mirror of https://github.com/langgenius/dify.git
fix(tools): fix ToolInvokeMessage Union type parsing issue (#31450)
Co-authored-by: qiaofenglin <qiaofenglin@baidu.com>
This commit is contained in:
parent
1f8c730259
commit
e8f9d64651
|
|
@ -130,7 +130,7 @@ class ToolInvokeMessage(BaseModel):
|
|||
text: str
|
||||
|
||||
class JsonMessage(BaseModel):
|
||||
json_object: dict
|
||||
json_object: dict | list
|
||||
suppress_output: bool = Field(default=False, description="Whether to suppress JSON output in result string")
|
||||
|
||||
class BlobMessage(BaseModel):
|
||||
|
|
@ -144,7 +144,14 @@ class ToolInvokeMessage(BaseModel):
|
|||
end: bool = Field(..., description="Whether the chunk is the last chunk")
|
||||
|
||||
class FileMessage(BaseModel):
|
||||
pass
|
||||
file_marker: str = Field(default="file_marker")
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def validate_file_message(cls, values):
|
||||
if isinstance(values, dict) and "file_marker" not in values:
|
||||
raise ValueError("Invalid FileMessage: missing file_marker")
|
||||
return values
|
||||
|
||||
class VariableMessage(BaseModel):
|
||||
variable_name: str = Field(..., description="The name of the variable")
|
||||
|
|
@ -234,10 +241,22 @@ class ToolInvokeMessage(BaseModel):
|
|||
|
||||
@field_validator("message", mode="before")
|
||||
@classmethod
|
||||
def decode_blob_message(cls, v):
|
||||
def decode_blob_message(cls, v, info: ValidationInfo):
|
||||
# 处理 blob 解码
|
||||
if isinstance(v, dict) and "blob" in v:
|
||||
with contextlib.suppress(Exception):
|
||||
v["blob"] = base64.b64decode(v["blob"])
|
||||
|
||||
# Force correct message type based on type field
|
||||
# Only wrap dict types to avoid wrapping already parsed Pydantic model objects
|
||||
if info.data and isinstance(info.data, dict) and isinstance(v, dict):
|
||||
msg_type = info.data.get("type")
|
||||
if msg_type == cls.MessageType.JSON:
|
||||
if "json_object" not in v:
|
||||
v = {"json_object": v}
|
||||
elif msg_type == cls.MessageType.FILE:
|
||||
v = {"file_marker": "file_marker"}
|
||||
|
||||
return v
|
||||
|
||||
@field_serializer("message")
|
||||
|
|
|
|||
|
|
@ -494,7 +494,7 @@ class AgentNode(Node[AgentNodeData]):
|
|||
|
||||
text = ""
|
||||
files: list[File] = []
|
||||
json_list: list[dict] = []
|
||||
json_list: list[dict | list] = []
|
||||
|
||||
agent_logs: list[AgentLogEvent] = []
|
||||
agent_execution_metadata: Mapping[WorkflowNodeExecutionMetadataKey, Any] = {}
|
||||
|
|
@ -568,13 +568,18 @@ class AgentNode(Node[AgentNodeData]):
|
|||
elif message.type == ToolInvokeMessage.MessageType.JSON:
|
||||
assert isinstance(message.message, ToolInvokeMessage.JsonMessage)
|
||||
if node_type == NodeType.AGENT:
|
||||
msg_metadata: dict[str, Any] = message.message.json_object.pop("execution_metadata", {})
|
||||
llm_usage = LLMUsage.from_metadata(cast(LLMUsageMetadata, msg_metadata))
|
||||
agent_execution_metadata = {
|
||||
WorkflowNodeExecutionMetadataKey(key): value
|
||||
for key, value in msg_metadata.items()
|
||||
if key in WorkflowNodeExecutionMetadataKey.__members__.values()
|
||||
}
|
||||
if isinstance(message.message.json_object, dict):
|
||||
msg_metadata: dict[str, Any] = message.message.json_object.pop("execution_metadata", {})
|
||||
llm_usage = LLMUsage.from_metadata(cast(LLMUsageMetadata, msg_metadata))
|
||||
agent_execution_metadata = {
|
||||
WorkflowNodeExecutionMetadataKey(key): value
|
||||
for key, value in msg_metadata.items()
|
||||
if key in WorkflowNodeExecutionMetadataKey.__members__.values()
|
||||
}
|
||||
else:
|
||||
msg_metadata = {}
|
||||
llm_usage = LLMUsage.empty_usage()
|
||||
agent_execution_metadata = {}
|
||||
if message.message.json_object:
|
||||
json_list.append(message.message.json_object)
|
||||
elif message.type == ToolInvokeMessage.MessageType.LINK:
|
||||
|
|
@ -683,7 +688,7 @@ class AgentNode(Node[AgentNodeData]):
|
|||
yield agent_log
|
||||
|
||||
# Add agent_logs to outputs['json'] to ensure frontend can access thinking process
|
||||
json_output: list[dict[str, Any]] = []
|
||||
json_output: list[dict[str, Any] | list[Any]] = []
|
||||
|
||||
# Step 1: append each agent log as its own dict.
|
||||
if agent_logs:
|
||||
|
|
|
|||
|
|
@ -301,7 +301,7 @@ class DatasourceNode(Node[DatasourceNodeData]):
|
|||
|
||||
text = ""
|
||||
files: list[File] = []
|
||||
json: list[dict] = []
|
||||
json: list[dict | list] = []
|
||||
|
||||
variables: dict[str, Any] = {}
|
||||
|
||||
|
|
|
|||
|
|
@ -244,7 +244,7 @@ class ToolNode(Node[ToolNodeData]):
|
|||
|
||||
text = ""
|
||||
files: list[File] = []
|
||||
json: list[dict] = []
|
||||
json: list[dict | list] = []
|
||||
|
||||
variables: dict[str, Any] = {}
|
||||
|
||||
|
|
@ -400,7 +400,7 @@ class ToolNode(Node[ToolNodeData]):
|
|||
message.message.metadata = dict_metadata
|
||||
|
||||
# Add agent_logs to outputs['json'] to ensure frontend can access thinking process
|
||||
json_output: list[dict[str, Any]] = []
|
||||
json_output: list[dict[str, Any] | list[Any]] = []
|
||||
|
||||
# Step 2: normalize JSON into {"data": [...]}.change json to list[dict]
|
||||
if json:
|
||||
|
|
|
|||
Loading…
Reference in New Issue