refactor: refactor from ChatflowHistoryService and ChatflowMemoryService

This commit is contained in:
Stream 2025-08-22 14:57:27 +08:00
parent 85a73181cc
commit f72ed4898c
No known key found for this signature in database
GPG Key ID: 9475891C9507B4F3
6 changed files with 220 additions and 400 deletions

View File

@ -2,7 +2,7 @@ import json
import logging
import re
from collections.abc import Sequence
from typing import Optional, cast
from typing import Optional, cast, Mapping
import json_repair
@ -16,8 +16,9 @@ from core.llm_generator.prompts import (
LLM_MODIFY_PROMPT_SYSTEM,
PYTHON_CODE_GENERATOR_PROMPT_TEMPLATE,
SYSTEM_STRUCTURED_OUTPUT_GENERATE,
WORKFLOW_RULE_CONFIG_PROMPT_GENERATE_TEMPLATE,
WORKFLOW_RULE_CONFIG_PROMPT_GENERATE_TEMPLATE, MEMORY_UPDATE_PROMPT,
)
from core.memory.entities import MemoryBlock, MemoryBlockSpec
from core.model_manager import ModelManager
from core.model_runtime.entities.llm_entities import LLMResult
from core.model_runtime.entities.message_entities import SystemPromptMessage, UserPromptMessage
@ -572,3 +573,36 @@ class LLMGenerator:
except Exception as e:
logging.exception("Failed to invoke LLM model, model: " + json.dumps(model_config.get("name")), exc_info=e)
return {"error": f"An unexpected error occurred: {str(e)}"}
@staticmethod
def update_memory_block(
tenant_id: str,
visible_history: Mapping[str, str],
memory_block: MemoryBlock,
memory_spec: MemoryBlockSpec
) -> str:
model_instance = ModelManager().get_model_instance(
tenant_id=tenant_id,
provider=memory_spec.model.provider,
model=memory_spec.model.name,
model_type=ModelType.LLM,
)
formatted_history = ""
for sender, message in visible_history.items():
formatted_history += f"{sender}: {message}\n"
formatted_prompt = PromptTemplateParser(MEMORY_UPDATE_PROMPT).format(
inputs={
"formatted_history": formatted_history,
"current_value": memory_block.value,
"instruction": memory_spec.instruction,
}
)
llm_result = cast(
LLMResult,
model_instance.invoke_llm(
prompt_messages=[UserPromptMessage(content=formatted_prompt)],
model_parameters={"temperature": 0.01, "max_tokens": 2000},
stream=False,
)
)
return llm_result.message.get_text_content()

View File

@ -422,3 +422,18 @@ INSTRUCTION_GENERATE_TEMPLATE_PROMPT = """The output of this prompt is not as ex
You should edit the prompt according to the IDEAL OUTPUT."""
INSTRUCTION_GENERATE_TEMPLATE_CODE = """Please fix the errors in the {{#error_message#}}."""
