feat: add reasoning format processing to LLMNode for <think> tag handling (#23313)

Co-authored-by: autofix-ci[bot] <114827586+autofix-ci[bot]@users.noreply.github.com>
This commit is contained in:
taewoong Kim 2025-09-05 19:15:35 +09:00 committed by GitHub
parent 05cd7e2d8a
commit edf4a1b652
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
30 changed files with 366 additions and 5 deletions

View File

@ -156,6 +156,7 @@ class LLMResult(BaseModel):
message: AssistantPromptMessage
usage: LLMUsage
system_fingerprint: Optional[str] = None
reasoning_content: Optional[str] = None
class LLMStructuredOutput(BaseModel):

View File

@ -30,6 +30,7 @@ class ModelInvokeCompletedEvent(BaseModel):
text: str
usage: LLMUsage
finish_reason: str | None = None
reasoning_content: str | None = None
class RunRetryEvent(BaseModel):

View File

@ -1,5 +1,5 @@
from collections.abc import Mapping, Sequence
from typing import Any, Optional
from typing import Any, Literal, Optional
from pydantic import BaseModel, Field, field_validator
@ -68,6 +68,23 @@ class LLMNodeData(BaseNodeData):
structured_output: Mapping[str, Any] | None = None
# We used 'structured_output_enabled' in the past, but it's not a good name.
structured_output_switch_on: bool = Field(False, alias="structured_output_enabled")
reasoning_format: Literal["separated", "tagged"] = Field(
# Keep tagged as default for backward compatibility
default="tagged",
description=(
"""
Strategy for handling model reasoning output.
separated: Return clean text (without <think> tags) + reasoning_content field.
Recommended for new workflows. Enables safe downstream parsing and
workflow variable access: {{#node_id.reasoning_content#}}
tagged : Return original text (with <think> tags) + reasoning_content field.
Maintains full backward compatibility while still providing reasoning_content
for workflow automation. Frontend thinking panels work as before.
"""
),
)
@field_validator("prompt_config", mode="before")
@classmethod

