mirror of https://github.com/langgenius/dify.git
698 lines
30 KiB
Python
698 lines
30 KiB
Python
import json
|
|
import logging
|
|
import mimetypes
|
|
import secrets
|
|
from collections.abc import Mapping
|
|
from typing import Any
|
|
|
|
from flask import request
|
|
from pydantic import BaseModel
|
|
from sqlalchemy import select
|
|
from sqlalchemy.orm import Session
|
|
from werkzeug.exceptions import RequestEntityTooLarge
|
|
|
|
from configs import dify_config
|
|
from core.file.models import FileTransferMethod
|
|
from core.tools.tool_file_manager import ToolFileManager
|
|
from core.variables.types import SegmentType
|
|
from core.workflow.nodes.enums import NodeType
|
|
from extensions.ext_database import db
|
|
from extensions.ext_redis import redis_client
|
|
from factories import file_factory
|
|
from models.account import Account, TenantAccountJoin, TenantAccountRole
|
|
from models.enums import WorkflowRunTriggeredFrom
|
|
from models.model import App
|
|
from models.workflow import AppTrigger, AppTriggerStatus, AppTriggerType, Workflow, WorkflowWebhookTrigger
|
|
from services.async_workflow_service import AsyncWorkflowService
|
|
from services.workflow.entities import TriggerData
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class WebhookService:
|
|
"""Service for handling webhook operations."""
|
|
|
|
__WEBHOOK_NODE_CACHE_KEY__ = "webhook_nodes"
|
|
MAX_WEBHOOK_NODES_PER_WORKFLOW = 5 # Maximum allowed webhook nodes per workflow
|
|
|
|
@classmethod
|
|
def get_webhook_trigger_and_workflow(
|
|
cls, webhook_id: str
|
|
) -> tuple[WorkflowWebhookTrigger, Workflow, Mapping[str, Any]]:
|
|
"""Get webhook trigger, workflow, and node configuration."""
|
|
with Session(db.engine) as session:
|
|
# Get webhook trigger
|
|
webhook_trigger = (
|
|
session.query(WorkflowWebhookTrigger).filter(WorkflowWebhookTrigger.webhook_id == webhook_id).first()
|
|
)
|
|
if not webhook_trigger:
|
|
raise ValueError(f"Webhook not found: {webhook_id}")
|
|
|
|
# Check if the corresponding AppTrigger is enabled
|
|
app_trigger = (
|
|
session.query(AppTrigger)
|
|
.filter(
|
|
AppTrigger.app_id == webhook_trigger.app_id,
|
|
AppTrigger.node_id == webhook_trigger.node_id,
|
|
AppTrigger.trigger_type == AppTriggerType.TRIGGER_WEBHOOK,
|
|
)
|
|
.first()
|
|
)
|
|
|
|
if not app_trigger:
|
|
raise ValueError(f"App trigger not found for webhook {webhook_id}")
|
|
|
|
if app_trigger.status != AppTriggerStatus.ENABLED:
|
|
raise ValueError(f"Webhook trigger is disabled for webhook {webhook_id}")
|
|
|
|
# Get workflow
|
|
workflow = (
|
|
session.query(Workflow)
|
|
.filter(
|
|
Workflow.app_id == webhook_trigger.app_id,
|
|
Workflow.version != Workflow.VERSION_DRAFT,
|
|
)
|
|
.order_by(Workflow.created_at.desc())
|
|
.first()
|
|
)
|
|
if not workflow:
|
|
raise ValueError(f"Workflow not found for app {webhook_trigger.app_id}")
|
|
|
|
node_config = workflow.get_node_config_by_id(webhook_trigger.node_id)
|
|
|
|
return webhook_trigger, workflow, node_config
|
|
|
|
@classmethod
|
|
def extract_webhook_data(cls, webhook_trigger: WorkflowWebhookTrigger) -> dict[str, Any]:
|
|
"""Extract and process data from incoming webhook request."""