MEMORY_UPDATE_PROMPT = """
Based on the following conversation history, update the memory content:
Conversation history:
{{formatted_history}}
Current memory:
{{current_value}}
Update instruction:
{{instruction}}
Please output only the updated memory content, no other text like greeting:
""" # noqa: E501

View File

@ -1,9 +1,12 @@
from datetime import datetime
from enum import Enum
from typing import Any, Optional
from uuid import uuid4
from pydantic import BaseModel, Field
from core.app.app_config.entities import ModelConfig
class MemoryScope(str, Enum):
"""Memory scope determined by node_id field"""
@ -42,7 +45,7 @@ class MemoryBlockSpec(BaseModel):
update_turns: int = Field(gt=0, description="Number of turns between updates")
preserved_turns: int = Field(gt=0, description="Number of conversation turns to preserve")
schedule_mode: MemoryScheduleMode = Field(description="Synchronous or asynchronous update mode")
model: Optional[dict[str, Any]] = Field(default=None, description="Model configuration for memory updates")
model: ModelConfig = Field(description="Model configuration for memory updates")
end_user_visible: bool = Field(default=False, description="Whether memory is visible to end users")
end_user_editable: bool = Field(default=False, description="Whether memory is editable by end users")
@ -69,8 +72,8 @@ class MemoryBlock(BaseModel):
app_id: str # None=global(future), str=app-specific
conversation_id: Optional[str] = None # None=persistent, str=session
node_id: Optional[str] = None # None=app-scope, str=node-scope
created_at: Optional[str] = None
updated_at: Optional[str] = None
created_at: Optional[datetime] = None
updated_at: Optional[datetime] = None
@property
def is_global(self) -> bool:

View File

@ -1147,9 +1147,9 @@ class LLMNode(BaseNode):
ChatflowMemoryService.update_node_memory_if_needed(
tenant_id=self.tenant_id,
app_id=self.app_id,
memory_block_spec=memory_block_spec,
node_id=self.node_id,
llm_output=llm_output,
conversation_id=conversation_id,
memory_block_spec=memory_block_spec,
variable_pool=variable_pool,
is_draft=is_draft
)

View File

@ -1,7 +1,7 @@
import json
import time
from collections.abc import Sequence
from typing import Literal, Optional, overload
from typing import Literal, Optional, overload, MutableMapping
from sqlalchemy import Row, Select, and_, func, select
from sqlalchemy.orm import Session
@ -17,15 +17,6 @@ from models.chatflow_memory import ChatflowConversation, ChatflowMessage
class ChatflowHistoryService:
"""
Service layer for managing chatflow conversation history.
This unified service handles all chatflow memory operations:
- Reading visible chat history with version control
- Saving messages to append-only table
- Managing visible_count metadata
- Supporting both app-level and node-level scoping
"""
@staticmethod
def get_visible_chat_history(
@ -35,18 +26,7 @@ class ChatflowHistoryService:
node_id: Optional[str] = None,
max_visible_count: Optional[int] = None
) -> Sequence[PromptMessage]:
"""
Get visible chat history based on metadata visible_count.
Args:
conversation_id: Original conversation ID
node_id: None for app-level, specific node_id for node-level
max_visible_count: Override visible_count for memory update operations
Returns:
Sequence of PromptMessage objects in chronological order (oldest first)
"""
with db.session() as session:
with Session(db.engine) as session:
chatflow_conv = ChatflowHistoryService._get_or_create_chatflow_conversation(
session, conversation_id, app_id, tenant_id, node_id, create_if_missing=False
)
@ -54,79 +34,19 @@ class ChatflowHistoryService:
if not chatflow_conv:
return []
# Parse metadata
metadata_dict = json.loads(chatflow_conv.conversation_metadata)
metadata = ChatflowConversationMetadata.model_validate(metadata_dict)
metadata = ChatflowConversationMetadata.model_validate_json(chatflow_conv.conversation_metadata)
visible_count: int = max_visible_count or metadata.visible_count
# Determine the actual number of messages to return
target_visible_count = max_visible_count if max_visible_count is not None else metadata.visible_count
# Fetch all messages (handle versioning)
msg_stmt = select(ChatflowMessage).where(
stmt = select(ChatflowMessage).where(
ChatflowMessage.conversation_id == chatflow_conv.id
).order_by(ChatflowMessage.index.asc(), ChatflowMessage.version.desc())
all_messages: Sequence[Row[tuple[ChatflowMessage]]] = session.execute(msg_stmt).all()
# Filter in memory: keep only the latest version for each index
latest_messages_by_index: dict[int, ChatflowMessage] = {}
for msg_row in all_messages:
msg = msg_row[0]
index = msg.index
if index not in latest_messages_by_index or msg.version > latest_messages_by_index[index].version:
latest_messages_by_index[index] = msg
# Sort by index and take the latest target_visible_count messages
sorted_messages = sorted(latest_messages_by_index.values(), key=lambda m: m.index, reverse=True)
visible_messages = sorted_messages[:target_visible_count]
# Convert to PromptMessage and restore correct order (oldest first)
prompt_messages: list[PromptMessage] = []
for msg in reversed(visible_messages): # Restore chronological order (index ascending)
data = json.loads(msg.data)
role = data.get('role', 'user')
content = data.get('content', '')
if role == 'user':
prompt_messages.append(UserPromptMessage(content=content))
elif role == 'assistant':
prompt_messages.append(AssistantPromptMessage(content=content))
return prompt_messages
@staticmethod
def get_app_visible_chat_history(
app_id: str,
conversation_id: str,
tenant_id: str,
max_visible_count: Optional[int] = None
) -> Sequence[PromptMessage]:
"""Get visible chat history for app level."""