View File

@ -2,8 +2,9 @@ import base64
import io
import json
import logging
import re
from collections.abc import Generator, Mapping, Sequence
from typing import TYPE_CHECKING, Any, Optional, Union
from typing import TYPE_CHECKING, Any, Literal, Optional, Union
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
from core.file import FileType, file_manager
@ -99,6 +100,9 @@ class LLMNode(BaseNode):
_node_data: LLMNodeData
# Compiled regex for extracting <think> blocks (with compatibility for attributes)
_THINK_PATTERN = re.compile(r"<think[^>]*>(.*?)</think>", re.IGNORECASE | re.DOTALL)
# Instance attributes specific to LLMNode.
# Output variable for file
_file_outputs: list["File"]
@ -167,6 +171,7 @@ class LLMNode(BaseNode):
result_text = ""
usage = LLMUsage.empty_usage()
finish_reason = None
reasoning_content = None
variable_pool = self.graph_runtime_state.variable_pool
try:
@ -256,6 +261,7 @@ class LLMNode(BaseNode):
file_saver=self._llm_file_saver,
file_outputs=self._file_outputs,
node_id=self.node_id,
reasoning_format=self._node_data.reasoning_format,
)
structured_output: LLMStructuredOutput | None = None
@ -264,9 +270,20 @@ class LLMNode(BaseNode):
if isinstance(event, RunStreamChunkEvent):
yield event
elif isinstance(event, ModelInvokeCompletedEvent):
# Raw text
result_text = event.text
usage = event.usage
finish_reason = event.finish_reason
reasoning_content = event.reasoning_content or ""
# For downstream nodes, determine clean text based on reasoning_format
if self._node_data.reasoning_format == "tagged":
# Keep <think> tags for backward compatibility
clean_text = result_text
else:
# Extract clean text from <think> tags
clean_text, _ = LLMNode._split_reasoning(result_text, self._node_data.reasoning_format)
# deduct quota
llm_utils.deduct_llm_quota(tenant_id=self.tenant_id, model_instance=model_instance, usage=usage)
break
@ -284,7 +301,12 @@ class LLMNode(BaseNode):
"model_name": model_config.model,
}
outputs = {"text": result_text, "usage": jsonable_encoder(usage), "finish_reason": finish_reason}
outputs = {
"text": clean_text,
"reasoning_content": reasoning_content,
"usage": jsonable_encoder(usage),
"finish_reason": finish_reason,
}
if structured_output:
outputs["structured_output"] = structured_output.structured_output
if self._file_outputs is not None:
@ -338,6 +360,7 @@ class LLMNode(BaseNode):
file_saver: LLMFileSaver,
file_outputs: list["File"],
node_id: str,
reasoning_format: Literal["separated", "tagged"] = "tagged",
) -> Generator[NodeEvent | LLMStructuredOutput, None, None]:
model_schema = model_instance.model_type_instance.get_model_schema(
node_data_model.name, model_instance.credentials
@ -374,6 +397,7 @@ class LLMNode(BaseNode):
file_saver=file_saver,
file_outputs=file_outputs,
node_id=node_id,
reasoning_format=reasoning_format,
)
@staticmethod
@ -383,6 +407,7 @@ class LLMNode(BaseNode):
file_saver: LLMFileSaver,
file_outputs: list["File"],
node_id: str,
reasoning_format: Literal["separated", "tagged"] = "tagged",
) -> Generator[NodeEvent | LLMStructuredOutput, None, None]:
# For blocking mode
if isinstance(invoke_result, LLMResult):
@ -390,6 +415,7 @@ class LLMNode(BaseNode):
invoke_result=invoke_result,
saver=file_saver,
file_outputs=file_outputs,
reasoning_format=reasoning_format,
)
yield event
return
@ -430,13 +456,66 @@ class LLMNode(BaseNode):
except OutputParserError as e:
raise LLMNodeError(f"Failed to parse structured output: {e}")
yield ModelInvokeCompletedEvent(text=full_text_buffer.getvalue(), usage=usage, finish_reason=finish_reason)
# Extract reasoning content from <think> tags in the main text
full_text = full_text_buffer.getvalue()
if reasoning_format == "tagged":
# Keep <think> tags in text for backward compatibility
clean_text = full_text
reasoning_content = ""
else:
# Extract clean text and reasoning from <think> tags
clean_text, reasoning_content = LLMNode._split_reasoning(full_text, reasoning_format)
yield ModelInvokeCompletedEvent(
# Use clean_text for separated mode, full_text for tagged mode
text=clean_text if reasoning_format == "separated" else full_text,
usage=usage,
finish_reason=finish_reason,
# Reasoning content for workflow variables and downstream nodes
reasoning_content=reasoning_content,
)
@staticmethod
def _image_file_to_markdown(file: "File", /):
text_chunk = f"![]({file.generate_url()})"
return text_chunk
@classmethod
def _split_reasoning(
cls, text: str, reasoning_format: Literal["separated", "tagged"] = "tagged"
) -> tuple[str, str]:
"""
Split reasoning content from text based on reasoning_format strategy.
Args:
text: Full text that may contain <think> blocks
reasoning_format: Strategy for handling reasoning content
- "separated": Remove <think> tags and return clean text + reasoning_content field
- "tagged": Keep <think> tags in text, return empty reasoning_content
Returns:
tuple of (clean_text, reasoning_content)
"""
if reasoning_format == "tagged":
return text, ""
# Find all <think>...</think> blocks (case-insensitive)
matches = cls._THINK_PATTERN.findall(text)
# Extract reasoning content from all <think> blocks
reasoning_content = "\n".join(match.strip() for match in matches) if matches else ""
# Remove all <think>...</think> blocks from original text
clean_text = cls._THINK_PATTERN.sub("", text)
# Clean up extra whitespace
clean_text = re.sub(r"\n\s*\n", "\n\n", clean_text).strip()
# Separated mode: always return clean text and reasoning_content
return clean_text, reasoning_content or ""
def _transform_chat_messages(
self, messages: Sequence[LLMNodeChatModelMessage] | LLMNodeCompletionModelPromptTemplate, /
) -> Sequence[LLMNodeChatModelMessage] | LLMNodeCompletionModelPromptTemplate:
@ -964,6 +1043,7 @@ class LLMNode(BaseNode):
invoke_result: LLMResult,
saver: LLMFileSaver,
file_outputs: list["File"],
reasoning_format: Literal["separated", "tagged"] = "tagged",
) -> ModelInvokeCompletedEvent:
buffer = io.StringIO()
for text_part in LLMNode._save_multimodal_output_and_convert_result_to_markdown(
@ -973,10 +1053,24 @@ class LLMNode(BaseNode):
):
buffer.write(text_part)
# Extract reasoning content from <think> tags in the main text
full_text = buffer.getvalue()
if reasoning_format == "tagged":
# Keep <think> tags in text for backward compatibility
clean_text = full_text
reasoning_content = ""
else:
# Extract clean text and reasoning from <think> tags
clean_text, reasoning_content = LLMNode._split_reasoning(full_text, reasoning_format)
return ModelInvokeCompletedEvent(
text=buffer.getvalue(),
# Use clean_text for separated mode, full_text for tagged mode
text=clean_text if reasoning_format == "separated" else full_text,
usage=invoke_result.usage,
finish_reason=None,
# Reasoning content for workflow variables and downstream nodes
reasoning_content=reasoning_content,
)
@staticmethod