|
|
cls._validate_content_length()
|
|
|
|
data = {
|
|
"method": request.method,
|
|
"headers": dict(request.headers),
|
|
"query_params": dict(request.args),
|
|
"body": {},
|
|
"files": {},
|
|
}
|
|
|
|
# Extract and normalize content type
|
|
content_type = cls._extract_content_type(dict(request.headers))
|
|
|
|
# Route to appropriate extractor based on content type
|
|
extractors = {
|
|
"application/json": cls._extract_json_body,
|
|
"application/x-www-form-urlencoded": cls._extract_form_body,
|
|
"multipart/form-data": lambda: cls._extract_multipart_body(webhook_trigger),
|
|
"application/octet-stream": lambda: cls._extract_octet_stream_body(webhook_trigger),
|
|
"text/plain": cls._extract_text_body,
|
|
}
|
|
|
|
extractor = extractors.get(content_type)
|
|
if not extractor:
|
|
# Default to text/plain for unknown content types
|
|
logger.warning("Unknown Content-Type: %s, treating as text/plain", content_type)
|
|
extractor = cls._extract_text_body
|
|
|
|
# Extract body and files
|
|
body_data, files_data = extractor()
|
|
data["body"] = body_data
|
|
data["files"] = files_data
|
|
|
|
return data
|
|
|
|
@classmethod
|
|
def _validate_content_length(cls) -> None:
|
|
"""Validate request content length against maximum allowed size."""
|
|
content_length = request.content_length
|
|
if content_length and content_length > dify_config.WEBHOOK_REQUEST_BODY_MAX_SIZE:
|
|
raise RequestEntityTooLarge(
|
|
f"Webhook request too large: {content_length} bytes exceeds maximum allowed size "
|
|
f"of {dify_config.WEBHOOK_REQUEST_BODY_MAX_SIZE} bytes"
|
|
)
|
|
|
|
@classmethod
|
|
def _extract_json_body(cls) -> tuple[dict[str, Any], dict[str, Any]]:
|
|
"""Extract JSON body from request."""
|
|
try:
|
|
body = request.get_json() or {}
|
|
except Exception:
|
|
logger.warning("Failed to parse JSON body")
|
|
body = {}
|
|
return body, {}
|
|
|
|
@classmethod
|
|
def _extract_form_body(cls) -> tuple[dict[str, Any], dict[str, Any]]:
|
|
"""Extract form-urlencoded body from request."""
|
|
return dict(request.form), {}
|
|
|
|
@classmethod
|
|
def _extract_multipart_body(cls, webhook_trigger: WorkflowWebhookTrigger) -> tuple[dict[str, Any], dict[str, Any]]:
|
|
"""Extract multipart/form-data body and files from request."""
|
|
body = dict(request.form)
|
|
files = cls._process_file_uploads(request.files, webhook_trigger) if request.files else {}
|
|
return body, files
|
|
|
|
@classmethod
|
|
def _extract_octet_stream_body(
|
|
cls, webhook_trigger: WorkflowWebhookTrigger
|
|
) -> tuple[dict[str, Any], dict[str, Any]]:
|
|
"""Extract binary data as file from request."""
|
|
try:
|
|
file_content = request.get_data()
|
|
if file_content:
|
|
file_obj = cls._create_file_from_binary(file_content, "application/octet-stream", webhook_trigger)
|
|
return {"raw": file_obj.to_dict()}, {}
|
|
else:
|
|
return {"raw": None}, {}
|
|
except Exception:
|
|
logger.exception("Failed to process octet-stream data")
|
|
return {"raw": None}, {}
|
|
|
|
@classmethod
|
|
def _extract_text_body(cls) -> tuple[dict[str, Any], dict[str, Any]]:
|
|
"""Extract text/plain body from request."""