return ChatflowHistoryService.get_visible_chat_history(
conversation_id=conversation_id,
app_id=app_id,
tenant_id=tenant_id,
node_id=None, # App level
max_visible_count=max_visible_count
)
@staticmethod
def get_node_visible_chat_history(
node_id: str,
conversation_id: str,
app_id: str,
tenant_id: str,
max_visible_count: Optional[int] = None
) -> Sequence[PromptMessage]:
"""Get visible chat history for a specific node."""
return ChatflowHistoryService.get_visible_chat_history(
conversation_id=conversation_id,
app_id=app_id,
tenant_id=tenant_id,
node_id=node_id,
max_visible_count=max_visible_count
)
raw_messages: Sequence[Row[tuple[ChatflowMessage]]] = session.execute(stmt).all()
sorted_messages = ChatflowHistoryService._filter_latest_messages(
[it[0] for it in raw_messages]
)
visible_count = min(visible_count, len(sorted_messages))
visible_messages = sorted_messages[-visible_count:]
return [PromptMessage.model_validate_json(it.data) for it in visible_messages]
@staticmethod
def save_message(
@ -136,13 +56,7 @@ class ChatflowHistoryService:
tenant_id: str,
node_id: Optional[str] = None
) -> None:
"""
Save a message to the append-only chatflow_messages table.
Args:
node_id: None for app-level, specific node_id for node-level
"""
with db.session() as session:
with Session(db.engine) as session:
chatflow_conv = ChatflowHistoryService._get_or_create_chatflow_conversation(
session, conversation_id, app_id, tenant_id, node_id, create_if_missing=True
)
@ -216,7 +130,7 @@ class ChatflowHistoryService:
"""
Save a new version of an existing message (for message editing scenarios).
"""
with db.session() as session:
with Session(db.engine) as session:
chatflow_conv = ChatflowHistoryService._get_or_create_chatflow_conversation(
session, conversation_id, app_id, tenant_id, node_id, create_if_missing=True
)
@ -270,7 +184,7 @@ class ChatflowHistoryService:
# Update node-specific visible_count
ChatflowHistoryService.update_visible_count(conv_id, "node-123", 8, app_id, tenant_id)
"""
with db.session() as session:
with Session(db.engine) as session:
chatflow_conv = ChatflowHistoryService._get_or_create_chatflow_conversation(
session, conversation_id, app_id, tenant_id, node_id, create_if_missing=True
)
@ -281,6 +195,17 @@ class ChatflowHistoryService:
session.commit()
@staticmethod
def _filter_latest_messages(raw_messages: Sequence[ChatflowMessage]) -> Sequence[ChatflowMessage]:
index_to_message: MutableMapping[int, ChatflowMessage] = {}
for msg in raw_messages:
index = msg.index
if index not in index_to_message or msg.version > index_to_message[index].version:
index_to_message[index] = msg
sorted_messages = sorted(index_to_message.values(), key=lambda m: m.index)
return sorted_messages
@overload
@staticmethod
def _get_or_create_chatflow_conversation(

View File

@ -13,7 +13,6 @@ from core.memory.entities import (
MemoryBlockWithVisibility,
MemoryScheduleMode,
MemoryScope,
MemoryStrategy,
MemoryTerm,
)
from core.memory.errors import MemorySyncTimeoutError
@ -24,7 +23,9 @@ from extensions.ext_database import db
from extensions.ext_redis import redis_client
from models import App
from models.chatflow_memory import ChatflowMemoryVariable
from models.workflow import WorkflowDraftVariable
from services.chatflow_history_service import ChatflowHistoryService
from services.workflow_draft_variable_service import WorkflowDraftVariableService
from services.workflow_service import WorkflowService
logger = logging.getLogger(__name__)
@ -42,11 +43,6 @@ def _get_memory_sync_lock_key(app_id: str, conversation_id: str) -> str:
return f"memory_sync_update:{app_id}:{conversation_id}"
class ChatflowMemoryService:
"""
Memory service class with only static methods.
