieval.process_metadata_filter_func(
sequence,
condition.comparison_operator,
metadata_name,
expected_value,
filters,
)
metadata_condition = MetadataCondition(
logical_operator=node_data.metadata_filtering_conditions.logical_operator,
conditions=conditions,
)
metadata_condition = MetadataCondition(
logical_operator=node_data.metadata_filtering_conditions.logical_operator,
conditions=conditions,
)
else:
raise ValueError("Invalid metadata filtering mode")
case _:
raise ValueError("Invalid metadata filtering mode")
if filters:
if (
node_data.metadata_filtering_conditions

View File

@ -482,16 +482,17 @@ class ToolNode(Node[ToolNodeData]):
result = {}
for parameter_name in typed_node_data.tool_parameters:
input = typed_node_data.tool_parameters[parameter_name]
if input.type == "mixed":
assert isinstance(input.value, str)
selectors = VariableTemplateParser(input.value).extract_variable_selectors()
for selector in selectors:
result[selector.variable] = selector.value_selector
elif input.type == "variable":
selector_key = ".".join(input.value)
result[f"#{selector_key}#"] = input.value
elif input.type == "constant":
pass
match input.type:
case "mixed":
assert isinstance(input.value, str)
selectors = VariableTemplateParser(input.value).extract_variable_selectors()
for selector in selectors:
result[selector.variable] = selector.value_selector
case "variable":
selector_key = ".".join(input.value)
result[f"#{selector_key}#"] = input.value
case "constant":
pass
result = {node_id + "." + key: value for key, value in result.items()}