|
|
try:
|
|
body = {"raw": request.get_data(as_text=True)}
|
|
except Exception:
|
|
logger.warning("Failed to extract text body")
|
|
body = {"raw": ""}
|
|
return body, {}
|
|
|
|
@classmethod
|
|
def _process_file_uploads(cls, files, webhook_trigger: WorkflowWebhookTrigger) -> dict[str, Any]:
|
|
"""Process file uploads using ToolFileManager."""
|
|
processed_files = {}
|
|
|
|
for name, file in files.items():
|
|
if file and file.filename:
|
|
try:
|
|
file_content = file.read()
|
|
mimetype = file.content_type or mimetypes.guess_type(file.filename)[0] or "application/octet-stream"
|
|
file_obj = cls._create_file_from_binary(file_content, mimetype, webhook_trigger)
|
|
processed_files[name] = file_obj.to_dict()
|
|
except Exception:
|
|
logger.exception("Failed to process file upload '%s'", name)
|
|
# Continue processing other files
|
|
|
|
return processed_files
|
|
|
|
@classmethod
|
|
def _create_file_from_binary(
|
|
cls, file_content: bytes, mimetype: str, webhook_trigger: WorkflowWebhookTrigger
|
|
) -> Any:
|
|
"""Create a file object from binary content using ToolFileManager."""
|
|
tool_file_manager = ToolFileManager()
|
|
|
|
# Create file using ToolFileManager
|
|
tool_file = tool_file_manager.create_file_by_raw(
|
|
user_id=webhook_trigger.created_by,
|
|
tenant_id=webhook_trigger.tenant_id,
|
|
conversation_id=None,
|
|
file_binary=file_content,
|
|
mimetype=mimetype,
|
|
)
|
|
|
|
# Build File object
|
|
mapping = {
|
|
"tool_file_id": tool_file.id,
|
|
"transfer_method": FileTransferMethod.TOOL_FILE.value,
|
|
}
|
|
return file_factory.build_from_mapping(
|
|
mapping=mapping,
|
|
tenant_id=webhook_trigger.tenant_id,
|
|
)
|
|
|
|
@classmethod
|
|
def validate_webhook_request(cls, webhook_data: dict[str, Any], node_config: Mapping[str, Any]) -> dict[str, Any]:
|
|
"""Validate webhook request against node configuration."""
|
|
if node_config is None:
|
|
return cls._validation_error("Validation failed: Invalid node configuration")
|
|
|
|
node_data = node_config.get("data", {})
|
|
|
|
# Early validation of HTTP method and content-type
|
|
validation_result = cls._validate_http_metadata(webhook_data, node_data)
|
|
if not validation_result["valid"]:
|
|
return validation_result
|
|
|
|
# Validate headers and query params
|
|
validation_result = cls._validate_headers_and_params(webhook_data, node_data)
|
|
if not validation_result["valid"]:
|
|
return validation_result
|
|
|
|
# Validate body based on content type
|
|
configured_content_type = node_data.get("content_type", "application/json").lower()
|
|
return cls._validate_body_by_content_type(webhook_data, node_data, configured_content_type)
|
|
|
|
@classmethod
|
|
def _validate_http_metadata(cls, webhook_data: dict[str, Any], node_data: dict[str, Any]) -> dict[str, Any]:
|
|
"""Validate HTTP method and content-type."""
|
|
# Validate HTTP method
|
|
configured_method = node_data.get("method", "get").upper()
|
|
request_method = webhook_data["method"].upper()
|
|
if configured_method != request_method:
|
|
return cls._validation_error(f"HTTP method mismatch. Expected {configured_method}, got {request_method}")
|
|
|
|
# Validate Content-type
|
|
configured_content_type = node_data.get("content_type", "application/json").lower()
|
|
request_content_type = cls._extract_content_type(webhook_data["headers"])
|
|
|
|
if configured_content_type != request_content_type:
|
|
return cls._validation_error(
|
|
f"Content-type mismatch. Expected {configured_content_type}, got {request_content_type}"
|
|
)
|
|
|
|
return {"valid": True}
|
|
|
|
@classmethod
|
|
def _extract_content_type(cls, headers: dict[str, Any]) -> str:
|
|
"""Extract and normalize content-type from headers."""
