Merge remote-tracking branch 'origin/main' into feat/tool-plugin-oauth

# Conflicts:
#	api/controllers/console/workspace/tool_providers.py
#	api/core/tools/entities/api_entities.py
#	api/core/tools/tool_manager.py
#	api/core/tools/utils/configuration.py
#	api/services/tools/tools_transform_service.py
This commit is contained in:
Harry 2025-07-11 13:48:41 +08:00
commit f3bbab0eed
463 changed files with 22715 additions and 2708 deletions

View File

@ -17,6 +17,11 @@ APP_WEB_URL=http://127.0.0.1:3000
# Files URL
FILES_URL=http://127.0.0.1:5001
# INTERNAL_FILES_URL is used for plugin daemon communication within Docker network.
# Set this to the internal Docker service URL for proper plugin file access.
# Example: INTERNAL_FILES_URL=http://api:5001
INTERNAL_FILES_URL=http://127.0.0.1:5001
# The time in seconds after the signature is rejected
FILES_ACCESS_TIMEOUT=300

View File

@ -237,6 +237,13 @@ class FileAccessConfig(BaseSettings):
default="",
)
INTERNAL_FILES_URL: str = Field(
description="Internal base URL for file access within Docker network,"
" used for plugin daemon and internal service communication."
" Falls back to FILES_URL if not specified.",
default="",
)
FILES_ACCESS_TIMEOUT: int = Field(
description="Expiration time in seconds for file access URLs",
default=300,

View File

@ -8,11 +8,6 @@ class PackagingInfo(PyProjectTomlConfig):
Packaging build information
"""
CURRENT_VERSION: str = Field(
description="Dify version",
default="1.5.0",
)
COMMIT_SHA: str = Field(
description="SHA-1 checksum of the git commit used to build the app",
default="",

View File

@ -56,6 +56,7 @@ from .app import (
conversation,
conversation_variables,
generator,
mcp_server,
message,
model_config,
ops_trace,

View File

@ -90,23 +90,11 @@ class ChatMessageTextApi(Resource):
message_id = args.get("message_id", None)
text = args.get("text", None)
if (
app_model.mode in {AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value}
and app_model.workflow
and app_model.workflow.features_dict
):
text_to_speech = app_model.workflow.features_dict.get("text_to_speech")
if text_to_speech is None:
raise ValueError("TTS is not enabled")
voice = args.get("voice") or text_to_speech.get("voice")
else:
try:
if app_model.app_model_config is None:
raise ValueError("AppModelConfig not found")
voice = args.get("voice") or app_model.app_model_config.text_to_speech_dict.get("voice")
except Exception:
voice = None
response = AudioService.transcript_tts(app_model=app_model, text=text, message_id=message_id, voice=voice)
voice = args.get("voice", None)
response = AudioService.transcript_tts(
app_model=app_model, text=text, voice=voice, message_id=message_id, is_draft=True
)
return response
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")

View File

@ -0,0 +1,106 @@
import json
from enum import StrEnum
from flask_login import current_user
from flask_restful import Resource, marshal_with, reqparse
from werkzeug.exceptions import NotFound
from controllers.console import api
from controllers.console.app.wraps import get_app_model
from controllers.console.wraps import account_initialization_required, setup_required
from extensions.ext_database import db
from fields.app_fields import app_server_fields
from libs.login import login_required
from models.model import AppMCPServer
class AppMCPServerStatus(StrEnum):
ACTIVE = "active"
INACTIVE = "inactive"
class AppMCPServerController(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
@marshal_with(app_server_fields)
def get(self, app_model):
server = db.session.query(AppMCPServer).filter(AppMCPServer.app_id == app_model.id).first()
return server
@setup_required
@login_required
@account_initialization_required
@get_app_model
@marshal_with(app_server_fields)
def post(self, app_model):
# The role of the current user in the ta table must be editor, admin, or owner
if not current_user.is_editor:
raise NotFound()
parser = reqparse.RequestParser()
parser.add_argument("description", type=str, required=True, location="json")
parser.add_argument("parameters", type=dict, required=True, location="json")
args = parser.parse_args()
server = AppMCPServer(
name=app_model.name,
description=args["description"],
parameters=json.dumps(args["parameters"], ensure_ascii=False),
status=AppMCPServerStatus.ACTIVE,
app_id=app_model.id,
tenant_id=current_user.current_tenant_id,
server_code=AppMCPServer.generate_server_code(16),
)
db.session.add(server)
db.session.commit()
return server
@setup_required
@login_required
@account_initialization_required
@get_app_model
@marshal_with(app_server_fields)
def put(self, app_model):
if not current_user.is_editor:
raise NotFound()
parser = reqparse.RequestParser()
parser.add_argument("id", type=str, required=True, location="json")
parser.add_argument("description", type=str, required=True, location="json")
parser.add_argument("parameters", type=dict, required=True, location="json")
parser.add_argument("status", type=str, required=False, location="json")
args = parser.parse_args()
server = db.session.query(AppMCPServer).filter(AppMCPServer.id == args["id"]).first()
if not server:
raise NotFound()
server.description = args["description"]
server.parameters = json.dumps(args["parameters"], ensure_ascii=False)
if args["status"]:
if args["status"] not in [status.value for status in AppMCPServerStatus]:
raise ValueError("Invalid status")
server.status = args["status"]
db.session.commit()
return server
class AppMCPServerRefreshController(Resource):
@setup_required
@login_required
@account_initialization_required
@marshal_with(app_server_fields)
def get(self, server_id):
if not current_user.is_editor:
raise NotFound()
server = (
db.session.query(AppMCPServer)
.filter(AppMCPServer.id == server_id and AppMCPServer.tenant_id == current_user.current_tenant_id)
.first()
)
if not server:
raise NotFound()
server.server_code = AppMCPServer.generate_server_code(16)
db.session.commit()
return server
api.add_resource(AppMCPServerController, "/apps/<uuid:app_id>/server")
api.add_resource(AppMCPServerRefreshController, "/apps/<uuid:server_id>/server/refresh")

View File

@ -18,7 +18,6 @@ from controllers.console.app.error import (
from controllers.console.explore.wraps import InstalledAppResource
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from models.model import AppMode
from services.audio_service import AudioService
from services.errors.audio import (
AudioTooLargeServiceError,
@ -79,19 +78,9 @@ class ChatTextApi(InstalledAppResource):
message_id = args.get("message_id", None)
text = args.get("text", None)
if (
app_model.mode in {AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value}
and app_model.workflow
and app_model.workflow.features_dict
):
text_to_speech = app_model.workflow.features_dict.get("text_to_speech")
voice = args.get("voice") or text_to_speech.get("voice")
else:
try:
voice = args.get("voice") or app_model.app_model_config.text_to_speech_dict.get("voice")
except Exception:
voice = None
response = AudioService.transcript_tts(app_model=app_model, message_id=message_id, voice=voice, text=text)
voice = args.get("voice", None)
response = AudioService.transcript_tts(app_model=app_model, text=text, voice=voice, message_id=message_id)
return response
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")

View File

@ -1,5 +1,7 @@
import io
from urllib.parse import urlparse
from flask import redirect, send_file
from flask import make_response, redirect, request, send_file
from flask_login import current_user
from flask_restful import (
@ -16,6 +18,11 @@ from controllers.console.wraps import (
enterprise_license_required,
setup_required,
)
from controllers.console.wraps import account_initialization_required, enterprise_license_required, setup_required
from core.mcp.auth.auth_flow import auth, handle_callback
from core.mcp.auth.auth_provider import OAuthClientProvider
from core.mcp.error import MCPAuthError, MCPError
from core.mcp.mcp_client import MCPClient
from core.model_runtime.utils.encoders import jsonable_encoder
from core.plugin.entities.plugin import ToolProviderID
from core.plugin.impl.oauth import OAuthHandler
@ -26,11 +33,24 @@ from libs.login import login_required
from services.plugin.oauth_service import OAuthProxyService
from services.tools.api_tools_manage_service import ApiToolManageService
from services.tools.builtin_tools_manage_service import BuiltinToolManageService
from services.tools.mcp_tools_mange_service import MCPToolManageService
from services.tools.tool_labels_service import ToolLabelsService
from services.tools.tools_manage_service import ToolCommonService
from services.tools.tools_transform_service import ToolTransformService
from services.tools.workflow_tools_manage_service import WorkflowToolManageService
def is_valid_url(url: str) -> bool:
if not url:
return False
try:
parsed = urlparse(url)
return all([parsed.scheme, parsed.netloc]) and parsed.scheme in ["http", "https"]
except Exception:
return False
class ToolProviderListApi(Resource):
@setup_required
@login_required
@ -45,7 +65,7 @@ class ToolProviderListApi(Resource):
req.add_argument(
"type",
type=str,
choices=["builtin", "model", "api", "workflow"],
choices=["builtin", "model", "api", "workflow", "mcp"],
required=False,
nullable=True,
location="args",
@ -831,6 +851,166 @@ api.add_resource(ToolOAuthCallback, "/oauth/plugin/<path:provider>/tool/callback
api.add_resource(ToolOAuthCustomClient, "/workspaces/current/tool-provider/builtin/<path:provider>/oauth/custom-client")
class ToolProviderMCPApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("server_url", type=str, required=True, nullable=False, location="json")
parser.add_argument("name", type=str, required=True, nullable=False, location="json")
parser.add_argument("icon", type=str, required=True, nullable=False, location="json")
parser.add_argument("icon_type", type=str, required=True, nullable=False, location="json")
parser.add_argument("icon_background", type=str, required=False, nullable=True, location="json", default="")
parser.add_argument("server_identifier", type=str, required=True, nullable=False, location="json")
args = parser.parse_args()
user = current_user
if not is_valid_url(args["server_url"]):
raise ValueError("Server URL is not valid.")
return jsonable_encoder(
MCPToolManageService.create_mcp_provider(
tenant_id=user.current_tenant_id,
server_url=args["server_url"],
name=args["name"],
icon=args["icon"],
icon_type=args["icon_type"],
icon_background=args["icon_background"],
user_id=user.id,
server_identifier=args["server_identifier"],
)
)
@setup_required
@login_required
@account_initialization_required
def put(self):
parser = reqparse.RequestParser()
parser.add_argument("server_url", type=str, required=True, nullable=False, location="json")
parser.add_argument("name", type=str, required=True, nullable=False, location="json")
parser.add_argument("icon", type=str, required=True, nullable=False, location="json")
parser.add_argument("icon_type", type=str, required=True, nullable=False, location="json")
parser.add_argument("icon_background", type=str, required=False, nullable=True, location="json")
parser.add_argument("provider_id", type=str, required=True, nullable=False, location="json")
parser.add_argument("server_identifier", type=str, required=True, nullable=False, location="json")
args = parser.parse_args()
if not is_valid_url(args["server_url"]):
if "[__HIDDEN__]" in args["server_url"]:
pass
else:
raise ValueError("Server URL is not valid.")
MCPToolManageService.update_mcp_provider(
tenant_id=current_user.current_tenant_id,
provider_id=args["provider_id"],
server_url=args["server_url"],
name=args["name"],
icon=args["icon"],
icon_type=args["icon_type"],
icon_background=args["icon_background"],
server_identifier=args["server_identifier"],
)
return {"result": "success"}
@setup_required
@login_required
@account_initialization_required
def delete(self):
parser = reqparse.RequestParser()
parser.add_argument("provider_id", type=str, required=True, nullable=False, location="json")
args = parser.parse_args()
MCPToolManageService.delete_mcp_tool(tenant_id=current_user.current_tenant_id, provider_id=args["provider_id"])
return {"result": "success"}
class ToolMCPAuthApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("provider_id", type=str, required=True, nullable=False, location="json")
parser.add_argument("authorization_code", type=str, required=False, nullable=True, location="json")
args = parser.parse_args()
provider_id = args["provider_id"]
tenant_id = current_user.current_tenant_id
provider = MCPToolManageService.get_mcp_provider_by_provider_id(provider_id, tenant_id)
if not provider:
raise ValueError("provider not found")
try:
with MCPClient(
provider.decrypted_server_url,
provider_id,
tenant_id,
authed=False,
authorization_code=args["authorization_code"],
for_list=True,
):
MCPToolManageService.update_mcp_provider_credentials(
mcp_provider=provider,
credentials=provider.decrypted_credentials,
authed=True,
)
return {"result": "success"}
except MCPAuthError:
auth_provider = OAuthClientProvider(provider_id, tenant_id, for_list=True)
return auth(auth_provider, provider.decrypted_server_url, args["authorization_code"])
except MCPError as e:
MCPToolManageService.update_mcp_provider_credentials(
mcp_provider=provider,
credentials={},
authed=False,
)
raise ValueError(f"Failed to connect to MCP server: {e}") from e
class ToolMCPDetailApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, provider_id):
user = current_user
provider = MCPToolManageService.get_mcp_provider_by_provider_id(provider_id, user.current_tenant_id)
return jsonable_encoder(ToolTransformService.mcp_provider_to_user_provider(provider, for_list=True))
class ToolMCPListAllApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
user = current_user
tenant_id = user.current_tenant_id
tools = MCPToolManageService.retrieve_mcp_tools(tenant_id=tenant_id)
return [tool.to_dict() for tool in tools]
class ToolMCPUpdateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, provider_id):
tenant_id = current_user.current_tenant_id
tools = MCPToolManageService.list_mcp_tool_from_remote_server(
tenant_id=tenant_id,
provider_id=provider_id,
)
return jsonable_encoder(tools)
class ToolMCPCallbackApi(Resource):
def get(self):
parser = reqparse.RequestParser()
parser.add_argument("code", type=str, required=True, nullable=False, location="args")
parser.add_argument("state", type=str, required=True, nullable=False, location="args")
args = parser.parse_args()
state_key = args["state"]
authorization_code = args["code"]
handle_callback(state_key, authorization_code)
return redirect(f"{dify_config.CONSOLE_WEB_URL}/oauth-callback")
# tool provider
api.add_resource(ToolProviderListApi, "/workspaces/current/tool-providers")
@ -876,8 +1056,15 @@ api.add_resource(ToolWorkflowProviderDeleteApi, "/workspaces/current/tool-provid
api.add_resource(ToolWorkflowProviderGetApi, "/workspaces/current/tool-provider/workflow/get")
api.add_resource(ToolWorkflowProviderListToolApi, "/workspaces/current/tool-provider/workflow/tools")
# mcp tool provider
api.add_resource(ToolMCPDetailApi, "/workspaces/current/tool-provider/mcp/tools/<path:provider_id>")
api.add_resource(ToolProviderMCPApi, "/workspaces/current/tool-provider/mcp")
api.add_resource(ToolMCPUpdateApi, "/workspaces/current/tool-provider/mcp/update/<path:provider_id>")
api.add_resource(ToolMCPAuthApi, "/workspaces/current/tool-provider/mcp/auth")
api.add_resource(ToolMCPCallbackApi, "/mcp/oauth/callback")
api.add_resource(ToolBuiltinListApi, "/workspaces/current/tools/builtin")
api.add_resource(ToolApiListApi, "/workspaces/current/tools/api")
api.add_resource(ToolMCPListAllApi, "/workspaces/current/tools/mcp")
api.add_resource(ToolWorkflowListApi, "/workspaces/current/tools/workflow")
api.add_resource(ToolLabelsApi, "/workspaces/current/tool-labels")

View File

@ -87,7 +87,5 @@ class PluginUploadFileApi(Resource):
except services.errors.file.UnsupportedFileTypeError:
raise UnsupportedFileTypeError()
return tool_file, 201
api.add_resource(PluginUploadFileApi, "/files/upload/for-plugin")

View File

@ -0,0 +1,8 @@
from flask import Blueprint
from libs.external_api import ExternalApi
bp = Blueprint("mcp", __name__, url_prefix="/mcp")
api = ExternalApi(bp)
from . import mcp

104
api/controllers/mcp/mcp.py Normal file
View File

@ -0,0 +1,104 @@
from flask_restful import Resource, reqparse
from pydantic import ValidationError
from controllers.console.app.mcp_server import AppMCPServerStatus
from controllers.mcp import api
from core.app.app_config.entities import VariableEntity
from core.mcp import types
from core.mcp.server.streamable_http import MCPServerStreamableHTTPRequestHandler
from core.mcp.types import ClientNotification, ClientRequest
from core.mcp.utils import create_mcp_error_response
from extensions.ext_database import db
from libs import helper
from models.model import App, AppMCPServer, AppMode
class MCPAppApi(Resource):
def post(self, server_code):
def int_or_str(value):
if isinstance(value, (int, str)):
return value
else:
return None
parser = reqparse.RequestParser()
parser.add_argument("jsonrpc", type=str, required=True, location="json")
parser.add_argument("method", type=str, required=True, location="json")
parser.add_argument("params", type=dict, required=False, location="json")
parser.add_argument("id", type=int_or_str, required=False, location="json")
args = parser.parse_args()
request_id = args.get("id")
server = db.session.query(AppMCPServer).filter(AppMCPServer.server_code == server_code).first()
if not server:
return helper.compact_generate_response(
create_mcp_error_response(request_id, types.INVALID_REQUEST, "Server Not Found")
)
if server.status != AppMCPServerStatus.ACTIVE:
return helper.compact_generate_response(
create_mcp_error_response(request_id, types.INVALID_REQUEST, "Server is not active")
)
app = db.session.query(App).filter(App.id == server.app_id).first()
if not app:
return helper.compact_generate_response(
create_mcp_error_response(request_id, types.INVALID_REQUEST, "App Not Found")
)
if app.mode in {AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value}:
workflow = app.workflow
if workflow is None:
return helper.compact_generate_response(
create_mcp_error_response(request_id, types.INVALID_REQUEST, "App is unavailable")
)
user_input_form = workflow.user_input_form(to_old_structure=True)
else:
app_model_config = app.app_model_config
if app_model_config is None:
return helper.compact_generate_response(
create_mcp_error_response(request_id, types.INVALID_REQUEST, "App is unavailable")
)
features_dict = app_model_config.to_dict()
user_input_form = features_dict.get("user_input_form", [])
converted_user_input_form: list[VariableEntity] = []
try:
for item in user_input_form:
variable_type = item.get("type", "") or list(item.keys())[0]
variable = item[variable_type]
converted_user_input_form.append(
VariableEntity(
type=variable_type,
variable=variable.get("variable"),
description=variable.get("description") or "",
label=variable.get("label"),
required=variable.get("required", False),
max_length=variable.get("max_length"),
options=variable.get("options") or [],
)
)
except ValidationError as e:
return helper.compact_generate_response(
create_mcp_error_response(request_id, types.INVALID_PARAMS, f"Invalid user_input_form: {str(e)}")
)
try:
request: ClientRequest | ClientNotification = ClientRequest.model_validate(args)
except ValidationError as e:
try:
notification = ClientNotification.model_validate(args)
request = notification
except ValidationError as e:
return helper.compact_generate_response(
create_mcp_error_response(request_id, types.INVALID_PARAMS, f"Invalid MCP request: {str(e)}")
)
mcp_server_handler = MCPServerStreamableHTTPRequestHandler(app, request, converted_user_input_form)
response = mcp_server_handler.handle()
return helper.compact_generate_response(response)
api.add_resource(MCPAppApi, "/server/<string:server_code>/mcp")

View File

@ -20,7 +20,7 @@ from controllers.service_api.app.error import (
from controllers.service_api.wraps import FetchUserArg, WhereisUserArg, validate_app_token
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from models.model import App, AppMode, EndUser
from models.model import App, EndUser
from services.audio_service import AudioService
from services.errors.audio import (
AudioTooLargeServiceError,
@ -78,20 +78,9 @@ class TextApi(Resource):
message_id = args.get("message_id", None)
text = args.get("text", None)
if (
app_model.mode in {AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value}
and app_model.workflow
and app_model.workflow.features_dict
):
text_to_speech = app_model.workflow.features_dict.get("text_to_speech", {})
voice = args.get("voice") or text_to_speech.get("voice")
else:
try:
voice = args.get("voice") or app_model.app_model_config.text_to_speech_dict.get("voice")
except Exception:
voice = None
voice = args.get("voice", None)
response = AudioService.transcript_tts(
app_model=app_model, message_id=message_id, end_user=end_user.external_user_id, voice=voice, text=text
app_model=app_model, text=text, voice=voice, end_user=end_user.external_user_id, message_id=message_id
)
return response

View File

@ -211,6 +211,9 @@ class DocumentAddByFileApi(DatasetApiResource):
if not dataset:
raise ValueError("Dataset does not exist.")
if dataset.provider == "external":
raise ValueError("External datasets are not supported.")
indexing_technique = args.get("indexing_technique") or dataset.indexing_technique
if not indexing_technique:
raise ValueError("indexing_technique is required.")
@ -301,6 +304,9 @@ class DocumentUpdateByFileApi(DatasetApiResource):
if not dataset:
raise ValueError("Dataset does not exist.")
if dataset.provider == "external":
raise ValueError("External datasets are not supported.")
# indexing_technique is already set in dataset since this is an update
args["indexing_technique"] = dataset.indexing_technique

View File

@ -19,7 +19,7 @@ from controllers.web.error import (
from controllers.web.wraps import WebApiResource
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from models.model import App, AppMode
from models.model import App
from services.audio_service import AudioService
from services.errors.audio import (
AudioTooLargeServiceError,
@ -77,21 +77,9 @@ class TextApi(WebApiResource):
message_id = args.get("message_id", None)
text = args.get("text", None)
if (
app_model.mode in {AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value}
and app_model.workflow
and app_model.workflow.features_dict
):
text_to_speech = app_model.workflow.features_dict.get("text_to_speech", {})
voice = args.get("voice") or text_to_speech.get("voice")
else:
try:
voice = args.get("voice") or app_model.app_model_config.text_to_speech_dict.get("voice")
except Exception:
voice = None
voice = args.get("voice", None)
response = AudioService.transcript_tts(
app_model=app_model, message_id=message_id, end_user=end_user.external_user_id, voice=voice, text=text
app_model=app_model, text=text, voice=voice, end_user=end_user.external_user_id, message_id=message_id
)
return response

View File

@ -161,10 +161,14 @@ class BaseAgentRunner(AppRunner):
if parameter.type == ToolParameter.ToolParameterType.SELECT:
enum = [option.value for option in parameter.options] if parameter.options else []
message_tool.parameters["properties"][parameter.name] = {
"type": parameter_type,
"description": parameter.llm_description or "",
}
message_tool.parameters["properties"][parameter.name] = (
{
"type": parameter_type,
"description": parameter.llm_description or "",
}
if parameter.input_schema is None
else parameter.input_schema
)
if len(enum) > 0:
message_tool.parameters["properties"][parameter.name]["enum"] = enum
@ -254,10 +258,14 @@ class BaseAgentRunner(AppRunner):
if parameter.type == ToolParameter.ToolParameterType.SELECT:
enum = [option.value for option in parameter.options] if parameter.options else []
prompt_tool.parameters["properties"][parameter.name] = {
"type": parameter_type,
"description": parameter.llm_description or "",
}
prompt_tool.parameters["properties"][parameter.name] = (
{
"type": parameter_type,
"description": parameter.llm_description or "",
}
if parameter.input_schema is None
else parameter.input_schema
)
if len(enum) > 0:
prompt_tool.parameters["properties"][parameter.name]["enum"] = enum

View File

@ -85,7 +85,7 @@ class AgentStrategyEntity(BaseModel):
description: I18nObject = Field(..., description="The description of the agent strategy")
output_schema: Optional[dict] = None
features: Optional[list[AgentFeature]] = None
meta_version: Optional[str] = None
# pydantic configs
model_config = ConfigDict(protected_namespaces=())

View File

@ -15,10 +15,12 @@ class PluginAgentStrategy(BaseAgentStrategy):
tenant_id: str
declaration: AgentStrategyEntity
meta_version: str | None = None
def __init__(self, tenant_id: str, declaration: AgentStrategyEntity):
def __init__(self, tenant_id: str, declaration: AgentStrategyEntity, meta_version: str | None):
self.tenant_id = tenant_id
self.declaration = declaration
self.meta_version = meta_version
def get_parameters(self) -> Sequence[AgentStrategyParameter]:
return self.declaration.parameters

View File

@ -19,6 +19,7 @@ from core.app.entities.task_entities import (
from core.errors.error import QuotaExceededError
from core.model_runtime.errors.invoke import InvokeAuthorizationError, InvokeError
from core.moderation.output_moderation import ModerationRule, OutputModeration
from models.enums import MessageStatus
from models.model import Message
logger = logging.getLogger(__name__)
@ -62,7 +63,7 @@ class BasedGenerateTaskPipeline:
return err
err_desc = self._error_to_desc(err)
message.status = "error"
message.status = MessageStatus.ERROR
message.error = err_desc
return err

View File

@ -21,6 +21,9 @@ class CommonParameterType(StrEnum):
DYNAMIC_SELECT = "dynamic-select"
# TOOL_SELECTOR = "tool-selector"
# MCP object and array type parameters
ARRAY = "array"
OBJECT = "object"
class AppSelectorScope(StrEnum):

View File

@ -21,7 +21,9 @@ def get_signed_file_url(upload_file_id: str) -> str:
def get_signed_file_url_for_plugin(filename: str, mimetype: str, tenant_id: str, user_id: str) -> str:
url = f"{dify_config.FILES_URL}/files/upload/for-plugin"
# Plugin access should use internal URL for Docker network communication
base_url = dify_config.INTERNAL_FILES_URL or dify_config.FILES_URL
url = f"{base_url}/files/upload/for-plugin"
if user_id is None:
user_id = "DEFAULT-USER"

View File

@ -51,7 +51,7 @@ class File(BaseModel):
# It should be set to `ToolFile.id` when `transfer_method` is `tool_file`.
related_id: Optional[str] = None
filename: Optional[str] = None
extension: Optional[str] = Field(default=None, description="File extension, should contains dot")
extension: Optional[str] = Field(default=None, description="File extension, should contain dot")
mime_type: Optional[str] = None
size: int = -1

View File

@ -1,67 +0,0 @@
import base64
import logging
import time
from typing import Optional
from configs import dify_config
from constants import IMAGE_EXTENSIONS
from core.helper.url_signer import UrlSigner
from extensions.ext_storage import storage
class UploadFileParser:
@classmethod
def get_image_data(cls, upload_file, force_url: bool = False) -> Optional[str]:
if not upload_file:
return None
if upload_file.extension not in IMAGE_EXTENSIONS:
return None
if dify_config.MULTIMODAL_SEND_FORMAT == "url" or force_url:
return cls.get_signed_temp_image_url(upload_file.id)
else:
# get image file base64
try:
data = storage.load(upload_file.key)
except FileNotFoundError:
logging.exception(f"File not found: {upload_file.key}")
return None
encoded_string = base64.b64encode(data).decode("utf-8")
return f"data:{upload_file.mime_type};base64,{encoded_string}"
@classmethod
def get_signed_temp_image_url(cls, upload_file_id) -> str:
"""
get signed url from upload file
:param upload_file_id: the id of UploadFile object
:return:
"""
base_url = dify_config.FILES_URL
image_preview_url = f"{base_url}/files/{upload_file_id}/image-preview"
return UrlSigner.get_signed_url(url=image_preview_url, sign_key=upload_file_id, prefix="image-preview")
@classmethod
def verify_image_file_signature(cls, upload_file_id: str, timestamp: str, nonce: str, sign: str) -> bool:
"""
verify signature
:param upload_file_id: file id
:param timestamp: timestamp
:param nonce: nonce
:param sign: signature
:return:
"""
result = UrlSigner.verify(
sign_key=upload_file_id, timestamp=timestamp, nonce=nonce, sign=sign, prefix="image-preview"
)
# verify signature
if not result:
return False
current_time = int(time.time())
return current_time - int(timestamp) <= dify_config.FILES_ACCESS_TIMEOUT

View File

@ -28,7 +28,7 @@ class TemplateTransformer(ABC):
def extract_result_str_from_response(cls, response: str):
result = re.search(rf"{cls._result_tag}(.*){cls._result_tag}", response, re.DOTALL)
if not result:
raise ValueError("Failed to parse result")
raise ValueError(f"Failed to parse result: no result tag found in response. Response: {response[:200]}...")
return result.group(1)
@classmethod
@ -38,16 +38,53 @@ class TemplateTransformer(ABC):
:param response: response
:return:
"""
try:
result = json.loads(cls.extract_result_str_from_response(response))
except json.JSONDecodeError:
raise ValueError("failed to parse response")
result_str = cls.extract_result_str_from_response(response)
result = json.loads(result_str)
except json.JSONDecodeError as e:
raise ValueError(f"Failed to parse JSON response: {str(e)}. Response content: {result_str[:200]}...")
except ValueError as e:
# Re-raise ValueError from extract_result_str_from_response
raise e
except Exception as e:
raise ValueError(f"Unexpected error during response transformation: {str(e)}")
# Check if the result contains an error
if isinstance(result, dict) and "error" in result:
raise ValueError(f"JavaScript execution error: {result['error']}")
if not isinstance(result, dict):
raise ValueError("result must be a dict")
raise ValueError(f"Result must be a dict, got {type(result).__name__}")
if not all(isinstance(k, str) for k in result):
raise ValueError("result keys must be strings")
raise ValueError("Result keys must be strings")
# Post-process the result to convert scientific notation strings back to numbers
result = cls._post_process_result(result)
return result
@classmethod
def _post_process_result(cls, result: dict[Any, Any]) -> dict[Any, Any]:
"""
Post-process the result to convert scientific notation strings back to numbers
"""
def convert_scientific_notation(value):
if isinstance(value, str):
# Check if the string looks like scientific notation
if re.match(r"^-?\d+\.?\d*e[+-]\d+$", value, re.IGNORECASE):
try:
return float(value)
except ValueError:
pass
elif isinstance(value, dict):
return {k: convert_scientific_notation(v) for k, v in value.items()}
elif isinstance(value, list):
return [convert_scientific_notation(v) for v in value]
return value
return convert_scientific_notation(result) # type: ignore[no-any-return]
@classmethod
@abstractmethod
def get_runner_script(cls) -> str:

View File

@ -1,22 +0,0 @@
from collections import OrderedDict
from typing import Any
class LRUCache:
def __init__(self, capacity: int):
self.cache: OrderedDict[Any, Any] = OrderedDict()
self.capacity = capacity
def get(self, key: Any) -> Any:
if key not in self.cache:
return None
else:
self.cache.move_to_end(key) # move the key to the end of the OrderedDict
return self.cache[key]
def put(self, key: Any, value: Any) -> None:
if key in self.cache:
self.cache.move_to_end(key)
self.cache[key] = value
if len(self.cache) > self.capacity:
self.cache.popitem(last=False) # pop the first item

View File

@ -317,9 +317,10 @@ class IndexingRunner:
image_upload_file_ids = get_image_upload_file_ids(document.page_content)
for upload_file_id in image_upload_file_ids:
image_file = db.session.query(UploadFile).filter(UploadFile.id == upload_file_id).first()
if image_file is None:
continue
try:
if image_file:
storage.delete(image_file.key)
storage.delete(image_file.key)
except Exception:
logging.exception(
"Delete image_files failed while indexing_estimate, \

View File

@ -23,6 +23,7 @@ from core.model_runtime.entities.message_entities import (
PromptMessage,
PromptMessageTool,
SystemPromptMessage,
TextPromptMessageContent,
)
from core.model_runtime.entities.model_entities import AIModelEntity, ParameterRule
@ -170,10 +171,15 @@ def invoke_llm_with_structured_output(
system_fingerprint: Optional[str] = None
for event in llm_result:
if isinstance(event, LLMResultChunk):
prompt_messages = event.prompt_messages
system_fingerprint = event.system_fingerprint
if isinstance(event.delta.message.content, str):
result_text += event.delta.message.content
prompt_messages = event.prompt_messages
system_fingerprint = event.system_fingerprint
elif isinstance(event.delta.message.content, list):
for item in event.delta.message.content:
if isinstance(item, TextPromptMessageContent):
result_text += item.data
yield LLMResultChunkWithStructuredOutput(
model=model_schema.model,

0
api/core/mcp/__init__.py Normal file
View File

View File

@ -0,0 +1,342 @@
import base64
import hashlib
import json
import os
import secrets
import urllib.parse
from typing import Optional
from urllib.parse import urljoin
import requests
from pydantic import BaseModel, ValidationError
from core.mcp.auth.auth_provider import OAuthClientProvider
from core.mcp.types import (
OAuthClientInformation,
OAuthClientInformationFull,
OAuthClientMetadata,
OAuthMetadata,
OAuthTokens,
)
from extensions.ext_redis import redis_client
LATEST_PROTOCOL_VERSION = "1.0"
OAUTH_STATE_EXPIRY_SECONDS = 5 * 60 # 5 minutes expiry
OAUTH_STATE_REDIS_KEY_PREFIX = "oauth_state:"
class OAuthCallbackState(BaseModel):
provider_id: str
tenant_id: str
server_url: str
metadata: OAuthMetadata | None = None
client_information: OAuthClientInformation
code_verifier: str
redirect_uri: str
def generate_pkce_challenge() -> tuple[str, str]:
"""Generate PKCE challenge and verifier."""
code_verifier = base64.urlsafe_b64encode(os.urandom(40)).decode("utf-8")
code_verifier = code_verifier.replace("=", "").replace("+", "-").replace("/", "_")
code_challenge_hash = hashlib.sha256(code_verifier.encode("utf-8")).digest()
code_challenge = base64.urlsafe_b64encode(code_challenge_hash).decode("utf-8")
code_challenge = code_challenge.replace("=", "").replace("+", "-").replace("/", "_")
return code_verifier, code_challenge
def _create_secure_redis_state(state_data: OAuthCallbackState) -> str:
"""Create a secure state parameter by storing state data in Redis and returning a random state key."""
# Generate a secure random state key
state_key = secrets.token_urlsafe(32)
# Store the state data in Redis with expiration
redis_key = f"{OAUTH_STATE_REDIS_KEY_PREFIX}{state_key}"
redis_client.setex(redis_key, OAUTH_STATE_EXPIRY_SECONDS, state_data.model_dump_json())
return state_key
def _retrieve_redis_state(state_key: str) -> OAuthCallbackState:
"""Retrieve and decode OAuth state data from Redis using the state key, then delete it."""
redis_key = f"{OAUTH_STATE_REDIS_KEY_PREFIX}{state_key}"
# Get state data from Redis
state_data = redis_client.get(redis_key)
if not state_data:
raise ValueError("State parameter has expired or does not exist")
# Delete the state data from Redis immediately after retrieval to prevent reuse
redis_client.delete(redis_key)
try:
# Parse and validate the state data
oauth_state = OAuthCallbackState.model_validate_json(state_data)
return oauth_state
except ValidationError as e:
raise ValueError(f"Invalid state parameter: {str(e)}")
def handle_callback(state_key: str, authorization_code: str) -> OAuthCallbackState:
"""Handle the callback from the OAuth provider."""
# Retrieve state data from Redis (state is automatically deleted after retrieval)
full_state_data = _retrieve_redis_state(state_key)
tokens = exchange_authorization(
full_state_data.server_url,
full_state_data.metadata,
full_state_data.client_information,
authorization_code,
full_state_data.code_verifier,
full_state_data.redirect_uri,
)
provider = OAuthClientProvider(full_state_data.provider_id, full_state_data.tenant_id, for_list=True)
provider.save_tokens(tokens)
return full_state_data
def discover_oauth_metadata(server_url: str, protocol_version: Optional[str] = None) -> Optional[OAuthMetadata]:
"""Looks up RFC 8414 OAuth 2.0 Authorization Server Metadata."""
url = urljoin(server_url, "/.well-known/oauth-authorization-server")
try:
headers = {"MCP-Protocol-Version": protocol_version or LATEST_PROTOCOL_VERSION}
response = requests.get(url, headers=headers)
if response.status_code == 404:
return None
if not response.ok:
raise ValueError(f"HTTP {response.status_code} trying to load well-known OAuth metadata")
return OAuthMetadata.model_validate(response.json())
except requests.RequestException as e:
if isinstance(e, requests.ConnectionError):
response = requests.get(url)
if response.status_code == 404:
return None
if not response.ok:
raise ValueError(f"HTTP {response.status_code} trying to load well-known OAuth metadata")
return OAuthMetadata.model_validate(response.json())
raise
def start_authorization(
server_url: str,
metadata: Optional[OAuthMetadata],
client_information: OAuthClientInformation,
redirect_url: str,
provider_id: str,
tenant_id: str,
) -> tuple[str, str]:
"""Begins the authorization flow with secure Redis state storage."""
response_type = "code"
code_challenge_method = "S256"
if metadata:
authorization_url = metadata.authorization_endpoint
if response_type not in metadata.response_types_supported:
raise ValueError(f"Incompatible auth server: does not support response type {response_type}")
if (
not metadata.code_challenge_methods_supported
or code_challenge_method not in metadata.code_challenge_methods_supported
):
raise ValueError(
f"Incompatible auth server: does not support code challenge method {code_challenge_method}"
)
else:
authorization_url = urljoin(server_url, "/authorize")
code_verifier, code_challenge = generate_pkce_challenge()
# Prepare state data with all necessary information
state_data = OAuthCallbackState(
provider_id=provider_id,
tenant_id=tenant_id,
server_url=server_url,
metadata=metadata,
client_information=client_information,
code_verifier=code_verifier,
redirect_uri=redirect_url,
)
# Store state data in Redis and generate secure state key
state_key = _create_secure_redis_state(state_data)
params = {
"response_type": response_type,
"client_id": client_information.client_id,
"code_challenge": code_challenge,
"code_challenge_method": code_challenge_method,
"redirect_uri": redirect_url,
"state": state_key,
}
authorization_url = f"{authorization_url}?{urllib.parse.urlencode(params)}"
return authorization_url, code_verifier
def exchange_authorization(
server_url: str,
metadata: Optional[OAuthMetadata],
client_information: OAuthClientInformation,
authorization_code: str,
code_verifier: str,
redirect_uri: str,
) -> OAuthTokens:
"""Exchanges an authorization code for an access token."""
grant_type = "authorization_code"
if metadata:
token_url = metadata.token_endpoint
if metadata.grant_types_supported and grant_type not in metadata.grant_types_supported:
raise ValueError(f"Incompatible auth server: does not support grant type {grant_type}")
else:
token_url = urljoin(server_url, "/token")
params = {
"grant_type": grant_type,
"client_id": client_information.client_id,
"code": authorization_code,
"code_verifier": code_verifier,
"redirect_uri": redirect_uri,
}
if client_information.client_secret:
params["client_secret"] = client_information.client_secret
response = requests.post(token_url, data=params)
if not response.ok:
raise ValueError(f"Token exchange failed: HTTP {response.status_code}")
return OAuthTokens.model_validate(response.json())
def refresh_authorization(
server_url: str,
metadata: Optional[OAuthMetadata],
client_information: OAuthClientInformation,
refresh_token: str,
) -> OAuthTokens:
"""Exchange a refresh token for an updated access token."""
grant_type = "refresh_token"
if metadata:
token_url = metadata.token_endpoint
if metadata.grant_types_supported and grant_type not in metadata.grant_types_supported:
raise ValueError(f"Incompatible auth server: does not support grant type {grant_type}")
else:
token_url = urljoin(server_url, "/token")
params = {
"grant_type": grant_type,
"client_id": client_information.client_id,
"refresh_token": refresh_token,
}
if client_information.client_secret:
params["client_secret"] = client_information.client_secret
response = requests.post(token_url, data=params)
if not response.ok:
raise ValueError(f"Token refresh failed: HTTP {response.status_code}")
return OAuthTokens.parse_obj(response.json())
def register_client(
server_url: str,
metadata: Optional[OAuthMetadata],
client_metadata: OAuthClientMetadata,
) -> OAuthClientInformationFull:
"""Performs OAuth 2.0 Dynamic Client Registration."""
if metadata:
if not metadata.registration_endpoint:
raise ValueError("Incompatible auth server: does not support dynamic client registration")
registration_url = metadata.registration_endpoint
else:
registration_url = urljoin(server_url, "/register")
response = requests.post(
registration_url,
json=client_metadata.model_dump(),
headers={"Content-Type": "application/json"},
)
if not response.ok:
response.raise_for_status()
return OAuthClientInformationFull.model_validate(response.json())
def auth(
provider: OAuthClientProvider,
server_url: str,
authorization_code: Optional[str] = None,
state_param: Optional[str] = None,
for_list: bool = False,
) -> dict[str, str]:
"""Orchestrates the full auth flow with a server using secure Redis state storage."""
metadata = discover_oauth_metadata(server_url)
# Handle client registration if needed
client_information = provider.client_information()
if not client_information:
if authorization_code is not None:
raise ValueError("Existing OAuth client information is required when exchanging an authorization code")
try:
full_information = register_client(server_url, metadata, provider.client_metadata)
except requests.RequestException as e:
raise ValueError(f"Could not register OAuth client: {e}")
provider.save_client_information(full_information)
client_information = full_information
# Exchange authorization code for tokens
if authorization_code is not None:
if not state_param:
raise ValueError("State parameter is required when exchanging authorization code")
try:
# Retrieve state data from Redis using state key
full_state_data = _retrieve_redis_state(state_param)
code_verifier = full_state_data.code_verifier
redirect_uri = full_state_data.redirect_uri
if not code_verifier or not redirect_uri:
raise ValueError("Missing code_verifier or redirect_uri in state data")
except (json.JSONDecodeError, ValueError) as e:
raise ValueError(f"Invalid state parameter: {e}")
tokens = exchange_authorization(
server_url,
metadata,
client_information,
authorization_code,
code_verifier,
redirect_uri,
)
provider.save_tokens(tokens)
return {"result": "success"}
provider_tokens = provider.tokens()
# Handle token refresh or new authorization
if provider_tokens and provider_tokens.refresh_token:
try:
new_tokens = refresh_authorization(server_url, metadata, client_information, provider_tokens.refresh_token)
provider.save_tokens(new_tokens)
return {"result": "success"}
except Exception as e:
raise ValueError(f"Could not refresh OAuth tokens: {e}")
# Start new authorization flow
authorization_url, code_verifier = start_authorization(
server_url,
metadata,
client_information,
provider.redirect_url,
provider.mcp_provider.id,
provider.mcp_provider.tenant_id,
)
provider.save_code_verifier(code_verifier)
return {"authorization_url": authorization_url}

View File

@ -0,0 +1,81 @@
from typing import Optional
from configs import dify_config
from core.mcp.types import (
OAuthClientInformation,
OAuthClientInformationFull,
OAuthClientMetadata,
OAuthTokens,
)
from models.tools import MCPToolProvider
from services.tools.mcp_tools_mange_service import MCPToolManageService
LATEST_PROTOCOL_VERSION = "1.0"
class OAuthClientProvider:
mcp_provider: MCPToolProvider
def __init__(self, provider_id: str, tenant_id: str, for_list: bool = False):
if for_list:
self.mcp_provider = MCPToolManageService.get_mcp_provider_by_provider_id(provider_id, tenant_id)
else:
self.mcp_provider = MCPToolManageService.get_mcp_provider_by_server_identifier(provider_id, tenant_id)
@property
def redirect_url(self) -> str:
"""The URL to redirect the user agent to after authorization."""
return dify_config.CONSOLE_API_URL + "/console/api/mcp/oauth/callback"
@property
def client_metadata(self) -> OAuthClientMetadata:
"""Metadata about this OAuth client."""
return OAuthClientMetadata(
redirect_uris=[self.redirect_url],
token_endpoint_auth_method="none",
grant_types=["authorization_code", "refresh_token"],
response_types=["code"],
client_name="Dify",
client_uri="https://github.com/langgenius/dify",
)
def client_information(self) -> Optional[OAuthClientInformation]:
"""Loads information about this OAuth client."""
client_information = self.mcp_provider.decrypted_credentials.get("client_information", {})
if not client_information:
return None
return OAuthClientInformation.model_validate(client_information)
def save_client_information(self, client_information: OAuthClientInformationFull) -> None:
"""Saves client information after dynamic registration."""
MCPToolManageService.update_mcp_provider_credentials(
self.mcp_provider,
{"client_information": client_information.model_dump()},
)
def tokens(self) -> Optional[OAuthTokens]:
"""Loads any existing OAuth tokens for the current session."""
credentials = self.mcp_provider.decrypted_credentials
if not credentials:
return None
return OAuthTokens(
access_token=credentials.get("access_token", ""),
token_type=credentials.get("token_type", "Bearer"),
expires_in=int(credentials.get("expires_in", "3600") or 3600),
refresh_token=credentials.get("refresh_token", ""),
)
def save_tokens(self, tokens: OAuthTokens) -> None:
"""Stores new OAuth tokens for the current session."""
# update mcp provider credentials
token_dict = tokens.model_dump()
MCPToolManageService.update_mcp_provider_credentials(self.mcp_provider, token_dict, authed=True)
def save_code_verifier(self, code_verifier: str) -> None:
"""Saves a PKCE code verifier for the current session."""
MCPToolManageService.update_mcp_provider_credentials(self.mcp_provider, {"code_verifier": code_verifier})
def code_verifier(self) -> str:
"""Loads the PKCE code verifier for the current session."""
# get code verifier from mcp provider credentials
return str(self.mcp_provider.decrypted_credentials.get("code_verifier", ""))

View File

@ -0,0 +1,361 @@
import logging
import queue
from collections.abc import Generator
from concurrent.futures import ThreadPoolExecutor
from contextlib import contextmanager
from typing import Any, TypeAlias, final
from urllib.parse import urljoin, urlparse
import httpx
from sseclient import SSEClient
from core.mcp import types
from core.mcp.error import MCPAuthError, MCPConnectionError
from core.mcp.types import SessionMessage
from core.mcp.utils import create_ssrf_proxy_mcp_http_client, ssrf_proxy_sse_connect
logger = logging.getLogger(__name__)
DEFAULT_QUEUE_READ_TIMEOUT = 3
@final
class _StatusReady:
def __init__(self, endpoint_url: str):
self._endpoint_url = endpoint_url
@final
class _StatusError:
def __init__(self, exc: Exception):
self._exc = exc
# Type aliases for better readability
ReadQueue: TypeAlias = queue.Queue[SessionMessage | Exception | None]
WriteQueue: TypeAlias = queue.Queue[SessionMessage | Exception | None]
StatusQueue: TypeAlias = queue.Queue[_StatusReady | _StatusError]
def remove_request_params(url: str) -> str:
"""Remove request parameters from URL, keeping only the path."""
return urljoin(url, urlparse(url).path)
class SSETransport:
"""SSE client transport implementation."""
def __init__(
self,
url: str,
headers: dict[str, Any] | None = None,
timeout: float = 5.0,
sse_read_timeout: float = 5 * 60,
) -> None:
"""Initialize the SSE transport.
Args:
url: The SSE endpoint URL.
headers: Optional headers to include in requests.
timeout: HTTP timeout for regular operations.
sse_read_timeout: Timeout for SSE read operations.
"""
self.url = url
self.headers = headers or {}
self.timeout = timeout
self.sse_read_timeout = sse_read_timeout
self.endpoint_url: str | None = None
def _validate_endpoint_url(self, endpoint_url: str) -> bool:
"""Validate that the endpoint URL matches the connection origin.
Args:
endpoint_url: The endpoint URL to validate.
Returns:
True if valid, False otherwise.
"""
url_parsed = urlparse(self.url)
endpoint_parsed = urlparse(endpoint_url)
return url_parsed.netloc == endpoint_parsed.netloc and url_parsed.scheme == endpoint_parsed.scheme
def _handle_endpoint_event(self, sse_data: str, status_queue: StatusQueue) -> None:
"""Handle an 'endpoint' SSE event.
Args:
sse_data: The SSE event data.
status_queue: Queue to put status updates.
"""
endpoint_url = urljoin(self.url, sse_data)
logger.info(f"Received endpoint URL: {endpoint_url}")
if not self._validate_endpoint_url(endpoint_url):
error_msg = f"Endpoint origin does not match connection origin: {endpoint_url}"
logger.error(error_msg)
status_queue.put(_StatusError(ValueError(error_msg)))
return
status_queue.put(_StatusReady(endpoint_url))
def _handle_message_event(self, sse_data: str, read_queue: ReadQueue) -> None:
"""Handle a 'message' SSE event.
Args:
sse_data: The SSE event data.
read_queue: Queue to put parsed messages.
"""
try:
message = types.JSONRPCMessage.model_validate_json(sse_data)
logger.debug(f"Received server message: {message}")
session_message = SessionMessage(message)
read_queue.put(session_message)
except Exception as exc:
logger.exception("Error parsing server message")
read_queue.put(exc)
def _handle_sse_event(self, sse, read_queue: ReadQueue, status_queue: StatusQueue) -> None:
"""Handle a single SSE event.
Args:
sse: The SSE event object.
read_queue: Queue for message events.
status_queue: Queue for status events.
"""
match sse.event:
case "endpoint":
self._handle_endpoint_event(sse.data, status_queue)
case "message":
self._handle_message_event(sse.data, read_queue)
case _:
logger.warning(f"Unknown SSE event: {sse.event}")
def sse_reader(self, event_source, read_queue: ReadQueue, status_queue: StatusQueue) -> None:
"""Read and process SSE events.
Args:
event_source: The SSE event source.
read_queue: Queue to put received messages.
status_queue: Queue to put status updates.
"""
try:
for sse in event_source.iter_sse():
self._handle_sse_event(sse, read_queue, status_queue)
except httpx.ReadError as exc:
logger.debug(f"SSE reader shutting down normally: {exc}")
except Exception as exc:
read_queue.put(exc)
finally:
read_queue.put(None)
def _send_message(self, client: httpx.Client, endpoint_url: str, message: SessionMessage) -> None:
"""Send a single message to the server.
Args:
client: HTTP client to use.
endpoint_url: The endpoint URL to send to.
message: The message to send.
"""
response = client.post(
endpoint_url,
json=message.message.model_dump(
by_alias=True,
mode="json",
exclude_none=True,
),
)
response.raise_for_status()
logger.debug(f"Client message sent successfully: {response.status_code}")
def post_writer(self, client: httpx.Client, endpoint_url: str, write_queue: WriteQueue) -> None:
"""Handle writing messages to the server.
Args:
client: HTTP client to use.
endpoint_url: The endpoint URL to send messages to.
write_queue: Queue to read messages from.
"""
try:
while True:
try:
message = write_queue.get(timeout=DEFAULT_QUEUE_READ_TIMEOUT)
if message is None:
break
if isinstance(message, Exception):
write_queue.put(message)
continue
self._send_message(client, endpoint_url, message)
except queue.Empty:
continue
except httpx.ReadError as exc:
logger.debug(f"Post writer shutting down normally: {exc}")
except Exception as exc:
logger.exception("Error writing messages")
write_queue.put(exc)
finally:
write_queue.put(None)
def _wait_for_endpoint(self, status_queue: StatusQueue) -> str:
"""Wait for the endpoint URL from the status queue.
Args:
status_queue: Queue to read status from.
Returns:
The endpoint URL.
Raises:
ValueError: If endpoint URL is not received or there's an error.
"""
try:
status = status_queue.get(timeout=1)
except queue.Empty:
raise ValueError("failed to get endpoint URL")
if isinstance(status, _StatusReady):
return status._endpoint_url
elif isinstance(status, _StatusError):
raise status._exc
else:
raise ValueError("failed to get endpoint URL")
def connect(
self,
executor: ThreadPoolExecutor,
client: httpx.Client,
event_source,
) -> tuple[ReadQueue, WriteQueue]:
"""Establish connection and start worker threads.
Args:
executor: Thread pool executor.
client: HTTP client.
event_source: SSE event source.
Returns:
Tuple of (read_queue, write_queue).
"""
read_queue: ReadQueue = queue.Queue()
write_queue: WriteQueue = queue.Queue()
status_queue: StatusQueue = queue.Queue()
# Start SSE reader thread
executor.submit(self.sse_reader, event_source, read_queue, status_queue)
# Wait for endpoint URL
endpoint_url = self._wait_for_endpoint(status_queue)
self.endpoint_url = endpoint_url
# Start post writer thread
executor.submit(self.post_writer, client, endpoint_url, write_queue)
return read_queue, write_queue
@contextmanager
def sse_client(
url: str,
headers: dict[str, Any] | None = None,
timeout: float = 5.0,
sse_read_timeout: float = 5 * 60,
) -> Generator[tuple[ReadQueue, WriteQueue], None, None]:
"""
Client transport for SSE.
`sse_read_timeout` determines how long (in seconds) the client will wait for a new
event before disconnecting. All other HTTP operations are controlled by `timeout`.
Args:
url: The SSE endpoint URL.
headers: Optional headers to include in requests.
timeout: HTTP timeout for regular operations.
sse_read_timeout: Timeout for SSE read operations.
Yields:
Tuple of (read_queue, write_queue) for message communication.
"""
transport = SSETransport(url, headers, timeout, sse_read_timeout)
read_queue: ReadQueue | None = None
write_queue: WriteQueue | None = None
with ThreadPoolExecutor() as executor:
try:
with create_ssrf_proxy_mcp_http_client(headers=transport.headers) as client:
with ssrf_proxy_sse_connect(
url, timeout=httpx.Timeout(timeout, read=sse_read_timeout), client=client
) as event_source:
event_source.response.raise_for_status()
read_queue, write_queue = transport.connect(executor, client, event_source)
yield read_queue, write_queue
except httpx.HTTPStatusError as exc:
if exc.response.status_code == 401:
raise MCPAuthError()
raise MCPConnectionError()
except Exception:
logger.exception("Error connecting to SSE endpoint")
raise
finally:
# Clean up queues
if read_queue:
read_queue.put(None)
if write_queue:
write_queue.put(None)
def send_message(http_client: httpx.Client, endpoint_url: str, session_message: SessionMessage) -> None:
"""
Send a message to the server using the provided HTTP client.
Args:
http_client: The HTTP client to use for sending
endpoint_url: The endpoint URL to send the message to
session_message: The message to send
"""
try:
response = http_client.post(
endpoint_url,
json=session_message.message.model_dump(
by_alias=True,
mode="json",
exclude_none=True,
),
)
response.raise_for_status()
logger.debug(f"Client message sent successfully: {response.status_code}")
except Exception as exc:
logger.exception("Error sending message")
raise
def read_messages(
sse_client: SSEClient,
) -> Generator[SessionMessage | Exception, None, None]:
"""
Read messages from the SSE client.
Args:
sse_client: The SSE client to read from
Yields:
SessionMessage or Exception for each event received
"""
try:
for sse in sse_client.events():
if sse.event == "message":
try:
message = types.JSONRPCMessage.model_validate_json(sse.data)
logger.debug(f"Received server message: {message}")
yield SessionMessage(message)
except Exception as exc:
logger.exception("Error parsing server message")
yield exc
else:
logger.warning(f"Unknown SSE event: {sse.event}")
except Exception as exc:
logger.exception("Error reading SSE messages")
yield exc