View File

@ -69,6 +69,7 @@ def llm_node_data() -> LLMNodeData:
detail=ImagePromptMessageContent.DETAIL.HIGH,
),
),
reasoning_format="tagged",
)
@ -689,3 +690,66 @@ class TestSaveMultimodalOutputAndConvertResultToMarkdown:
assert list(gen) == []
mock_file_saver.save_binary_string.assert_not_called()
mock_file_saver.save_remote_url.assert_not_called()
class TestReasoningFormat:
"""Test cases for reasoning_format functionality"""
def test_split_reasoning_separated_mode(self):
"""Test separated mode: tags are removed and content is extracted"""
text_with_think = """
<think>I need to explain what Dify is. It's an open source AI platform.
</think>Dify is an open source AI platform.
"""
clean_text, reasoning_content = LLMNode._split_reasoning(text_with_think, "separated")
assert clean_text == "Dify is an open source AI platform."
assert reasoning_content == "I need to explain what Dify is. It's an open source AI platform."
def test_split_reasoning_tagged_mode(self):
"""Test tagged mode: original text is preserved"""
text_with_think = """
<think>I need to explain what Dify is. It's an open source AI platform.
</think>Dify is an open source AI platform.
"""
clean_text, reasoning_content = LLMNode._split_reasoning(text_with_think, "tagged")
# Original text unchanged
assert clean_text == text_with_think
# Empty reasoning content in tagged mode
assert reasoning_content == ""
def test_split_reasoning_no_think_blocks(self):
"""Test behavior when no <think> tags are present"""
text_without_think = "This is a simple answer without any thinking blocks."
clean_text, reasoning_content = LLMNode._split_reasoning(text_without_think, "separated")
assert clean_text == text_without_think
assert reasoning_content == ""
def test_reasoning_format_default_value(self):
"""Test that reasoning_format defaults to 'tagged' for backward compatibility"""
node_data = LLMNodeData(
title="Test LLM",
model=ModelConfig(provider="openai", name="gpt-3.5-turbo", mode="chat", completion_params={}),
prompt_template=[],
context=ContextConfig(enabled=False),
)
assert node_data.reasoning_format == "tagged"
text_with_think = """
<think>I need to explain what Dify is. It's an open source AI platform.
</think>Dify is an open source AI platform.
"""
clean_text, reasoning_content = LLMNode._split_reasoning(text_with_think, node_data.reasoning_format)
assert clean_text == text_with_think
assert reasoning_content == ""

View File

@ -479,6 +479,10 @@ export const LLM_OUTPUT_STRUCT: Var[] = [
variable: 'text',
type: VarType.string,
},
{
variable: 'reasoning_content',
type: VarType.string,
},
{
variable: 'usage',
type: VarType.object,

View File

@ -0,0 +1,40 @@
import type { FC } from 'react'
import React from 'react'
import { useTranslation } from 'react-i18next'
import Field from '@/app/components/workflow/nodes/_base/components/field'
import Switch from '@/app/components/base/switch'
type ReasoningFormatConfigProps = {
value?: 'tagged' | 'separated'
onChange: (value: 'tagged' | 'separated') => void
readonly?: boolean
}
const ReasoningFormatConfig: FC<ReasoningFormatConfigProps> = ({
value = 'tagged',
onChange,
readonly = false,
}) => {
const { t } = useTranslation()
return (
<Field
title={t('workflow.nodes.llm.reasoningFormat.title')}
tooltip={t('workflow.nodes.llm.reasoningFormat.tooltip')}
operations={
// ON = separated, OFF = tagged
<Switch
defaultValue={value === 'separated'}
onChange={enabled => onChange(enabled ? 'separated' : 'tagged')}
size='md'
disabled={readonly}
key={value}
/>
}
>
<div />
</Field>
)
}
export default ReasoningFormatConfig