|
|
content_type = headers.get("Content-Type", "").lower()
|
|
if not content_type:
|
|
content_type = headers.get("content-type", "application/json").lower()
|
|
# Extract the main content type (ignore parameters like boundary)
|
|
return content_type.split(";")[0].strip()
|
|
|
|
@classmethod
|
|
def _validate_headers_and_params(cls, webhook_data: dict[str, Any], node_data: dict[str, Any]) -> dict[str, Any]:
|
|
"""Validate required headers and query parameters."""
|
|
# Validate required headers (case-insensitive)
|
|
webhook_headers_lower = {k.lower(): v for k, v in webhook_data["headers"].items()}
|
|
for header in node_data.get("headers", []):
|
|
if header.get("required", False):
|
|
header_name = header.get("name", "")
|
|
if header_name.lower() not in webhook_headers_lower:
|
|
return cls._validation_error(f"Required header missing: {header_name}")
|
|
|
|
# Validate required query parameters
|
|
for param in node_data.get("params", []):
|
|
if param.get("required", False):
|
|
param_name = param.get("name", "")
|
|
if param_name not in webhook_data["query_params"]:
|
|
return cls._validation_error(f"Required query parameter missing: {param_name}")
|
|
|
|
return {"valid": True}
|
|
|
|
@classmethod
|
|
def _validate_body_by_content_type(
|
|
cls, webhook_data: dict[str, Any], node_data: dict[str, Any], content_type: str
|
|
) -> dict[str, Any]:
|
|
"""Route body validation to appropriate validator based on content type."""
|
|
validators = {
|
|
"text/plain": cls._validate_text_plain_body,
|
|
"application/octet-stream": cls._validate_octet_stream_body,
|
|
"application/json": cls._validate_json_body,
|
|
"application/x-www-form-urlencoded": cls._validate_form_urlencoded_body,
|
|
"multipart/form-data": cls._validate_multipart_body,
|
|
}
|
|
|
|
validator = validators.get(content_type)
|
|
if not validator:
|
|
raise ValueError(f"Unsupported Content-Type for validation: {content_type}")
|
|
|
|
return validator(webhook_data, node_data)
|
|
|
|
@classmethod
|
|
def _validate_text_plain_body(cls, webhook_data: dict[str, Any], node_data: dict[str, Any]) -> dict[str, Any]:
|
|
"""Validate text/plain body."""
|
|
body_params = node_data.get("body", [])
|
|
if body_params and any(param.get("required", False) for param in body_params):
|
|
body_data = webhook_data.get("body", {})
|
|
raw_content = body_data.get("raw", "")
|
|
if not raw_content or not isinstance(raw_content, str):
|
|
return cls._validation_error("Required body content missing for text/plain request")
|
|
return {"valid": True}
|
|
|
|
@classmethod
|
|
def _validate_octet_stream_body(cls, webhook_data: dict[str, Any], node_data: dict[str, Any]) -> dict[str, Any]:
|
|
"""Validate application/octet-stream body."""
|
|
body_params = node_data.get("body", [])
|
|
if body_params and any(param.get("required", False) for param in body_params):
|
|
body_data = webhook_data.get("body", {})
|
|
raw_content = body_data.get("raw", "")
|
|
if not raw_content or not isinstance(raw_content, bytes):
|
|
return cls._validation_error("Required body content missing for application/octet-stream request")
|
|
return {"valid": True}
|
|
|
|
@classmethod
|
|
def _validate_json_body(cls, webhook_data: dict[str, Any], node_data: dict[str, Any]) -> dict[str, Any]:
|
|
"""Validate application/json body."""