View File

@ -0,0 +1,476 @@
"""
StreamableHTTP Client Transport Module
This module implements the StreamableHTTP transport for MCP clients,
providing support for HTTP POST requests with optional SSE streaming responses
and session management.
"""
import logging
import queue
from collections.abc import Callable, Generator
from concurrent.futures import ThreadPoolExecutor
from contextlib import contextmanager
from dataclasses import dataclass
from datetime import timedelta
from typing import Any, cast
import httpx
from httpx_sse import EventSource, ServerSentEvent
from core.mcp.types import (
ClientMessageMetadata,
ErrorData,
JSONRPCError,
JSONRPCMessage,
JSONRPCNotification,
JSONRPCRequest,
JSONRPCResponse,
RequestId,
SessionMessage,
)
from core.mcp.utils import create_ssrf_proxy_mcp_http_client, ssrf_proxy_sse_connect
logger = logging.getLogger(__name__)
SessionMessageOrError = SessionMessage | Exception | None
# Queue types with clearer names for their roles
ServerToClientQueue = queue.Queue[SessionMessageOrError] # Server to client messages
ClientToServerQueue = queue.Queue[SessionMessage | None] # Client to server messages
GetSessionIdCallback = Callable[[], str | None]
MCP_SESSION_ID = "mcp-session-id"
LAST_EVENT_ID = "last-event-id"
CONTENT_TYPE = "content-type"
ACCEPT = "Accept"
JSON = "application/json"
SSE = "text/event-stream"
DEFAULT_QUEUE_READ_TIMEOUT = 3
class StreamableHTTPError(Exception):
"""Base exception for StreamableHTTP transport errors."""
pass
class ResumptionError(StreamableHTTPError):
"""Raised when resumption request is invalid."""
pass
@dataclass
class RequestContext:
"""Context for a request operation."""
client: httpx.Client
headers: dict[str, str]
session_id: str | None
session_message: SessionMessage
metadata: ClientMessageMetadata | None
server_to_client_queue: ServerToClientQueue # Renamed for clarity
sse_read_timeout: timedelta
class StreamableHTTPTransport:
"""StreamableHTTP client transport implementation."""
def __init__(
self,
url: str,
headers: dict[str, Any] | None = None,
timeout: timedelta = timedelta(seconds=30),
sse_read_timeout: timedelta = timedelta(seconds=60 * 5),
) -> None:
"""Initialize the StreamableHTTP transport.
Args:
url: The endpoint URL.
headers: Optional headers to include in requests.
timeout: HTTP timeout for regular operations.
sse_read_timeout: Timeout for SSE read operations.
"""
self.url = url
self.headers = headers or {}
self.timeout = timeout
self.sse_read_timeout = sse_read_timeout
self.session_id: str | None = None
self.request_headers = {
ACCEPT: f"{JSON}, {SSE}",
CONTENT_TYPE: JSON,
**self.headers,
}
def _update_headers_with_session(self, base_headers: dict[str, str]) -> dict[str, str]:
"""Update headers with session ID if available."""
headers = base_headers.copy()
if self.session_id:
headers[MCP_SESSION_ID] = self.session_id
return headers
def _is_initialization_request(self, message: JSONRPCMessage) -> bool:
"""Check if the message is an initialization request."""
return isinstance(message.root, JSONRPCRequest) and message.root.method == "initialize"
def _is_initialized_notification(self, message: JSONRPCMessage) -> bool:
"""Check if the message is an initialized notification."""
return isinstance(message.root, JSONRPCNotification) and message.root.method == "notifications/initialized"
def _maybe_extract_session_id_from_response(
self,
response: httpx.Response,
) -> None:
"""Extract and store session ID from response headers."""
new_session_id = response.headers.get(MCP_SESSION_ID)
if new_session_id:
self.session_id = new_session_id
logger.info(f"Received session ID: {self.session_id}")
def _handle_sse_event(
self,
sse: ServerSentEvent,
server_to_client_queue: ServerToClientQueue,
original_request_id: RequestId | None = None,
resumption_callback: Callable[[str], None] | None = None,
) -> bool:
"""Handle an SSE event, returning True if the response is complete."""
if sse.event == "message":
try:
message = JSONRPCMessage.model_validate_json(sse.data)
logger.debug(f"SSE message: {message}")
# If this is a response and we have original_request_id, replace it
if original_request_id is not None and isinstance(message.root, JSONRPCResponse | JSONRPCError):
message.root.id = original_request_id
session_message = SessionMessage(message)
# Put message in queue that goes to client
server_to_client_queue.put(session_message)
# Call resumption token callback if we have an ID
if sse.id and resumption_callback:
resumption_callback(sse.id)
# If this is a response or error return True indicating completion
# Otherwise, return False to continue listening
return isinstance(message.root, JSONRPCResponse | JSONRPCError)
except Exception as exc:
# Put exception in queue that goes to client
server_to_client_queue.put(exc)
return False
elif sse.event == "ping":
logger.debug("Received ping event")
return False
else:
logger.warning(f"Unknown SSE event: {sse.event}")
return False
def handle_get_stream(
self,
client: httpx.Client,
server_to_client_queue: ServerToClientQueue,
) -> None:
"""Handle GET stream for server-initiated messages."""
try:
if not self.session_id:
return
headers = self._update_headers_with_session(self.request_headers)
with ssrf_proxy_sse_connect(
self.url,
headers=headers,
timeout=httpx.Timeout(self.timeout.seconds, read=self.sse_read_timeout.seconds),
client=client,
method="GET",
) as event_source:
event_source.response.raise_for_status()
logger.debug("GET SSE connection established")
for sse in event_source.iter_sse():
self._handle_sse_event(sse, server_to_client_queue)
except Exception as exc:
logger.debug(f"GET stream error (non-fatal): {exc}")
def _handle_resumption_request(self, ctx: RequestContext) -> None:
"""Handle a resumption request using GET with SSE."""
headers = self._update_headers_with_session(ctx.headers)
if ctx.metadata and ctx.metadata.resumption_token:
headers[LAST_EVENT_ID] = ctx.metadata.resumption_token
else:
raise ResumptionError("Resumption request requires a resumption token")
# Extract original request ID to map responses
original_request_id = None
if isinstance(ctx.session_message.message.root, JSONRPCRequest):
original_request_id = ctx.session_message.message.root.id
with ssrf_proxy_sse_connect(
self.url,
headers=headers,
timeout=httpx.Timeout(self.timeout.seconds, read=ctx.sse_read_timeout.seconds),
client=ctx.client,
method="GET",
) as event_source:
event_source.response.raise_for_status()
logger.debug("Resumption GET SSE connection established")
for sse in event_source.iter_sse():
is_complete = self._handle_sse_event(
sse,
ctx.server_to_client_queue,
original_request_id,
ctx.metadata.on_resumption_token_update if ctx.metadata else None,
)
if is_complete:
break
def _handle_post_request(self, ctx: RequestContext) -> None:
"""Handle a POST request with response processing."""
headers = self._update_headers_with_session(ctx.headers)
message = ctx.session_message.message
is_initialization = self._is_initialization_request(message)
with ctx.client.stream(
"POST",
self.url,
json=message.model_dump(by_alias=True, mode="json", exclude_none=True),
headers=headers,
) as response:
if response.status_code == 202:
logger.debug("Received 202 Accepted")
return
if response.status_code == 404:
if isinstance(message.root, JSONRPCRequest):
self._send_session_terminated_error(
ctx.server_to_client_queue,
message.root.id,
)
return
response.raise_for_status()
if is_initialization:
self._maybe_extract_session_id_from_response(response)
content_type = cast(str, response.headers.get(CONTENT_TYPE, "").lower())
if content_type.startswith(JSON):
self._handle_json_response(response, ctx.server_to_client_queue)
elif content_type.startswith(SSE):
self._handle_sse_response(response, ctx)
else:
self._handle_unexpected_content_type(
content_type,
ctx.server_to_client_queue,
)
def _handle_json_response(
self,
response: httpx.Response,
server_to_client_queue: ServerToClientQueue,
) -> None:
"""Handle JSON response from the server."""
try:
content = response.read()
message = JSONRPCMessage.model_validate_json(content)
session_message = SessionMessage(message)
server_to_client_queue.put(session_message)
except Exception as exc:
server_to_client_queue.put(exc)
def _handle_sse_response(self, response: httpx.Response, ctx: RequestContext) -> None:
"""Handle SSE response from the server."""
try:
event_source = EventSource(response)
for sse in event_source.iter_sse():
is_complete = self._handle_sse_event(
sse,
ctx.server_to_client_queue,
resumption_callback=(ctx.metadata.on_resumption_token_update if ctx.metadata else None),
)
if is_complete:
break
except Exception as e:
ctx.server_to_client_queue.put(e)
def _handle_unexpected_content_type(
self,
content_type: str,
server_to_client_queue: ServerToClientQueue,
) -> None:
"""Handle unexpected content type in response."""
error_msg = f"Unexpected content type: {content_type}"
logger.error(error_msg)
server_to_client_queue.put(ValueError(error_msg))
def _send_session_terminated_error(
self,
server_to_client_queue: ServerToClientQueue,
request_id: RequestId,
) -> None:
"""Send a session terminated error response."""
jsonrpc_error = JSONRPCError(
jsonrpc="2.0",
id=request_id,
error=ErrorData(code=32600, message="Session terminated by server"),
)
session_message = SessionMessage(JSONRPCMessage(jsonrpc_error))
server_to_client_queue.put(session_message)
def post_writer(
self,
client: httpx.Client,
client_to_server_queue: ClientToServerQueue,
server_to_client_queue: ServerToClientQueue,
start_get_stream: Callable[[], None],
) -> None:
"""Handle writing requests to the server.
This method processes messages from the client_to_server_queue and sends them to the server.
Responses are written to the server_to_client_queue.
"""
while True:
try:
# Read message from client queue with timeout to check stop_event periodically
session_message = client_to_server_queue.get(timeout=DEFAULT_QUEUE_READ_TIMEOUT)
if session_message is None:
break
message = session_message.message
metadata = (
session_message.metadata if isinstance(session_message.metadata, ClientMessageMetadata) else None
)
# Check if this is a resumption request
is_resumption = bool(metadata and metadata.resumption_token)
logger.debug(f"Sending client message: {message}")
# Handle initialized notification
if self._is_initialized_notification(message):
start_get_stream()
ctx = RequestContext(
client=client,
headers=self.request_headers,
session_id=self.session_id,
session_message=session_message,
metadata=metadata,
server_to_client_queue=server_to_client_queue, # Queue to write responses to client
sse_read_timeout=self.sse_read_timeout,
)
if is_resumption:
self._handle_resumption_request(ctx)
else:
self._handle_post_request(ctx)
except queue.Empty:
continue
except Exception as exc:
server_to_client_queue.put(exc)
def terminate_session(self, client: httpx.Client) -> None:
"""Terminate the session by sending a DELETE request."""
if not self.session_id:
return
try:
headers = self._update_headers_with_session(self.request_headers)
response = client.delete(self.url, headers=headers)
if response.status_code == 405:
logger.debug("Server does not allow session termination")
elif response.status_code != 200:
logger.warning(f"Session termination failed: {response.status_code}")
except Exception as exc:
logger.warning(f"Session termination failed: {exc}")
def get_session_id(self) -> str | None:
"""Get the current session ID."""
return self.session_id
@contextmanager
def streamablehttp_client(
url: str,
headers: dict[str, Any] | None = None,
timeout: timedelta = timedelta(seconds=30),
sse_read_timeout: timedelta = timedelta(seconds=60 * 5),
terminate_on_close: bool = True,
) -> Generator[
tuple[
ServerToClientQueue, # Queue for receiving messages FROM server
ClientToServerQueue, # Queue for sending messages TO server
GetSessionIdCallback,
],
None,
None,
]:
"""
Client transport for StreamableHTTP.
`sse_read_timeout` determines how long (in seconds) the client will wait for a new
event before disconnecting. All other HTTP operations are controlled by `timeout`.
Yields:
Tuple containing:
- server_to_client_queue: Queue for reading messages FROM the server
- client_to_server_queue: Queue for sending messages TO the server
- get_session_id_callback: Function to retrieve the current session ID
"""
transport = StreamableHTTPTransport(url, headers, timeout, sse_read_timeout)
# Create queues with clear directional meaning
server_to_client_queue: ServerToClientQueue = queue.Queue() # For messages FROM server TO client
client_to_server_queue: ClientToServerQueue = queue.Queue() # For messages FROM client TO server
with ThreadPoolExecutor(max_workers=2) as executor:
try:
with create_ssrf_proxy_mcp_http_client(
headers=transport.request_headers,
timeout=httpx.Timeout(transport.timeout.seconds, read=transport.sse_read_timeout.seconds),
) as client:
# Define callbacks that need access to thread pool
def start_get_stream() -> None:
"""Start a worker thread to handle server-initiated messages."""
executor.submit(transport.handle_get_stream, client, server_to_client_queue)
# Start the post_writer worker thread
executor.submit(
transport.post_writer,
client,
client_to_server_queue, # Queue for messages FROM client TO server
server_to_client_queue, # Queue for messages FROM server TO client
start_get_stream,
)
try:
yield (
server_to_client_queue, # Queue for receiving messages FROM server
client_to_server_queue, # Queue for sending messages TO server
transport.get_session_id,
)
finally:
if transport.session_id and terminate_on_close:
transport.terminate_session(client)
# Signal threads to stop
client_to_server_queue.put(None)
finally:
# Clear any remaining items and add None sentinel to unblock any waiting threads
try:
while not client_to_server_queue.empty():
client_to_server_queue.get_nowait()
except queue.Empty:
pass
client_to_server_queue.put(None)
server_to_client_queue.put(None)

19
api/core/mcp/entities.py Normal file
View File

@ -0,0 +1,19 @@
from dataclasses import dataclass
from typing import Any, Generic, TypeVar
from core.mcp.session.base_session import BaseSession
from core.mcp.types import LATEST_PROTOCOL_VERSION, RequestId, RequestParams
SUPPORTED_PROTOCOL_VERSIONS: list[str] = ["2024-11-05", LATEST_PROTOCOL_VERSION]
SessionT = TypeVar("SessionT", bound=BaseSession[Any, Any, Any, Any, Any])
LifespanContextT = TypeVar("LifespanContextT")
@dataclass
class RequestContext(Generic[SessionT, LifespanContextT]):
request_id: RequestId
meta: RequestParams.Meta | None
session: SessionT
lifespan_context: LifespanContextT

10
api/core/mcp/error.py Normal file
View File

@ -0,0 +1,10 @@
class MCPError(Exception):
pass
class MCPConnectionError(MCPError):
pass
class MCPAuthError(MCPConnectionError):
pass

150
api/core/mcp/mcp_client.py Normal file
View File

@ -0,0 +1,150 @@
import logging
from collections.abc import Callable
from contextlib import AbstractContextManager, ExitStack
from types import TracebackType
from typing import Any, Optional, cast
from urllib.parse import urlparse
from core.mcp.client.sse_client import sse_client
from core.mcp.client.streamable_client import streamablehttp_client
from core.mcp.error import MCPAuthError, MCPConnectionError
from core.mcp.session.client_session import ClientSession
from core.mcp.types import Tool
logger = logging.getLogger(__name__)
class MCPClient:
def __init__(
self,
server_url: str,
provider_id: str,
tenant_id: str,
authed: bool = True,
authorization_code: Optional[str] = None,
for_list: bool = False,
):
# Initialize info
self.provider_id = provider_id
self.tenant_id = tenant_id
self.client_type = "streamable"
self.server_url = server_url
# Authentication info
self.authed = authed
self.authorization_code = authorization_code
if authed:
from core.mcp.auth.auth_provider import OAuthClientProvider
self.provider = OAuthClientProvider(self.provider_id, self.tenant_id, for_list=for_list)
self.token = self.provider.tokens()
# Initialize session and client objects
self._session: Optional[ClientSession] = None
self._streams_context: Optional[AbstractContextManager[Any]] = None
self._session_context: Optional[ClientSession] = None
self.exit_stack = ExitStack()
# Whether the client has been initialized
self._initialized = False
def __enter__(self):
self._initialize()
self._initialized = True
return self
def __exit__(
self, exc_type: Optional[type], exc_value: Optional[BaseException], traceback: Optional[TracebackType]
):
self.cleanup()
def _initialize(
self,
):
"""Initialize the client with fallback to SSE if streamable connection fails"""
connection_methods: dict[str, Callable[..., AbstractContextManager[Any]]] = {
"mcp": streamablehttp_client,
"sse": sse_client,
}
parsed_url = urlparse(self.server_url)
path = parsed_url.path
method_name = path.rstrip("/").split("/")[-1] if path else ""
try:
client_factory = connection_methods[method_name]
self.connect_server(client_factory, method_name)
except KeyError:
try:
self.connect_server(sse_client, "sse")
except MCPConnectionError:
self.connect_server(streamablehttp_client, "mcp")
def connect_server(
self, client_factory: Callable[..., AbstractContextManager[Any]], method_name: str, first_try: bool = True
):
from core.mcp.auth.auth_flow import auth
try:
headers = (
{"Authorization": f"{self.token.token_type.capitalize()} {self.token.access_token}"}
if self.authed and self.token
else {}
)
self._streams_context = client_factory(url=self.server_url, headers=headers)
if self._streams_context is None:
raise MCPConnectionError("Failed to create connection context")
# Use exit_stack to manage context managers properly
if method_name == "mcp":
read_stream, write_stream, _ = self.exit_stack.enter_context(self._streams_context)
streams = (read_stream, write_stream)
else: # sse_client
streams = self.exit_stack.enter_context(self._streams_context)
self._session_context = ClientSession(*streams)
self._session = self.exit_stack.enter_context(self._session_context)
session = cast(ClientSession, self._session)
session.initialize()
return
except MCPAuthError:
if not self.authed:
raise
try:
auth(self.provider, self.server_url, self.authorization_code)
except Exception as e:
raise ValueError(f"Failed to authenticate: {e}")
self.token = self.provider.tokens()
if first_try:
return self.connect_server(client_factory, method_name, first_try=False)
except MCPConnectionError:
raise
def list_tools(self) -> list[Tool]:
"""Connect to an MCP server running with SSE transport"""
# List available tools to verify connection
if not self._initialized or not self._session:
raise ValueError("Session not initialized.")
response = self._session.list_tools()
tools = response.tools
return tools
def invoke_tool(self, tool_name: str, tool_args: dict):
"""Call a tool"""
if not self._initialized or not self._session:
raise ValueError("Session not initialized.")
return self._session.call_tool(tool_name, tool_args)
def cleanup(self):
"""Clean up resources"""
try:
# ExitStack will handle proper cleanup of all managed context managers
self.exit_stack.close()
self._session = None
self._session_context = None
self._streams_context = None
self._initialized = False
except Exception as e:
logging.exception("Error during cleanup")
raise ValueError(f"Error during cleanup: {e}")

View File

@ -0,0 +1,228 @@
import json
import logging
from collections.abc import Mapping
from typing import Any, cast
from configs import dify_config
from controllers.web.passport import generate_session_id
from core.app.app_config.entities import VariableEntity, VariableEntityType
from core.app.entities.app_invoke_entities import InvokeFrom
from core.app.features.rate_limiting.rate_limit import RateLimitGenerator
from core.mcp import types
from core.mcp.types import INTERNAL_ERROR, INVALID_PARAMS, METHOD_NOT_FOUND
from core.mcp.utils import create_mcp_error_response
from core.model_runtime.utils.encoders import jsonable_encoder
from extensions.ext_database import db
from models.model import App, AppMCPServer, AppMode, EndUser
from services.app_generate_service import AppGenerateService
"""
Apply to MCP HTTP streamable server with stateless http
"""
logger = logging.getLogger(__name__)
class MCPServerStreamableHTTPRequestHandler:
def __init__(
self, app: App, request: types.ClientRequest | types.ClientNotification, user_input_form: list[VariableEntity]
):
self.app = app
self.request = request
mcp_server = db.session.query(AppMCPServer).filter(AppMCPServer.app_id == self.app.id).first()
if not mcp_server:
raise ValueError("MCP server not found")
self.mcp_server: AppMCPServer = mcp_server
self.end_user = self.retrieve_end_user()
self.user_input_form = user_input_form
@property
def request_type(self):
return type(self.request.root)
@property
def parameter_schema(self):
parameters, required = self._convert_input_form_to_parameters(self.user_input_form)
if self.app.mode in {AppMode.COMPLETION.value, AppMode.WORKFLOW.value}:
return {
"type": "object",
"properties": parameters,
"required": required,
}
return {
"type": "object",
"properties": {
"query": {"type": "string", "description": "User Input/Question content"},
**parameters,
},
"required": ["query", *required],
}
@property
def capabilities(self):
return types.ServerCapabilities(
tools=types.ToolsCapability(listChanged=False),
)
def response(self, response: types.Result | str):
if isinstance(response, str):
sse_content = f"event: ping\ndata: {response}\n\n".encode()
yield sse_content
return
json_response = types.JSONRPCResponse(
jsonrpc="2.0",
id=(self.request.root.model_extra or {}).get("id", 1),
result=response.model_dump(by_alias=True, mode="json", exclude_none=True),
)
json_data = json.dumps(jsonable_encoder(json_response))
sse_content = f"event: message\ndata: {json_data}\n\n".encode()
yield sse_content
def error_response(self, code: int, message: str, data=None):
request_id = (self.request.root.model_extra or {}).get("id", 1) or 1
return create_mcp_error_response(request_id, code, message, data)
def handle(self):
handle_map = {
types.InitializeRequest: self.initialize,
types.ListToolsRequest: self.list_tools,
types.CallToolRequest: self.invoke_tool,
types.InitializedNotification: self.handle_notification,
types.PingRequest: self.handle_ping,
}
try:
if self.request_type in handle_map:
return self.response(handle_map[self.request_type]())
else:
return self.error_response(METHOD_NOT_FOUND, f"Method not found: {self.request_type}")
except ValueError as e:
logger.exception("Invalid params")
return self.error_response(INVALID_PARAMS, str(e))
except Exception as e:
logger.exception("Internal server error")
return self.error_response(INTERNAL_ERROR, f"Internal server error: {str(e)}")
def handle_notification(self):
return "ping"
def handle_ping(self):
return types.EmptyResult()
def initialize(self):
request = cast(types.InitializeRequest, self.request.root)
client_info = request.params.clientInfo
client_name = f"{client_info.name}@{client_info.version}"
if not self.end_user:
end_user = EndUser(
tenant_id=self.app.tenant_id,
app_id=self.app.id,
type="mcp",
name=client_name,
session_id=generate_session_id(),
external_user_id=self.mcp_server.id,
)
db.session.add(end_user)
db.session.commit()
return types.InitializeResult(
protocolVersion=types.SERVER_LATEST_PROTOCOL_VERSION,
capabilities=self.capabilities,
serverInfo=types.Implementation(name="Dify", version=dify_config.project.version),
instructions=self.mcp_server.description,
)
def list_tools(self):
if not self.end_user:
raise ValueError("User not found")
return types.ListToolsResult(
tools=[
types.Tool(
name=self.app.name,
description=self.mcp_server.description,
inputSchema=self.parameter_schema,
)
],
)
def invoke_tool(self):
if not self.end_user:
raise ValueError("User not found")
request = cast(types.CallToolRequest, self.request.root)
args = request.params.arguments
if not args:
raise ValueError("No arguments provided")
if self.app.mode in {AppMode.WORKFLOW.value}:
args = {"inputs": args}
elif self.app.mode in {AppMode.COMPLETION.value}:
args = {"query": "", "inputs": args}
else:
args = {"query": args["query"], "inputs": {k: v for k, v in args.items() if k != "query"}}
response = AppGenerateService.generate(
self.app,
self.end_user,
args,
InvokeFrom.SERVICE_API,
streaming=self.app.mode == AppMode.AGENT_CHAT.value,
)
answer = ""
if isinstance(response, RateLimitGenerator):
for item in response.generator:
data = item
if isinstance(data, str) and data.startswith("data: "):
try:
json_str = data[6:].strip()
parsed_data = json.loads(json_str)
if parsed_data.get("event") == "agent_thought":
answer += parsed_data.get("thought", "")
except json.JSONDecodeError:
continue
if isinstance(response, Mapping):
if self.app.mode in {
AppMode.ADVANCED_CHAT.value,
AppMode.COMPLETION.value,
AppMode.CHAT.value,
AppMode.AGENT_CHAT.value,
}:
answer = response["answer"]
elif self.app.mode in {AppMode.WORKFLOW.value}:
answer = json.dumps(response["data"]["outputs"], ensure_ascii=False)
else:
raise ValueError("Invalid app mode")
# Not support image yet
return types.CallToolResult(content=[types.TextContent(text=answer, type="text")])
def retrieve_end_user(self):
return (
db.session.query(EndUser)
.filter(EndUser.external_user_id == self.mcp_server.id, EndUser.type == "mcp")
.first()
)
def _convert_input_form_to_parameters(self, user_input_form: list[VariableEntity]):
parameters: dict[str, dict[str, Any]] = {}
required = []
for item in user_input_form:
parameters[item.variable] = {}
if item.type in (
VariableEntityType.FILE,
VariableEntityType.FILE_LIST,
VariableEntityType.EXTERNAL_DATA_TOOL,
):
continue
if item.required:
required.append(item.variable)
# if the workflow republished, the parameters not changed
# we should not raise error here
try:
description = self.mcp_server.parameters_dict[item.variable]
except KeyError:
description = ""
parameters[item.variable]["description"] = description
if item.type in (VariableEntityType.TEXT_INPUT, VariableEntityType.PARAGRAPH):
parameters[item.variable]["type"] = "string"
elif item.type == VariableEntityType.SELECT:
parameters[item.variable]["type"] = "string"
parameters[item.variable]["enum"] = item.options
elif item.type == VariableEntityType.NUMBER:
parameters[item.variable]["type"] = "float"
return parameters, required

View File

@ -0,0 +1,397 @@
import logging
import queue
from collections.abc import Callable
from concurrent.futures import ThreadPoolExecutor
from contextlib import ExitStack
from datetime import timedelta
from types import TracebackType
from typing import Any, Generic, Self, TypeVar
from httpx import HTTPStatusError
from pydantic import BaseModel
from core.mcp.error import MCPAuthError, MCPConnectionError
from core.mcp.types import (
CancelledNotification,
ClientNotification,
ClientRequest,
ClientResult,
ErrorData,
JSONRPCError,
JSONRPCMessage,
JSONRPCNotification,
JSONRPCRequest,
JSONRPCResponse,
MessageMetadata,
RequestId,
RequestParams,
ServerMessageMetadata,
ServerNotification,
ServerRequest,
ServerResult,
SessionMessage,
)
SendRequestT = TypeVar("SendRequestT", ClientRequest, ServerRequest)
SendResultT = TypeVar("SendResultT", ClientResult, ServerResult)
SendNotificationT = TypeVar("SendNotificationT", ClientNotification, ServerNotification)
ReceiveRequestT = TypeVar("ReceiveRequestT", ClientRequest, ServerRequest)
ReceiveResultT = TypeVar("ReceiveResultT", bound=BaseModel)
ReceiveNotificationT = TypeVar("ReceiveNotificationT", ClientNotification, ServerNotification)
DEFAULT_RESPONSE_READ_TIMEOUT = 1.0
class RequestResponder(Generic[ReceiveRequestT, SendResultT]):
"""Handles responding to MCP requests and manages request lifecycle.
This class MUST be used as a context manager to ensure proper cleanup and
cancellation handling:
Example:
with request_responder as resp:
resp.respond(result)
The context manager ensures:
1. Proper cancellation scope setup and cleanup
2. Request completion tracking
3. Cleanup of in-flight requests
"""
request: ReceiveRequestT
_session: Any
_on_complete: Callable[["RequestResponder[ReceiveRequestT, SendResultT]"], Any]
def __init__(
self,
request_id: RequestId,
request_meta: RequestParams.Meta | None,
request: ReceiveRequestT,
session: """BaseSession[
SendRequestT,
SendNotificationT,
SendResultT,
ReceiveRequestT,
ReceiveNotificationT
]""",
on_complete: Callable[["RequestResponder[ReceiveRequestT, SendResultT]"], Any],
) -> None:
self.request_id = request_id
self.request_meta = request_meta
self.request = request
self._session = session
self._completed = False
self._on_complete = on_complete
self._entered = False # Track if we're in a context manager
def __enter__(self) -> "RequestResponder[ReceiveRequestT, SendResultT]":
"""Enter the context manager, enabling request cancellation tracking."""
self._entered = True
return self
def __exit__(
self,
exc_type: type[BaseException] | None,
exc_val: BaseException | None,
exc_tb: TracebackType | None,
) -> None:
"""Exit the context manager, performing cleanup and notifying completion."""
try:
if self._completed:
self._on_complete(self)
finally:
self._entered = False
def respond(self, response: SendResultT | ErrorData) -> None:
"""Send a response for this request.
Must be called within a context manager block.
Raises:
RuntimeError: If not used within a context manager
AssertionError: If request was already responded to
"""
if not self._entered:
raise RuntimeError("RequestResponder must be used as a context manager")
assert not self._completed, "Request already responded to"
self._completed = True
self._session._send_response(request_id=self.request_id, response=response)
def cancel(self) -> None:
"""Cancel this request and mark it as completed."""
if not self._entered:
raise RuntimeError("RequestResponder must be used as a context manager")
self._completed = True # Mark as completed so it's removed from in_flight
# Send an error response to indicate cancellation
self._session._send_response(
request_id=self.request_id,
response=ErrorData(code=0, message="Request cancelled", data=None),
)
class BaseSession(
Generic[
SendRequestT,
SendNotificationT,
SendResultT,
ReceiveRequestT,
ReceiveNotificationT,
],
):
"""
Implements an MCP "session" on top of read/write streams, including features
like request/response linking, notifications, and progress.
This class is a context manager that automatically starts processing
messages when entered.
"""
_response_streams: dict[RequestId, queue.Queue[JSONRPCResponse | JSONRPCError]]
_request_id: int
_in_flight: dict[RequestId, RequestResponder[ReceiveRequestT, SendResultT]]
_receive_request_type: type[ReceiveRequestT]
_receive_notification_type: type[ReceiveNotificationT]
def __init__(
self,
read_stream: queue.Queue,
write_stream: queue.Queue,
receive_request_type: type[ReceiveRequestT],
receive_notification_type: type[ReceiveNotificationT],
# If none, reading will never time out
read_timeout_seconds: timedelta | None = None,
) -> None:
self._read_stream = read_stream
self._write_stream = write_stream
self._response_streams = {}
self._request_id = 0
self._receive_request_type = receive_request_type
self._receive_notification_type = receive_notification_type
self._session_read_timeout_seconds = read_timeout_seconds
self._in_flight = {}
self._exit_stack = ExitStack()
def __enter__(self) -> Self:
self._executor = ThreadPoolExecutor()
self._receiver_future = self._executor.submit(self._receive_loop)
return self
def check_receiver_status(self) -> None:
if self._receiver_future.done():
self._receiver_future.result()
def __exit__(
self, exc_type: type[BaseException] | None, exc_val: BaseException | None, exc_tb: TracebackType | None
) -> None:
self._exit_stack.close()
self._read_stream.put(None)
self._write_stream.put(None)
def send_request(
self,
request: SendRequestT,
result_type: type[ReceiveResultT],
request_read_timeout_seconds: timedelta | None = None,
metadata: MessageMetadata = None,
) -> ReceiveResultT:
"""
Sends a request and wait for a response. Raises an McpError if the
response contains an error. If a request read timeout is provided, it
will take precedence over the session read timeout.
Do not use this method to emit notifications! Use send_notification()
instead.
"""
self.check_receiver_status()
request_id = self._request_id
self._request_id = request_id + 1
response_queue: queue.Queue[JSONRPCResponse | JSONRPCError] = queue.Queue()
self._response_streams[request_id] = response_queue
try:
jsonrpc_request = JSONRPCRequest(
jsonrpc="2.0",
id=request_id,
**request.model_dump(by_alias=True, mode="json", exclude_none=True),
)
self._write_stream.put(SessionMessage(message=JSONRPCMessage(jsonrpc_request), metadata=metadata))
timeout = DEFAULT_RESPONSE_READ_TIMEOUT
if request_read_timeout_seconds is not None:
timeout = float(request_read_timeout_seconds.total_seconds())
elif self._session_read_timeout_seconds is not None:
timeout = float(self._session_read_timeout_seconds.total_seconds())
while True:
try:
response_or_error = response_queue.get(timeout=timeout)
break
except queue.Empty:
self.check_receiver_status()
continue
if response_or_error is None:
raise MCPConnectionError(
ErrorData(
code=500,
message="No response received",
)
)
elif isinstance(response_or_error, JSONRPCError):
if response_or_error.error.code == 401:
raise MCPAuthError(
ErrorData(code=response_or_error.error.code, message=response_or_error.error.message)
)
else:
raise MCPConnectionError(
ErrorData(code=response_or_error.error.code, message=response_or_error.error.message)
)
else:
return result_type.model_validate(response_or_error.result)
finally:
self._response_streams.pop(request_id, None)
def send_notification(
self,
notification: SendNotificationT,
related_request_id: RequestId | None = None,
) -> None:
"""
Emits a notification, which is a one-way message that does not expect
a response.
"""
self.check_receiver_status()
# Some transport implementations may need to set the related_request_id
# to attribute to the notifications to the request that triggered them.
jsonrpc_notification = JSONRPCNotification(
jsonrpc="2.0",
**notification.model_dump(by_alias=True, mode="json", exclude_none=True),
)
session_message = SessionMessage(
message=JSONRPCMessage(jsonrpc_notification),
metadata=ServerMessageMetadata(related_request_id=related_request_id) if related_request_id else None,
)
self._write_stream.put(session_message)
def _send_response(self, request_id: RequestId, response: SendResultT | ErrorData) -> None:
if isinstance(response, ErrorData):
jsonrpc_error = JSONRPCError(jsonrpc="2.0", id=request_id, error=response)
session_message = SessionMessage(message=JSONRPCMessage(jsonrpc_error))
self._write_stream.put(session_message)
else:
jsonrpc_response = JSONRPCResponse(
jsonrpc="2.0",
id=request_id,
result=response.model_dump(by_alias=True, mode="json", exclude_none=True),
)
session_message = SessionMessage(message=JSONRPCMessage(jsonrpc_response))
self._write_stream.put(session_message)
def _receive_loop(self) -> None:
"""
Main message processing loop.
In a real synchronous implementation, this would likely run in a separate thread.
"""
while True:
try:
# Attempt to receive a message (this would be blocking in a synchronous context)
message = self._read_stream.get(timeout=DEFAULT_RESPONSE_READ_TIMEOUT)
if message is None:
break
if isinstance(message, HTTPStatusError):
response_queue = self._response_streams.get(self._request_id - 1)
if response_queue is not None:
response_queue.put(
JSONRPCError(
jsonrpc="2.0",
id=self._request_id - 1,
error=ErrorData(code=message.response.status_code, message=message.args[0]),
)
)
else:
self._handle_incoming(RuntimeError(f"Received response with an unknown request ID: {message}"))
elif isinstance(message, Exception):
self._handle_incoming(message)
elif isinstance(message.message.root, JSONRPCRequest):
validated_request = self._receive_request_type.model_validate(
message.message.root.model_dump(by_alias=True, mode="json", exclude_none=True)
)
responder = RequestResponder(
request_id=message.message.root.id,
request_meta=validated_request.root.params.meta if validated_request.root.params else None,
request=validated_request,
session=self,
on_complete=lambda r: self._in_flight.pop(r.request_id, None),
)
self._in_flight[responder.request_id] = responder
self._received_request(responder)
if not responder._completed:
self._handle_incoming(responder)
elif isinstance(message.message.root, JSONRPCNotification):
try:
notification = self._receive_notification_type.model_validate(
message.message.root.model_dump(by_alias=True, mode="json", exclude_none=True)
)
# Handle cancellation notifications
if isinstance(notification.root, CancelledNotification):
cancelled_id = notification.root.params.requestId
if cancelled_id in self._in_flight:
self._in_flight[cancelled_id].cancel()
else:
self._received_notification(notification)
self._handle_incoming(notification)
except Exception as e:
# For other validation errors, log and continue
logging.warning(f"Failed to validate notification: {e}. Message was: {message.message.root}")
else: # Response or error
response_queue = self._response_streams.get(message.message.root.id)
if response_queue is not None:
response_queue.put(message.message.root)
else:
self._handle_incoming(RuntimeError(f"Server Error: {message}"))
except queue.Empty:
continue
except Exception as e:
logging.exception("Error in message processing loop")
raise
def _received_request(self, responder: RequestResponder[ReceiveRequestT, SendResultT]) -> None:
"""
Can be overridden by subclasses to handle a request without needing to
listen on the message stream.
If the request is responded to within this method, it will not be
forwarded on to the message stream.
"""
pass
def _received_notification(self, notification: ReceiveNotificationT) -> None:
"""
Can be overridden by subclasses to handle a notification without needing
to listen on the message stream.
"""
pass
def send_progress_notification(
self, progress_token: str | int, progress: float, total: float | None = None
) -> None:
"""
Sends a progress notification for a request that is currently being
processed.
"""
pass
def _handle_incoming(
self,
req: RequestResponder[ReceiveRequestT, SendResultT] | ReceiveNotificationT | Exception,
) -> None:
"""A generic handler for incoming messages. Overwritten by subclasses."""
pass