All methods are static and do not require instantiation.
"""
@staticmethod
def get_persistent_memories(app: App) -> Sequence[MemoryBlockWithVisibility]:
stmt = select(ChatflowMemoryVariable).where(
@ -56,7 +52,7 @@ class ChatflowMemoryService:
ChatflowMemoryVariable.conversation_id == None
)
)
with db.session() as session:
with Session(db.engine) as session:
db_results = session.execute(stmt).all()
return ChatflowMemoryService._with_visibility(app, [result[0] for result in db_results])
@ -69,94 +65,38 @@ class ChatflowMemoryService:
ChatflowMemoryVariable.conversation_id == conversation_id
)
)
with db.session() as session:
with Session(db.engine) as session:
db_results = session.execute(stmt).all()
return ChatflowMemoryService._with_visibility(app, [result[0] for result in db_results])
@staticmethod
def get_memory(memory_id: str, tenant_id: str,
app_id: Optional[str] = None,
conversation_id: Optional[str] = None,
node_id: Optional[str] = None) -> Optional[MemoryBlock]:
"""Get single memory by ID"""
stmt = select(ChatflowMemoryVariable).where(
and_(
ChatflowMemoryVariable.memory_id == memory_id,
ChatflowMemoryVariable.tenant_id == tenant_id
)
)
if app_id:
stmt = stmt.where(ChatflowMemoryVariable.app_id == app_id)
if conversation_id:
stmt = stmt.where(ChatflowMemoryVariable.conversation_id == conversation_id)
if node_id:
stmt = stmt.where(ChatflowMemoryVariable.node_id == node_id)
with db.session() as session:
result = session.execute(stmt).first()
if result:
return MemoryBlock.model_validate(result[0].__dict__)
return None
@staticmethod
def save_memory(memory: MemoryBlock, tenant_id: str, variable_pool: VariablePool, is_draft: bool = False) -> None:
"""Save or update memory with draft mode support"""
def save_memory(memory: MemoryBlock, tenant_id: str, variable_pool: VariablePool, is_draft: bool) -> None:
key = f"{memory.node_id}:{memory.memory_id}" if memory.node_id else memory.memory_id
variable_pool.add([MEMORY_BLOCK_VARIABLE_NODE_ID, key], memory.value)
stmt = select(ChatflowMemoryVariable).where(
and_(
ChatflowMemoryVariable.memory_id == memory.memory_id,
ChatflowMemoryVariable.tenant_id == tenant_id
)
)
with db.session() as session:
existing = session.execute(stmt).first()
if existing:
# Update existing
for key, value in memory.model_dump(exclude_unset=True).items():
if hasattr(existing[0], key):
setattr(existing[0], key, value)
else:
# Create new
new_memory = ChatflowMemoryVariable(
tenant_id=tenant_id,
**memory.model_dump(exclude={'id'})
)
session.add(new_memory)
session.merge(ChatflowMemoryService._to_chatflow_memory_variable(memory))
session.commit()
# In draft mode, also write to workflow_draft_variables
if is_draft:
from models.workflow import WorkflowDraftVariable
from services.workflow_draft_variable_service import WorkflowDraftVariableService
with Session(bind=db.engine) as session:
draft_var_service = WorkflowDraftVariableService(session)
# Try to get existing variables
existing_vars = draft_var_service.get_draft_variables_by_selectors(
app_id=memory.app_id,
selectors=[['memory_block', memory.memory_id]]
)
if existing_vars:
# Update existing draft variable
draft_var = existing_vars[0]
draft_var.value = memory.value
else:
# Create new draft variable
draft_var = WorkflowDraftVariable.new_memory_block_variable(
app_id=memory.app_id,
memory_id=memory.memory_id,
name=memory.name,
value=memory.value,
description=f"Memory block: {memory.name}"
description=""
)
session.add(draft_var)
session.commit()
@staticmethod
@ -164,104 +104,66 @@ class ChatflowMemoryService:
tenant_id: str, app_id: str,
conversation_id: Optional[str] = None,
node_id: Optional[str] = None,
is_draft: bool = False) -> list[MemoryBlock]:
"""Get runtime memory values based on MemoryBlockSpecs with draft mode support"""
from models.enums import DraftVariableType
is_draft: bool = False) -> Sequence[MemoryBlock]:
return [ChatflowMemoryService.get_memory_by_spec(
spec, tenant_id, app_id, conversation_id, node_id, is_draft
) for spec in memory_block_specs]
if not memory_block_specs:
return []
# In draft mode, prefer reading from workflow_draft_variables
if is_draft:
# Try reading from the draft variables table
from services.workflow_draft_variable_service import WorkflowDraftVariableService
with Session(bind=db.engine) as session:
@staticmethod
def get_memory_by_spec(spec: MemoryBlockSpec,
tenant_id: str, app_id: str,
conversation_id: Optional[str] = None,
node_id: Optional[str] = None,
is_draft: bool = False) -> MemoryBlock:
with (Session(bind=db.engine) as session):
if is_draft:
draft_var_service = WorkflowDraftVariableService(session)
# Build selector list
selectors = [['memory_block', spec.id] for spec in memory_block_specs]
# Fetch draft variables
selector = [MEMORY_BLOCK_VARIABLE_NODE_ID, f"{spec.id}.{node_id}"]\
if node_id else [MEMORY_BLOCK_VARIABLE_NODE_ID, spec.id]
draft_vars = draft_var_service.get_draft_variables_by_selectors(
app_id=app_id,
selectors=selectors
selectors=[selector]
)
# If draft variables exist, prefer using them
if draft_vars:
spec_by_id = {spec.id: spec for spec in memory_block_specs}
draft_memories = []
for draft_var in draft_vars:
if draft_var.node_id == DraftVariableType.MEMORY_BLOCK:
spec = spec_by_id.get(draft_var.name)
if spec:
memory_block = MemoryBlock(
id=draft_var.id,
memory_id=draft_var.name,
name=spec.name,
value=draft_var.value,
scope=spec.scope,
term=spec.term,
app_id=app_id,
conversation_id='draft',
node_id=node_id
)
draft_memories.append(memory_block)
if draft_memories:
return draft_memories
memory_ids = [spec.id for spec in memory_block_specs]
stmt = select(ChatflowMemoryVariable).where(
and_(
ChatflowMemoryVariable.memory_id.in_(memory_ids),
ChatflowMemoryVariable.tenant_id == tenant_id,
ChatflowMemoryVariable.app_id == app_id
)
)
if conversation_id:
stmt = stmt.where(ChatflowMemoryVariable.conversation_id == conversation_id)
if node_id:
stmt = stmt.where(ChatflowMemoryVariable.node_id == node_id)
with db.session() as session:
results = session.execute(stmt).all()
found_memories = {row[0].memory_id: MemoryBlock.model_validate(row[0].__dict__) for row in results}
# Create MemoryBlock objects for specs that don't have runtime values yet
all_memories = []
for spec in memory_block_specs:
if spec.id in found_memories:
all_memories.append(found_memories[spec.id])
else:
# Create default memory with template value following design rules
default_memory = MemoryBlock(
id="", # Will be assigned when saved
memory_id=spec.id,
draft_var = draft_vars[0]
return MemoryBlock(
id=draft_var.id,
memory_id=draft_var.name,
name=spec.name,
value=spec.template,
value=draft_var.value,
scope=spec.scope,
term=spec.term,
# Design rules:
# - app_id=None for global (future), app_id=str for app-specific
app_id=app_id, # Always app-specific for now
# - conversation_id=None for persistent, conversation_id=str for session
conversation_id=conversation_id if spec.term == MemoryTerm.SESSION else None,
# - node_id=None for app-scope, node_id=str for node-scope
node_id=node_id if spec.scope == MemoryScope.NODE else None