|
|
body_params = node_data.get("body", [])
|
|
body_data = webhook_data.get("body", {})
|
|
|
|
for body_param in body_params:
|
|
param_name = body_param.get("name", "")
|
|
param_type = body_param.get("type", SegmentType.STRING)
|
|
is_required = body_param.get("required", False)
|
|
|
|
param_exists = param_name in body_data
|
|
|
|
if is_required and not param_exists:
|
|
return cls._validation_error(f"Required body parameter missing: {param_name}")
|
|
|
|
if param_exists:
|
|
param_value = body_data[param_name]
|
|
validation_result = cls._validate_json_parameter_type(param_name, param_value, param_type)
|
|
if not validation_result["valid"]:
|
|
return validation_result
|
|
|
|
return {"valid": True}
|
|
|
|
@classmethod
|
|
def _validate_form_urlencoded_body(cls, webhook_data: dict[str, Any], node_data: dict[str, Any]) -> dict[str, Any]:
|
|
"""Validate application/x-www-form-urlencoded body."""
|
|
body_params = node_data.get("body", [])
|
|
body_data = webhook_data.get("body", {})
|
|
|
|
for body_param in body_params:
|
|
param_name = body_param.get("name", "")
|
|
param_type = body_param.get("type", SegmentType.STRING)
|
|
is_required = body_param.get("required", False)
|
|
|
|
param_exists = param_name in body_data
|
|
if is_required and not param_exists:
|
|
return cls._validation_error(f"Required body parameter missing: {param_name}")
|
|
|
|
if param_exists and param_type != SegmentType.STRING:
|
|
param_value = body_data[param_name]
|
|
validation_result = cls._validate_form_parameter_type(param_name, param_value, param_type)
|
|
if not validation_result["valid"]:
|
|
return validation_result
|
|
|
|
return {"valid": True}
|
|
|
|
@classmethod
|
|
def _validate_multipart_body(cls, webhook_data: dict[str, Any], node_data: dict[str, Any]) -> dict[str, Any]:
|
|
"""Validate multipart/form-data body."""
|
|
body_params = node_data.get("body", [])
|
|
body_data = webhook_data.get("body", {})
|
|
|
|
for body_param in body_params:
|
|
param_name = body_param.get("name", "")
|
|
param_type = body_param.get("type", SegmentType.STRING)
|
|
is_required = body_param.get("required", False)
|
|
|
|
if param_type == SegmentType.FILE:
|
|
file_obj = webhook_data.get("files", {}).get(param_name)
|
|
if is_required and not file_obj:
|
|
return cls._validation_error(f"Required file parameter missing: {param_name}")
|
|
else:
|
|
param_exists = param_name in body_data
|
|
|
|
if is_required and not param_exists:
|
|
return cls._validation_error(f"Required body parameter missing: {param_name}")
|
|
|
|
if param_exists and param_type != SegmentType.STRING:
|
|
param_value = body_data[param_name]
|
|
validation_result = cls._validate_form_parameter_type(param_name, param_value, param_type)
|
|
if not validation_result["valid"]:
|
|
return validation_result
|
|
|
|
return {"valid": True}
|
|
|
|
@classmethod
|
|
def _validation_error(cls, error_message: str) -> dict[str, Any]:
|
|
"""Create a standard validation error response."""
|
|
return {"valid": False, "error": error_message}
|
|
|
|
@classmethod
|
|
def _validate_json_parameter_type(cls, param_name: str, param_value: Any, param_type: str) -> dict[str, Any]:
|
|
"""Validate JSON parameter type against expected type."""