View File

@ -0,0 +1,365 @@
from datetime import timedelta
from typing import Any, Protocol
from pydantic import AnyUrl, TypeAdapter
from configs import dify_config
from core.mcp import types
from core.mcp.entities import SUPPORTED_PROTOCOL_VERSIONS, RequestContext
from core.mcp.session.base_session import BaseSession, RequestResponder
DEFAULT_CLIENT_INFO = types.Implementation(name="Dify", version=dify_config.project.version)
class SamplingFnT(Protocol):
def __call__(
self,
context: RequestContext["ClientSession", Any],
params: types.CreateMessageRequestParams,
) -> types.CreateMessageResult | types.ErrorData: ...
class ListRootsFnT(Protocol):
def __call__(self, context: RequestContext["ClientSession", Any]) -> types.ListRootsResult | types.ErrorData: ...
class LoggingFnT(Protocol):
def __call__(
self,
params: types.LoggingMessageNotificationParams,
) -> None: ...
class MessageHandlerFnT(Protocol):
def __call__(
self,
message: RequestResponder[types.ServerRequest, types.ClientResult] | types.ServerNotification | Exception,
) -> None: ...
def _default_message_handler(
message: RequestResponder[types.ServerRequest, types.ClientResult] | types.ServerNotification | Exception,
) -> None:
if isinstance(message, Exception):
raise ValueError(str(message))
elif isinstance(message, (types.ServerNotification | RequestResponder)):
pass
def _default_sampling_callback(
context: RequestContext["ClientSession", Any],
params: types.CreateMessageRequestParams,
) -> types.CreateMessageResult | types.ErrorData:
return types.ErrorData(
code=types.INVALID_REQUEST,
message="Sampling not supported",
)
def _default_list_roots_callback(
context: RequestContext["ClientSession", Any],
) -> types.ListRootsResult | types.ErrorData:
return types.ErrorData(
code=types.INVALID_REQUEST,
message="List roots not supported",
)
def _default_logging_callback(
params: types.LoggingMessageNotificationParams,
) -> None:
pass
ClientResponse: TypeAdapter[types.ClientResult | types.ErrorData] = TypeAdapter(types.ClientResult | types.ErrorData)
class ClientSession(
BaseSession[
types.ClientRequest,
types.ClientNotification,
types.ClientResult,
types.ServerRequest,
types.ServerNotification,
]
):
def __init__(
self,
read_stream,
write_stream,
read_timeout_seconds: timedelta | None = None,
sampling_callback: SamplingFnT | None = None,
list_roots_callback: ListRootsFnT | None = None,
logging_callback: LoggingFnT | None = None,
message_handler: MessageHandlerFnT | None = None,
client_info: types.Implementation | None = None,
) -> None:
super().__init__(
read_stream,
write_stream,
types.ServerRequest,
types.ServerNotification,
read_timeout_seconds=read_timeout_seconds,
)
self._client_info = client_info or DEFAULT_CLIENT_INFO
self._sampling_callback = sampling_callback or _default_sampling_callback
self._list_roots_callback = list_roots_callback or _default_list_roots_callback
self._logging_callback = logging_callback or _default_logging_callback
self._message_handler = message_handler or _default_message_handler
def initialize(self) -> types.InitializeResult:
sampling = types.SamplingCapability()
roots = types.RootsCapability(
# TODO: Should this be based on whether we
# _will_ send notifications, or only whether
# they're supported?
listChanged=True,
)
result = self.send_request(
types.ClientRequest(
types.InitializeRequest(
method="initialize",
params=types.InitializeRequestParams(
protocolVersion=types.LATEST_PROTOCOL_VERSION,
capabilities=types.ClientCapabilities(
sampling=sampling,
experimental=None,
roots=roots,
),
clientInfo=self._client_info,
),
)
),
types.InitializeResult,
)
if result.protocolVersion not in SUPPORTED_PROTOCOL_VERSIONS:
raise RuntimeError(f"Unsupported protocol version from the server: {result.protocolVersion}")
self.send_notification(
types.ClientNotification(types.InitializedNotification(method="notifications/initialized"))
)
return result
def send_ping(self) -> types.EmptyResult:
"""Send a ping request."""
return self.send_request(
types.ClientRequest(
types.PingRequest(
method="ping",
)
),
types.EmptyResult,
)
def send_progress_notification(
self, progress_token: str | int, progress: float, total: float | None = None
) -> None:
"""Send a progress notification."""
self.send_notification(
types.ClientNotification(
types.ProgressNotification(
method="notifications/progress",
params=types.ProgressNotificationParams(
progressToken=progress_token,
progress=progress,
total=total,
),
),
)
)
def set_logging_level(self, level: types.LoggingLevel) -> types.EmptyResult:
"""Send a logging/setLevel request."""
return self.send_request(
types.ClientRequest(
types.SetLevelRequest(
method="logging/setLevel",
params=types.SetLevelRequestParams(level=level),
)
),
types.EmptyResult,
)
def list_resources(self) -> types.ListResourcesResult:
"""Send a resources/list request."""
return self.send_request(
types.ClientRequest(
types.ListResourcesRequest(
method="resources/list",
)
),
types.ListResourcesResult,
)
def list_resource_templates(self) -> types.ListResourceTemplatesResult:
"""Send a resources/templates/list request."""
return self.send_request(
types.ClientRequest(
types.ListResourceTemplatesRequest(
method="resources/templates/list",
)
),
types.ListResourceTemplatesResult,
)
def read_resource(self, uri: AnyUrl) -> types.ReadResourceResult:
"""Send a resources/read request."""
return self.send_request(
types.ClientRequest(
types.ReadResourceRequest(
method="resources/read",
params=types.ReadResourceRequestParams(uri=uri),
)
),
types.ReadResourceResult,
)
def subscribe_resource(self, uri: AnyUrl) -> types.EmptyResult:
"""Send a resources/subscribe request."""
return self.send_request(
types.ClientRequest(
types.SubscribeRequest(
method="resources/subscribe",
params=types.SubscribeRequestParams(uri=uri),
)
),
types.EmptyResult,
)
def unsubscribe_resource(self, uri: AnyUrl) -> types.EmptyResult:
"""Send a resources/unsubscribe request."""
return self.send_request(
types.ClientRequest(
types.UnsubscribeRequest(
method="resources/unsubscribe",
params=types.UnsubscribeRequestParams(uri=uri),
)
),
types.EmptyResult,
)
def call_tool(
self,
name: str,
arguments: dict[str, Any] | None = None,
read_timeout_seconds: timedelta | None = None,
) -> types.CallToolResult:
"""Send a tools/call request."""
return self.send_request(
types.ClientRequest(
types.CallToolRequest(
method="tools/call",
params=types.CallToolRequestParams(name=name, arguments=arguments),
)
),
types.CallToolResult,
request_read_timeout_seconds=read_timeout_seconds,
)
def list_prompts(self) -> types.ListPromptsResult:
"""Send a prompts/list request."""
return self.send_request(
types.ClientRequest(
types.ListPromptsRequest(
method="prompts/list",
)
),
types.ListPromptsResult,
)
def get_prompt(self, name: str, arguments: dict[str, str] | None = None) -> types.GetPromptResult:
"""Send a prompts/get request."""
return self.send_request(
types.ClientRequest(
types.GetPromptRequest(
method="prompts/get",
params=types.GetPromptRequestParams(name=name, arguments=arguments),
)
),
types.GetPromptResult,
)
def complete(
self,
ref: types.ResourceReference | types.PromptReference,
argument: dict[str, str],
) -> types.CompleteResult:
"""Send a completion/complete request."""
return self.send_request(
types.ClientRequest(
types.CompleteRequest(
method="completion/complete",
params=types.CompleteRequestParams(
ref=ref,
argument=types.CompletionArgument(**argument),
),
)
),
types.CompleteResult,
)
def list_tools(self) -> types.ListToolsResult:
"""Send a tools/list request."""
return self.send_request(
types.ClientRequest(
types.ListToolsRequest(
method="tools/list",
)
),
types.ListToolsResult,
)
def send_roots_list_changed(self) -> None:
"""Send a roots/list_changed notification."""
self.send_notification(
types.ClientNotification(
types.RootsListChangedNotification(
method="notifications/roots/list_changed",
)
)
)
def _received_request(self, responder: RequestResponder[types.ServerRequest, types.ClientResult]) -> None:
ctx = RequestContext[ClientSession, Any](
request_id=responder.request_id,
meta=responder.request_meta,
session=self,
lifespan_context=None,
)
match responder.request.root:
case types.CreateMessageRequest(params=params):
with responder:
response = self._sampling_callback(ctx, params)
client_response = ClientResponse.validate_python(response)
responder.respond(client_response)
case types.ListRootsRequest():
with responder:
list_roots_response = self._list_roots_callback(ctx)
client_response = ClientResponse.validate_python(list_roots_response)
responder.respond(client_response)
case types.PingRequest():
with responder:
return responder.respond(types.ClientResult(root=types.EmptyResult()))
def _handle_incoming(
self,
req: RequestResponder[types.ServerRequest, types.ClientResult] | types.ServerNotification | Exception,
) -> None:
"""Handle incoming messages by forwarding to the message handler."""
self._message_handler(req)
def _received_notification(self, notification: types.ServerNotification) -> None:
"""Handle notifications from the server."""
# Process specific notification types
match notification.root:
case types.LoggingMessageNotification(params=params):
self._logging_callback(params)
case _:
pass

1217
api/core/mcp/types.py Normal file

File diff suppressed because it is too large Load Diff

114
api/core/mcp/utils.py Normal file
View File

@ -0,0 +1,114 @@
import json
import httpx
from configs import dify_config
from core.mcp.types import ErrorData, JSONRPCError
from core.model_runtime.utils.encoders import jsonable_encoder
HTTP_REQUEST_NODE_SSL_VERIFY = dify_config.HTTP_REQUEST_NODE_SSL_VERIFY
STATUS_FORCELIST = [429, 500, 502, 503, 504]
def create_ssrf_proxy_mcp_http_client(
headers: dict[str, str] | None = None,
timeout: httpx.Timeout | None = None,
) -> httpx.Client:
"""Create an HTTPX client with SSRF proxy configuration for MCP connections.
Args:
headers: Optional headers to include in the client
timeout: Optional timeout configuration
Returns:
Configured httpx.Client with proxy settings
"""
if dify_config.SSRF_PROXY_ALL_URL:
return httpx.Client(
verify=HTTP_REQUEST_NODE_SSL_VERIFY,
headers=headers or {},
timeout=timeout,
follow_redirects=True,
proxy=dify_config.SSRF_PROXY_ALL_URL,
)
elif dify_config.SSRF_PROXY_HTTP_URL and dify_config.SSRF_PROXY_HTTPS_URL:
proxy_mounts = {
"http://": httpx.HTTPTransport(proxy=dify_config.SSRF_PROXY_HTTP_URL, verify=HTTP_REQUEST_NODE_SSL_VERIFY),
"https://": httpx.HTTPTransport(
proxy=dify_config.SSRF_PROXY_HTTPS_URL, verify=HTTP_REQUEST_NODE_SSL_VERIFY
),
}
return httpx.Client(
verify=HTTP_REQUEST_NODE_SSL_VERIFY,
headers=headers or {},
timeout=timeout,
follow_redirects=True,
mounts=proxy_mounts,
)
else:
return httpx.Client(
verify=HTTP_REQUEST_NODE_SSL_VERIFY,
headers=headers or {},
timeout=timeout,
follow_redirects=True,
)
def ssrf_proxy_sse_connect(url, **kwargs):
"""Connect to SSE endpoint with SSRF proxy protection.
This function creates an SSE connection using the configured proxy settings
to prevent SSRF attacks when connecting to external endpoints.
Args:
url: The SSE endpoint URL
**kwargs: Additional arguments passed to the SSE connection
Returns:
EventSource object for SSE streaming
"""
from httpx_sse import connect_sse
# Extract client if provided, otherwise create one
client = kwargs.pop("client", None)
if client is None:
# Create client with SSRF proxy configuration
timeout = kwargs.pop(
"timeout",
httpx.Timeout(
timeout=dify_config.SSRF_DEFAULT_TIME_OUT,
connect=dify_config.SSRF_DEFAULT_CONNECT_TIME_OUT,
read=dify_config.SSRF_DEFAULT_READ_TIME_OUT,
write=dify_config.SSRF_DEFAULT_WRITE_TIME_OUT,
),
)
headers = kwargs.pop("headers", {})
client = create_ssrf_proxy_mcp_http_client(headers=headers, timeout=timeout)
client_provided = False
else:
client_provided = True
# Extract method if provided, default to GET
method = kwargs.pop("method", "GET")
try:
return connect_sse(client, method, url, **kwargs)
except Exception:
# If we created the client, we need to clean it up on error
if not client_provided:
client.close()
raise
def create_mcp_error_response(request_id: int | str | None, code: int, message: str, data=None):
"""Create MCP error response"""
error_data = ErrorData(code=code, message=message, data=data)
json_response = JSONRPCError(
jsonrpc="2.0",
id=request_id or 1,
error=error_data,
)
json_data = json.dumps(jsonable_encoder(json_response))
sse_content = f"event: message\ndata: {json_data}\n\n".encode()
yield sse_content

View File

@ -53,6 +53,37 @@ class LLMUsage(ModelUsage):
latency=0.0,
)
@classmethod
def from_metadata(cls, metadata: dict) -> "LLMUsage":
"""
Create LLMUsage instance from metadata dictionary with default values.
Args:
metadata: Dictionary containing usage metadata
Returns:
LLMUsage instance with values from metadata or defaults
"""
total_tokens = metadata.get("total_tokens", 0)
completion_tokens = metadata.get("completion_tokens", 0)
if total_tokens > 0 and completion_tokens == 0:
completion_tokens = total_tokens
return cls(
prompt_tokens=metadata.get("prompt_tokens", 0),
completion_tokens=completion_tokens,
total_tokens=total_tokens,
prompt_unit_price=Decimal(str(metadata.get("prompt_unit_price", 0))),
completion_unit_price=Decimal(str(metadata.get("completion_unit_price", 0))),
total_price=Decimal(str(metadata.get("total_price", 0))),
currency=metadata.get("currency", "USD"),
prompt_price_unit=Decimal(str(metadata.get("prompt_price_unit", 0))),
completion_price_unit=Decimal(str(metadata.get("completion_price_unit", 0))),
prompt_price=Decimal(str(metadata.get("prompt_price", 0))),
completion_price=Decimal(str(metadata.get("completion_price", 0))),
latency=metadata.get("latency", 0.0),
)
def plus(self, other: "LLMUsage") -> "LLMUsage":
"""
Add two LLMUsage instances together.

View File

@ -123,6 +123,8 @@ class ProviderEntity(BaseModel):
description: Optional[I18nObject] = None
icon_small: Optional[I18nObject] = None
icon_large: Optional[I18nObject] = None
icon_small_dark: Optional[I18nObject] = None
icon_large_dark: Optional[I18nObject] = None
background: Optional[str] = None
help: Optional[ProviderHelpEntity] = None
supported_model_types: Sequence[ModelType]

View File

View File

@ -0,0 +1,487 @@
import json
import logging
from collections.abc import Sequence
from typing import Optional
from urllib.parse import urljoin
from opentelemetry.trace import Status, StatusCode
from sqlalchemy.orm import Session, sessionmaker
from core.ops.aliyun_trace.data_exporter.traceclient import (
TraceClient,
convert_datetime_to_nanoseconds,
convert_to_span_id,
convert_to_trace_id,
generate_span_id,
)
from core.ops.aliyun_trace.entities.aliyun_trace_entity import SpanData
from core.ops.aliyun_trace.entities.semconv import (
GEN_AI_COMPLETION,
GEN_AI_FRAMEWORK,
GEN_AI_MODEL_NAME,
GEN_AI_PROMPT,
GEN_AI_PROMPT_TEMPLATE_TEMPLATE,
GEN_AI_PROMPT_TEMPLATE_VARIABLE,
GEN_AI_RESPONSE_FINISH_REASON,
GEN_AI_SESSION_ID,
GEN_AI_SPAN_KIND,
GEN_AI_SYSTEM,
GEN_AI_USAGE_INPUT_TOKENS,
GEN_AI_USAGE_OUTPUT_TOKENS,
GEN_AI_USAGE_TOTAL_TOKENS,
GEN_AI_USER_ID,
INPUT_VALUE,
OUTPUT_VALUE,
RETRIEVAL_DOCUMENT,
RETRIEVAL_QUERY,
TOOL_DESCRIPTION,
TOOL_NAME,
TOOL_PARAMETERS,
GenAISpanKind,
)
from core.ops.base_trace_instance import BaseTraceInstance
from core.ops.entities.config_entity import AliyunConfig
from core.ops.entities.trace_entity import (
BaseTraceInfo,
DatasetRetrievalTraceInfo,
GenerateNameTraceInfo,
MessageTraceInfo,
ModerationTraceInfo,
SuggestedQuestionTraceInfo,
ToolTraceInfo,
WorkflowTraceInfo,
)
from core.rag.models.document import Document
from core.repositories import SQLAlchemyWorkflowNodeExecutionRepository
from core.workflow.entities.workflow_node_execution import (
WorkflowNodeExecution,
WorkflowNodeExecutionMetadataKey,
WorkflowNodeExecutionStatus,
)
from core.workflow.nodes import NodeType
from models import Account, App, EndUser, TenantAccountJoin, WorkflowNodeExecutionTriggeredFrom, db
logger = logging.getLogger(__name__)
class AliyunDataTrace(BaseTraceInstance):
def __init__(
self,
aliyun_config: AliyunConfig,
):
super().__init__(aliyun_config)
base_url = aliyun_config.endpoint.rstrip("/")
endpoint = urljoin(base_url, f"adapt_{aliyun_config.license_key}/api/otlp/traces")
self.trace_client = TraceClient(service_name=aliyun_config.app_name, endpoint=endpoint)
def trace(self, trace_info: BaseTraceInfo):
if isinstance(trace_info, WorkflowTraceInfo):
self.workflow_trace(trace_info)
if isinstance(trace_info, MessageTraceInfo):
self.message_trace(trace_info)
if isinstance(trace_info, ModerationTraceInfo):
pass
if isinstance(trace_info, SuggestedQuestionTraceInfo):
self.suggested_question_trace(trace_info)
if isinstance(trace_info, DatasetRetrievalTraceInfo):
self.dataset_retrieval_trace(trace_info)
if isinstance(trace_info, ToolTraceInfo):
self.tool_trace(trace_info)
if isinstance(trace_info, GenerateNameTraceInfo):
pass
def api_check(self):
return self.trace_client.api_check()
def get_project_url(self):
try:
return self.trace_client.get_project_url()
except Exception as e:
logger.info(f"Aliyun get run url failed: {str(e)}", exc_info=True)
raise ValueError(f"Aliyun get run url failed: {str(e)}")
def workflow_trace(self, trace_info: WorkflowTraceInfo):
trace_id = convert_to_trace_id(trace_info.workflow_run_id)
workflow_span_id = convert_to_span_id(trace_info.workflow_run_id, "workflow")
self.add_workflow_span(trace_id, workflow_span_id, trace_info)
workflow_node_executions = self.get_workflow_node_executions(trace_info)
for node_execution in workflow_node_executions:
node_span = self.build_workflow_node_span(node_execution, trace_id, trace_info, workflow_span_id)
self.trace_client.add_span(node_span)
def message_trace(self, trace_info: MessageTraceInfo):
message_data = trace_info.message_data
if message_data is None:
return
message_id = trace_info.message_id
user_id = message_data.from_account_id
if message_data.from_end_user_id:
end_user_data: Optional[EndUser] = (
db.session.query(EndUser).filter(EndUser.id == message_data.from_end_user_id).first()
)
if end_user_data is not None:
user_id = end_user_data.session_id
status: Status = Status(StatusCode.OK)
if trace_info.error:
status = Status(StatusCode.ERROR, trace_info.error)
trace_id = convert_to_trace_id(message_id)
message_span_id = convert_to_span_id(message_id, "message")
message_span = SpanData(
trace_id=trace_id,
parent_span_id=None,
span_id=message_span_id,
name="message",
start_time=convert_datetime_to_nanoseconds(trace_info.start_time),
end_time=convert_datetime_to_nanoseconds(trace_info.end_time),
attributes={
GEN_AI_SESSION_ID: trace_info.metadata.get("conversation_id", ""),
GEN_AI_USER_ID: str(user_id),
GEN_AI_SPAN_KIND: GenAISpanKind.CHAIN.value,
GEN_AI_FRAMEWORK: "dify",
INPUT_VALUE: json.dumps(trace_info.inputs, ensure_ascii=False),
OUTPUT_VALUE: str(trace_info.outputs),
},
status=status,
)
self.trace_client.add_span(message_span)
app_model_config = getattr(trace_info.message_data, "app_model_config", {})
pre_prompt = getattr(app_model_config, "pre_prompt", "")
inputs_data = getattr(trace_info.message_data, "inputs", {})
llm_span = SpanData(
trace_id=trace_id,
parent_span_id=message_span_id,
span_id=convert_to_span_id(message_id, "llm"),
name="llm",
start_time=convert_datetime_to_nanoseconds(trace_info.start_time),
end_time=convert_datetime_to_nanoseconds(trace_info.end_time),
attributes={
GEN_AI_SESSION_ID: trace_info.metadata.get("conversation_id", ""),
GEN_AI_USER_ID: str(user_id),
GEN_AI_SPAN_KIND: GenAISpanKind.LLM.value,
GEN_AI_FRAMEWORK: "dify",
GEN_AI_MODEL_NAME: trace_info.metadata.get("ls_model_name", ""),
GEN_AI_SYSTEM: trace_info.metadata.get("ls_provider", ""),
GEN_AI_USAGE_INPUT_TOKENS: str(trace_info.message_tokens),
GEN_AI_USAGE_OUTPUT_TOKENS: str(trace_info.answer_tokens),
GEN_AI_USAGE_TOTAL_TOKENS: str(trace_info.total_tokens),
GEN_AI_PROMPT_TEMPLATE_VARIABLE: json.dumps(inputs_data, ensure_ascii=False),
GEN_AI_PROMPT_TEMPLATE_TEMPLATE: pre_prompt,
GEN_AI_PROMPT: json.dumps(trace_info.inputs, ensure_ascii=False),
GEN_AI_COMPLETION: str(trace_info.outputs),
INPUT_VALUE: json.dumps(trace_info.inputs, ensure_ascii=False),
OUTPUT_VALUE: str(trace_info.outputs),
},
status=status,
)
self.trace_client.add_span(llm_span)
def dataset_retrieval_trace(self, trace_info: DatasetRetrievalTraceInfo):
if trace_info.message_data is None:
return
message_id = trace_info.message_id
documents_data = extract_retrieval_documents(trace_info.documents)
dataset_retrieval_span = SpanData(
trace_id=convert_to_trace_id(message_id),
parent_span_id=convert_to_span_id(message_id, "message"),
span_id=generate_span_id(),
name="dataset_retrieval",
start_time=convert_datetime_to_nanoseconds(trace_info.start_time),
end_time=convert_datetime_to_nanoseconds(trace_info.end_time),
attributes={
GEN_AI_SPAN_KIND: GenAISpanKind.RETRIEVER.value,
GEN_AI_FRAMEWORK: "dify",
RETRIEVAL_QUERY: str(trace_info.inputs),
RETRIEVAL_DOCUMENT: json.dumps(documents_data, ensure_ascii=False),
INPUT_VALUE: str(trace_info.inputs),
OUTPUT_VALUE: json.dumps(documents_data, ensure_ascii=False),
},
)
self.trace_client.add_span(dataset_retrieval_span)
def tool_trace(self, trace_info: ToolTraceInfo):
if trace_info.message_data is None:
return
message_id = trace_info.message_id
status: Status = Status(StatusCode.OK)
if trace_info.error:
status = Status(StatusCode.ERROR, trace_info.error)
tool_span = SpanData(
trace_id=convert_to_trace_id(message_id),
parent_span_id=convert_to_span_id(message_id, "message"),
span_id=generate_span_id(),
name=trace_info.tool_name,
start_time=convert_datetime_to_nanoseconds(trace_info.start_time),
end_time=convert_datetime_to_nanoseconds(trace_info.end_time),
attributes={
GEN_AI_SPAN_KIND: GenAISpanKind.TOOL.value,
GEN_AI_FRAMEWORK: "dify",
TOOL_NAME: trace_info.tool_name,
TOOL_DESCRIPTION: json.dumps(trace_info.tool_config, ensure_ascii=False),
TOOL_PARAMETERS: json.dumps(trace_info.tool_inputs, ensure_ascii=False),
INPUT_VALUE: json.dumps(trace_info.inputs, ensure_ascii=False),
OUTPUT_VALUE: str(trace_info.tool_outputs),
},
status=status,
)
self.trace_client.add_span(tool_span)
def get_workflow_node_executions(self, trace_info: WorkflowTraceInfo) -> Sequence[WorkflowNodeExecution]:
# through workflow_run_id get all_nodes_execution using repository
session_factory = sessionmaker(bind=db.engine)
# Find the app's creator account
with Session(db.engine, expire_on_commit=False) as session:
# Get the app to find its creator
app_id = trace_info.metadata.get("app_id")
if not app_id:
raise ValueError("No app_id found in trace_info metadata")
app = session.query(App).filter(App.id == app_id).first()
if not app:
raise ValueError(f"App with id {app_id} not found")
if not app.created_by:
raise ValueError(f"App with id {app_id} has no creator (created_by is None)")
service_account = session.query(Account).filter(Account.id == app.created_by).first()
if not service_account:
raise ValueError(f"Creator account with id {app.created_by} not found for app {app_id}")
current_tenant = (
session.query(TenantAccountJoin).filter_by(account_id=service_account.id, current=True).first()
)
if not current_tenant:
raise ValueError(f"Current tenant not found for account {service_account.id}")
service_account.set_tenant_id(current_tenant.tenant_id)
workflow_node_execution_repository = SQLAlchemyWorkflowNodeExecutionRepository(
session_factory=session_factory,
user=service_account,
app_id=trace_info.metadata.get("app_id"),
triggered_from=WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN,
)
# Get all executions for this workflow run
workflow_node_executions = workflow_node_execution_repository.get_by_workflow_run(
workflow_run_id=trace_info.workflow_run_id
)
return workflow_node_executions
def build_workflow_node_span(
self, node_execution: WorkflowNodeExecution, trace_id: int, trace_info: WorkflowTraceInfo, workflow_span_id: int
):
try:
if node_execution.node_type == NodeType.LLM:
node_span = self.build_workflow_llm_span(trace_id, workflow_span_id, trace_info, node_execution)
elif node_execution.node_type == NodeType.KNOWLEDGE_RETRIEVAL:
node_span = self.build_workflow_retrieval_span(trace_id, workflow_span_id, trace_info, node_execution)
elif node_execution.node_type == NodeType.TOOL:
node_span = self.build_workflow_tool_span(trace_id, workflow_span_id, trace_info, node_execution)
else:
node_span = self.build_workflow_task_span(trace_id, workflow_span_id, trace_info, node_execution)
return node_span
except Exception:
return None
def get_workflow_node_status(self, node_execution: WorkflowNodeExecution) -> Status:
span_status: Status = Status(StatusCode.UNSET)
if node_execution.status == WorkflowNodeExecutionStatus.SUCCEEDED:
span_status = Status(StatusCode.OK)
elif node_execution.status in [WorkflowNodeExecutionStatus.FAILED, WorkflowNodeExecutionStatus.EXCEPTION]:
span_status = Status(StatusCode.ERROR, str(node_execution.error))
return span_status
def build_workflow_task_span(
self, trace_id: int, workflow_span_id: int, trace_info: WorkflowTraceInfo, node_execution: WorkflowNodeExecution
) -> SpanData:
return SpanData(
trace_id=trace_id,
parent_span_id=workflow_span_id,
span_id=convert_to_span_id(node_execution.id, "node"),
name=node_execution.title,
start_time=convert_datetime_to_nanoseconds(node_execution.created_at),
end_time=convert_datetime_to_nanoseconds(node_execution.finished_at),
attributes={
GEN_AI_SESSION_ID: trace_info.metadata.get("conversation_id", ""),
GEN_AI_SPAN_KIND: GenAISpanKind.TASK.value,
GEN_AI_FRAMEWORK: "dify",
INPUT_VALUE: json.dumps(node_execution.inputs, ensure_ascii=False),
OUTPUT_VALUE: json.dumps(node_execution.outputs, ensure_ascii=False),
},
status=self.get_workflow_node_status(node_execution),
)
def build_workflow_tool_span(
self, trace_id: int, workflow_span_id: int, trace_info: WorkflowTraceInfo, node_execution: WorkflowNodeExecution
) -> SpanData:
tool_des = {}
if node_execution.metadata:
tool_des = node_execution.metadata.get(WorkflowNodeExecutionMetadataKey.TOOL_INFO, {})
return SpanData(
trace_id=trace_id,
parent_span_id=workflow_span_id,
span_id=convert_to_span_id(node_execution.id, "node"),
name=node_execution.title,
start_time=convert_datetime_to_nanoseconds(node_execution.created_at),
end_time=convert_datetime_to_nanoseconds(node_execution.finished_at),
attributes={
GEN_AI_SPAN_KIND: GenAISpanKind.TOOL.value,
GEN_AI_FRAMEWORK: "dify",
TOOL_NAME: node_execution.title,
TOOL_DESCRIPTION: json.dumps(tool_des, ensure_ascii=False),
TOOL_PARAMETERS: json.dumps(node_execution.inputs if node_execution.inputs else {}, ensure_ascii=False),
INPUT_VALUE: json.dumps(node_execution.inputs if node_execution.inputs else {}, ensure_ascii=False),
OUTPUT_VALUE: json.dumps(node_execution.outputs, ensure_ascii=False),
},
status=self.get_workflow_node_status(node_execution),
)
def build_workflow_retrieval_span(
self, trace_id: int, workflow_span_id: int, trace_info: WorkflowTraceInfo, node_execution: WorkflowNodeExecution
) -> SpanData:
input_value = ""
if node_execution.inputs:
input_value = str(node_execution.inputs.get("query", ""))
output_value = ""
if node_execution.outputs:
output_value = json.dumps(node_execution.outputs.get("result", []), ensure_ascii=False)
return SpanData(
trace_id=trace_id,
parent_span_id=workflow_span_id,
span_id=convert_to_span_id(node_execution.id, "node"),
name=node_execution.title,
start_time=convert_datetime_to_nanoseconds(node_execution.created_at),
end_time=convert_datetime_to_nanoseconds(node_execution.finished_at),
attributes={
GEN_AI_SPAN_KIND: GenAISpanKind.RETRIEVER.value,
GEN_AI_FRAMEWORK: "dify",
RETRIEVAL_QUERY: input_value,
RETRIEVAL_DOCUMENT: output_value,
INPUT_VALUE: input_value,
OUTPUT_VALUE: output_value,
},
status=self.get_workflow_node_status(node_execution),
)
def build_workflow_llm_span(
self, trace_id: int, workflow_span_id: int, trace_info: WorkflowTraceInfo, node_execution: WorkflowNodeExecution
) -> SpanData:
process_data = node_execution.process_data or {}
outputs = node_execution.outputs or {}
usage_data = process_data.get("usage", {}) if "usage" in process_data else outputs.get("usage", {})
return SpanData(
trace_id=trace_id,
parent_span_id=workflow_span_id,
span_id=convert_to_span_id(node_execution.id, "node"),
name=node_execution.title,
start_time=convert_datetime_to_nanoseconds(node_execution.created_at),
end_time=convert_datetime_to_nanoseconds(node_execution.finished_at),
attributes={
GEN_AI_SESSION_ID: trace_info.metadata.get("conversation_id", ""),
GEN_AI_SPAN_KIND: GenAISpanKind.LLM.value,
GEN_AI_FRAMEWORK: "dify",
GEN_AI_MODEL_NAME: process_data.get("model_name", ""),
GEN_AI_SYSTEM: process_data.get("model_provider", ""),
GEN_AI_USAGE_INPUT_TOKENS: str(usage_data.get("prompt_tokens", 0)),
GEN_AI_USAGE_OUTPUT_TOKENS: str(usage_data.get("completion_tokens", 0)),
GEN_AI_USAGE_TOTAL_TOKENS: str(usage_data.get("total_tokens", 0)),
GEN_AI_PROMPT: json.dumps(process_data.get("prompts", []), ensure_ascii=False),
GEN_AI_COMPLETION: str(outputs.get("text", "")),
GEN_AI_RESPONSE_FINISH_REASON: outputs.get("finish_reason", ""),
INPUT_VALUE: json.dumps(process_data.get("prompts", []), ensure_ascii=False),
OUTPUT_VALUE: str(outputs.get("text", "")),
},
status=self.get_workflow_node_status(node_execution),
)
def add_workflow_span(self, trace_id: int, workflow_span_id: int, trace_info: WorkflowTraceInfo):
message_span_id = None
if trace_info.message_id:
message_span_id = convert_to_span_id(trace_info.message_id, "message")
user_id = trace_info.metadata.get("user_id")
status: Status = Status(StatusCode.OK)
if trace_info.error:
status = Status(StatusCode.ERROR, trace_info.error)
if message_span_id: # chatflow
message_span = SpanData(
trace_id=trace_id,
parent_span_id=None,
span_id=message_span_id,
name="message",
start_time=convert_datetime_to_nanoseconds(trace_info.start_time),
end_time=convert_datetime_to_nanoseconds(trace_info.end_time),
attributes={
GEN_AI_SESSION_ID: trace_info.metadata.get("conversation_id", ""),
GEN_AI_USER_ID: str(user_id),
GEN_AI_SPAN_KIND: GenAISpanKind.CHAIN.value,
GEN_AI_FRAMEWORK: "dify",
INPUT_VALUE: trace_info.workflow_run_inputs.get("sys.query", ""),
OUTPUT_VALUE: json.dumps(trace_info.workflow_run_outputs, ensure_ascii=False),
},
status=status,
)
self.trace_client.add_span(message_span)
workflow_span = SpanData(
trace_id=trace_id,
parent_span_id=message_span_id,
span_id=workflow_span_id,
name="workflow",
start_time=convert_datetime_to_nanoseconds(trace_info.start_time),
end_time=convert_datetime_to_nanoseconds(trace_info.end_time),
attributes={
GEN_AI_USER_ID: str(user_id),
GEN_AI_SPAN_KIND: GenAISpanKind.CHAIN.value,
GEN_AI_FRAMEWORK: "dify",
INPUT_VALUE: json.dumps(trace_info.workflow_run_inputs, ensure_ascii=False),
OUTPUT_VALUE: json.dumps(trace_info.workflow_run_outputs, ensure_ascii=False),
},
status=status,
)
self.trace_client.add_span(workflow_span)
def suggested_question_trace(self, trace_info: SuggestedQuestionTraceInfo):
message_id = trace_info.message_id
status: Status = Status(StatusCode.OK)
if trace_info.error:
status = Status(StatusCode.ERROR, trace_info.error)
suggested_question_span = SpanData(
trace_id=convert_to_trace_id(message_id),
parent_span_id=convert_to_span_id(message_id, "message"),
span_id=convert_to_span_id(message_id, "suggested_question"),
name="suggested_question",
start_time=convert_datetime_to_nanoseconds(trace_info.start_time),
end_time=convert_datetime_to_nanoseconds(trace_info.end_time),
attributes={
GEN_AI_SPAN_KIND: GenAISpanKind.LLM.value,
GEN_AI_FRAMEWORK: "dify",
GEN_AI_MODEL_NAME: trace_info.metadata.get("ls_model_name", ""),
GEN_AI_SYSTEM: trace_info.metadata.get("ls_provider", ""),
GEN_AI_PROMPT: json.dumps(trace_info.inputs, ensure_ascii=False),
GEN_AI_COMPLETION: json.dumps(trace_info.suggested_question, ensure_ascii=False),
INPUT_VALUE: json.dumps(trace_info.inputs, ensure_ascii=False),
OUTPUT_VALUE: json.dumps(trace_info.suggested_question, ensure_ascii=False),
},
status=status,
)
self.trace_client.add_span(suggested_question_span)
def extract_retrieval_documents(documents: list[Document]):
documents_data = []
for document in documents:
document_data = {
"content": document.page_content,
"metadata": {
"dataset_id": document.metadata.get("dataset_id"),
"doc_id": document.metadata.get("doc_id"),
"document_id": document.metadata.get("document_id"),
},
"score": document.metadata.get("score"),
}
documents_data.append(document_data)
return documents_data

