mirror of https://github.com/langgenius/dify.git
773 lines
31 KiB
Python
773 lines
31 KiB
Python
import logging
|
|
import threading
|
|
import time
|
|
from collections.abc import Sequence
|
|
from typing import Optional, cast
|
|
|
|
from sqlalchemy import and_, select
|
|
from sqlalchemy.orm import Session
|
|
|
|
from core.memory.entities import (
|
|
MemoryBlock,
|
|
MemoryBlockSpec,
|
|
MemoryScheduleMode,
|
|
MemoryScope,
|
|
MemoryStrategy,
|
|
MemoryTerm,
|
|
)
|
|
from core.memory.errors import MemorySyncTimeoutError
|
|
from core.model_runtime.entities.message_entities import AssistantPromptMessage, UserPromptMessage
|
|
from core.workflow.entities.variable_pool import VariablePool
|
|
from extensions.ext_database import db
|
|
from extensions.ext_redis import redis_client
|
|
from models.chatflow_memory import ChatflowMemoryVariable
|
|
from services.chatflow_history_service import ChatflowHistoryService
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# Important note: Since Dify uses gevent, we don't need an extra task queue (e.g., Celery).
|
|
# Threads created via threading.Thread are automatically patched into greenlets in a gevent environment,
|
|
# enabling efficient asynchronous execution.
|
|
|
|
def _get_memory_sync_lock_key(app_id: str, conversation_id: str) -> str:
|
|
"""Generate Redis lock key for memory sync updates
|
|
|
|
Args:
|
|
app_id: Application ID
|
|
conversation_id: Conversation ID
|
|
|
|
Returns:
|
|
Formatted lock key
|
|
"""
|
|
return f"memory_sync_update:{app_id}:{conversation_id}"
|
|
|
|
class ChatflowMemoryService:
|
|
"""
|
|
Memory service class with only static methods.
|
|
All methods are static and do not require instantiation.
|
|
"""
|
|
|
|
@staticmethod
|
|
def get_memory(memory_id: str, tenant_id: str,
|
|
app_id: Optional[str] = None,
|
|
conversation_id: Optional[str] = None,
|
|
node_id: Optional[str] = None) -> Optional[MemoryBlock]:
|
|
"""Get single memory by ID"""
|
|
stmt = select(ChatflowMemoryVariable).where(
|
|
and_(
|
|
ChatflowMemoryVariable.memory_id == memory_id,
|
|
ChatflowMemoryVariable.tenant_id == tenant_id
|
|
)
|
|
)
|
|
|
|
if app_id:
|
|
stmt = stmt.where(ChatflowMemoryVariable.app_id == app_id)
|
|
if conversation_id:
|
|
stmt = stmt.where(ChatflowMemoryVariable.conversation_id == conversation_id)
|
|
if node_id:
|
|
stmt = stmt.where(ChatflowMemoryVariable.node_id == node_id)
|
|
|
|
with db.session() as session:
|
|
result = session.execute(stmt).first()
|
|
if result:
|
|
return MemoryBlock.model_validate(result[0].__dict__)
|
|
return None
|
|
|
|
@staticmethod
|
|
def save_memory(memory: MemoryBlock, tenant_id: str, is_draft: bool = False) -> None:
|
|
"""Save or update memory with draft mode support"""
|
|
stmt = select(ChatflowMemoryVariable).where(
|
|
and_(
|
|
ChatflowMemoryVariable.memory_id == memory.memory_id,
|
|
ChatflowMemoryVariable.tenant_id == tenant_id
|
|
)
|
|
)
|
|
|
|
with db.session() as session:
|
|
existing = session.execute(stmt).first()
|
|
if existing:
|
|
# Update existing
|
|
for key, value in memory.model_dump(exclude_unset=True).items():
|
|
if hasattr(existing[0], key):
|
|
setattr(existing[0], key, value)
|
|
else:
|
|
# Create new
|
|
new_memory = ChatflowMemoryVariable(
|
|
tenant_id=tenant_id,
|
|
**memory.model_dump(exclude={'id'})
|
|
)
|
|
session.add(new_memory)
|
|
session.commit()
|
|
|
|
# In draft mode, also write to workflow_draft_variables
|
|
if is_draft:
|
|
from models.workflow import WorkflowDraftVariable
|
|
from services.workflow_draft_variable_service import WorkflowDraftVariableService
|
|
with Session(bind=db.engine) as session:
|
|
draft_var_service = WorkflowDraftVariableService(session)
|
|
|
|
# Try to get existing variables
|
|
existing_vars = draft_var_service.get_draft_variables_by_selectors(
|
|
app_id=memory.app_id,
|
|
selectors=[['memory_block', memory.memory_id]]
|
|
)
|
|
|
|
if existing_vars:
|
|
# Update existing draft variable
|