|
|
try:
|
|
# Define type validators
|
|
type_validators = {
|
|
SegmentType.STRING: (lambda v: isinstance(v, str), "string"),
|
|
SegmentType.NUMBER: (lambda v: isinstance(v, (int, float)), "number"),
|
|
SegmentType.BOOLEAN: (lambda v: isinstance(v, bool), "boolean"),
|
|
SegmentType.OBJECT: (lambda v: isinstance(v, dict), "object"),
|
|
SegmentType.ARRAY_STRING: (
|
|
lambda v: isinstance(v, list) and all(isinstance(item, str) for item in v),
|
|
"array of strings",
|
|
),
|
|
SegmentType.ARRAY_NUMBER: (
|
|
lambda v: isinstance(v, list) and all(isinstance(item, (int, float)) for item in v),
|
|
"array of numbers",
|
|
),
|
|
SegmentType.ARRAY_BOOLEAN: (
|
|
lambda v: isinstance(v, list) and all(isinstance(item, bool) for item in v),
|
|
"array of booleans",
|
|
),
|
|
SegmentType.ARRAY_OBJECT: (
|
|
lambda v: isinstance(v, list) and all(isinstance(item, dict) for item in v),
|
|
"array of objects",
|
|
),
|
|
}
|
|
|
|
# Get validator for the type
|
|
validator_info = type_validators.get(SegmentType(param_type))
|
|
if not validator_info:
|
|
logger.warning("Unknown parameter type: %s for parameter %s", param_type, param_name)
|
|
return {"valid": True}
|
|
|
|
validator, expected_type = validator_info
|
|
|
|
# Validate the parameter
|
|
if not validator(param_value):
|
|
# Check if it's an array type first
|
|
if param_type.startswith("array") and not isinstance(param_value, list):
|
|
actual_type = type(param_value).__name__
|
|
error_msg = f"Parameter '{param_name}' must be an array, got {actual_type}"
|
|
else:
|
|
actual_type = type(param_value).__name__
|
|
# Format error message based on expected type
|
|
if param_type.startswith("array"):
|
|
error_msg = f"Parameter '{param_name}' must be an {expected_type}"
|
|
elif expected_type in ["string", "number", "boolean"]:
|
|
error_msg = f"Parameter '{param_name}' must be a {expected_type}, got {actual_type}"
|
|
else:
|
|
error_msg = f"Parameter '{param_name}' must be an {expected_type}, got {actual_type}"
|
|
|
|
return {"valid": False, "error": error_msg}
|
|
|
|
return {"valid": True}
|
|
|
|
except Exception:
|
|
logger.exception("Type validation error for parameter %s", param_name)
|
|
return {"valid": False, "error": f"Type validation failed for parameter '{param_name}'"}
|
|
|
|
@classmethod
|
|
def _validate_form_parameter_type(cls, param_name: str, param_value: str, param_type: str) -> dict[str, Any]:
|
|
"""Validate form parameter type against expected type. Form data are always strings but can be converted."""
|
|
try:
|
|
# Define form type converters and validators
|
|
form_validators = {
|
|
SegmentType.STRING: (lambda _: True, None), # String is always valid
|
|
SegmentType.NUMBER: (lambda v: cls._can_convert_to_number(v), "a valid number"),
|
|
SegmentType.BOOLEAN: (
|
|
lambda v: v.lower() in ["true", "false", "1", "0", "yes", "no"],
|
|
"a boolean value",
|
|
),
|
|
}
|
|
|
|
# Get validator for the type
|
|
validator_info = form_validators.get(SegmentType(param_type))
|
|
if not validator_info:
|
|
# Unsupported type for form data
|
|
return {
|
|
"valid": False,
|
|
"error": f"Parameter '{param_name}' type '{param_type}' is not supported for form data.",
|
|
}
|
|
|
|
validator, expected_format = validator_info
|
|
|
|
# Validate the parameter
|
|
if not validator(param_value):
|
|
return {
|
|
"valid": False,
|
|
"error": f"Parameter '{param_name}' must be {expected_format}, got '{param_value}'",
|
|
}
|
|
|
|
return {"valid": True}
|
|
|
|
except Exception:
|
|
logger.exception("Form type validation error for parameter %s", param_name)
|
|
return {"valid": False, "error": f"Form type validation failed for parameter '{param_name}'"}
|
|
|
|
@classmethod
|
|
def _can_convert_to_number(cls, value: str) -> bool:
|
|
"""Check if a string can be converted to a number."""