View File

@ -0,0 +1,200 @@
import hashlib
import logging
import random
import socket
import threading
import uuid
from collections import deque
from collections.abc import Sequence
from datetime import datetime
from typing import Optional
import requests
from opentelemetry import trace as trace_api
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.resources import Resource
from opentelemetry.sdk.trace import ReadableSpan
from opentelemetry.sdk.util.instrumentation import InstrumentationScope
from opentelemetry.semconv.resource import ResourceAttributes
from configs import dify_config
from core.ops.aliyun_trace.entities.aliyun_trace_entity import SpanData
INVALID_SPAN_ID = 0x0000000000000000
INVALID_TRACE_ID = 0x00000000000000000000000000000000
logger = logging.getLogger(__name__)
class TraceClient:
def __init__(
self,
service_name: str,
endpoint: str,
max_queue_size: int = 1000,
schedule_delay_sec: int = 5,
max_export_batch_size: int = 50,
):
self.endpoint = endpoint
self.resource = Resource(
attributes={
ResourceAttributes.SERVICE_NAME: service_name,
ResourceAttributes.SERVICE_VERSION: f"dify-{dify_config.project.version}-{dify_config.COMMIT_SHA}",
ResourceAttributes.DEPLOYMENT_ENVIRONMENT: f"{dify_config.DEPLOY_ENV}-{dify_config.EDITION}",
ResourceAttributes.HOST_NAME: socket.gethostname(),
}
)
self.span_builder = SpanBuilder(self.resource)
self.exporter = OTLPSpanExporter(endpoint=endpoint)
self.max_queue_size = max_queue_size
self.schedule_delay_sec = schedule_delay_sec
self.max_export_batch_size = max_export_batch_size
self.queue: deque = deque(maxlen=max_queue_size)
self.condition = threading.Condition(threading.Lock())
self.done = False
self.worker_thread = threading.Thread(target=self._worker, daemon=True)
self.worker_thread.start()
self._spans_dropped = False
def export(self, spans: Sequence[ReadableSpan]):
self.exporter.export(spans)
def api_check(self):
try:
response = requests.head(self.endpoint, timeout=5)
if response.status_code == 405:
return True
else:
logger.debug(f"AliyunTrace API check failed: Unexpected status code: {response.status_code}")
return False
except requests.exceptions.RequestException as e:
logger.debug(f"AliyunTrace API check failed: {str(e)}")
raise ValueError(f"AliyunTrace API check failed: {str(e)}")
def get_project_url(self):
return "https://arms.console.aliyun.com/#/llm"
def add_span(self, span_data: SpanData):
if span_data is None:
return
span: ReadableSpan = self.span_builder.build_span(span_data)
with self.condition:
if len(self.queue) == self.max_queue_size:
if not self._spans_dropped:
logger.warning("Queue is full, likely spans will be dropped.")
self._spans_dropped = True
self.queue.appendleft(span)
if len(self.queue) >= self.max_export_batch_size:
self.condition.notify()
def _worker(self):
while not self.done:
with self.condition:
if len(self.queue) < self.max_export_batch_size and not self.done:
self.condition.wait(timeout=self.schedule_delay_sec)
self._export_batch()
def _export_batch(self):
spans_to_export: list[ReadableSpan] = []
with self.condition:
while len(spans_to_export) < self.max_export_batch_size and self.queue:
spans_to_export.append(self.queue.pop())
if spans_to_export:
try:
self.exporter.export(spans_to_export)
except Exception as e:
logger.debug(f"Error exporting spans: {e}")
def shutdown(self):
with self.condition:
self.done = True
self.condition.notify_all()
self.worker_thread.join()
self._export_batch()
self.exporter.shutdown()
class SpanBuilder:
def __init__(self, resource):
self.resource = resource
self.instrumentation_scope = InstrumentationScope(
__name__,
"",
None,
None,
)
def build_span(self, span_data: SpanData) -> ReadableSpan:
span_context = trace_api.SpanContext(
trace_id=span_data.trace_id,
span_id=span_data.span_id,
is_remote=False,
trace_flags=trace_api.TraceFlags(trace_api.TraceFlags.SAMPLED),
trace_state=None,
)
parent_span_context = None
if span_data.parent_span_id is not None:
parent_span_context = trace_api.SpanContext(
trace_id=span_data.trace_id,
span_id=span_data.parent_span_id,
is_remote=False,
trace_flags=trace_api.TraceFlags(trace_api.TraceFlags.SAMPLED),
trace_state=None,
)
span = ReadableSpan(
name=span_data.name,
context=span_context,
parent=parent_span_context,
resource=self.resource,
attributes=span_data.attributes,
events=span_data.events,
links=span_data.links,
kind=trace_api.SpanKind.INTERNAL,
status=span_data.status,
start_time=span_data.start_time,
end_time=span_data.end_time,
instrumentation_scope=self.instrumentation_scope,
)
return span
def generate_span_id() -> int:
span_id = random.getrandbits(64)
while span_id == INVALID_SPAN_ID:
span_id = random.getrandbits(64)
return span_id
def convert_to_trace_id(uuid_v4: Optional[str]) -> int:
try:
uuid_obj = uuid.UUID(uuid_v4)
return uuid_obj.int
except Exception as e:
raise ValueError(f"Invalid UUID input: {e}")
def convert_to_span_id(uuid_v4: Optional[str], span_type: str) -> int:
try:
uuid_obj = uuid.UUID(uuid_v4)
except Exception as e:
raise ValueError(f"Invalid UUID input: {e}")
combined_key = f"{uuid_obj.hex}-{span_type}"
hash_bytes = hashlib.sha256(combined_key.encode("utf-8")).digest()
span_id = int.from_bytes(hash_bytes[:8], byteorder="big", signed=False)
return span_id
def convert_datetime_to_nanoseconds(start_time_a: Optional[datetime]) -> Optional[int]:
if start_time_a is None:
return None
timestamp_in_seconds = start_time_a.timestamp()
timestamp_in_nanoseconds = int(timestamp_in_seconds * 1e9)
return timestamp_in_nanoseconds

View File

@ -0,0 +1,21 @@
from collections.abc import Sequence
from typing import Optional
from opentelemetry import trace as trace_api
from opentelemetry.sdk.trace import Event, Status, StatusCode
from pydantic import BaseModel, Field
class SpanData(BaseModel):
model_config = {"arbitrary_types_allowed": True}
trace_id: int = Field(..., description="The unique identifier for the trace.")
parent_span_id: Optional[int] = Field(None, description="The ID of the parent span, if any.")
span_id: int = Field(..., description="The unique identifier for this span.")
name: str = Field(..., description="The name of the span.")
attributes: dict[str, str] = Field(default_factory=dict, description="Attributes associated with the span.")
events: Sequence[Event] = Field(default_factory=list, description="Events recorded in the span.")
links: Sequence[trace_api.Link] = Field(default_factory=list, description="Links to other spans.")
status: Status = Field(default=Status(StatusCode.UNSET), description="The status of the span.")
start_time: Optional[int] = Field(..., description="The start time of the span in nanoseconds.")
end_time: Optional[int] = Field(..., description="The end time of the span in nanoseconds.")

View File

@ -0,0 +1,64 @@
from enum import Enum
# public
GEN_AI_SESSION_ID = "gen_ai.session.id"
GEN_AI_USER_ID = "gen_ai.user.id"
GEN_AI_USER_NAME = "gen_ai.user.name"
GEN_AI_SPAN_KIND = "gen_ai.span.kind"
GEN_AI_FRAMEWORK = "gen_ai.framework"
# Chain
INPUT_VALUE = "input.value"
OUTPUT_VALUE = "output.value"
# Retriever
RETRIEVAL_QUERY = "retrieval.query"
RETRIEVAL_DOCUMENT = "retrieval.document"
# LLM
GEN_AI_MODEL_NAME = "gen_ai.model_name"
GEN_AI_SYSTEM = "gen_ai.system"
GEN_AI_USAGE_INPUT_TOKENS = "gen_ai.usage.input_tokens"
GEN_AI_USAGE_OUTPUT_TOKENS = "gen_ai.usage.output_tokens"
GEN_AI_USAGE_TOTAL_TOKENS = "gen_ai.usage.total_tokens"
GEN_AI_PROMPT_TEMPLATE_TEMPLATE = "gen_ai.prompt_template.template"
GEN_AI_PROMPT_TEMPLATE_VARIABLE = "gen_ai.prompt_template.variable"
GEN_AI_PROMPT = "gen_ai.prompt"
GEN_AI_COMPLETION = "gen_ai.completion"
GEN_AI_RESPONSE_FINISH_REASON = "gen_ai.response.finish_reason"
# Tool
TOOL_NAME = "tool.name"
TOOL_DESCRIPTION = "tool.description"
TOOL_PARAMETERS = "tool.parameters"
class GenAISpanKind(Enum):
CHAIN = "CHAIN"
RETRIEVER = "RETRIEVER"
RERANKER = "RERANKER"
LLM = "LLM"
EMBEDDING = "EMBEDDING"
TOOL = "TOOL"
AGENT = "AGENT"
TASK = "TASK"