View File

@ -17,6 +17,7 @@ import type { NodePanelProps } from '@/app/components/workflow/types'
import Tooltip from '@/app/components/base/tooltip'
import Editor from '@/app/components/workflow/nodes/_base/components/prompt/editor'
import StructureOutput from './components/structure-output'
import ReasoningFormatConfig from './components/reasoning-format-config'
import Switch from '@/app/components/base/switch'
import { RiAlertFill, RiQuestionLine } from '@remixicon/react'
import { fetchAndMergeValidCompletionParams } from '@/utils/completion-params'
@ -61,6 +62,7 @@ const Panel: FC<NodePanelProps<LLMNodeType>> = ({
handleStructureOutputEnableChange,
handleStructureOutputChange,
filterJinja2InputVar,
handleReasoningFormatChange,
} = useConfig(id, data)
const model = inputs.model
@ -239,6 +241,14 @@ const Panel: FC<NodePanelProps<LLMNodeType>> = ({
config={inputs.vision?.configs}
onConfigChange={handleVisionResolutionChange}
/>
{/* Reasoning Format */}
<ReasoningFormatConfig
// Default to tagged for backward compatibility
value={inputs.reasoning_format || 'tagged'}
onChange={handleReasoningFormatChange}
readonly={readOnly}
/>
</div>
<Split />
<OutputVars

View File

@ -17,6 +17,7 @@ export type LLMNodeType = CommonNodeType & {
}
structured_output_enabled?: boolean
structured_output?: StructuredOutput
reasoning_format?: 'tagged' | 'separated'
}
export enum Type {

View File

@ -315,6 +315,14 @@ const useConfig = (id: string, payload: LLMNodeType) => {
return [VarType.arrayObject, VarType.array, VarType.number, VarType.string, VarType.secret, VarType.arrayString, VarType.arrayNumber, VarType.file, VarType.arrayFile].includes(varPayload.type)
}, [])
// reasoning format
const handleReasoningFormatChange = useCallback((reasoningFormat: 'tagged' | 'separated') => {
const newInputs = produce(inputs, (draft) => {
draft.reasoning_format = reasoningFormat
})
setInputs(newInputs)
}, [inputs, setInputs])
const {
availableVars,
availableNodesWithParent,
@ -355,6 +363,7 @@ const useConfig = (id: string, payload: LLMNodeType) => {
setStructuredOutputCollapsed,
handleStructureOutputEnableChange,
filterJinja2InputVar,
handleReasoningFormatChange,
}
}

View File

@ -470,6 +470,12 @@ const translation = {
instruction: 'Anleitung',
regenerate: 'Regenerieren',
},
reasoningFormat: {
tooltip: 'Inhalte aus Denk-Tags extrahieren und im Feld reasoning_content speichern.',
separated: 'Separate Denk tags',
title: 'Aktivieren Sie die Trennung von Argumentations-Tags',
tagged: 'Behalte die Denk-Tags',
},
},
knowledgeRetrieval: {
queryVariable: 'Abfragevariable',

View File

@ -449,6 +449,12 @@ const translation = {
variable: 'Variable',
},
sysQueryInUser: 'sys.query in user message is required',
reasoningFormat: {
title: 'Enable reasoning tag separation',
tagged: 'Keep think tags',
separated: 'Separate think tags',
tooltip: 'Extract content from think tags and store it in the reasoning_content field.',
},
jsonSchema: {
title: 'Structured Output Schema',
instruction: 'Instruction',

View File

@ -470,6 +470,12 @@ const translation = {
import: 'Importar desde JSON',
resetDefaults: 'Restablecer',
},
reasoningFormat: {
tagged: 'Mantén las etiquetas de pensamiento',
separated: 'Separar etiquetas de pensamiento',
title: 'Habilitar la separación de etiquetas de razonamiento',
tooltip: 'Extraer contenido de las etiquetas de pensamiento y almacenarlo en el campo reasoning_content.',
},
},
knowledgeRetrieval: {
queryVariable: 'Variable de consulta',

View File

@ -470,6 +470,12 @@ const translation = {
fieldNamePlaceholder: 'نام میدان',
generationTip: 'شما می‌توانید از زبان طبیعی برای ایجاد سریع یک طرح‌واره JSON استفاده کنید.',
},
reasoningFormat: {
separated: 'تگ‌های تفکر جداگانه',
title: 'فعال‌سازی جداسازی برچسب‌های استدلال',
tagged: 'به فکر برچسب‌ها باشید',
tooltip: 'محتوا را از تگ‌های تفکر استخراج کرده و در فیلد reasoning_content ذخیره کنید.',
},
},
knowledgeRetrieval: {
queryVariable: 'متغیر جستجو',