|
|
try:
|
|
float(value)
|
|
return True
|
|
except ValueError:
|
|
return False
|
|
|
|
@classmethod
|
|
def trigger_workflow_execution(
|
|
cls, webhook_trigger: WorkflowWebhookTrigger, webhook_data: dict[str, Any], workflow: Workflow
|
|
) -> None:
|
|
"""Trigger workflow execution via AsyncWorkflowService."""
|
|
try:
|
|
with Session(db.engine) as session:
|
|
# Get tenant owner as the user for webhook execution
|
|
tenant_owner = session.scalar(
|
|
select(Account)
|
|
.join(TenantAccountJoin, TenantAccountJoin.account_id == Account.id)
|
|
.where(
|
|
TenantAccountJoin.tenant_id == webhook_trigger.tenant_id,
|
|
TenantAccountJoin.role == TenantAccountRole.OWNER,
|
|
)
|
|
)
|
|
|
|
if not tenant_owner:
|
|
logger.error("Tenant owner not found for tenant %s", webhook_trigger.tenant_id)
|
|
raise ValueError("Tenant owner not found")
|
|
|
|
# Prepare inputs for the webhook node
|
|
# The webhook node expects webhook_data in the inputs
|
|
workflow_inputs = {
|
|
"webhook_data": webhook_data,
|
|
"webhook_headers": webhook_data.get("headers", {}),
|
|
"webhook_query_params": webhook_data.get("query_params", {}),
|
|
"webhook_body": webhook_data.get("body", {}),
|
|
}
|
|
|
|
# Create trigger data
|
|
trigger_data = TriggerData(
|
|
app_id=webhook_trigger.app_id,
|
|
workflow_id=workflow.id,
|
|
root_node_id=webhook_trigger.node_id, # Start from the webhook node
|
|
trigger_type=WorkflowRunTriggeredFrom.WEBHOOK,
|
|
inputs=workflow_inputs,
|
|
tenant_id=webhook_trigger.tenant_id,
|
|
)
|
|
|
|
# Trigger workflow execution asynchronously
|
|
AsyncWorkflowService.trigger_workflow_async(
|
|
session,
|
|
tenant_owner,
|
|
trigger_data,
|
|
)
|
|
|
|
except Exception:
|
|
logger.exception("Failed to trigger workflow for webhook %s", webhook_trigger.webhook_id)
|
|
raise
|
|
|
|
@classmethod
|
|
def generate_webhook_response(cls, node_config: Mapping[str, Any]) -> tuple[dict[str, Any], int]:
|
|
"""Generate HTTP response based on node configuration."""
|
|
node_data = node_config.get("data", {})
|
|
|
|
# Get configured status code and response body
|
|
status_code = node_data.get("status_code", 200)
|
|
response_body = node_data.get("response_body", "")
|
|
|
|
# Parse response body as JSON if it's valid JSON, otherwise return as text
|
|
try:
|
|
if response_body:
|
|
try:
|
|
response_data = (
|
|
json.loads(response_body)
|
|
if response_body.strip().startswith(("{", "["))
|
|
else {"message": response_body}
|
|
)
|
|
except json.JSONDecodeError:
|
|
response_data = {"message": response_body}
|
|
else:
|
|
response_data = {"status": "success", "message": "Webhook processed successfully"}
|
|
except:
|
|
response_data = {"message": response_body or "Webhook processed successfully"}
|
|
|
|
return response_data, status_code
|
|
|
|
@classmethod
|
|
def sync_webhook_relationships(cls, app: App, workflow: Workflow):
|
|
"""
|
|
Sync webhook relationships in DB.
|
|
|
|
1. Check if the workflow has any webhook trigger nodes
|
|
2. Fetch the nodes from DB, see if there were any webhook records already
|
|
3. Diff the nodes and the webhook records, create/update/delete the webhook records as needed
|
|
|
|
Approach:
|
|
Frequent DB operations may cause performance issues, using Redis to cache it instead.
|
|
If any record exists, cache it.