View File

@ -0,0 +1,726 @@
import hashlib
import json
import logging
import os
from datetime import datetime, timedelta
from typing import Optional, Union, cast
from openinference.semconv.trace import OpenInferenceSpanKindValues, SpanAttributes
from opentelemetry import trace
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter as GrpcOTLPSpanExporter
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter as HttpOTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.resources import Resource
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
from opentelemetry.sdk.trace.id_generator import RandomIdGenerator
from opentelemetry.trace import SpanContext, TraceFlags, TraceState
from core.ops.base_trace_instance import BaseTraceInstance
from core.ops.entities.config_entity import ArizeConfig, PhoenixConfig
from core.ops.entities.trace_entity import (
BaseTraceInfo,
DatasetRetrievalTraceInfo,
GenerateNameTraceInfo,
MessageTraceInfo,
ModerationTraceInfo,
SuggestedQuestionTraceInfo,
ToolTraceInfo,
TraceTaskName,
WorkflowTraceInfo,
)
from extensions.ext_database import db
from models.model import EndUser, MessageFile
from models.workflow import WorkflowNodeExecutionModel
logger = logging.getLogger(__name__)
def setup_tracer(arize_phoenix_config: ArizeConfig | PhoenixConfig) -> tuple[trace_sdk.Tracer, SimpleSpanProcessor]:
"""Configure OpenTelemetry tracer with OTLP exporter for Arize/Phoenix."""
try:
# Choose the appropriate exporter based on config type
exporter: Union[GrpcOTLPSpanExporter, HttpOTLPSpanExporter]
if isinstance(arize_phoenix_config, ArizeConfig):
arize_endpoint = f"{arize_phoenix_config.endpoint}/v1"
arize_headers = {
"api_key": arize_phoenix_config.api_key or "",
"space_id": arize_phoenix_config.space_id or "",
"authorization": f"Bearer {arize_phoenix_config.api_key or ''}",
}
exporter = GrpcOTLPSpanExporter(
endpoint=arize_endpoint,
headers=arize_headers,
timeout=30,
)
else:
phoenix_endpoint = f"{arize_phoenix_config.endpoint}/v1/traces"
phoenix_headers = {
"api_key": arize_phoenix_config.api_key or "",
"authorization": f"Bearer {arize_phoenix_config.api_key or ''}",
}
exporter = HttpOTLPSpanExporter(
endpoint=phoenix_endpoint,
headers=phoenix_headers,
timeout=30,
)
attributes = {
"openinference.project.name": arize_phoenix_config.project or "",
"model_id": arize_phoenix_config.project or "",
}
resource = Resource(attributes=attributes)
provider = trace_sdk.TracerProvider(resource=resource)
processor = SimpleSpanProcessor(
exporter,
)
provider.add_span_processor(processor)
# Create a named tracer instead of setting the global provider
tracer_name = f"arize_phoenix_tracer_{arize_phoenix_config.project}"
logger.info(f"[Arize/Phoenix] Created tracer with name: {tracer_name}")
return cast(trace_sdk.Tracer, provider.get_tracer(tracer_name)), processor
except Exception as e:
logger.error(f"[Arize/Phoenix] Failed to setup the tracer: {str(e)}", exc_info=True)
raise
def datetime_to_nanos(dt: Optional[datetime]) -> int:
"""Convert datetime to nanoseconds since epoch. If None, use current time."""
if dt is None:
dt = datetime.now()
return int(dt.timestamp() * 1_000_000_000)
def uuid_to_trace_id(string: Optional[str]) -> int:
"""Convert UUID string to a valid trace ID (16-byte integer)."""
if string is None:
string = ""
hash_object = hashlib.sha256(string.encode())
# Take the first 16 bytes (128 bits) of the hash
digest = hash_object.digest()[:16]
# Convert to integer (128 bits)
return int.from_bytes(digest, byteorder="big")
class ArizePhoenixDataTrace(BaseTraceInstance):
def __init__(
self,
arize_phoenix_config: ArizeConfig | PhoenixConfig,
):
super().__init__(arize_phoenix_config)
import logging
logging.basicConfig()
logging.getLogger().setLevel(logging.DEBUG)
self.arize_phoenix_config = arize_phoenix_config
self.tracer, self.processor = setup_tracer(arize_phoenix_config)
self.project = arize_phoenix_config.project
self.file_base_url = os.getenv("FILES_URL", "http://127.0.0.1:5001")
def trace(self, trace_info: BaseTraceInfo):
logger.info(f"[Arize/Phoenix] Trace: {trace_info}")
try:
if isinstance(trace_info, WorkflowTraceInfo):
self.workflow_trace(trace_info)
if isinstance(trace_info, MessageTraceInfo):
self.message_trace(trace_info)
if isinstance(trace_info, ModerationTraceInfo):
self.moderation_trace(trace_info)
if isinstance(trace_info, SuggestedQuestionTraceInfo):
self.suggested_question_trace(trace_info)
if isinstance(trace_info, DatasetRetrievalTraceInfo):
self.dataset_retrieval_trace(trace_info)
if isinstance(trace_info, ToolTraceInfo):
self.tool_trace(trace_info)
if isinstance(trace_info, GenerateNameTraceInfo):
self.generate_name_trace(trace_info)
except Exception as e:
logger.error(f"[Arize/Phoenix] Error in the trace: {str(e)}", exc_info=True)
raise
def workflow_trace(self, trace_info: WorkflowTraceInfo):
if trace_info.message_data is None:
return
workflow_metadata = {
"workflow_id": trace_info.workflow_run_id or "",
"message_id": trace_info.message_id or "",
"workflow_app_log_id": trace_info.workflow_app_log_id or "",
"status": trace_info.workflow_run_status or "",
"status_message": trace_info.error or "",
"level": "ERROR" if trace_info.error else "DEFAULT",
"total_tokens": trace_info.total_tokens or 0,
}
workflow_metadata.update(trace_info.metadata)
trace_id = uuid_to_trace_id(trace_info.message_id)
span_id = RandomIdGenerator().generate_span_id()
context = SpanContext(
trace_id=trace_id,
span_id=span_id,
is_remote=False,
trace_flags=TraceFlags(TraceFlags.SAMPLED),
trace_state=TraceState(),
)
workflow_span = self.tracer.start_span(
name=TraceTaskName.WORKFLOW_TRACE.value,
attributes={
SpanAttributes.INPUT_VALUE: json.dumps(trace_info.workflow_run_inputs, ensure_ascii=False),
SpanAttributes.OUTPUT_VALUE: json.dumps(trace_info.workflow_run_outputs, ensure_ascii=False),
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.CHAIN.value,
SpanAttributes.METADATA: json.dumps(workflow_metadata, ensure_ascii=False),
SpanAttributes.SESSION_ID: trace_info.conversation_id or "",
},
start_time=datetime_to_nanos(trace_info.start_time),
context=trace.set_span_in_context(trace.NonRecordingSpan(context)),
)
try:
# Process workflow nodes
for node_execution in self._get_workflow_nodes(trace_info.workflow_run_id):
created_at = node_execution.created_at or datetime.now()
elapsed_time = node_execution.elapsed_time
finished_at = created_at + timedelta(seconds=elapsed_time)
process_data = json.loads(node_execution.process_data) if node_execution.process_data else {}
node_metadata = {
"node_id": node_execution.id,
"node_type": node_execution.node_type,
"node_status": node_execution.status,
"tenant_id": node_execution.tenant_id,
"app_id": node_execution.app_id,
"app_name": node_execution.title,
"status": node_execution.status,
"level": "ERROR" if node_execution.status != "succeeded" else "DEFAULT",
}
if node_execution.execution_metadata:
node_metadata.update(json.loads(node_execution.execution_metadata))
# Determine the correct span kind based on node type
span_kind = OpenInferenceSpanKindValues.CHAIN.value
if node_execution.node_type == "llm":
span_kind = OpenInferenceSpanKindValues.LLM.value
provider = process_data.get("model_provider")
model = process_data.get("model_name")
if provider:
node_metadata["ls_provider"] = provider
if model:
node_metadata["ls_model_name"] = model
outputs = json.loads(node_execution.outputs).get("usage", {})
usage_data = process_data.get("usage", {}) if "usage" in process_data else outputs.get("usage", {})
if usage_data:
node_metadata["total_tokens"] = usage_data.get("total_tokens", 0)
node_metadata["prompt_tokens"] = usage_data.get("prompt_tokens", 0)
node_metadata["completion_tokens"] = usage_data.get("completion_tokens", 0)
elif node_execution.node_type == "dataset_retrieval":
span_kind = OpenInferenceSpanKindValues.RETRIEVER.value
elif node_execution.node_type == "tool":
span_kind = OpenInferenceSpanKindValues.TOOL.value
else:
span_kind = OpenInferenceSpanKindValues.CHAIN.value
node_span = self.tracer.start_span(
name=node_execution.node_type,
attributes={
SpanAttributes.INPUT_VALUE: node_execution.inputs or "{}",
SpanAttributes.OUTPUT_VALUE: node_execution.outputs or "{}",
SpanAttributes.OPENINFERENCE_SPAN_KIND: span_kind,
SpanAttributes.METADATA: json.dumps(node_metadata, ensure_ascii=False),
SpanAttributes.SESSION_ID: trace_info.conversation_id or "",
},
start_time=datetime_to_nanos(created_at),
)
try:
if node_execution.node_type == "llm":
provider = process_data.get("model_provider")
model = process_data.get("model_name")
if provider:
node_span.set_attribute(SpanAttributes.LLM_PROVIDER, provider)
if model:
node_span.set_attribute(SpanAttributes.LLM_MODEL_NAME, model)
outputs = json.loads(node_execution.outputs).get("usage", {})
usage_data = (
process_data.get("usage", {}) if "usage" in process_data else outputs.get("usage", {})
)
if usage_data:
node_span.set_attribute(
SpanAttributes.LLM_TOKEN_COUNT_TOTAL, usage_data.get("total_tokens", 0)
)
node_span.set_attribute(
SpanAttributes.LLM_TOKEN_COUNT_PROMPT, usage_data.get("prompt_tokens", 0)
)
node_span.set_attribute(
SpanAttributes.LLM_TOKEN_COUNT_COMPLETION, usage_data.get("completion_tokens", 0)
)
finally:
node_span.end(end_time=datetime_to_nanos(finished_at))
finally:
workflow_span.end(end_time=datetime_to_nanos(trace_info.end_time))
def message_trace(self, trace_info: MessageTraceInfo):
if trace_info.message_data is None:
return
file_list = cast(list[str], trace_info.file_list) or []
message_file_data: Optional[MessageFile] = trace_info.message_file_data
if message_file_data is not None:
file_url = f"{self.file_base_url}/{message_file_data.url}" if message_file_data else ""
file_list.append(file_url)
message_metadata = {
"message_id": trace_info.message_id or "",
"conversation_mode": str(trace_info.conversation_mode or ""),
"user_id": trace_info.message_data.from_account_id or "",
"file_list": json.dumps(file_list),
"status": trace_info.message_data.status or "",
"status_message": trace_info.error or "",
"level": "ERROR" if trace_info.error else "DEFAULT",
"total_tokens": trace_info.total_tokens or 0,
"prompt_tokens": trace_info.message_tokens or 0,
"completion_tokens": trace_info.answer_tokens or 0,
"ls_provider": trace_info.message_data.model_provider or "",
"ls_model_name": trace_info.message_data.model_id or "",
}
message_metadata.update(trace_info.metadata)
# Add end user data if available
if trace_info.message_data.from_end_user_id:
end_user_data: Optional[EndUser] = (
db.session.query(EndUser).filter(EndUser.id == trace_info.message_data.from_end_user_id).first()
)
if end_user_data is not None:
message_metadata["end_user_id"] = end_user_data.session_id
attributes = {
SpanAttributes.INPUT_VALUE: trace_info.message_data.query,
SpanAttributes.OUTPUT_VALUE: trace_info.message_data.answer,
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.CHAIN.value,
SpanAttributes.METADATA: json.dumps(message_metadata, ensure_ascii=False),
SpanAttributes.SESSION_ID: trace_info.message_data.conversation_id,
}
trace_id = uuid_to_trace_id(trace_info.message_id)
message_span_id = RandomIdGenerator().generate_span_id()
span_context = SpanContext(
trace_id=trace_id,
span_id=message_span_id,
is_remote=False,
trace_flags=TraceFlags(TraceFlags.SAMPLED),
trace_state=TraceState(),
)
message_span = self.tracer.start_span(
name=TraceTaskName.MESSAGE_TRACE.value,
attributes=attributes,
start_time=datetime_to_nanos(trace_info.start_time),
context=trace.set_span_in_context(trace.NonRecordingSpan(span_context)),
)
try:
if trace_info.error:
message_span.add_event(
"exception",
attributes={
"exception.message": trace_info.error,
"exception.type": "Error",
"exception.stacktrace": trace_info.error,
},
)
# Convert outputs to string based on type
if isinstance(trace_info.outputs, dict | list):
outputs_str = json.dumps(trace_info.outputs, ensure_ascii=False)
elif isinstance(trace_info.outputs, str):
outputs_str = trace_info.outputs
else:
outputs_str = str(trace_info.outputs)
llm_attributes = {
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.LLM.value,
SpanAttributes.INPUT_VALUE: json.dumps(trace_info.inputs, ensure_ascii=False),
SpanAttributes.OUTPUT_VALUE: outputs_str,
SpanAttributes.METADATA: json.dumps(message_metadata, ensure_ascii=False),
SpanAttributes.SESSION_ID: trace_info.message_data.conversation_id,
}
if isinstance(trace_info.inputs, list):
for i, msg in enumerate(trace_info.inputs):
if isinstance(msg, dict):
llm_attributes[f"{SpanAttributes.LLM_INPUT_MESSAGES}.{i}.message.content"] = msg.get("text", "")
llm_attributes[f"{SpanAttributes.LLM_INPUT_MESSAGES}.{i}.message.role"] = msg.get(
"role", "user"
)
# todo: handle assistant and tool role messages, as they don't always
# have a text field, but may have a tool_calls field instead
# e.g. 'tool_calls': [{'id': '98af3a29-b066-45a5-b4b1-46c74ddafc58',
# 'type': 'function', 'function': {'name': 'current_time', 'arguments': '{}'}}]}
elif isinstance(trace_info.inputs, dict):
llm_attributes[f"{SpanAttributes.LLM_INPUT_MESSAGES}.0.message.content"] = json.dumps(trace_info.inputs)
llm_attributes[f"{SpanAttributes.LLM_INPUT_MESSAGES}.0.message.role"] = "user"
elif isinstance(trace_info.inputs, str):
llm_attributes[f"{SpanAttributes.LLM_INPUT_MESSAGES}.0.message.content"] = trace_info.inputs
llm_attributes[f"{SpanAttributes.LLM_INPUT_MESSAGES}.0.message.role"] = "user"
if trace_info.total_tokens is not None and trace_info.total_tokens > 0:
llm_attributes[SpanAttributes.LLM_TOKEN_COUNT_TOTAL] = trace_info.total_tokens
if trace_info.message_tokens is not None and trace_info.message_tokens > 0:
llm_attributes[SpanAttributes.LLM_TOKEN_COUNT_PROMPT] = trace_info.message_tokens
if trace_info.answer_tokens is not None and trace_info.answer_tokens > 0:
llm_attributes[SpanAttributes.LLM_TOKEN_COUNT_COMPLETION] = trace_info.answer_tokens
if trace_info.message_data.model_id is not None:
llm_attributes[SpanAttributes.LLM_MODEL_NAME] = trace_info.message_data.model_id
if trace_info.message_data.model_provider is not None:
llm_attributes[SpanAttributes.LLM_PROVIDER] = trace_info.message_data.model_provider
if trace_info.message_data and trace_info.message_data.message_metadata:
metadata_dict = json.loads(trace_info.message_data.message_metadata)
if model_params := metadata_dict.get("model_parameters"):
llm_attributes[SpanAttributes.LLM_INVOCATION_PARAMETERS] = json.dumps(model_params)
llm_span = self.tracer.start_span(
name="llm",
attributes=llm_attributes,
start_time=datetime_to_nanos(trace_info.start_time),
context=trace.set_span_in_context(trace.NonRecordingSpan(span_context)),
)
try:
if trace_info.error:
llm_span.add_event(
"exception",
attributes={
"exception.message": trace_info.error,
"exception.type": "Error",
"exception.stacktrace": trace_info.error,
},
)
finally:
llm_span.end(end_time=datetime_to_nanos(trace_info.end_time))
finally:
message_span.end(end_time=datetime_to_nanos(trace_info.end_time))
def moderation_trace(self, trace_info: ModerationTraceInfo):
if trace_info.message_data is None:
return
metadata = {
"message_id": trace_info.message_id,
"tool_name": "moderation",
"status": trace_info.message_data.status,
"status_message": trace_info.message_data.error or "",
"level": "ERROR" if trace_info.message_data.error else "DEFAULT",
}
metadata.update(trace_info.metadata)
trace_id = uuid_to_trace_id(trace_info.message_id)
span_id = RandomIdGenerator().generate_span_id()
context = SpanContext(
trace_id=trace_id,
span_id=span_id,
is_remote=False,
trace_flags=TraceFlags(TraceFlags.SAMPLED),
trace_state=TraceState(),
)
span = self.tracer.start_span(
name=TraceTaskName.MODERATION_TRACE.value,
attributes={
SpanAttributes.INPUT_VALUE: json.dumps(trace_info.inputs, ensure_ascii=False),
SpanAttributes.OUTPUT_VALUE: json.dumps(
{
"action": trace_info.action,
"flagged": trace_info.flagged,
"preset_response": trace_info.preset_response,
"inputs": trace_info.inputs,
},
ensure_ascii=False,
),
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.CHAIN.value,
SpanAttributes.METADATA: json.dumps(metadata, ensure_ascii=False),
},
start_time=datetime_to_nanos(trace_info.start_time),
context=trace.set_span_in_context(trace.NonRecordingSpan(context)),
)
try:
if trace_info.message_data.error:
span.add_event(
"exception",
attributes={
"exception.message": trace_info.message_data.error,
"exception.type": "Error",
"exception.stacktrace": trace_info.message_data.error,
},
)
finally:
span.end(end_time=datetime_to_nanos(trace_info.end_time))
def suggested_question_trace(self, trace_info: SuggestedQuestionTraceInfo):
if trace_info.message_data is None:
return
start_time = trace_info.start_time or trace_info.message_data.created_at
end_time = trace_info.end_time or trace_info.message_data.updated_at
metadata = {
"message_id": trace_info.message_id,
"tool_name": "suggested_question",
"status": trace_info.status,
"status_message": trace_info.error or "",
"level": "ERROR" if trace_info.error else "DEFAULT",
"total_tokens": trace_info.total_tokens,
"ls_provider": trace_info.model_provider or "",
"ls_model_name": trace_info.model_id or "",
}
metadata.update(trace_info.metadata)
trace_id = uuid_to_trace_id(trace_info.message_id)
span_id = RandomIdGenerator().generate_span_id()
context = SpanContext(
trace_id=trace_id,
span_id=span_id,
is_remote=False,
trace_flags=TraceFlags(TraceFlags.SAMPLED),
trace_state=TraceState(),
)
span = self.tracer.start_span(
name=TraceTaskName.SUGGESTED_QUESTION_TRACE.value,
attributes={
SpanAttributes.INPUT_VALUE: json.dumps(trace_info.inputs, ensure_ascii=False),
SpanAttributes.OUTPUT_VALUE: json.dumps(trace_info.suggested_question, ensure_ascii=False),
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.CHAIN.value,
SpanAttributes.METADATA: json.dumps(metadata, ensure_ascii=False),
},
start_time=datetime_to_nanos(start_time),
context=trace.set_span_in_context(trace.NonRecordingSpan(context)),
)
try:
if trace_info.error:
span.add_event(
"exception",
attributes={
"exception.message": trace_info.error,
"exception.type": "Error",
"exception.stacktrace": trace_info.error,
},
)
finally:
span.end(end_time=datetime_to_nanos(end_time))
def dataset_retrieval_trace(self, trace_info: DatasetRetrievalTraceInfo):
if trace_info.message_data is None:
return
start_time = trace_info.start_time or trace_info.message_data.created_at
end_time = trace_info.end_time or trace_info.message_data.updated_at
metadata = {
"message_id": trace_info.message_id,
"tool_name": "dataset_retrieval",
"status": trace_info.message_data.status,
"status_message": trace_info.message_data.error or "",
"level": "ERROR" if trace_info.message_data.error else "DEFAULT",
"ls_provider": trace_info.message_data.model_provider or "",
"ls_model_name": trace_info.message_data.model_id or "",
}
metadata.update(trace_info.metadata)
trace_id = uuid_to_trace_id(trace_info.message_id)
span_id = RandomIdGenerator().generate_span_id()
context = SpanContext(
trace_id=trace_id,
span_id=span_id,
is_remote=False,
trace_flags=TraceFlags(TraceFlags.SAMPLED),
trace_state=TraceState(),
)
span = self.tracer.start_span(
name=TraceTaskName.DATASET_RETRIEVAL_TRACE.value,
attributes={
SpanAttributes.INPUT_VALUE: json.dumps(trace_info.inputs, ensure_ascii=False),
SpanAttributes.OUTPUT_VALUE: json.dumps({"documents": trace_info.documents}, ensure_ascii=False),
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.RETRIEVER.value,
SpanAttributes.METADATA: json.dumps(metadata, ensure_ascii=False),
"start_time": start_time.isoformat() if start_time else "",
"end_time": end_time.isoformat() if end_time else "",
},
start_time=datetime_to_nanos(start_time),
context=trace.set_span_in_context(trace.NonRecordingSpan(context)),
)
try:
if trace_info.message_data.error:
span.add_event(
"exception",
attributes={
"exception.message": trace_info.message_data.error,
"exception.type": "Error",
"exception.stacktrace": trace_info.message_data.error,
},
)
finally:
span.end(end_time=datetime_to_nanos(end_time))
def tool_trace(self, trace_info: ToolTraceInfo):
if trace_info.message_data is None:
logger.warning("[Arize/Phoenix] Message data is None, skipping tool trace.")
return
metadata = {
"message_id": trace_info.message_id,
"tool_config": json.dumps(trace_info.tool_config, ensure_ascii=False),
}
trace_id = uuid_to_trace_id(trace_info.message_id)
tool_span_id = RandomIdGenerator().generate_span_id()
logger.info(f"[Arize/Phoenix] Creating tool trace with trace_id: {trace_id}, span_id: {tool_span_id}")
# Create span context with the same trace_id as the parent
# todo: Create with the appropriate parent span context, so that the tool span is
# a child of the appropriate span (e.g. message span)
span_context = SpanContext(
trace_id=trace_id,
span_id=tool_span_id,
is_remote=False,
trace_flags=TraceFlags(TraceFlags.SAMPLED),
trace_state=TraceState(),
)
tool_params_str = (
json.dumps(trace_info.tool_parameters, ensure_ascii=False)
if isinstance(trace_info.tool_parameters, dict)
else str(trace_info.tool_parameters)
)
span = self.tracer.start_span(
name=trace_info.tool_name,
attributes={
SpanAttributes.INPUT_VALUE: json.dumps(trace_info.tool_inputs, ensure_ascii=False),
SpanAttributes.OUTPUT_VALUE: trace_info.tool_outputs,
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.TOOL.value,
SpanAttributes.METADATA: json.dumps(metadata, ensure_ascii=False),
SpanAttributes.TOOL_NAME: trace_info.tool_name,
SpanAttributes.TOOL_PARAMETERS: tool_params_str,
},
start_time=datetime_to_nanos(trace_info.start_time),
context=trace.set_span_in_context(trace.NonRecordingSpan(span_context)),
)
try:
if trace_info.error:
span.add_event(
"exception",
attributes={
"exception.message": trace_info.error,
"exception.type": "Error",
"exception.stacktrace": trace_info.error,
},
)
finally:
span.end(end_time=datetime_to_nanos(trace_info.end_time))
def generate_name_trace(self, trace_info: GenerateNameTraceInfo):
if trace_info.message_data is None:
return
metadata = {
"project_name": self.project,
"message_id": trace_info.message_id,
"status": trace_info.message_data.status,
"status_message": trace_info.message_data.error or "",
"level": "ERROR" if trace_info.message_data.error else "DEFAULT",
}
metadata.update(trace_info.metadata)
trace_id = uuid_to_trace_id(trace_info.message_id)
span_id = RandomIdGenerator().generate_span_id()
context = SpanContext(
trace_id=trace_id,
span_id=span_id,
is_remote=False,
trace_flags=TraceFlags(TraceFlags.SAMPLED),
trace_state=TraceState(),
)
span = self.tracer.start_span(
name=TraceTaskName.GENERATE_NAME_TRACE.value,
attributes={
SpanAttributes.INPUT_VALUE: json.dumps(trace_info.inputs, ensure_ascii=False),
SpanAttributes.OUTPUT_VALUE: json.dumps(trace_info.outputs, ensure_ascii=False),
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.CHAIN.value,
SpanAttributes.METADATA: json.dumps(metadata, ensure_ascii=False),
SpanAttributes.SESSION_ID: trace_info.message_data.conversation_id,
"start_time": trace_info.start_time.isoformat() if trace_info.start_time else "",
"end_time": trace_info.end_time.isoformat() if trace_info.end_time else "",
},
start_time=datetime_to_nanos(trace_info.start_time),
context=trace.set_span_in_context(trace.NonRecordingSpan(context)),
)
try:
if trace_info.message_data.error:
span.add_event(
"exception",
attributes={
"exception.message": trace_info.message_data.error,
"exception.type": "Error",
"exception.stacktrace": trace_info.message_data.error,
},
)
finally:
span.end(end_time=datetime_to_nanos(trace_info.end_time))
def api_check(self):
try:
with self.tracer.start_span("api_check") as span:
span.set_attribute("test", "true")
return True
except Exception as e:
logger.info(f"[Arize/Phoenix] API check failed: {str(e)}", exc_info=True)
raise ValueError(f"[Arize/Phoenix] API check failed: {str(e)}")
def get_project_url(self):
try:
if self.arize_phoenix_config.endpoint == "https://otlp.arize.com":
return "https://app.arize.com/"
else:
return f"{self.arize_phoenix_config.endpoint}/projects/"
except Exception as e:
logger.info(f"[Arize/Phoenix] Get run url failed: {str(e)}", exc_info=True)
raise ValueError(f"[Arize/Phoenix] Get run url failed: {str(e)}")
def _get_workflow_nodes(self, workflow_run_id: str):
"""Helper method to get workflow nodes"""
workflow_nodes = (
db.session.query(
WorkflowNodeExecutionModel.id,
WorkflowNodeExecutionModel.tenant_id,
WorkflowNodeExecutionModel.app_id,
WorkflowNodeExecutionModel.title,
WorkflowNodeExecutionModel.node_type,
WorkflowNodeExecutionModel.status,
WorkflowNodeExecutionModel.inputs,
WorkflowNodeExecutionModel.outputs,
WorkflowNodeExecutionModel.created_at,
WorkflowNodeExecutionModel.elapsed_time,
WorkflowNodeExecutionModel.process_data,
WorkflowNodeExecutionModel.execution_metadata,
)
.filter(WorkflowNodeExecutionModel.workflow_run_id == workflow_run_id)
.all()
)
return workflow_nodes

View File

@ -2,20 +2,92 @@ from enum import StrEnum
from pydantic import BaseModel, ValidationInfo, field_validator
from core.ops.utils import validate_project_name, validate_url, validate_url_with_path
class TracingProviderEnum(StrEnum):
ARIZE = "arize"
PHOENIX = "phoenix"
LANGFUSE = "langfuse"
LANGSMITH = "langsmith"
OPIK = "opik"
WEAVE = "weave"
ALIYUN = "aliyun"
class BaseTracingConfig(BaseModel):
"""
Base model class for tracing
Base model class for tracing configurations
"""
...
@classmethod
def validate_endpoint_url(cls, v: str, default_url: str) -> str:
"""
Common endpoint URL validation logic
Args:
v: URL value to validate
default_url: Default URL to use if input is None or empty
Returns:
Validated and normalized URL
"""
return validate_url(v, default_url)
@classmethod
def validate_project_field(cls, v: str, default_name: str) -> str:
"""
Common project name validation logic
Args:
v: Project name to validate
default_name: Default name to use if input is None or empty
Returns:
Validated project name
"""
return validate_project_name(v, default_name)
class ArizeConfig(BaseTracingConfig):
"""
Model class for Arize tracing config.
"""
api_key: str | None = None
space_id: str | None = None
project: str | None = None
endpoint: str = "https://otlp.arize.com"
@field_validator("project")
@classmethod
def project_validator(cls, v, info: ValidationInfo):
return cls.validate_project_field(v, "default")
@field_validator("endpoint")
@classmethod
def endpoint_validator(cls, v, info: ValidationInfo):
return cls.validate_endpoint_url(v, "https://otlp.arize.com")
class PhoenixConfig(BaseTracingConfig):
"""
Model class for Phoenix tracing config.
"""
api_key: str | None = None
project: str | None = None
endpoint: str = "https://app.phoenix.arize.com"
@field_validator("project")
@classmethod
def project_validator(cls, v, info: ValidationInfo):
return cls.validate_project_field(v, "default")
@field_validator("endpoint")
@classmethod
def endpoint_validator(cls, v, info: ValidationInfo):
return cls.validate_endpoint_url(v, "https://app.phoenix.arize.com")
class LangfuseConfig(BaseTracingConfig):
@ -29,13 +101,8 @@ class LangfuseConfig(BaseTracingConfig):
@field_validator("host")
@classmethod
def set_value(cls, v, info: ValidationInfo):
if v is None or v == "":
v = "https://api.langfuse.com"
if not v.startswith("https://") and not v.startswith("http://"):
raise ValueError("host must start with https:// or http://")
return v
def host_validator(cls, v, info: ValidationInfo):
return cls.validate_endpoint_url(v, "https://api.langfuse.com")
class LangSmithConfig(BaseTracingConfig):
@ -49,13 +116,9 @@ class LangSmithConfig(BaseTracingConfig):
@field_validator("endpoint")
@classmethod
def set_value(cls, v, info: ValidationInfo):
if v is None or v == "":
v = "https://api.smith.langchain.com"
if not v.startswith("https://"):
raise ValueError("endpoint must start with https://")
return v
def endpoint_validator(cls, v, info: ValidationInfo):
# LangSmith only allows HTTPS
return validate_url(v, "https://api.smith.langchain.com", allowed_schemes=("https",))
class OpikConfig(BaseTracingConfig):
@ -71,22 +134,12 @@ class OpikConfig(BaseTracingConfig):
@field_validator("project")
@classmethod
def project_validator(cls, v, info: ValidationInfo):
if v is None or v == "":
v = "Default Project"
return v
return cls.validate_project_field(v, "Default Project")
@field_validator("url")
@classmethod
def url_validator(cls, v, info: ValidationInfo):
if v is None or v == "":
v = "https://www.comet.com/opik/api/"
if not v.startswith(("https://", "http://")):
raise ValueError("url must start with https:// or http://")
if not v.endswith("/api/"):
raise ValueError("url should ends with /api/")
return v
return validate_url_with_path(v, "https://www.comet.com/opik/api/", required_suffix="/api/")
class WeaveConfig(BaseTracingConfig):
@ -102,22 +155,44 @@ class WeaveConfig(BaseTracingConfig):
@field_validator("endpoint")
@classmethod
def set_value(cls, v, info: ValidationInfo):
if v is None or v == "":
v = "https://trace.wandb.ai"
if not v.startswith("https://"):
raise ValueError("endpoint must start with https://")
return v
def endpoint_validator(cls, v, info: ValidationInfo):
# Weave only allows HTTPS for endpoint
return validate_url(v, "https://trace.wandb.ai", allowed_schemes=("https",))
@field_validator("host")
@classmethod
def validate_host(cls, v, info: ValidationInfo):
if v is not None and v != "":
if not v.startswith(("https://", "http://")):
raise ValueError("host must start with https:// or http://")
def host_validator(cls, v, info: ValidationInfo):
if v is not None and v.strip() != "":
return validate_url(v, v, allowed_schemes=("https", "http"))
return v
class AliyunConfig(BaseTracingConfig):
"""
Model class for Aliyun tracing config.
"""
app_name: str = "dify_app"
license_key: str
endpoint: str
@field_validator("app_name")
@classmethod
def app_name_validator(cls, v, info: ValidationInfo):
return cls.validate_project_field(v, "dify_app")
@field_validator("license_key")
@classmethod
def license_key_validator(cls, v, info: ValidationInfo):
if not v or v.strip() == "":
raise ValueError("License key cannot be empty")
return v
@field_validator("endpoint")
@classmethod
def endpoint_validator(cls, v, info: ValidationInfo):
return cls.validate_endpoint_url(v, "https://tracing-analysis-dc-hz.aliyuncs.com")
OPS_FILE_PATH = "ops_trace/"
OPS_TRACE_FAILED_KEY = "FAILED_OPS_TRACE"

View File

@ -32,6 +32,7 @@ from core.repositories import SQLAlchemyWorkflowNodeExecutionRepository
from core.workflow.nodes.enums import NodeType
from extensions.ext_database import db
from models import EndUser, WorkflowNodeExecutionTriggeredFrom
from models.enums import MessageStatus
logger = logging.getLogger(__name__)
@ -180,12 +181,9 @@ class LangFuseDataTrace(BaseTraceInstance):
prompt_tokens = 0
completion_tokens = 0
try:
if outputs.get("usage"):
prompt_tokens = outputs.get("usage", {}).get("prompt_tokens", 0)
completion_tokens = outputs.get("usage", {}).get("completion_tokens", 0)
else:
prompt_tokens = process_data.get("usage", {}).get("prompt_tokens", 0)
completion_tokens = process_data.get("usage", {}).get("completion_tokens", 0)
usage_data = process_data.get("usage", {}) if "usage" in process_data else outputs.get("usage", {})
prompt_tokens = usage_data.get("prompt_tokens", 0)
completion_tokens = usage_data.get("completion_tokens", 0)
except Exception:
logger.error("Failed to extract usage", exc_info=True)
@ -293,7 +291,7 @@ class LangFuseDataTrace(BaseTraceInstance):
input=trace_info.inputs,
output=message_data.answer,
metadata=metadata,
level=(LevelEnum.DEFAULT if message_data.status != "error" else LevelEnum.ERROR),
level=(LevelEnum.DEFAULT if message_data.status != MessageStatus.ERROR else LevelEnum.ERROR),
status_message=message_data.error or "",
usage=generation_usage,
)
@ -339,7 +337,7 @@ class LangFuseDataTrace(BaseTraceInstance):
start_time=trace_info.start_time,
end_time=trace_info.end_time,
metadata=trace_info.metadata,
level=(LevelEnum.DEFAULT if message_data.status != "error" else LevelEnum.ERROR),
level=(LevelEnum.DEFAULT if message_data.status != MessageStatus.ERROR else LevelEnum.ERROR),
status_message=message_data.error or "",
usage=generation_usage,
)

View File

@ -206,12 +206,9 @@ class LangSmithDataTrace(BaseTraceInstance):
prompt_tokens = 0
completion_tokens = 0
try:
if outputs.get("usage"):
prompt_tokens = outputs.get("usage", {}).get("prompt_tokens", 0)
completion_tokens = outputs.get("usage", {}).get("completion_tokens", 0)
else:
prompt_tokens = process_data.get("usage", {}).get("prompt_tokens", 0)
completion_tokens = process_data.get("usage", {}).get("completion_tokens", 0)
usage_data = process_data.get("usage", {}) if "usage" in process_data else outputs.get("usage", {})
prompt_tokens = usage_data.get("prompt_tokens", 0)
completion_tokens = usage_data.get("completion_tokens", 0)
except Exception:
logger.error("Failed to extract usage", exc_info=True)

View File

@ -222,10 +222,10 @@ class OpikDataTrace(BaseTraceInstance):
)
try:
if outputs.get("usage"):
total_tokens = outputs["usage"].get("total_tokens", 0)
prompt_tokens = outputs["usage"].get("prompt_tokens", 0)
completion_tokens = outputs["usage"].get("completion_tokens", 0)
usage_data = process_data.get("usage", {}) if "usage" in process_data else outputs.get("usage", {})
total_tokens = usage_data.get("total_tokens", 0)
prompt_tokens = usage_data.get("prompt_tokens", 0)
completion_tokens = usage_data.get("completion_tokens", 0)
except Exception:
logger.error("Failed to extract usage", exc_info=True)

View File

@ -84,6 +84,36 @@ class OpsTraceProviderConfigMap(dict[str, dict[str, Any]]):
"other_keys": ["project", "entity", "endpoint", "host"],
"trace_instance": WeaveDataTrace,
}
case TracingProviderEnum.ARIZE:
from core.ops.arize_phoenix_trace.arize_phoenix_trace import ArizePhoenixDataTrace
from core.ops.entities.config_entity import ArizeConfig
return {
"config_class": ArizeConfig,
"secret_keys": ["api_key", "space_id"],
"other_keys": ["project", "endpoint"],
"trace_instance": ArizePhoenixDataTrace,
}
case TracingProviderEnum.PHOENIX:
from core.ops.arize_phoenix_trace.arize_phoenix_trace import ArizePhoenixDataTrace
from core.ops.entities.config_entity import PhoenixConfig
return {
"config_class": PhoenixConfig,
"secret_keys": ["api_key"],
"other_keys": ["project", "endpoint"],
"trace_instance": ArizePhoenixDataTrace,
}
case TracingProviderEnum.ALIYUN:
from core.ops.aliyun_trace.aliyun_trace import AliyunDataTrace
from core.ops.entities.config_entity import AliyunConfig
return {
"config_class": AliyunConfig,
"secret_keys": ["license_key"],
"other_keys": ["endpoint", "app_name"],
"trace_instance": AliyunDataTrace,
}
case _:
raise KeyError(f"Unsupported tracing provider: {provider}")

View File

@ -1,6 +1,7 @@
from contextlib import contextmanager
from datetime import datetime
from typing import Optional, Union
from urllib.parse import urlparse
from extensions.ext_database import db
from models.model import Message
@ -60,3 +61,83 @@ def generate_dotted_order(
return current_segment
return f"{parent_dotted_order}.{current_segment}"
def validate_url(url: str, default_url: str, allowed_schemes: tuple = ("https", "http")) -> str:
"""
Validate and normalize URL with proper error handling
Args:
url: The URL to validate
default_url: Default URL to use if input is None or empty
allowed_schemes: Tuple of allowed URL schemes (default: https, http)
Returns:
Normalized URL string
Raises:
ValueError: If URL format is invalid or scheme not allowed
"""
if not url or url.strip() == "":
return default_url
# Parse URL to validate format
parsed = urlparse(url)
# Check if scheme is allowed
if parsed.scheme not in allowed_schemes:
raise ValueError(f"URL scheme must be one of: {', '.join(allowed_schemes)}")
# Reconstruct URL with only scheme, netloc (removing path, query, fragment)
normalized_url = f"{parsed.scheme}://{parsed.netloc}"
return normalized_url
def validate_url_with_path(url: str, default_url: str, required_suffix: str | None = None) -> str:
"""
Validate URL that may include path components
Args:
url: The URL to validate
default_url: Default URL to use if input is None or empty
required_suffix: Optional suffix that URL must end with
Returns:
Validated URL string
Raises:
ValueError: If URL format is invalid or doesn't match required suffix
"""
if not url or url.strip() == "":
return default_url
# Parse URL to validate format
parsed = urlparse(url)
# Check if scheme is allowed
if parsed.scheme not in ("https", "http"):
raise ValueError("URL must start with https:// or http://")
# Check required suffix if specified
if required_suffix and not url.endswith(required_suffix):
raise ValueError(f"URL should end with {required_suffix}")
return url
def validate_project_name(project: str, default_name: str) -> str:
"""
Validate and normalize project name
Args:
project: Project name to validate
default_name: Default name to use if input is None or empty
Returns:
Normalized project name
"""
if not project or project.strip() == "":
return default_name
return project.strip()

View File

@ -43,6 +43,19 @@ class PluginParameterType(enum.StrEnum):
# deprecated, should not use.
SYSTEM_FILES = CommonParameterType.SYSTEM_FILES.value
# MCP object and array type parameters
ARRAY = CommonParameterType.ARRAY.value
OBJECT = CommonParameterType.OBJECT.value
class MCPServerParameterType(enum.StrEnum):
"""
MCP server got complex parameter types
"""
ARRAY = "array"
OBJECT = "object"
class PluginParameterAutoGenerate(BaseModel):
class Type(enum.StrEnum):
@ -138,6 +151,34 @@ def cast_parameter_value(typ: enum.StrEnum, value: Any, /):
if value and not isinstance(value, list):
raise ValueError("The tools selector must be a list.")
return value
case PluginParameterType.ARRAY:
if not isinstance(value, list):
# Try to parse JSON string for arrays
if isinstance(value, str):
try:
import json
parsed_value = json.loads(value)
if isinstance(parsed_value, list):
return parsed_value
except (json.JSONDecodeError, ValueError):
pass
return [value]
return value
case PluginParameterType.OBJECT:
if not isinstance(value, dict):
# Try to parse JSON string for objects
if isinstance(value, str):
try:
import json
parsed_value = json.loads(value)
if isinstance(parsed_value, dict):
return parsed_value
except (json.JSONDecodeError, ValueError):
pass
return {}
return value
case _:
return str(value)
except ValueError:

View File

@ -72,12 +72,14 @@ class PluginDeclaration(BaseModel):
class Meta(BaseModel):
minimum_dify_version: Optional[str] = Field(default=None, pattern=r"^\d{1,4}(\.\d{1,4}){1,3}(-\w{1,16})?$")
version: Optional[str] = Field(default=None)
version: str = Field(..., pattern=r"^\d{1,4}(\.\d{1,4}){1,3}(-\w{1,16})?$")
author: Optional[str] = Field(..., pattern=r"^[a-zA-Z0-9_-]{1,64}$")
name: str = Field(..., pattern=r"^[a-z0-9_-]{1,128}$")
description: I18nObject
icon: str
icon_dark: Optional[str] = Field(default=None)
label: I18nObject
category: PluginCategory
created_at: datetime.datetime

View File

@ -53,6 +53,7 @@ class PluginAgentProviderEntity(BaseModel):
plugin_unique_identifier: str
plugin_id: str
declaration: AgentProviderEntityWithPlugin
meta: PluginDeclaration.Meta
class PluginBasicBooleanResponse(BaseModel):

View File

@ -32,7 +32,7 @@ class RequestInvokeTool(BaseModel):
Request to invoke a tool
"""
tool_type: Literal["builtin", "workflow", "api"]
tool_type: Literal["builtin", "workflow", "api", "mcp"]
provider: str
tool: str
tool_parameters: dict

View File

@ -47,6 +47,7 @@ class QdrantConfig(BaseModel):
grpc_port: int = 6334
prefer_grpc: bool = False
replication_factor: int = 1
write_consistency_factor: int = 1
def to_qdrant_params(self):
if self.endpoint and self.endpoint.startswith("path:"):
@ -127,6 +128,7 @@ class QdrantVector(BaseVector):
hnsw_config=hnsw_config,
timeout=int(self._client_config.timeout),
replication_factor=self._client_config.replication_factor,
write_consistency_factor=self._client_config.write_consistency_factor,
)
# create group_id payload index