View File

@ -470,6 +470,12 @@ const translation = {
generateJsonSchema: 'Générer un schéma JSON',
resultTip: 'Voici le résultat généré. Si vous n\'êtes pas satisfait, vous pouvez revenir en arrière et modifier votre demande.',
},
reasoningFormat: {
title: 'Activer la séparation des balises de raisonnement',
tagged: 'Gardez les étiquettes de pensée',
separated: 'Séparer les balises de réflexion',
tooltip: 'Extraire le contenu des balises think et le stocker dans le champ reasoning_content.',
},
},
knowledgeRetrieval: {
queryVariable: 'Variable de requête',

View File

@ -483,6 +483,12 @@ const translation = {
required: 'आवश्यक',
addChildField: 'बच्चे का क्षेत्र जोड़ें',
},
reasoningFormat: {
title: 'कारण संबंध टैग विभाजन सक्षम करें',
separated: 'अलग सोच टैग',
tagged: 'टैग्स के बारे में सोचते रहें',
tooltip: 'थिंक टैग से सामग्री निकाले और इसे reasoning_content क्षेत्र में संग्रहित करें।',
},
},
knowledgeRetrieval: {
queryVariable: 'प्रश्न वेरिएबल',

View File

@ -487,6 +487,12 @@ const translation = {
generating: 'Generazione dello schema JSON...',
generatedResult: 'Risultato generato',
},
reasoningFormat: {
title: 'Abilita la separazione dei tag di ragionamento',
tagged: 'Continua a pensare ai tag',
separated: 'Tag di pensiero separati',
tooltip: 'Estrai il contenuto dai tag think e conservalo nel campo reasoning_content.',
},
},
knowledgeRetrieval: {
queryVariable: 'Variabile Query',

View File

@ -477,6 +477,12 @@ const translation = {
saveSchema: '編集中のフィールドを確定してから保存してください。',
},
},
reasoningFormat: {
tagged: 'タグを考え続けてください',
separated: '思考タグを分ける',
title: '推論タグの分離を有効にする',
tooltip: 'thinkタグから内容を抽出し、それをreasoning_contentフィールドに保存します。',
},
},
knowledgeRetrieval: {
queryVariable: '検索変数',

View File

@ -497,6 +497,12 @@ const translation = {
doc: '구조화된 출력에 대해 더 알아보세요.',
import: 'JSON 에서 가져오기',
},
reasoningFormat: {
title: '추론 태그 분리 활성화',
separated: '추론 태그 분리',
tooltip: '추론 태그에서 내용을 추출하고 이를 reasoning_content 필드에 저장합니다',
tagged: '추론 태그 유지',
},
},
knowledgeRetrieval: {
queryVariable: '쿼리 변수',

View File

@ -470,6 +470,12 @@ const translation = {
back: 'Tył',
addField: 'Dodaj pole',
},
reasoningFormat: {
tooltip: 'Wyodrębnij treść z tagów think i przechowaj ją w polu reasoning_content.',
separated: 'Oddziel tagi myślenia',
tagged: 'Zachowaj myśl tagi',
title: 'Włącz separację tagów uzasadnienia',
},
},
knowledgeRetrieval: {
queryVariable: 'Zmienna zapytania',

View File

@ -470,6 +470,12 @@ const translation = {
apply: 'Aplicar',
required: 'obrigatório',
},
reasoningFormat: {
tagged: 'Mantenha as tags de pensamento',
title: 'Ativar separação de tags de raciocínio',
separated: 'Separe as tags de pensamento',
tooltip: 'Extraia o conteúdo das tags de pensamento e armazene-o no campo reasoning_content.',
},
},
knowledgeRetrieval: {
queryVariable: 'Variável de consulta',

View File

@ -470,6 +470,12 @@ const translation = {
back: 'Înapoi',
promptPlaceholder: 'Descrie schema ta JSON...',
},
reasoningFormat: {
tagged: 'Ține minte etichetele',
separated: 'Etichete de gândire separate',
title: 'Activează separarea etichetelor de raționare',
tooltip: 'Extrage conținutul din etichetele think și stochează-l în câmpul reasoning_content.',
},
},
knowledgeRetrieval: {
queryVariable: 'Variabilă de interogare',