|
|
|
|
Limits:
|
|
- Maximum 5 webhook nodes per workflow
|
|
"""
|
|
|
|
class Cache(BaseModel):
|
|
"""
|
|
Cache model for webhook nodes
|
|
"""
|
|
|
|
record_id: str
|
|
node_id: str
|
|
webhook_id: str
|
|
|
|
nodes_id_in_graph = [node_id for node_id, _ in workflow.walk_nodes(NodeType.TRIGGER_WEBHOOK)]
|
|
|
|
# Check webhook node limit
|
|
if len(nodes_id_in_graph) > cls.MAX_WEBHOOK_NODES_PER_WORKFLOW:
|
|
raise ValueError(
|
|
f"Workflow exceeds maximum webhook node limit. "
|
|
f"Found {len(nodes_id_in_graph)} webhook nodes, maximum allowed is {cls.MAX_WEBHOOK_NODES_PER_WORKFLOW}"
|
|
)
|
|
|
|
not_found_in_cache: list[str] = []
|
|
for node_id in nodes_id_in_graph:
|
|
# firstly check if the node exists in cache
|
|
if not redis_client.get(f"{cls.__WEBHOOK_NODE_CACHE_KEY__}:{node_id}"):
|
|
not_found_in_cache.append(node_id)
|
|
continue
|
|
|
|
with Session(db.engine) as session:
|
|
try:
|
|
# lock the concurrent webhook trigger creation
|
|
redis_client.lock(f"{cls.__WEBHOOK_NODE_CACHE_KEY__}:apps:{app.id}:lock", timeout=10)
|
|
# fetch the non-cached nodes from DB
|
|
all_records = session.scalars(
|
|
select(WorkflowWebhookTrigger).where(
|
|
WorkflowWebhookTrigger.app_id == app.id,
|
|
WorkflowWebhookTrigger.tenant_id == app.tenant_id,
|
|
)
|
|
).all()
|
|
|
|
nodes_id_in_db = {node.node_id: node for node in all_records}
|
|
|
|
# get the nodes not found both in cache and DB
|
|
nodes_not_found = [node_id for node_id in not_found_in_cache if node_id not in nodes_id_in_db]
|
|
|
|
# create new webhook records
|
|
for node_id in nodes_not_found:
|
|
webhook_record = WorkflowWebhookTrigger(
|
|
app_id=app.id,
|
|
tenant_id=app.tenant_id,
|
|
node_id=node_id,
|
|
webhook_id=cls.generate_webhook_id(),
|
|
created_by=app.created_by,
|
|
)
|
|
session.add(webhook_record)
|
|
session.flush()
|
|
cache = Cache(record_id=webhook_record.id, node_id=node_id, webhook_id=webhook_record.webhook_id)
|
|
redis_client.set(f"{cls.__WEBHOOK_NODE_CACHE_KEY__}:{node_id}", cache.model_dump_json(), ex=60 * 60)
|
|
session.commit()
|
|
|
|
# delete the nodes not found in the graph
|
|
for node_id in nodes_id_in_db:
|
|
if node_id not in nodes_id_in_graph:
|
|
session.delete(nodes_id_in_db[node_id])
|
|
redis_client.delete(f"{cls.__WEBHOOK_NODE_CACHE_KEY__}:{node_id}")
|
|
session.commit()
|
|
except Exception:
|
|
logger.exception("Failed to sync webhook relationships for app %s", app.id)
|
|
raise
|
|
finally:
|
|
redis_client.delete(f"{cls.__WEBHOOK_NODE_CACHE_KEY__}:apps:{app.id}:lock")
|
|
|
|
@classmethod
|
|
def generate_webhook_id(cls) -> str:
|
|
"""
|
|
Generate unique 24-character webhook ID
|
|
|
|
Deduplication is not needed, DB already has unique constraint on webhook_id.
|
|
"""
|
|
# Generate 24-character random string
|
|
return secrets.token_urlsafe(18)[:24] # token_urlsafe gives base64url, take first 24 chars
|