mirror of https://github.com/langgenius/dify.git
220 lines
8.4 KiB
Python
220 lines
8.4 KiB
Python
"""Task for regenerating summary indexes when dataset settings change."""
|
|
|
|
import logging
|
|
import time
|
|
from typing import Any
|
|
|
|
import click
|
|
from celery import shared_task
|
|
from sqlalchemy import select
|
|
|
|
from extensions.ext_database import db
|
|
from models.dataset import Dataset, DocumentSegment, DocumentSegmentSummary
|
|
from models.dataset import Document as DatasetDocument
|
|
from services.summary_index_service import SummaryIndexService
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@shared_task(queue="dataset")
|
|
def regenerate_summary_index_task(
|
|
dataset_id: str,
|
|
regenerate_reason: str = "summary_model_changed",
|
|
regenerate_vectors_only: bool = False,
|
|
):
|
|
"""
|
|
Regenerate summary indexes for all documents in a dataset.
|
|
|
|
This task is triggered when:
|
|
1. summary_index_setting model changes (regenerate_reason="summary_model_changed")
|
|
- Regenerates summary content and vectors for all existing summaries
|
|
2. embedding_model changes (regenerate_reason="embedding_model_changed")
|
|
- Only regenerates vectors for existing summaries (keeps summary content)
|
|
|
|
Args:
|
|
dataset_id: Dataset ID
|
|
regenerate_reason: Reason for regeneration ("summary_model_changed" or "embedding_model_changed")
|
|
regenerate_vectors_only: If True, only regenerate vectors without regenerating summary content
|
|
"""
|
|
logger.info(
|
|
click.style(
|
|
f"Start regenerate summary index for dataset {dataset_id}, reason: {regenerate_reason}",
|
|
fg="green",
|
|
)
|
|
)
|
|
start_at = time.perf_counter()
|
|
|
|
try:
|
|
dataset = db.session.query(Dataset).filter_by(id=dataset_id).first()
|
|
if not dataset:
|
|
logger.error(click.style(f"Dataset not found: {dataset_id}", fg="red"))
|
|
db.session.close()
|
|
return
|
|
|
|
# Only regenerate summary index for high_quality indexing technique
|
|
if dataset.indexing_technique != "high_quality":
|
|
logger.info(
|
|
click.style(
|
|
f"Skipping summary regeneration for dataset {dataset_id}: "
|
|
f"indexing_technique is {dataset.indexing_technique}, not 'high_quality'",
|
|
fg="cyan",
|
|
)
|
|
)
|
|
db.session.close()
|
|
return
|
|
|
|
# Check if summary index is enabled
|
|
summary_index_setting = dataset.summary_index_setting
|
|
if not summary_index_setting or not summary_index_setting.get("enable"):
|
|
logger.info(
|
|
click.style(
|
|
f"Summary index is disabled for dataset {dataset_id}",
|
|
fg="cyan",
|
|
)
|
|
)
|
|
db.session.close()
|
|
return
|
|
|
|
# Get all documents with completed indexing status
|
|
dataset_documents = db.session.scalars(
|
|
select(DatasetDocument).where(
|
|
DatasetDocument.dataset_id == dataset_id,
|
|
DatasetDocument.indexing_status == "completed",
|
|
DatasetDocument.enabled == True,
|
|
DatasetDocument.archived == False,
|
|
)
|
|
).all()
|
|
|
|
if not dataset_documents:
|
|
logger.info(
|
|
click.style(
|
|
f"No documents found for summary regeneration in dataset {dataset_id}",
|
|
fg="cyan",
|
|
)
|
|
)
|
|
db.session.close()
|
|
return
|
|
|
|
logger.info(
|
|
f"Found {len(dataset_documents)} documents for summary regeneration in dataset {dataset_id}"
|
|
)
|
|
|