app_id=app_id,
conversation_id=conversation_id,
node_id=node_id
)
all_memories.append(default_memory)
return all_memories
stmt = select(ChatflowMemoryVariable).where(
and_(
ChatflowMemoryVariable.memory_id == spec.id,
ChatflowMemoryVariable.tenant_id == tenant_id,
ChatflowMemoryVariable.app_id == app_id,
ChatflowMemoryVariable.node_id == node_id,
ChatflowMemoryVariable.conversation_id == conversation_id
)
)
result = session.execute(stmt).scalar()
if result:
return ChatflowMemoryService._to_memory_block(result)
return MemoryBlock(
id="", # Will be assigned when saved
memory_id=spec.id,
name=spec.name,
value=spec.template,
scope=spec.scope,
term=spec.term,
app_id=app_id,
conversation_id=conversation_id,
node_id=node_id
)
@staticmethod
def get_app_memories_by_workflow(workflow, tenant_id: str,
conversation_id: Optional[str] = None) -> list[MemoryBlock]:
"""Get app-scoped memories based on workflow configuration"""
from core.memory.entities import MemoryScope
conversation_id: Optional[str] = None) -> Sequence[MemoryBlock]:
app_memory_specs = [spec for spec in workflow.memory_blocks if spec.scope == MemoryScope.APP]
return ChatflowMemoryService.get_memories_by_specs(
@ -272,7 +174,7 @@ class ChatflowMemoryService:
)
@staticmethod
def get_node_memories_by_workflow(workflow, node_id: str, tenant_id: str) -> list[MemoryBlock]:
def get_node_memories_by_workflow(workflow, node_id: str, tenant_id: str) -> Sequence[MemoryBlock]:
"""Get node-scoped memories based on workflow configuration"""
from core.memory.entities import MemoryScope
@ -287,72 +189,22 @@ class ChatflowMemoryService:
node_id=node_id
)
# Core Memory Orchestration features
@staticmethod
def update_memory_if_needed(tenant_id: str, app_id: str,
memory_block_spec: MemoryBlockSpec,
conversation_id: str,
variable_pool: VariablePool,
is_draft: bool = False) -> bool:
"""Update app-level memory if conditions are met
Args:
tenant_id: Tenant ID
app_id: Application ID
memory_block_spec: Memory block specification
conversation_id: Conversation ID
variable_pool: Variable pool for context
is_draft: Whether in draft mode
"""
if not ChatflowMemoryService._should_update_memory(
tenant_id, app_id, memory_block_spec, conversation_id
):
return False
if memory_block_spec.schedule_mode == MemoryScheduleMode.SYNC:
# Sync mode: will be processed in batch after the App run completes
# This only marks the need; actual update happens in _update_app_memory_after_run
return True
else:
# Async mode: submit asynchronous update immediately
ChatflowMemoryService._submit_async_memory_update(
tenant_id, app_id, memory_block_spec, conversation_id, variable_pool, is_draft
)
return True
@staticmethod
def update_node_memory_if_needed(tenant_id: str, app_id: str,
memory_block_spec: MemoryBlockSpec,
node_id: str, llm_output: str,
variable_pool: VariablePool,
is_draft: bool = False) -> bool:
"""Update node-level memory after LLM execution
Args:
tenant_id: Tenant ID
app_id: Application ID
memory_block_spec: Memory block specification
node_id: Node ID
llm_output: LLM output content
variable_pool: Variable pool for context
is_draft: Whether in draft mode
"""
def update_node_memory_if_needed(
tenant_id: str,
app_id: str,
node_id: str,
conversation_id: str,
memory_block_spec: MemoryBlockSpec,
variable_pool: VariablePool,
is_draft: bool
) -> bool:
"""Update node-level memory after LLM execution"""
conversation_id_segment = variable_pool.get(('sys', 'conversation_id'))
if not conversation_id_segment:
return False
conversation_id = conversation_id_segment.value