View File

@ -470,6 +470,12 @@ const translation = {
generating: 'Генерация схемы JSON...',
promptTooltip: 'Преобразуйте текстовое описание в стандартизированную структуру JSON Schema.',
},
reasoningFormat: {
tagged: 'Продолжайте думать о тегах',
title: 'Включите разделение тегов на основе логики',
tooltip: 'Извлечь содержимое из тегов think и сохранить его в поле reasoning_content.',
separated: 'Отдельные теги для мышления',
},
},
knowledgeRetrieval: {
queryVariable: 'Переменная запроса',

View File

@ -477,6 +477,12 @@ const translation = {
context: 'kontekst',
addMessage: 'Dodaj sporočilo',
vision: 'vizija',
reasoningFormat: {
tagged: 'Ohranite oznake za razmišljanje',
title: 'Omogoči ločevanje oznak za razsojanje',
tooltip: 'Izvleći vsebino iz miselnih oznak in jo shraniti v polje reasoning_content.',
separated: 'Ločite oznake za razmišljanje',
},
},
knowledgeRetrieval: {
outputVars: {

View File

@ -470,6 +470,12 @@ const translation = {
stringValidations: 'การตรวจสอบสตริง',
required: 'จำเป็นต้องใช้',
},
reasoningFormat: {
tagged: 'รักษาความคิดเกี่ยวกับแท็ก',
separated: 'แยกแท็กความคิดเห็น',
tooltip: 'ดึงเนื้อหาจากแท็กคิดและเก็บไว้ในฟิลด์ reasoning_content.',
title: 'เปิดใช้งานการแยกแท็กการเหตุผล',
},
},
knowledgeRetrieval: {
queryVariable: 'ตัวแปรแบบสอบถาม',

View File

@ -470,6 +470,12 @@ const translation = {
addChildField: 'Çocuk Alanı Ekle',
resultTip: 'İşte oluşturulan sonuç. Eğer memnun değilseniz, geri dönüp isteminizi değiştirebilirsiniz.',
},
reasoningFormat: {
separated: 'Ayrı düşünce etiketleri',
title: 'Akıl yürütme etiket ayrımını etkinleştir',
tagged: 'Etiketleri düşünmeye devam et',
tooltip: 'Düşünce etiketlerinden içeriği çıkarın ve bunu reasoning_content alanında saklayın.',
},
},
knowledgeRetrieval: {
queryVariable: 'Sorgu Değişkeni',

View File

@ -470,6 +470,12 @@ const translation = {
title: 'Структурована схема виходу',
doc: 'Дізнайтеся більше про структурований вихід',
},
reasoningFormat: {
separated: 'Окремі теги для думок',
tagged: 'Продовжуйте думати про мітки',
title: 'Увімкніть розділення тегів для міркування',
tooltip: 'Витягніть вміст з тегів think і зберігайте його в полі reasoning_content.',
},
},
knowledgeRetrieval: {
queryVariable: 'Змінна запиту',

View File

@ -470,6 +470,12 @@ const translation = {
addChildField: 'Thêm trường trẻ em',
title: 'Sơ đồ đầu ra có cấu trúc',
},
reasoningFormat: {
tagged: 'Giữ lại thẻ suy nghĩ',
tooltip: 'Trích xuất nội dung từ các thẻ think và lưu nó vào trường reasoning_content.',
separated: 'Tách biệt các thẻ suy nghĩ',
title: 'Bật chế độ phân tách nhãn lý luận',
},
},
knowledgeRetrieval: {
queryVariable: 'Biến truy vấn',

View File

@ -477,6 +477,12 @@ const translation = {
saveSchema: '请先完成当前字段的编辑',
},
},
reasoningFormat: {
tooltip: '从think标签中提取内容并将其存储在reasoning_content字段中。',
title: '启用推理标签分离',
tagged: '保持思考标签',
separated: '分开思考标签',
},
},
knowledgeRetrieval: {
queryVariable: '查询变量',

View File

@ -470,6 +470,12 @@ const translation = {
required: '必需的',
resultTip: '這是生成的結果。如果您不滿意,可以回去修改您的提示。',
},
reasoningFormat: {
title: '啟用推理標籤分離',
tooltip: '從 think 標籤中提取內容並將其存儲在 reasoning_content 欄位中。',
tagged: '保持思考標籤',
separated: '分開思考標籤',
},
},
knowledgeRetrieval: {
queryVariable: '查詢變量',