fix: test

This commit is contained in:
Frederick2313072 2025-09-26 22:48:37 +08:00
commit ee0d181caa
3 changed files with 34 additions and 49 deletions

View File

@ -1,5 +1,3 @@
from typing import Optional
from pydantic import Field, PositiveInt
from pydantic_settings import BaseSettings
@ -9,17 +7,17 @@ class PineconeConfig(BaseSettings):
Configuration settings for Pinecone vector database
"""
PINECONE_API_KEY: Optional[str] = Field(
PINECONE_API_KEY: str | None = Field(
description="API key for authenticating with Pinecone service",
default=None,
)
PINECONE_ENVIRONMENT: Optional[str] = Field(
PINECONE_ENVIRONMENT: str | None = Field(
description="Pinecone environment (e.g., 'us-west1-gcp', 'us-east-1-aws')",
default=None,
)
PINECONE_INDEX_NAME: Optional[str] = Field(
PINECONE_INDEX_NAME: str | None = Field(
description="Default Pinecone index name",
default=None,
)
@ -37,4 +35,4 @@ class PineconeConfig(BaseSettings):
PINECONE_METRIC: str = Field(
description="Distance metric for Pinecone index (cosine, euclidean, dotproduct)",
default="cosine",
)
)

View File

@ -1,6 +1,6 @@
import json
import time
from typing import Any, Optional
from typing import Any
from pinecone import Pinecone, ServerlessSpec
from pydantic import BaseModel
@ -19,9 +19,10 @@ from models.dataset import Dataset, DatasetCollectionBinding
class PineconeConfig(BaseModel):
"""Pinecone configuration class"""
api_key: str
environment: str
index_name: Optional[str] = None
index_name: str | None = None
timeout: float = 30
batch_size: int = 100
metric: str = "cosine"
@ -49,14 +50,15 @@ class PineconeVector(BaseVector):
# Normalize index name: lowercase, only a-z0-9- and <=45 chars
import hashlib
import re
base_name = collection_name.lower()
base_name = re.sub(r'[^a-z0-9-]+', '-', base_name) # replace invalid chars with '-'
base_name = re.sub(r'-+', '-', base_name).strip('-')
base_name = re.sub(r"[^a-z0-9-]+", "-", base_name) # replace invalid chars with '-'
base_name = re.sub(r"-+", "-", base_name).strip("-")
# Use longer secure suffix to reduce collision risk
suffix_len = 24 # 24 hex digits (96-bit entropy)
if len(base_name) > 45:
hash_suffix = hashlib.sha256(base_name.encode()).hexdigest()[:suffix_len]
truncated_name = base_name[:45 - (suffix_len + 1)].rstrip('-')
truncated_name = base_name[: 45 - (suffix_len + 1)].rstrip("-")
self._index_name = f"{truncated_name}-{hash_suffix}"
else:
self._index_name = base_name
@ -81,14 +83,11 @@ class PineconeVector(BaseVector):
else:
raise ValueError("Index not initialized. Please ingest documents to create index.")
except Exception:
raise
raise
def to_index_struct(self) -> dict:
"""Generate index structure dictionary"""
return {
"type": self.get_type(),
"vector_store": {"class_prefix": self._collection_name}
}
return {"type": self.get_type(), "vector_store": {"class_prefix": self._collection_name}}
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
"""Create vector index"""
@ -122,14 +121,11 @@ class PineconeVector(BaseVector):
name=self._index_name,
dimension=dimension,
metric=self._client_config.metric,
spec=ServerlessSpec(
cloud='aws',
region=self._client_config.environment
)
spec=ServerlessSpec(cloud="aws", region=self._client_config.environment),
)
# Wait for index creation to complete
while not self._pc.describe_index(self._index_name).status['ready']:
while not self._pc.describe_index(self._index_name).status["ready"]:
time.sleep(1)
else:
# Get index instance
@ -137,7 +133,7 @@ class PineconeVector(BaseVector):
# Set cache
redis_client.set(index_exist_cache_key, 1, ex=3600)
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
"""Batch add document vectors"""
if not self._index:
@ -152,9 +148,9 @@ class PineconeVector(BaseVector):