View File

@ -122,7 +122,6 @@ class TencentVector(BaseVector):
metric_type,
params,
)
index_text = vdb_index.FilterIndex(self.field_text, enum.FieldType.String, enum.IndexType.FILTER)
index_metadate = vdb_index.FilterIndex(self.field_metadata, enum.FieldType.Json, enum.IndexType.FILTER)
index_sparse_vector = vdb_index.SparseIndex(
name="sparse_vector",
@ -130,7 +129,7 @@ class TencentVector(BaseVector):
index_type=enum.IndexType.SPARSE_INVERTED,
metric_type=enum.MetricType.IP,
)
indexes = [index_id, index_vector, index_text, index_metadate]
indexes = [index_id, index_vector, index_metadate]
if self._enable_hybrid_search:
indexes.append(index_sparse_vector)
try:
@ -149,7 +148,7 @@ class TencentVector(BaseVector):
index_metadate = vdb_index.FilterIndex(
self.field_metadata, enum.FieldType.String, enum.IndexType.FILTER
)
indexes = [index_id, index_vector, index_text, index_metadate]
indexes = [index_id, index_vector, index_metadate]
if self._enable_hybrid_search:
indexes.append(index_sparse_vector)
self._client.create_collection(

View File

@ -1,3 +1,5 @@
import logging
import time
from abc import ABC, abstractmethod
from typing import Any, Optional
@ -13,6 +15,8 @@ from extensions.ext_database import db
from extensions.ext_redis import redis_client
from models.dataset import Dataset, Whitelist
logger = logging.getLogger(__name__)
class AbstractVectorFactory(ABC):
@abstractmethod
@ -173,8 +177,20 @@ class Vector:
def create(self, texts: Optional[list] = None, **kwargs):
if texts:
embeddings = self._embeddings.embed_documents([document.page_content for document in texts])
self._vector_processor.create(texts=texts, embeddings=embeddings, **kwargs)
start = time.time()
logger.info(f"start embedding {len(texts)} texts {start}")
batch_size = 1000
total_batches = len(texts) + batch_size - 1
for i in range(0, len(texts), batch_size):
batch = texts[i : i + batch_size]
batch_start = time.time()
logger.info(f"Processing batch {i // batch_size + 1}/{total_batches} ({len(batch)} texts)")
batch_embeddings = self._embeddings.embed_documents([document.page_content for document in batch])
logger.info(
f"Embedding batch {i // batch_size + 1}/{total_batches} took {time.time() - batch_start:.3f}s"
)
self._vector_processor.create(texts=batch, embeddings=batch_embeddings, **kwargs)
logger.info(f"Embedding {len(texts)} texts took {time.time() - start:.3f}s")
def add_texts(self, documents: list[Document], **kwargs):
if kwargs.get("duplicate_check", False):

View File

@ -1,7 +1,6 @@
"""Document loader helpers."""
import concurrent.futures
from pathlib import Path
from typing import NamedTuple, Optional, cast
@ -16,7 +15,7 @@ class FileEncoding(NamedTuple):
"""The language of the file."""
def detect_file_encodings(file_path: str, timeout: int = 5) -> list[FileEncoding]:
def detect_file_encodings(file_path: str, timeout: int = 5, sample_size: int = 1024 * 1024) -> list[FileEncoding]:
"""Try to detect the file encoding.
Returns a list of `FileEncoding` tuples with the detected encodings ordered
@ -25,11 +24,16 @@ def detect_file_encodings(file_path: str, timeout: int = 5) -> list[FileEncoding
Args:
file_path: The path to the file to detect the encoding for.
timeout: The timeout in seconds for the encoding detection.
sample_size: The number of bytes to read for encoding detection. Default is 1MB.
For large files, reading only a sample is sufficient and prevents timeout.
"""
import chardet
def read_and_detect(file_path: str) -> list[dict]:
rawdata = Path(file_path).read_bytes()
with open(file_path, "rb") as f:
# Read only a sample of the file for encoding detection
# This prevents timeout on large files while still providing accurate encoding detection
rawdata = f.read(sample_size)
return cast(list[dict], chardet.detect_all(rawdata))
with concurrent.futures.ThreadPoolExecutor() as executor:

View File

@ -36,8 +36,12 @@ class TextExtractor(BaseExtractor):
break
except UnicodeDecodeError:
continue
else:
raise RuntimeError(
f"Decode failed: {self._file_path}, all detected encodings failed. Original error: {e}"
)
else:
raise RuntimeError(f"Error loading {self._file_path}") from e
raise RuntimeError(f"Decode failed: {self._file_path}, specified encoding failed. Original error: {e}")
except Exception as e:
raise RuntimeError(f"Error loading {self._file_path}") from e

View File

@ -17,6 +17,7 @@ from core.workflow.entities.workflow_execution import (
)
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
from core.workflow.workflow_type_encoder import WorkflowRuntimeTypeConverter
from libs.helper import extract_tenant_id
from models import (
Account,
CreatorUserRole,
@ -67,7 +68,7 @@ class SQLAlchemyWorkflowExecutionRepository(WorkflowExecutionRepository):
)
# Extract tenant_id from user
tenant_id: str | None = user.tenant_id if isinstance(user, EndUser) else user.current_tenant_id
tenant_id = extract_tenant_id(user)
if not tenant_id:
raise ValueError("User must have a tenant_id or current_tenant_id")
self._tenant_id = tenant_id

View File

@ -20,6 +20,7 @@ from core.workflow.entities.workflow_node_execution import (
from core.workflow.nodes.enums import NodeType
from core.workflow.repositories.workflow_node_execution_repository import OrderConfig, WorkflowNodeExecutionRepository
from core.workflow.workflow_type_encoder import WorkflowRuntimeTypeConverter
from libs.helper import extract_tenant_id
from models import (
Account,
CreatorUserRole,
@ -70,7 +71,7 @@ class SQLAlchemyWorkflowNodeExecutionRepository(WorkflowNodeExecutionRepository)
)
# Extract tenant_id from user
tenant_id: str | None = user.tenant_id if isinstance(user, EndUser) else user.current_tenant_id
tenant_id = extract_tenant_id(user)
if not tenant_id:
raise ValueError("User must have a tenant_id or current_tenant_id")
self._tenant_id = tenant_id

View File

@ -31,6 +31,14 @@ class TTSTool(BuiltinTool):
model_type=ModelType.TTS,
model=model,
)
if not voice:
voices = model_instance.get_tts_voices()
if voices:
voice = voices[0].get("value")
if not voice:
raise ValueError("Sorry, no voice available.")
else:
raise ValueError("Sorry, no voice available.")
tts = model_instance.invoke_tts(
content_text=tool_parameters.get("text"), # type: ignore
user=user_id,

View File

@ -39,19 +39,22 @@ class ApiToolProviderController(ToolProviderController):
type=ProviderConfig.Type.SELECT,
options=[
ProviderConfig.Option(value="none", label=I18nObject(en_US="None", zh_Hans="")),
ProviderConfig.Option(value="api_key", label=I18nObject(en_US="api_key", zh_Hans="api_key")),
ProviderConfig.Option(value="api_key_header", label=I18nObject(en_US="Header", zh_Hans="请求头")),
ProviderConfig.Option(
value="api_key_query", label=I18nObject(en_US="Query Param", zh_Hans="查询参数")
),
],
default="none",
help=I18nObject(en_US="The auth type of the api provider", zh_Hans="api provider 的认证类型"),
)
]
if auth_type == ApiProviderAuthType.API_KEY:
if auth_type == ApiProviderAuthType.API_KEY_HEADER:
credentials_schema = [
*credentials_schema,
ProviderConfig(
name="api_key_header",
required=False,
default="api_key",
default="Authorization",
type=ProviderConfig.Type.TEXT_INPUT,
help=I18nObject(en_US="The header name of the api key", zh_Hans="携带 api key 的 header 名称"),
),
@ -74,6 +77,25 @@ class ApiToolProviderController(ToolProviderController):
],
),
]
elif auth_type == ApiProviderAuthType.API_KEY_QUERY:
credentials_schema = [
*credentials_schema,
ProviderConfig(
name="api_key_query_param",
required=False,
default="key",
type=ProviderConfig.Type.TEXT_INPUT,
help=I18nObject(
en_US="The query parameter name of the api key", zh_Hans="携带 api key 的查询参数名称"
),
),
ProviderConfig(
name="api_key_value",
required=True,
type=ProviderConfig.Type.SECRET_INPUT,
help=I18nObject(en_US="The api key", zh_Hans="api key 的值"),
),
]
elif auth_type == ApiProviderAuthType.NONE:
pass

View File

@ -78,8 +78,8 @@ class ApiTool(Tool):
if "auth_type" not in credentials:
raise ToolProviderCredentialValidationError("Missing auth_type")
if credentials["auth_type"] == "api_key":
api_key_header = "api_key"
if credentials["auth_type"] in ("api_key_header", "api_key"): # backward compatibility:
api_key_header = "Authorization"
if "api_key_header" in credentials:
api_key_header = credentials["api_key_header"]
@ -100,6 +100,11 @@ class ApiTool(Tool):
headers[api_key_header] = credentials["api_key_value"]
elif credentials["auth_type"] == "api_key_query":
# For query parameter authentication, we don't add anything to headers
# The query parameter will be added in do_http_request method
pass
needed_parameters = [parameter for parameter in (self.api_bundle.parameters or []) if parameter.required]
for parameter in needed_parameters:
if parameter.required and parameter.name not in parameters:
@ -154,6 +159,15 @@ class ApiTool(Tool):
cookies = {}
files = []
# Add API key to query parameters if auth_type is api_key_query
if self.runtime and self.runtime.credentials:
credentials = self.runtime.credentials
if credentials.get("auth_type") == "api_key_query":
api_key_query_param = credentials.get("api_key_query_param", "key")
api_key_value = credentials.get("api_key_value")
if api_key_value:
params[api_key_query_param] = api_key_value
# check parameters
for parameter in self.api_bundle.openapi.get("parameters", []):
value = self.get_parameter_value(parameter, parameters)
@ -213,7 +227,8 @@ class ApiTool(Tool):
elif "default" in property:
body[name] = property["default"]
else:
body[name] = None
# omit optional parameters that weren't provided, instead of setting them to None
pass
break
# replace path parameters

View File

@ -1,4 +1,5 @@
from typing import Literal, Optional
from datetime import datetime
from typing import Any, Literal, Optional
from pydantic import BaseModel, Field, field_validator
@ -18,7 +19,7 @@ class ToolApiEntity(BaseModel):
output_schema: Optional[dict] = None
ToolProviderTypeApiLiteral = Optional[Literal["builtin", "api", "workflow"]]
ToolProviderTypeApiLiteral = Optional[Literal["builtin", "api", "workflow", "mcp"]]
class ToolProviderApiEntity(BaseModel):
@ -27,6 +28,7 @@ class ToolProviderApiEntity(BaseModel):
name: str # identifier
description: I18nObject
icon: str | dict
icon_dark: Optional[str | dict] = Field(default=None, description="The dark icon of the tool")
label: I18nObject # label
type: ToolProviderType
masked_credentials: Optional[dict] = None
@ -37,6 +39,10 @@ class ToolProviderApiEntity(BaseModel):
plugin_unique_identifier: Optional[str] = Field(default="", description="The unique identifier of the tool")
tools: list[ToolApiEntity] = Field(default_factory=list)
labels: list[str] = Field(default_factory=list)
# MCP
server_url: Optional[str] = Field(default="", description="The server url of the tool")
updated_at: int = Field(default_factory=lambda: int(datetime.now().timestamp()))
server_identifier: Optional[str] = Field(default="", description="The server identifier of the MCP tool")
@field_validator("tools", mode="before")
@classmethod
@ -52,8 +58,13 @@ class ToolProviderApiEntity(BaseModel):
for parameter in tool.get("parameters"):
if parameter.get("type") == ToolParameter.ToolParameterType.SYSTEM_FILES.value:
parameter["type"] = "files"
if parameter.get("input_schema") is None:
parameter.pop("input_schema", None)
# -------------
optional_fields = self.optional_field("server_url", self.server_url)
if self.type == ToolProviderType.MCP.value:
optional_fields.update(self.optional_field("updated_at", self.updated_at))
optional_fields.update(self.optional_field("server_identifier", self.server_identifier))
return {
"id": self.id,
"author": self.author,
@ -62,6 +73,7 @@ class ToolProviderApiEntity(BaseModel):
"plugin_unique_identifier": self.plugin_unique_identifier,
"description": self.description.to_dict(),
"icon": self.icon,
"icon_dark": self.icon_dark,
"label": self.label.to_dict(),
"type": self.type.value,
"team_credentials": self.masked_credentials,
@ -69,8 +81,13 @@ class ToolProviderApiEntity(BaseModel):
"allow_delete": self.allow_delete,
"tools": tools,
"labels": self.labels,
**optional_fields,
}
def optional_field(self, key: str, value: Any) -> dict:
"""Return dict with key-value if value is truthy, empty dict otherwise."""
return {key: value} if value else {}
class ToolProviderCredentialApiEntity(BaseModel):
id: str = Field(description="The unique id of the credential")

View File

@ -8,6 +8,7 @@ from pydantic import BaseModel, ConfigDict, Field, ValidationInfo, field_seriali
from core.entities.provider_entities import ProviderConfig
from core.plugin.entities.parameters import (
MCPServerParameterType,
PluginParameter,
PluginParameterOption,
PluginParameterType,
@ -49,6 +50,7 @@ class ToolProviderType(enum.StrEnum):
API = "api"
APP = "app"
DATASET_RETRIEVAL = "dataset-retrieval"
MCP = "mcp"
@classmethod
def value_of(cls, value: str) -> "ToolProviderType":
@ -94,7 +96,8 @@ class ApiProviderAuthType(Enum):
"""
NONE = "none"
API_KEY = "api_key"
API_KEY_HEADER = "api_key_header"
API_KEY_QUERY = "api_key_query"
@classmethod
def value_of(cls, value: str) -> "ApiProviderAuthType":
@ -242,6 +245,10 @@ class ToolParameter(PluginParameter):
MODEL_SELECTOR = PluginParameterType.MODEL_SELECTOR.value
DYNAMIC_SELECT = PluginParameterType.DYNAMIC_SELECT.value
# MCP object and array type parameters
ARRAY = MCPServerParameterType.ARRAY.value
OBJECT = MCPServerParameterType.OBJECT.value
# deprecated, should not use.
SYSTEM_FILES = PluginParameterType.SYSTEM_FILES.value
@ -260,6 +267,8 @@ class ToolParameter(PluginParameter):
human_description: Optional[I18nObject] = Field(default=None, description="The description presented to the user")
form: ToolParameterForm = Field(..., description="The form of the parameter, schema/form/llm")
llm_description: Optional[str] = None
# MCP object and array type parameters use this field to store the schema
input_schema: Optional[dict] = None
@classmethod
def get_simple_instance(
@ -309,6 +318,7 @@ class ToolProviderIdentity(BaseModel):
name: str = Field(..., description="The name of the tool")
description: I18nObject = Field(..., description="The description of the tool")
icon: str = Field(..., description="The icon of the tool")
icon_dark: Optional[str] = Field(default=None, description="The dark icon of the tool")
label: I18nObject = Field(..., description="The label of the tool")
tags: Optional[list[ToolLabelEnum]] = Field(
default=[],

View File

@ -0,0 +1,130 @@
import json
from typing import Any
from core.mcp.types import Tool as RemoteMCPTool
from core.tools.__base.tool_provider import ToolProviderController
from core.tools.__base.tool_runtime import ToolRuntime
from core.tools.entities.common_entities import I18nObject
from core.tools.entities.tool_entities import (
ToolDescription,
ToolEntity,
ToolIdentity,
ToolProviderEntityWithPlugin,
ToolProviderIdentity,
ToolProviderType,
)
from core.tools.mcp_tool.tool import MCPTool
from models.tools import MCPToolProvider
from services.tools.tools_transform_service import ToolTransformService
class MCPToolProviderController(ToolProviderController):
provider_id: str
entity: ToolProviderEntityWithPlugin
def __init__(self, entity: ToolProviderEntityWithPlugin, provider_id: str, tenant_id: str, server_url: str) -> None:
super().__init__(entity)
self.entity = entity
self.tenant_id = tenant_id
self.provider_id = provider_id
self.server_url = server_url
@property
def provider_type(self) -> ToolProviderType:
"""
returns the type of the provider
:return: type of the provider
"""
return ToolProviderType.MCP
@classmethod
def _from_db(cls, db_provider: MCPToolProvider) -> "MCPToolProviderController":
"""
from db provider
"""
tools = []
tools_data = json.loads(db_provider.tools)
remote_mcp_tools = [RemoteMCPTool(**tool) for tool in tools_data]
user = db_provider.load_user()
tools = [
ToolEntity(
identity=ToolIdentity(
author=user.name if user else "Anonymous",
name=remote_mcp_tool.name,
label=I18nObject(en_US=remote_mcp_tool.name, zh_Hans=remote_mcp_tool.name),
provider=db_provider.server_identifier,
icon=db_provider.icon,
),
parameters=ToolTransformService.convert_mcp_schema_to_parameter(remote_mcp_tool.inputSchema),
description=ToolDescription(
human=I18nObject(
en_US=remote_mcp_tool.description or "", zh_Hans=remote_mcp_tool.description or ""
),
llm=remote_mcp_tool.description or "",
),
output_schema=None,
has_runtime_parameters=len(remote_mcp_tool.inputSchema) > 0,
)
for remote_mcp_tool in remote_mcp_tools
]
return cls(
entity=ToolProviderEntityWithPlugin(
identity=ToolProviderIdentity(
author=user.name if user else "Anonymous",
name=db_provider.name,
label=I18nObject(en_US=db_provider.name, zh_Hans=db_provider.name),
description=I18nObject(en_US="", zh_Hans=""),
icon=db_provider.icon,
),
plugin_id=None,
credentials_schema=[],
tools=tools,
),
provider_id=db_provider.server_identifier or "",
tenant_id=db_provider.tenant_id or "",
server_url=db_provider.decrypted_server_url,
)
def _validate_credentials(self, user_id: str, credentials: dict[str, Any]) -> None:
"""
validate the credentials of the provider
"""
pass
def get_tool(self, tool_name: str) -> MCPTool: # type: ignore
"""
return tool with given name
"""
tool_entity = next(
(tool_entity for tool_entity in self.entity.tools if tool_entity.identity.name == tool_name), None
)
if not tool_entity:
raise ValueError(f"Tool with name {tool_name} not found")
return MCPTool(
entity=tool_entity,
runtime=ToolRuntime(tenant_id=self.tenant_id),
tenant_id=self.tenant_id,
icon=self.entity.identity.icon,
server_url=self.server_url,
provider_id=self.provider_id,
)
def get_tools(self) -> list[MCPTool]: # type: ignore
"""
get all tools
"""
return [
MCPTool(
entity=tool_entity,
runtime=ToolRuntime(tenant_id=self.tenant_id),
tenant_id=self.tenant_id,
icon=self.entity.identity.icon,
server_url=self.server_url,
provider_id=self.provider_id,
)
for tool_entity in self.entity.tools
]

View File

@ -0,0 +1,92 @@
import base64
import json
from collections.abc import Generator
from typing import Any, Optional
from core.mcp.error import MCPAuthError, MCPConnectionError
from core.mcp.mcp_client import MCPClient
from core.mcp.types import ImageContent, TextContent
from core.tools.__base.tool import Tool
from core.tools.__base.tool_runtime import ToolRuntime
from core.tools.entities.tool_entities import ToolEntity, ToolInvokeMessage, ToolParameter, ToolProviderType
class MCPTool(Tool):
tenant_id: str
icon: str
runtime_parameters: Optional[list[ToolParameter]]
server_url: str
provider_id: str
def __init__(
self, entity: ToolEntity, runtime: ToolRuntime, tenant_id: str, icon: str, server_url: str, provider_id: str
) -> None:
super().__init__(entity, runtime)
self.tenant_id = tenant_id
self.icon = icon
self.runtime_parameters = None
self.server_url = server_url
self.provider_id = provider_id
def tool_provider_type(self) -> ToolProviderType:
return ToolProviderType.MCP
def _invoke(
self,
user_id: str,
tool_parameters: dict[str, Any],
conversation_id: Optional[str] = None,
app_id: Optional[str] = None,
message_id: Optional[str] = None,
) -> Generator[ToolInvokeMessage, None, None]:
from core.tools.errors import ToolInvokeError
try:
with MCPClient(self.server_url, self.provider_id, self.tenant_id, authed=True) as mcp_client:
tool_parameters = self._handle_none_parameter(tool_parameters)
result = mcp_client.invoke_tool(tool_name=self.entity.identity.name, tool_args=tool_parameters)
except MCPAuthError as e:
raise ToolInvokeError("Please auth the tool first") from e
except MCPConnectionError as e:
raise ToolInvokeError(f"Failed to connect to MCP server: {e}") from e
except Exception as e:
raise ToolInvokeError(f"Failed to invoke tool: {e}") from e
for content in result.content:
if isinstance(content, TextContent):
try:
content_json = json.loads(content.text)
if isinstance(content_json, dict):
yield self.create_json_message(content_json)
elif isinstance(content_json, list):
for item in content_json:
yield self.create_json_message(item)
else:
yield self.create_text_message(content.text)
except json.JSONDecodeError:
yield self.create_text_message(content.text)
elif isinstance(content, ImageContent):
yield self.create_blob_message(
blob=base64.b64decode(content.data), meta={"mime_type": content.mimeType}
)
def fork_tool_runtime(self, runtime: ToolRuntime) -> "MCPTool":
return MCPTool(
entity=self.entity,
runtime=runtime,
tenant_id=self.tenant_id,
icon=self.icon,
server_url=self.server_url,
provider_id=self.provider_id,
)
def _handle_none_parameter(self, parameter: dict[str, Any]) -> dict[str, Any]:
"""
in mcp tool invoke, if the parameter is empty, it will be set to None
"""
return {
key: value
for key, value in parameter.items()
if value is not None and not (isinstance(value, str) and value.strip() == "")
}

View File

@ -9,9 +9,10 @@ from configs import dify_config
def sign_tool_file(tool_file_id: str, extension: str) -> str:
"""
sign file to get a temporary url
sign file to get a temporary url for plugin access
"""
base_url = dify_config.FILES_URL
# Use internal URL for plugin/tool file access in Docker environments
base_url = dify_config.INTERNAL_FILES_URL or dify_config.FILES_URL
file_preview_url = f"{base_url}/files/tools/{tool_file_id}{extension}"
timestamp = str(int(time.time()))

View File

@ -35,9 +35,10 @@ class ToolFileManager:
@staticmethod
def sign_file(tool_file_id: str, extension: str) -> str:
"""
sign file to get a temporary url
sign file to get a temporary url for plugin access
"""
base_url = dify_config.FILES_URL
# Use internal URL for plugin/tool file access in Docker environments
base_url = dify_config.INTERNAL_FILES_URL or dify_config.FILES_URL
file_preview_url = f"{base_url}/files/tools/{tool_file_id}{extension}"
timestamp = str(int(time.time()))

View File

@ -4,7 +4,7 @@ import mimetypes
from collections.abc import Generator
from os import listdir, path
from threading import Lock
from typing import TYPE_CHECKING, Any, Optional, Union, cast
from typing import TYPE_CHECKING, Any, Literal, Optional, Union, cast
from yarl import URL
@ -14,9 +14,13 @@ from core.plugin.entities.plugin import ToolProviderID
from core.plugin.impl.tool import PluginToolManager
from core.tools.__base.tool_provider import ToolProviderController
from core.tools.__base.tool_runtime import ToolRuntime
from core.tools.mcp_tool.provider import MCPToolProviderController
from core.tools.mcp_tool.tool import MCPTool
from core.tools.plugin_tool.provider import PluginToolProviderController
from core.tools.plugin_tool.tool import PluginTool
from core.tools.workflow_as_tool.provider import WorkflowToolProviderController
from core.workflow.entities.variable_pool import VariablePool
from services.tools.mcp_tools_mange_service import MCPToolManageService
if TYPE_CHECKING:
from core.workflow.nodes.tool.entities import ToolEntity
@ -42,7 +46,7 @@ from core.tools.entities.tool_entities import (
ToolParameter,
ToolProviderType,
)
from core.tools.errors import ToolProviderNotFoundError
from core.tools.errors import ToolNotFoundError, ToolProviderNotFoundError
from core.tools.tool_label_manager import ToolLabelManager
from core.tools.utils.configuration import (
ToolParameterConfigurationManager,
@ -50,7 +54,7 @@ from core.tools.utils.configuration import (
from core.tools.utils.encryption import create_provider_encrypter, create_tool_provider_encrypter
from core.tools.workflow_as_tool.tool import WorkflowTool
from extensions.ext_database import db
from models.tools import ApiToolProvider, BuiltinToolProvider, WorkflowToolProvider
from models.tools import ApiToolProvider, BuiltinToolProvider, MCPToolProvider, WorkflowToolProvider
from services.tools.tools_transform_service import ToolTransformService
logger = logging.getLogger(__name__)
@ -148,7 +152,7 @@ class ToolManager:
invoke_from: InvokeFrom = InvokeFrom.DEBUGGER,
tool_invoke_from: ToolInvokeFrom = ToolInvokeFrom.AGENT,
credential_id: Optional[str] = None,
) -> Union[BuiltinTool, PluginTool, ApiTool, WorkflowTool]:
) -> Union[BuiltinTool, PluginTool, ApiTool, WorkflowTool, MCPTool]:
"""
get the tool runtime
@ -293,6 +297,8 @@ class ToolManager:
raise NotImplementedError("app provider not implemented")
elif provider_type == ToolProviderType.PLUGIN:
return cls.get_plugin_provider(provider_id, tenant_id).get_tool(tool_name)
elif provider_type == ToolProviderType.MCP:
return cls.get_mcp_provider_controller(tenant_id, provider_id).get_tool(tool_name)
else:
raise ToolProviderNotFoundError(f"provider type {provider_type.value} not found")
@ -303,6 +309,7 @@ class ToolManager:
app_id: str,
agent_tool: AgentToolEntity,
invoke_from: InvokeFrom = InvokeFrom.DEBUGGER,
variable_pool: Optional[VariablePool] = None,
) -> Tool:
"""
get the agent tool runtime
@ -317,24 +324,9 @@ class ToolManager:
)
runtime_parameters = {}
parameters = tool_entity.get_merged_runtime_parameters()
for parameter in parameters:
# check file types
if (
parameter.type
in {
ToolParameter.ToolParameterType.SYSTEM_FILES,
ToolParameter.ToolParameterType.FILE,
ToolParameter.ToolParameterType.FILES,
}
and parameter.required
):
raise ValueError(f"file type parameter {parameter.name} not supported in agent")
if parameter.form == ToolParameter.ToolParameterForm.FORM:
# save tool parameter to tool entity memory
value = parameter.init_frontend_parameter(agent_tool.tool_parameters.get(parameter.name))
runtime_parameters[parameter.name] = value
runtime_parameters = cls._convert_tool_parameters_type(
parameters, variable_pool, agent_tool.tool_parameters, typ="agent"
)
# decrypt runtime parameters
encryption_manager = ToolParameterConfigurationManager(
tenant_id=tenant_id,
@ -358,10 +350,12 @@ class ToolManager:
node_id: str,
workflow_tool: "ToolEntity",
invoke_from: InvokeFrom = InvokeFrom.DEBUGGER,
variable_pool: Optional[VariablePool] = None,
) -> Tool:
"""
get the workflow tool runtime
"""
tool_runtime = cls.get_tool_runtime(
provider_type=workflow_tool.provider_type,
provider_id=workflow_tool.provider_id,
@ -371,15 +365,11 @@ class ToolManager:
tool_invoke_from=ToolInvokeFrom.WORKFLOW,
credential_id=workflow_tool.credential_id,
)
runtime_parameters = {}
parameters = tool_runtime.get_merged_runtime_parameters()
for parameter in parameters:
# save tool parameter to tool entity memory
if parameter.form == ToolParameter.ToolParameterForm.FORM:
value = parameter.init_frontend_parameter(workflow_tool.tool_configurations.get(parameter.name))
runtime_parameters[parameter.name] = value
runtime_parameters = cls._convert_tool_parameters_type(
parameters, variable_pool, workflow_tool.tool_configurations, typ="workflow"
)
# decrypt runtime parameters
encryption_manager = ToolParameterConfigurationManager(
tenant_id=tenant_id,
@ -587,7 +577,7 @@ class ToolManager:
filters = []
if not typ:
filters.extend(["builtin", "api", "workflow"])
filters.extend(["builtin", "api", "workflow", "mcp"])
else:
filters.append(typ)
@ -671,6 +661,10 @@ class ToolManager:
labels=labels.get(provider_controller.provider_id, []),
)
result_providers[f"workflow_provider.{user_provider.name}"] = user_provider
if "mcp" in filters:
mcp_providers = MCPToolManageService.retrieve_mcp_tools(tenant_id, for_list=True)
for mcp_provider in mcp_providers:
result_providers[f"mcp_provider.{mcp_provider.name}"] = mcp_provider
return BuiltinToolProviderSort.sort(list(result_providers.values()))
@ -698,14 +692,47 @@ class ToolManager:
if provider is None:
raise ToolProviderNotFoundError(f"api provider {provider_id} not found")
auth_type = ApiProviderAuthType.NONE
provider_auth_type = provider.credentials.get("auth_type")
if provider_auth_type in ("api_key_header", "api_key"): # backward compatibility
auth_type = ApiProviderAuthType.API_KEY_HEADER
elif provider_auth_type == "api_key_query":
auth_type = ApiProviderAuthType.API_KEY_QUERY
controller = ApiToolProviderController.from_db(
provider,
ApiProviderAuthType.API_KEY if provider.credentials["auth_type"] == "api_key" else ApiProviderAuthType.NONE,
auth_type,
)
controller.load_bundled_tools(provider.tools)
return controller, provider.credentials
@classmethod
def get_mcp_provider_controller(cls, tenant_id: str, provider_id: str) -> MCPToolProviderController:
"""
get the api provider
:param tenant_id: the id of the tenant
:param provider_id: the id of the provider
:return: the provider controller, the credentials
"""
provider: MCPToolProvider | None = (
db.session.query(MCPToolProvider)
.filter(
MCPToolProvider.server_identifier == provider_id,
MCPToolProvider.tenant_id == tenant_id,
)
.first()
)
if provider is None:
raise ToolProviderNotFoundError(f"mcp provider {provider_id} not found")
controller = MCPToolProviderController._from_db(provider)
return controller
@classmethod
def user_get_api_provider(cls, provider: str, tenant_id: str) -> dict:
"""
@ -733,9 +760,16 @@ class ToolManager:
credentials = {}
# package tool provider controller
auth_type = ApiProviderAuthType.NONE
credentials_auth_type = credentials.get("auth_type")
if credentials_auth_type in ("api_key_header", "api_key"): # backward compatibility
auth_type = ApiProviderAuthType.API_KEY_HEADER
elif credentials_auth_type == "api_key_query":
auth_type = ApiProviderAuthType.API_KEY_QUERY
controller = ApiToolProviderController.from_db(
provider_obj,
ApiProviderAuthType.API_KEY if credentials["auth_type"] == "api_key" else ApiProviderAuthType.NONE,
auth_type,
)
# init tool configuration
encrypter, _ = create_tool_provider_encrypter(
@ -831,6 +865,22 @@ class ToolManager:
except Exception:
return {"background": "#252525", "content": "\ud83d\ude01"}
@classmethod
def generate_mcp_tool_icon_url(cls, tenant_id: str, provider_id: str) -> dict[str, str] | str:
try:
mcp_provider: MCPToolProvider | None = (
db.session.query(MCPToolProvider)
.filter(MCPToolProvider.tenant_id == tenant_id, MCPToolProvider.server_identifier == provider_id)
.first()
)
if mcp_provider is None:
raise ToolProviderNotFoundError(f"mcp provider {provider_id} not found")
return mcp_provider.provider_icon
except Exception:
return {"background": "#252525", "content": "\ud83d\ude01"}
@classmethod
def get_tool_icon(
cls,
@ -868,8 +918,61 @@ class ToolManager:
except Exception:
return {"background": "#252525", "content": "\ud83d\ude01"}
raise ValueError(f"plugin provider {provider_id} not found")
elif provider_type == ToolProviderType.MCP:
return cls.generate_mcp_tool_icon_url(tenant_id, provider_id)
else:
raise ValueError(f"provider type {provider_type} not found")
@classmethod
def _convert_tool_parameters_type(
cls,
parameters: list[ToolParameter],
variable_pool: Optional[VariablePool],
tool_configurations: dict[str, Any],
typ: Literal["agent", "workflow", "tool"] = "workflow",
) -> dict[str, Any]:
"""
Convert tool parameters type
"""
from core.workflow.nodes.tool.entities import ToolNodeData
from core.workflow.nodes.tool.exc import ToolParameterError
runtime_parameters = {}
for parameter in parameters:
if (
parameter.type
in {
ToolParameter.ToolParameterType.SYSTEM_FILES,
ToolParameter.ToolParameterType.FILE,
ToolParameter.ToolParameterType.FILES,
}
and parameter.required
and typ == "agent"
):
raise ValueError(f"file type parameter {parameter.name} not supported in agent")
# save tool parameter to tool entity memory
if parameter.form == ToolParameter.ToolParameterForm.FORM:
if variable_pool:
config = tool_configurations.get(parameter.name, {})
if not (config and isinstance(config, dict) and config.get("value") is not None):
continue
tool_input = ToolNodeData.ToolInput(**tool_configurations.get(parameter.name, {}))
if tool_input.type == "variable":
variable = variable_pool.get(tool_input.value)
if variable is None:
raise ToolParameterError(f"Variable {tool_input.value} does not exist")
parameter_value = variable.value
elif tool_input.type in {"mixed", "constant"}:
segment_group = variable_pool.convert_template(str(tool_input.value))
parameter_value = segment_group.text
else:
raise ToolParameterError(f"Unknown tool input type '{tool_input.type}'")
runtime_parameters[parameter.name] = parameter_value
else:
value = parameter.init_frontend_parameter(tool_configurations.get(parameter.name))
runtime_parameters[parameter.name] = value
return runtime_parameters
ToolManager.load_hardcoded_providers_cache()