# Save LLM output to node conversation history
assistant_message = AssistantPromptMessage(content=llm_output)
ChatflowHistoryService.save_node_message(
prompt_message=assistant_message,
node_id=node_id,
conversation_id=str(conversation_id),
app_id=app_id,
tenant_id=tenant_id
)
if not ChatflowMemoryService._should_update_memory(
tenant_id, app_id, memory_block_spec, str(conversation_id), node_id
):
@ -372,6 +224,57 @@ class ChatflowMemoryService:
)
return True
@staticmethod
def _get_memory_from_chatflow_table(memory_id: str, tenant_id: str,
app_id: Optional[str] = None,
conversation_id: Optional[str] = None,
node_id: Optional[str] = None) -> Optional[MemoryBlock]:
stmt = select(ChatflowMemoryVariable).where(
and_(
ChatflowMemoryVariable.app_id == app_id,
ChatflowMemoryVariable.memory_id == memory_id,
ChatflowMemoryVariable.tenant_id == tenant_id,
ChatflowMemoryVariable.conversation_id == conversation_id,
ChatflowMemoryVariable.node_id == node_id
)
)
with db.session() as session:
result = session.execute(stmt).first()
return ChatflowMemoryService._to_memory_block(result[0]) if result else None
@staticmethod
def _to_memory_block(entity: ChatflowMemoryVariable) -> MemoryBlock:
scope = MemoryScope(entity.scope) if not isinstance(entity.scope, MemoryScope) else entity.scope
term = MemoryTerm(entity.term) if not isinstance(entity.term, MemoryTerm) else entity.term
return MemoryBlock(
id=entity.id,
memory_id=entity.memory_id,
name=entity.name,
value=entity.value,
scope=scope,
term=term,
app_id=cast(str, entity.app_id), # It's supposed to be not nullable for now
conversation_id=entity.conversation_id,
node_id=entity.node_id,
created_at=entity.created_at,
updated_at=entity.updated_at,
)
@staticmethod
def _to_chatflow_memory_variable(memory_block: MemoryBlock) -> ChatflowMemoryVariable:
return ChatflowMemoryVariable(
id=memory_block.id,
node_id=memory_block.node_id,
memory_id=memory_block.memory_id,
name=memory_block.name,
value=memory_block.value,
scope=memory_block.scope,
term=memory_block.term,
app_id=memory_block.app_id,
conversation_id=memory_block.conversation_id,
)
@staticmethod
def _with_visibility(
app: App,
@ -400,8 +303,7 @@ class ChatflowMemoryService:
memory_block_spec: MemoryBlockSpec,
conversation_id: str, node_id: Optional[str] = None) -> bool:
"""Check if memory should be updated based on strategy"""
if memory_block_spec.strategy != MemoryStrategy.ON_TURNS:
return False
# Currently, `memory_block_spec.strategy != MemoryStrategy.ON_TURNS` is not possible, but possible in the future
# Check turn count
turn_key = f"memory_turn_count:{tenant_id}:{app_id}:{conversation_id}"
@ -428,7 +330,7 @@ class ChatflowMemoryService:
# Execute update asynchronously using thread
thread = threading.Thread(
target=ChatflowMemoryService._update_single_memory,
target=ChatflowMemoryService._update_app_single_memory,
kwargs={
'tenant_id': tenant_id,
'app_id': app_id,
@ -492,28 +394,18 @@ class ChatflowMemoryService:
tenant_id: str, app_id: str, node_id: str,
llm_output: str, variable_pool: VariablePool,
is_draft: bool = False):
"""Execute node memory update"""
try:
# Call existing _perform_memory_update method here
ChatflowMemoryService._perform_memory_update(
tenant_id=tenant_id,
app_id=app_id,
memory_block_spec=memory_block_spec,
conversation_id=str(variable_pool.get(('sys', 'conversation_id'))),
variable_pool=variable_pool,
node_id=node_id,
is_draft=is_draft
)
except Exception as e:
logger.exception(
"Failed to update node memory %s for node %s",
