dify/api/core/agent/entities.py

188 lines
5.1 KiB
Python

import uuid
from collections.abc import Mapping
from enum import StrEnum
from typing import Any, Union
from pydantic import BaseModel, Field
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolProviderType
class AgentToolEntity(BaseModel):
"""
Agent Tool Entity.
"""
provider_type: ToolProviderType
provider_id: str
tool_name: str
tool_parameters: dict[str, Any] = Field(default_factory=dict)
plugin_unique_identifier: str | None = None
credential_id: str | None = None
class AgentPromptEntity(BaseModel):
"""
Agent Prompt Entity.
"""
first_prompt: str
next_iteration: str
class AgentScratchpadUnit(BaseModel):
"""
Agent First Prompt Entity.
"""
class Action(BaseModel):
"""
Action Entity.
"""
action_name: str
action_input: Union[dict, str]
def to_dict(self):
"""
Convert to dictionary.
"""
return {
"action": self.action_name,
"action_input": self.action_input,
}
agent_response: str | None = None
thought: str | None = None
action_str: str | None = None
observation: str | None = None
action: Action | None = None
def is_final(self) -> bool:
"""
Check if the scratchpad unit is final.
"""
return self.action is None or (
"final" in self.action.action_name.lower() and "answer" in self.action.action_name.lower()
)
class AgentEntity(BaseModel):
"""
Agent Entity.
"""
class Strategy(StrEnum):
"""
Agent Strategy.
"""
CHAIN_OF_THOUGHT = "chain-of-thought"
FUNCTION_CALLING = "function-calling"
provider: str
model: str
strategy: Strategy
prompt: AgentPromptEntity | None = None
tools: list[AgentToolEntity] | None = None
max_iteration: int = 10
class AgentInvokeMessage(ToolInvokeMessage):
"""
Agent Invoke Message.
"""
pass
class ExecutionContext(BaseModel):
"""Execution context containing trace and audit information.
This context carries all the IDs and metadata that are not part of
the core business logic but needed for tracing, auditing, and
correlation purposes.
"""
user_id: str | None = None
app_id: str | None = None
conversation_id: str | None = None
message_id: str | None = None
tenant_id: str | None = None
@classmethod
def create_minimal(cls, user_id: str | None = None) -> "ExecutionContext":
"""Create a minimal context with only essential fields."""
return cls(user_id=user_id)
def to_dict(self) -> dict[str, Any]:
"""Convert to dictionary for passing to legacy code."""
return {
"user_id": self.user_id,
"app_id": self.app_id,
"conversation_id": self.conversation_id,
"message_id": self.message_id,
"tenant_id": self.tenant_id,
}
def with_updates(self, **kwargs) -> "ExecutionContext":
"""Create a new context with updated fields."""
data = self.to_dict()
data.update(kwargs)
return ExecutionContext(
user_id=data.get("user_id"),
app_id=data.get("app_id"),
conversation_id=data.get("conversation_id"),
message_id=data.get("message_id"),
tenant_id=data.get("tenant_id"),
)
class AgentLog(BaseModel):
"""
Agent Log.
"""
class LogType(StrEnum):
"""Type of agent log entry."""
ROUND = "round" # A complete iteration round
THOUGHT = "thought" # LLM thinking/reasoning
TOOL_CALL = "tool_call" # Tool invocation
class LogMetadata(StrEnum):
STARTED_AT = "started_at"
FINISHED_AT = "finished_at"
ELAPSED_TIME = "elapsed_time"
TOTAL_PRICE = "total_price"
TOTAL_TOKENS = "total_tokens"
PROVIDER = "provider"
CURRENCY = "currency"
LLM_USAGE = "llm_usage"
class LogStatus(StrEnum):
START = "start"
ERROR = "error"
SUCCESS = "success"
id: str = Field(default_factory=lambda: str(uuid.uuid4()), description="The id of the log")
label: str = Field(..., description="The label of the log")
log_type: LogType = Field(..., description="The type of the log")
parent_id: str | None = Field(default=None, description="Leave empty for root log")
error: str | None = Field(default=None, description="The error message")
status: LogStatus = Field(..., description="The status of the log")
data: Mapping[str, Any] = Field(..., description="Detailed log data")
metadata: Mapping[LogMetadata, Any] = Field(default={}, description="The metadata of the log")
class AgentResult(BaseModel):
"""
Agent execution result.
"""
text: str = Field(default="", description="The generated text")
files: list[Any] = Field(default_factory=list, description="Files produced during execution")
usage: Any | None = Field(default=None, description="LLM usage statistics")
finish_reason: str | None = Field(default=None, description="Reason for completion")