View File

@ -8,7 +8,12 @@ from flask_login import current_user
from core.file import FILE_MODEL_IDENTITY, File, FileTransferMethod
from core.tools.__base.tool import Tool
from core.tools.__base.tool_runtime import ToolRuntime
from core.tools.entities.tool_entities import ToolEntity, ToolInvokeMessage, ToolParameter, ToolProviderType
from core.tools.entities.tool_entities import (
ToolEntity,
ToolInvokeMessage,
ToolParameter,
ToolProviderType,
)
from core.tools.errors import ToolInvokeError
from extensions.ext_database import db
from factories.file_factory import build_from_mapping

View File

@ -232,14 +232,14 @@ class WorkflowLoggingCallback(WorkflowCallback):
Publish loop started
"""
self.print_text("\n[LoopRunStartedEvent]", color="blue")
self.print_text(f"Loop Node ID: {event.loop_id}", color="blue")
self.print_text(f"Loop Node ID: {event.loop_node_id}", color="blue")
def on_workflow_loop_next(self, event: LoopRunNextEvent) -> None:
"""
Publish loop next
"""
self.print_text("\n[LoopRunNextEvent]", color="blue")
self.print_text(f"Loop Node ID: {event.loop_id}", color="blue")
self.print_text(f"Loop Node ID: {event.loop_node_id}", color="blue")
self.print_text(f"Loop Index: {event.index}", color="blue")
def on_workflow_loop_completed(self, event: LoopRunSucceededEvent | LoopRunFailedEvent) -> None:
@ -250,7 +250,7 @@ class WorkflowLoggingCallback(WorkflowCallback):
"\n[LoopRunSucceededEvent]" if isinstance(event, LoopRunSucceededEvent) else "\n[LoopRunFailedEvent]",
color="blue",
)
self.print_text(f"Node ID: {event.loop_id}", color="blue")
self.print_text(f"Loop Node ID: {event.loop_node_id}", color="blue")
def print_text(self, text: str, color: Optional[str] = None, end: str = "\n") -> None:
"""Print text with highlighting and no end characters."""

View File

@ -334,7 +334,7 @@ class Graph(BaseModel):
parallel = GraphParallel(
start_from_node_id=start_node_id,
parent_parallel_id=parent_parallel.id if parent_parallel else None,
parent_parallel_id=parent_parallel_id,
parent_parallel_start_node_id=parent_parallel.start_from_node_id if parent_parallel else None,
)
parallel_mapping[parallel.id] = parallel

View File

@ -103,7 +103,7 @@ class GraphEngine:
call_depth: int,
graph: Graph,
graph_config: Mapping[str, Any],
variable_pool: VariablePool,
graph_runtime_state: GraphRuntimeState,
max_execution_steps: int,
max_execution_time: int,
thread_pool_id: Optional[str] = None,
@ -140,7 +140,7 @@ class GraphEngine:
call_depth=call_depth,
)
self.graph_runtime_state = GraphRuntimeState(variable_pool=variable_pool, start_at=time.perf_counter())
self.graph_runtime_state = graph_runtime_state
self.max_execution_steps = max_execution_steps
self.max_execution_time = max_execution_time

View File

@ -1,19 +1,22 @@
import json
import uuid
from collections.abc import Generator, Mapping, Sequence
from typing import Any, Optional, cast
from packaging.version import Version
from sqlalchemy import select
from sqlalchemy.orm import Session
from core.agent.entities import AgentToolEntity
from core.agent.plugin_entities import AgentStrategyParameter
from core.agent.strategy.plugin import PluginAgentStrategy
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance, ModelManager
from core.model_runtime.entities.model_entities import AIModelEntity, ModelType
from core.plugin.impl.exc import PluginDaemonClientSideError
from core.plugin.impl.plugin import PluginInstaller
from core.provider_manager import ProviderManager
from core.tools.entities.tool_entities import ToolParameter, ToolProviderType
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolParameter, ToolProviderType
from core.tools.tool_manager import ToolManager
from core.variables.segments import StringSegment
from core.workflow.entities.node_entities import NodeRunResult
@ -72,12 +75,14 @@ class AgentNode(ToolNode):
agent_parameters=agent_parameters,
variable_pool=self.graph_runtime_state.variable_pool,
node_data=node_data,
strategy=strategy,
)
parameters_for_log = self._generate_agent_parameters(
agent_parameters=agent_parameters,
variable_pool=self.graph_runtime_state.variable_pool,
node_data=node_data,
for_log=True,
strategy=strategy,
)
# get conversation id
@ -102,6 +107,32 @@ class AgentNode(ToolNode):
try:
# convert tool messages
agent_thoughts: list = []
thought_log_message = ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.LOG,
message=ToolInvokeMessage.LogMessage(
id=str(uuid.uuid4()),
label=f"Agent Strategy: {cast(AgentNodeData, self.node_data).agent_strategy_name}",
parent_id=None,
error=None,
status=ToolInvokeMessage.LogMessage.LogStatus.START,
data={
"strategy": cast(AgentNodeData, self.node_data).agent_strategy_name,
"parameters": parameters_for_log,
"thought_process": "Agent strategy execution started",
},
metadata={
"icon": self.agent_strategy_icon,
"agent_strategy": cast(AgentNodeData, self.node_data).agent_strategy_name,
},
),
)
def enhanced_message_stream():
yield thought_log_message
yield from message_stream
yield from self._transform_message(
message_stream,
@ -110,6 +141,7 @@ class AgentNode(ToolNode):
"agent_strategy": cast(AgentNodeData, self.node_data).agent_strategy_name,
},
parameters_for_log,
agent_thoughts,
)
except PluginDaemonClientSideError as e:
yield RunCompletedEvent(
@ -127,6 +159,7 @@ class AgentNode(ToolNode):
variable_pool: VariablePool,
node_data: AgentNodeData,
for_log: bool = False,
strategy: PluginAgentStrategy,
) -> dict[str, Any]:
"""
Generate parameters based on the given tool parameters, variable pool, and node data.
@ -179,7 +212,7 @@ class AgentNode(ToolNode):
if parameter.type == "array[tools]":
value = cast(list[dict[str, Any]], value)
value = [tool for tool in value if tool.get("enabled", False)]
value = self._filter_mcp_type_tool(strategy, value)
for tool in value:
if "schemas" in tool:
tool.pop("schemas")
@ -216,9 +249,9 @@ class AgentNode(ToolNode):
)
extra = tool.get("extra", {})
runtime_variable_pool = variable_pool if self.node_data.version != "1" else None
tool_runtime = ToolManager.get_agent_tool_runtime(
self.tenant_id, self.app_id, entity, self.invoke_from
self.tenant_id, self.app_id, entity, self.invoke_from, runtime_variable_pool
)
if tool_runtime.entity.description:
tool_runtime.entity.description.llm = (
@ -370,3 +403,16 @@ class AgentNode(ToolNode):
except ValueError:
model_schema.features.remove(feature)
return model_schema
def _filter_mcp_type_tool(self, strategy: PluginAgentStrategy, tools: list[dict[str, Any]]) -> list[dict[str, Any]]:
"""
Filter MCP type tool
:param strategy: plugin agent strategy
:param tool: tool
:return: filtered tool dict
"""
meta_version = strategy.meta_version
if meta_version and Version(meta_version) > Version("0.0.1"):
return tools
else:
return [tool for tool in tools if tool.get("type") != ToolProviderType.MCP.value]

View File

@ -8,6 +8,7 @@ from typing import Any, Literal
from urllib.parse import urlencode, urlparse
import httpx
from json_repair import repair_json
from configs import dify_config
from core.file import file_manager
@ -178,7 +179,8 @@ class Executor:
raise RequestBodyError("json body type should have exactly one item")
json_string = self.variable_pool.convert_template(data[0].value).text
try:
json_object = json.loads(json_string, strict=False)
repaired = repair_json(json_string)
json_object = json.loads(repaired, strict=False)
except json.JSONDecodeError as e:
raise RequestBodyError(f"Failed to parse JSON: {json_string}") from e
self.json = json_object

View File

@ -1,5 +1,6 @@
import contextvars
import logging
import time
import uuid
from collections.abc import Generator, Mapping, Sequence
from concurrent.futures import Future, wait
@ -133,8 +134,11 @@ class IterationNode(BaseNode[IterationNodeData]):
variable_pool.add([self.node_id, "item"], iterator_list_value[0])
# init graph engine
from core.workflow.graph_engine.entities.graph_runtime_state import GraphRuntimeState
from core.workflow.graph_engine.graph_engine import GraphEngine, GraphEngineThreadPool
graph_runtime_state = GraphRuntimeState(variable_pool=variable_pool, start_at=time.perf_counter())
graph_engine = GraphEngine(
tenant_id=self.tenant_id,
app_id=self.app_id,
@ -146,7 +150,7 @@ class IterationNode(BaseNode[IterationNodeData]):
call_depth=self.workflow_call_depth,
graph=iteration_graph,
graph_config=graph_config,
variable_pool=variable_pool,
graph_runtime_state=graph_runtime_state,
max_execution_steps=dify_config.WORKFLOW_MAX_EXECUTION_STEPS,
max_execution_time=dify_config.WORKFLOW_MAX_EXECUTION_TIME,
thread_pool_id=self.thread_pool_id,

View File

@ -221,15 +221,6 @@ class LLMNode(BaseNode[LLMNodeData]):
jinja2_variables=self.node_data.prompt_config.jinja2_variables,
)
process_data = {
"model_mode": model_config.mode,
"prompts": PromptMessageUtil.prompt_messages_to_prompt_for_saving(
model_mode=model_config.mode, prompt_messages=prompt_messages
),
"model_provider": model_config.provider,
"model_name": model_config.model,
}
# handle invoke result
generator = self._invoke_llm(
node_data_model=self.node_data.model,
@ -253,6 +244,17 @@ class LLMNode(BaseNode[LLMNodeData]):
elif isinstance(event, LLMStructuredOutput):
structured_output = event
process_data = {
"model_mode": model_config.mode,
"prompts": PromptMessageUtil.prompt_messages_to_prompt_for_saving(
model_mode=model_config.mode, prompt_messages=prompt_messages
),
"usage": jsonable_encoder(usage),
"finish_reason": finish_reason,
"model_provider": model_config.provider,
"model_name": model_config.model,
}
outputs = {"text": result_text, "usage": jsonable_encoder(usage), "finish_reason": finish_reason}
if structured_output:
outputs["structured_output"] = structured_output.structured_output

View File

@ -1,5 +1,6 @@
import json
import logging
import time
from collections.abc import Generator, Mapping, Sequence
from datetime import UTC, datetime
from typing import TYPE_CHECKING, Any, Literal, cast
@ -101,8 +102,11 @@ class LoopNode(BaseNode[LoopNodeData]):
loop_variable_selectors[loop_variable.label] = variable_selector
inputs[loop_variable.label] = processed_segment.value
from core.workflow.graph_engine.entities.graph_runtime_state import GraphRuntimeState
from core.workflow.graph_engine.graph_engine import GraphEngine
graph_runtime_state = GraphRuntimeState(variable_pool=variable_pool, start_at=time.perf_counter())
graph_engine = GraphEngine(
tenant_id=self.tenant_id,
app_id=self.app_id,
@ -114,7 +118,7 @@ class LoopNode(BaseNode[LoopNodeData]):
call_depth=self.workflow_call_depth,
graph=loop_graph,
graph_config=self.graph_config,
variable_pool=variable_pool,
graph_runtime_state=graph_runtime_state,
max_execution_steps=dify_config.WORKFLOW_MAX_EXECUTION_STEPS,
max_execution_time=dify_config.WORKFLOW_MAX_EXECUTION_TIME,
thread_pool_id=self.thread_pool_id,

View File

@ -73,6 +73,7 @@ NODE_TYPE_CLASSES_MAPPING: Mapping[NodeType, Mapping[str, type[BaseNode]]] = {
},
NodeType.TOOL: {
LATEST_VERSION: ToolNode,
"2": ToolNode,
"1": ToolNode,
},
NodeType.VARIABLE_AGGREGATOR: {
@ -122,6 +123,7 @@ NODE_TYPE_CLASSES_MAPPING: Mapping[NodeType, Mapping[str, type[BaseNode]]] = {
},
NodeType.AGENT: {
LATEST_VERSION: AgentNode,
"2": AgentNode,
"1": AgentNode,
},
}

View File

@ -253,7 +253,12 @@ class ParameterExtractorNode(BaseNode):
status=WorkflowNodeExecutionStatus.SUCCEEDED,
inputs=inputs,
process_data=process_data,
outputs={"__is_success": 1 if not error else 0, "__reason": error, **result},
outputs={
"__is_success": 1 if not error else 0,
"__reason": error,
"__usage": jsonable_encoder(usage),
**result,
},
metadata={
WorkflowNodeExecutionMetadataKey.TOTAL_TOKENS: usage.total_tokens,
WorkflowNodeExecutionMetadataKey.TOTAL_PRICE: usage.total_price,

View File

@ -145,7 +145,11 @@ class QuestionClassifierNode(LLMNode):
"model_provider": model_config.provider,
"model_name": model_config.model,
}
outputs = {"class_name": category_name, "class_id": category_id}
outputs = {
"class_name": category_name,
"class_id": category_id,
"usage": jsonable_encoder(usage),
}
return NodeRunResult(
status=WorkflowNodeExecutionStatus.SUCCEEDED,

View File

@ -42,6 +42,10 @@ class ToolNodeData(BaseNodeData, ToolEntity):
def check_type(cls, value, validation_info: ValidationInfo):
typ = value
value = validation_info.data.get("value")
if value is None:
return typ
if typ == "mixed" and not isinstance(value, str):
raise ValueError("value must be a string")
elif typ == "variable":
@ -55,3 +59,22 @@ class ToolNodeData(BaseNodeData, ToolEntity):
return typ
tool_parameters: dict[str, ToolInput]
@field_validator("tool_parameters", mode="before")
@classmethod
def filter_none_tool_inputs(cls, value):
if not isinstance(value, dict):
return value
return {
key: tool_input
for key, tool_input in value.items()
if tool_input is not None and cls._has_valid_value(tool_input)
}
@staticmethod
def _has_valid_value(tool_input):
"""Check if the value is valid"""
if isinstance(tool_input, dict):
return tool_input.get("value") is not None
return getattr(tool_input, "value", None) is not None

View File

@ -1,11 +1,12 @@
from collections.abc import Generator, Mapping, Sequence
from typing import Any, cast
from typing import Any, Optional, cast
from sqlalchemy import select
from sqlalchemy.orm import Session
from core.callback_handler.workflow_tool_callback_handler import DifyWorkflowCallbackHandler
from core.file import File, FileTransferMethod
from core.model_runtime.entities.llm_entities import LLMUsage
from core.plugin.impl.exc import PluginDaemonClientSideError
from core.plugin.impl.plugin import PluginInstaller
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolParameter
@ -66,8 +67,9 @@ class ToolNode(BaseNode[ToolNodeData]):
try:
from core.tools.tool_manager import ToolManager
variable_pool = self.graph_runtime_state.variable_pool if self.node_data.version != "1" else None
tool_runtime = ToolManager.get_workflow_tool_runtime(
self.tenant_id, self.app_id, self.node_id, self.node_data, self.invoke_from
self.tenant_id, self.app_id, self.node_id, self.node_data, self.invoke_from, variable_pool
)
except ToolNodeError as e:
yield RunCompletedEvent(
@ -94,7 +96,6 @@ class ToolNode(BaseNode[ToolNodeData]):
node_data=self.node_data,
for_log=True,
)
# get conversation id
conversation_id = self.graph_runtime_state.variable_pool.get(["sys", SystemVariableKey.CONVERSATION_ID])
@ -190,6 +191,7 @@ class ToolNode(BaseNode[ToolNodeData]):
messages: Generator[ToolInvokeMessage, None, None],
tool_info: Mapping[str, Any],
parameters_for_log: dict[str, Any],
agent_thoughts: Optional[list] = None,
) -> Generator:
"""
Convert ToolInvokeMessages into tuple[plain_text, files]
@ -208,7 +210,7 @@ class ToolNode(BaseNode[ToolNodeData]):
agent_logs: list[AgentLogEvent] = []
agent_execution_metadata: Mapping[WorkflowNodeExecutionMetadataKey, Any] = {}
llm_usage: LLMUsage | None = None
variables: dict[str, Any] = {}
for message in message_stream:
@ -276,13 +278,15 @@ class ToolNode(BaseNode[ToolNodeData]):
elif message.type == ToolInvokeMessage.MessageType.JSON:
assert isinstance(message.message, ToolInvokeMessage.JsonMessage)
if self.node_type == NodeType.AGENT:
msg_metadata = message.message.json_object.pop("execution_metadata", {})
msg_metadata: dict[str, Any] = message.message.json_object.pop("execution_metadata", {})
llm_usage = LLMUsage.from_metadata(msg_metadata)
agent_execution_metadata = {
key: value
WorkflowNodeExecutionMetadataKey(key): value
for key, value in msg_metadata.items()
if key in WorkflowNodeExecutionMetadataKey.__members__.values()
}
json.append(message.message.json_object)
if message.message.json_object is not None:
json.append(message.message.json_object)
elif message.type == ToolInvokeMessage.MessageType.LINK:
assert isinstance(message.message, ToolInvokeMessage.TextMessage)
stream_text = f"Link: {message.message.text}\n"
@ -325,6 +329,7 @@ class ToolNode(BaseNode[ToolNodeData]):
icon = current_plugin.declaration.icon
except StopIteration:
pass
icon_dark = None
try:
builtin_tool = next(
provider
@ -335,10 +340,12 @@ class ToolNode(BaseNode[ToolNodeData]):
if provider.name == dict_metadata["provider"]
)
icon = builtin_tool.icon
icon_dark = builtin_tool.icon_dark
except StopIteration:
pass
dict_metadata["icon"] = icon
dict_metadata["icon_dark"] = icon_dark
message.message.metadata = dict_metadata
agent_log = AgentLogEvent(
id=message.message.id,
@ -367,16 +374,41 @@ class ToolNode(BaseNode[ToolNodeData]):
yield agent_log
# Add agent_logs to outputs['json'] to ensure frontend can access thinking process
json_output: list[dict[str, Any]] = []
# Step 1: append each agent log as its own dict.
if agent_logs:
for log in agent_logs:
json_output.append(
{
"id": log.id,
"parent_id": log.parent_id,
"error": log.error,
"status": log.status,
"data": log.data,
"label": log.label,
"metadata": log.metadata,
"node_id": log.node_id,
}
)
# Step 2: normalize JSON into {"data": [...]}.change json to list[dict]
if json:
json_output.extend(json)
else:
json_output.append({"data": []})
yield RunCompletedEvent(
run_result=NodeRunResult(
status=WorkflowNodeExecutionStatus.SUCCEEDED,
outputs={"text": text, "files": ArrayFileSegment(value=files), "json": json, **variables},
outputs={"text": text, "files": ArrayFileSegment(value=files), "json": json_output, **variables},
metadata={
**agent_execution_metadata,
WorkflowNodeExecutionMetadataKey.TOOL_INFO: tool_info,
WorkflowNodeExecutionMetadataKey.AGENT_LOG: agent_logs,
},
inputs=parameters_for_log,
llm_usage=llm_usage,
)
)

View File

@ -69,6 +69,7 @@ class WorkflowEntry:
raise ValueError("Max workflow call depth {} reached.".format(workflow_call_max_depth))
# init workflow run state
graph_runtime_state = GraphRuntimeState(variable_pool=variable_pool, start_at=time.perf_counter())
self.graph_engine = GraphEngine(
tenant_id=tenant_id,
app_id=app_id,
@ -80,7 +81,7 @@ class WorkflowEntry:
call_depth=call_depth,
graph=graph,
graph_config=graph_config,
variable_pool=variable_pool,
graph_runtime_state=graph_runtime_state,
max_execution_steps=dify_config.WORKFLOW_MAX_EXECUTION_STEPS,
max_execution_time=dify_config.WORKFLOW_MAX_EXECUTION_TIME,
thread_pool_id=thread_pool_id,

View File

@ -10,6 +10,7 @@ def init_app(app: DifyApp):
from controllers.console import bp as console_app_bp
from controllers.files import bp as files_bp
from controllers.inner_api import bp as inner_api_bp
from controllers.mcp import bp as mcp_bp
from controllers.service_api import bp as service_api_bp
from controllers.web import bp as web_bp
@ -46,3 +47,4 @@ def init_app(app: DifyApp):
app.register_blueprint(files_bp)
app.register_blueprint(inner_api_bp)
app.register_blueprint(mcp_bp)

View File

@ -10,7 +10,7 @@ from dify_app import DifyApp
from extensions.ext_database import db
from libs.passport import PassportService
from models.account import Account, Tenant, TenantAccountJoin
from models.model import EndUser
from models.model import AppMCPServer, EndUser
from services.account_service import AccountService
login_manager = flask_login.LoginManager()
@ -74,6 +74,21 @@ def load_user_from_request(request_from_flask_login):
if not end_user:
raise NotFound("End user not found.")
return end_user
elif request.blueprint == "mcp":
server_code = request.view_args.get("server_code") if request.view_args else None
if not server_code:
raise Unauthorized("Invalid Authorization token.")
app_mcp_server = db.session.query(AppMCPServer).filter(AppMCPServer.server_code == server_code).first()
if not app_mcp_server:
raise NotFound("App MCP server not found.")
end_user = (
db.session.query(EndUser)
.filter(EndUser.external_user_id == app_mcp_server.id, EndUser.type == "mcp")
.first()
)
if not end_user:
raise NotFound("End user not found.")
return end_user
@user_logged_in.connect

View File

@ -12,6 +12,7 @@ from flask_login import user_loaded_from_request, user_logged_in # type: ignore
from configs import dify_config
from dify_app import DifyApp
from libs.helper import extract_tenant_id
from models import Account, EndUser
@ -24,11 +25,8 @@ def on_user_loaded(_sender, user: Union["Account", "EndUser"]):
if user:
try:
current_span = get_current_span()
if isinstance(user, Account) and user.current_tenant_id:
tenant_id = user.current_tenant_id
elif isinstance(user, EndUser):
tenant_id = user.tenant_id
else:
tenant_id = extract_tenant_id(user)
if not tenant_id:
return
if current_span:
current_span.set_attribute("service.tenant.id", tenant_id)

View File

@ -1,6 +1,10 @@
import functools
import logging
from collections.abc import Callable
from typing import Any, Union
import redis
from redis import RedisError
from redis.cache import CacheConfig
from redis.cluster import ClusterNode, RedisCluster
from redis.connection import Connection, SSLConnection
@ -9,6 +13,8 @@ from redis.sentinel import Sentinel
from configs import dify_config
from dify_app import DifyApp
logger = logging.getLogger(__name__)
class RedisClientWrapper:
"""
@ -115,3 +121,25 @@ def init_app(app: DifyApp):
redis_client.initialize(redis.Redis(connection_pool=pool))
app.extensions["redis"] = redis_client
def redis_fallback(default_return: Any = None):
"""
decorator to handle Redis operation exceptions and return a default value when Redis is unavailable.
Args:
default_return: The value to return when a Redis operation fails. Defaults to None.
"""
def decorator(func: Callable):
@functools.wraps(func)
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except RedisError as e:
logger.warning(f"Redis operation failed in {func.__name__}: {str(e)}", exc_info=True)
return default_return
return wrapper
return decorator

View File

@ -10,6 +10,6 @@ def get_plugin_agent_strategy(
agent_provider = manager.fetch_agent_strategy_provider(tenant_id, agent_strategy_provider_name)
for agent_strategy in agent_provider.declaration.strategies:
if agent_strategy.identity.name == agent_strategy_name:
return PluginAgentStrategy(tenant_id, agent_strategy)
return PluginAgentStrategy(tenant_id, agent_strategy, agent_provider.meta.version)
raise ValueError(f"Agent strategy {agent_strategy_name} not found")

View File

@ -1,8 +1,21 @@
import json
from flask_restful import fields
from fields.workflow_fields import workflow_partial_fields
from libs.helper import AppIconUrlField, TimestampField
class JsonStringField(fields.Raw):
def format(self, value):
if isinstance(value, str):
try:
return json.loads(value)
except (json.JSONDecodeError, TypeError):
return value
return value
app_detail_kernel_fields = {
"id": fields.String,
"name": fields.String,
@ -218,3 +231,14 @@ app_import_fields = {
app_import_check_dependencies_fields = {
"leaked_dependencies": fields.List(fields.Nested(leaked_dependency_fields)),
}
app_server_fields = {
"id": fields.String,
"name": fields.String,
"server_code": fields.String,
"description": fields.String,
"status": fields.String,
"parameters": JsonStringField,
"created_at": TimestampField,
"updated_at": TimestampField,
}

View File

@ -17,6 +17,7 @@ class EnvironmentVariableField(fields.Raw):
"name": value.name,
"value": encrypter.obfuscated_token(value.value),
"value_type": value.value_type.value,
"description": value.description,
}
if isinstance(value, Variable):
return {
@ -24,6 +25,7 @@ class EnvironmentVariableField(fields.Raw):
"name": value.name,
"value": value.value,
"value_type": value.value_type.value,
"description": value.description,
}
if isinstance(value, dict):
value_type = value.get("value_type")

View File

@ -25,6 +25,31 @@ from extensions.ext_redis import redis_client
if TYPE_CHECKING:
from models.account import Account
from models.model import EndUser
def extract_tenant_id(user: Union["Account", "EndUser"]) -> str | None:
"""
Extract tenant_id from Account or EndUser object.
Args:
user: Account or EndUser object
Returns:
tenant_id string if available, None otherwise
Raises:
ValueError: If user is neither Account nor EndUser
"""
from models.account import Account
from models.model import EndUser
if isinstance(user, Account):
return user.current_tenant_id
elif isinstance(user, EndUser):
return user.tenant_id
else:
raise ValueError(f"Invalid user type: {type(user)}. Expected Account or EndUser.")
def run(script):

Some files were not shown because too many files have changed in this diff Show More