memory_block_spec.id,
node_id,
exc_info=e
)
ChatflowMemoryService._perform_memory_update(
tenant_id=tenant_id,
app_id=app_id,
memory_block_spec=memory_block_spec,
conversation_id=str(variable_pool.get(('sys', 'conversation_id'))),
variable_pool=variable_pool,
node_id=node_id,
is_draft=is_draft
)
@staticmethod
def _update_single_memory(*, tenant_id: str, app_id: str,
def _update_app_single_memory(*, tenant_id: str, app_id: str,
memory_block_spec: MemoryBlockSpec,
conversation_id: str,
variable_pool: VariablePool,
@ -535,62 +427,26 @@ class ChatflowMemoryService:
conversation_id: str, variable_pool: VariablePool,
node_id: Optional[str] = None,
is_draft: bool = False):
"""Perform the actual memory update using LLM
Args:
tenant_id: Tenant ID
app_id: Application ID
memory_block_spec: Memory block specification
conversation_id: Conversation ID
variable_pool: Variable pool for context
node_id: Optional node ID for node-level memory updates
is_draft: Whether in draft mode
"""
# Get conversation history
"""Perform the actual memory update using LLM"""
history = ChatflowHistoryService.get_visible_chat_history(
conversation_id=conversation_id,
app_id=app_id,
tenant_id=tenant_id,
node_id=node_id, # Pass node_id, if None then get app-level history
max_visible_count=memory_block_spec.preserved_turns
node_id=node_id,
)
# Get current memory value
current_memory = ChatflowMemoryService.get_memory(
current_memory = ChatflowMemoryService._get_memory_from_chatflow_table(
memory_id=memory_block_spec.id,
tenant_id=tenant_id,
app_id=app_id,
conversation_id=conversation_id if memory_block_spec.term == MemoryTerm.SESSION else None,
conversation_id=conversation_id,
node_id=node_id
)
current_value = current_memory.value if current_memory else memory_block_spec.template
# Build update prompt - adjust wording based on whether there's a node_id
context_type = "Node conversation history" if node_id else "Conversation history"
memory_update_prompt = f"""
Based on the following {context_type}, update the memory content:
Current memory: {current_value}
{context_type}:
{[msg.content for msg in history]}
Update instruction: {memory_block_spec.instruction}
Please output the updated memory content:
"""
# Invoke LLM to update memory - extracted as a separate method
updated_value = ChatflowMemoryService._invoke_llm_for_memory_update(
tenant_id,
memory_block_spec,
memory_update_prompt,
current_value
)
if updated_value is None:
return # LLM invocation failed
# Save updated memory
updated_memory = MemoryBlock(
@ -720,23 +576,10 @@ class ChatflowMemoryService:
@staticmethod
def update_app_memory_after_run(workflow, conversation_id: str, variable_pool: VariablePool,
is_draft: bool = False):
"""Update app-level memory after run completion
Args:
workflow: Workflow object
conversation_id: Conversation ID
variable_pool: Variable pool
is_draft: Whether in draft mode
"""
from core.memory.entities import MemoryScope
memory_blocks = workflow.memory_blocks
# Separate sync and async memory blocks
"""Update app-level memory after run completion"""
sync_blocks = []
async_blocks = []
for block in memory_blocks:
for block in workflow.memory_blocks:
if block.scope == MemoryScope.APP:
if block.update_mode == "sync":
sync_blocks.append(block)
@ -805,7 +648,7 @@ class ChatflowMemoryService:
futures = []
for block in sync_blocks:
future = executor.submit(
ChatflowMemoryService._update_single_memory,
ChatflowMemoryService._update_app_single_memory,
tenant_id=workflow.tenant_id,
app_id=workflow.app_id,
memory_block_spec=block,