# Batch processing
total_batches = (total_docs + batch_size - 1) // batch_size # Ceiling division
for batch_idx, i in enumerate(range(0, len(documents), batch_size), 1):
batch_documents = documents[i:i + batch_size]
batch_embeddings = embeddings[i:i + batch_size]
batch_uuids = uuids[i:i + batch_size]
batch_documents = documents[i : i + batch_size]
batch_embeddings = embeddings[i : i + batch_size]
batch_uuids = uuids[i : i + batch_size]
batch_size_actual = len(batch_documents)
# Build Pinecone vector data (metadata must be primitives or list[str])
@ -164,12 +160,8 @@ class PineconeVector(BaseVector):
safe_meta: dict[str, Any] = {}
# lift common identifiers to top-level fields for filtering
for k, v in raw_meta.items():
if (
isinstance(v, (str, int, float, bool))
or (
isinstance(v, list)
and all(isinstance(x, str) for x in v)
)
if isinstance(v, (str, int, float, bool)) or (
isinstance(v, list) and all(isinstance(x, str) for x in v)
):
safe_meta[k] = v
else:
@ -180,11 +172,7 @@ class PineconeVector(BaseVector):
# group id as string
safe_meta[Field.GROUP_KEY.value] = str(self._group_id)
vectors_to_upsert.append({
"id": doc_id,
"values": embedding,
"metadata": safe_meta
})
vectors_to_upsert.append({"id": doc_id, "values": embedding, "metadata": safe_meta})
# Batch insert to Pinecone
try:
@ -194,7 +182,7 @@ class PineconeVector(BaseVector):
raise
return added_ids
def search_by_vector(self, query_vector: list[float], **kwargs) -> list[Document]:
"""Vector similarity search"""
# Lazily attach to an existing index if needed
@ -244,11 +232,11 @@ class PineconeVector(BaseVector):
docs.sort(key=lambda x: x.metadata.get("score", 0), reverse=True)
return docs
def search_by_full_text(self, query: str, **kwargs) -> list[Document]:
"""Full-text search - Pinecone does not natively support it, returns empty list"""
return []
def delete_by_metadata_field(self, key: str, value: str):
"""Delete by metadata field"""
self._ensure_index_initialized()
@ -257,7 +245,7 @@ class PineconeVector(BaseVector):
# Build filter conditions
filter_dict = {
Field.GROUP_KEY.value: {"$eq": self._group_id},
f"{Field.METADATA_KEY.value}.{key}": {"$eq": value}
f"{Field.METADATA_KEY.value}.{key}": {"$eq": value},
}
# Pinecone delete operation
@ -267,7 +255,7 @@ class PineconeVector(BaseVector):
except Exception as e:
# Ignore delete errors
pass
def delete_by_ids(self, ids: list[str]) -> None:
"""Batch delete by ID list"""
self._ensure_index_initialized()
@ -279,7 +267,7 @@ class PineconeVector(BaseVector):
index.delete(ids=ids)
except Exception as e:
raise
def delete(self) -> None:
"""Delete all vector data for the entire dataset"""
self._ensure_index_initialized()
@ -292,7 +280,7 @@ class PineconeVector(BaseVector):
index.delete(filter=filter_dict)
except Exception as e:
raise
def text_exists(self, id: str) -> bool:
"""Check if document exists"""
try:
@ -313,10 +301,10 @@ class PineconeVector(BaseVector):
class PineconeVectorFactory(AbstractVectorFactory):
"""Pinecone vector database factory class"""
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> PineconeVector:
"""Create PineconeVector instance"""
# Determine index name
if dataset.collection_binding_id:
dataset_collection_binding = (
@ -335,7 +323,7 @@ class PineconeVectorFactory(AbstractVectorFactory):
else:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
# Set index structure
if not dataset.index_struct_dict:
dataset.index_struct = json.dumps(
@ -354,4 +342,4 @@ class PineconeVectorFactory(AbstractVectorFactory):
batch_size=dify_config.PINECONE_BATCH_SIZE,
metric=dify_config.PINECONE_METRIC,
),
)
)

View File

@ -24,5 +24,4 @@ class PineconeVectorTest(AbstractVectorTest):
def test_pinecone_vector():
PineconeVectorTest().run_all_tests()
PineconeVectorTest().run_all_tests()