|
total_segments_processed = 0
|
|
total_segments_failed = 0
|
|
|
|
for dataset_document in dataset_documents:
|
|
# Skip qa_model documents
|
|
if dataset_document.doc_form == "qa_model":
|
|
continue
|
|
|
|
try:
|
|
# Get all segments with existing summaries
|
|
segments = (
|
|
db.session.query(DocumentSegment)
|
|
.join(
|
|
DocumentSegmentSummary,
|
|
DocumentSegment.id == DocumentSegmentSummary.chunk_id,
|
|
)
|
|
.where(
|
|
DocumentSegment.document_id == dataset_document.id,
|
|
DocumentSegment.dataset_id == dataset_id,
|
|
DocumentSegment.status == "completed",
|
|
DocumentSegment.enabled == True,
|
|
DocumentSegmentSummary.dataset_id == dataset_id,
|
|
)
|
|
.order_by(DocumentSegment.position.asc())
|
|
.all()
|
|
)
|
|
|
|
if not segments:
|
|
continue
|
|
|
|
logger.info(
|
|
f"Regenerating summaries for {len(segments)} segments in document {dataset_document.id}"
|
|
)
|
|
|
|
for segment in segments:
|
|
try:
|
|
# Get existing summary record
|
|
summary_record = (
|
|
db.session.query(DocumentSegmentSummary)
|
|
.filter_by(
|
|
chunk_id=segment.id,
|
|
dataset_id=dataset_id,
|
|
)
|
|
.first()
|
|
)
|
|
|
|
if not summary_record:
|
|
logger.warning(
|
|
f"Summary record not found for segment {segment.id}, skipping"
|
|
)
|
|
continue
|
|
|
|
if regenerate_vectors_only:
|
|
# Only regenerate vectors (for embedding_model change)
|
|
# Delete old vector
|
|
if summary_record.summary_index_node_id:
|
|
try:
|
|
from core.rag.datasource.vdb.vector_factory import Vector
|
|
|
|
vector = Vector(dataset)
|
|
vector.delete_by_ids([summary_record.summary_index_node_id])
|
|
except Exception as e:
|
|
logger.warning(
|
|
f"Failed to delete old summary vector for segment {segment.id}: {str(e)}"
|
|
)
|
|
|
|
# Re-vectorize with new embedding model
|
|
SummaryIndexService.vectorize_summary(
|
|
summary_record, segment, dataset
|
|
)
|
|
db.session.commit()
|
|
else:
|
|
# Regenerate both summary content and vectors (for summary_model change)
|
|
SummaryIndexService.generate_and_vectorize_summary(
|
|
segment, dataset, summary_index_setting
|
|
)
|
|
db.session.commit()
|
|
|
|
total_segments_processed += 1
|
|
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Failed to regenerate summary for segment {segment.id}: {str(e)}",
|
|
exc_info=True,
|
|
)
|
|
total_segments_failed += 1
|
|
# Update summary record with error status
|
|
if summary_record:
|
|
summary_record.status = "error"
|
|
summary_record.error = f"Regeneration failed: {str(e)}"
|
|
db.session.add(summary_record)
|
|
db.session.commit()
|
|
continue
|
|
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Failed to process document {dataset_document.id} for summary regeneration: {str(e)}",
|
|
exc_info=True,
|
|
)
|
|
continue
|
|
|
|
end_at = time.perf_counter()
|
|
logger.info(
|
|
click.style(
|
|
f"Summary index regeneration completed for dataset {dataset_id}: "
|
|
f"{total_segments_processed} segments processed successfully, "
|
|
f"{total_segments_failed} segments failed, "
|
|
f"total documents: {len(dataset_documents)}, "
|
|
f"latency: {end_at - start_at:.2f}s",
|
|
fg="green",
|
|
)
|
|
)
|
|
|
|
except Exception:
|
|
logger.exception(f"Regenerate summary index failed for dataset {dataset_id}")
|
|
finally:
|
|
db.session.close()
|
|
|