|
draft_var = existing_vars[0]
|
|
draft_var.value = memory.value
|
|
else:
|
|
# Create new draft variable
|
|
draft_var = WorkflowDraftVariable.new_memory_block_variable(
|
|
app_id=memory.app_id,
|
|
memory_id=memory.memory_id,
|
|
name=memory.name,
|
|
value=memory.value,
|
|
description=f"Memory block: {memory.name}"
|
|
)
|
|
session.add(draft_var)
|
|
|
|
session.commit()
|
|
|
|
@staticmethod
|
|
def get_memories_by_specs(memory_block_specs: Sequence[MemoryBlockSpec],
|
|
tenant_id: str, app_id: str,
|
|
conversation_id: Optional[str] = None,
|
|
node_id: Optional[str] = None,
|
|
is_draft: bool = False) -> list[MemoryBlock]:
|
|
"""Get runtime memory values based on MemoryBlockSpecs with draft mode support"""
|
|
from models.enums import DraftVariableType
|
|
|
|
if not memory_block_specs:
|
|
return []
|
|
|
|
# In draft mode, prefer reading from workflow_draft_variables
|
|
if is_draft:
|
|
# Try reading from the draft variables table
|
|
from services.workflow_draft_variable_service import WorkflowDraftVariableService
|
|
with Session(bind=db.engine) as session:
|
|
draft_var_service = WorkflowDraftVariableService(session)
|
|
|
|
# Build selector list
|
|
selectors = [['memory_block', spec.id] for spec in memory_block_specs]
|
|
|
|
# Fetch draft variables
|
|
draft_vars = draft_var_service.get_draft_variables_by_selectors(
|
|
app_id=app_id,
|
|
selectors=selectors
|
|
)
|
|
|
|
# If draft variables exist, prefer using them
|
|
if draft_vars:
|
|
spec_by_id = {spec.id: spec for spec in memory_block_specs}
|
|
draft_memories = []
|
|
|
|
for draft_var in draft_vars:
|
|
if draft_var.node_id == DraftVariableType.MEMORY_BLOCK:
|
|
spec = spec_by_id.get(draft_var.name)
|
|
if spec:
|
|
memory_block = MemoryBlock(
|
|
id=draft_var.id,
|
|
memory_id=draft_var.name,
|
|
name=spec.name,
|
|
value=draft_var.value,
|
|
scope=spec.scope,
|
|
term=spec.term,
|
|
app_id=app_id,
|
|
conversation_id='draft',
|
|
node_id=node_id
|
|
)
|
|
draft_memories.append(memory_block)
|
|
|
|
if draft_memories:
|
|
return draft_memories
|
|
|
|
memory_ids = [spec.id for spec in memory_block_specs]
|
|
|
|
stmt = select(ChatflowMemoryVariable).where(
|
|
and_(
|
|
ChatflowMemoryVariable.memory_id.in_(memory_ids),
|
|
ChatflowMemoryVariable.tenant_id == tenant_id,
|
|
ChatflowMemoryVariable.app_id == app_id
|
|
)
|
|
)
|
|
|
|
if conversation_id:
|
|
stmt = stmt.where(ChatflowMemoryVariable.conversation_id == conversation_id)
|
|
if node_id:
|
|
stmt = stmt.where(ChatflowMemoryVariable.node_id == node_id)
|
|
|
|
with db.session() as session:
|
|
results = session.execute(stmt).all()
|
|
found_memories = {row[0].memory_id: MemoryBlock.model_validate(row[0].__dict__) for row in results}
|
|
|
|
# Create MemoryBlock objects for specs that don't have runtime values yet
|
|
all_memories = []
|
|
for spec in memory_block_specs:
|
|
if spec.id in found_memories:
|
|
all_memories.append(found_memories[spec.id])
|
|
else:
|
|
# Create default memory with template value following design rules
|
|
default_memory = MemoryBlock(
|
|
id="", # Will be assigned when saved
|
|
memory_id=spec.id,
|
|
name=spec.name,
|
|
value=spec.template,
|
|
scope=spec.scope,
|
|
term=spec.term,
|
|
# Design rules:
|
|
# - app_id=None for global (future), app_id=str for app-specific
|
|
app_id=app_id, # Always app-specific for now
|
|
# - conversation_id=None for persistent, conversation_id=str for session
|
|
conversation_id=conversation_id if spec.term == MemoryTerm.SESSION else None,
|
|
# - node_id=None for app-scope, node_id=str for node-scope
|
|
node_id=node_id if spec.scope == MemoryScope.NODE else None
|
|
)
|
|
all_memories.append(default_memory)
|
|
|
|
return all_memories
|
|
|
|
@staticmethod
|
|
def get_app_memories_by_workflow(workflow, tenant_id: str,
|
|
conversation_id: Optional[str] = None) -> list[MemoryBlock]:
|
|
"""Get app-scoped memories based on workflow configuration"""
|
|
from core.memory.entities import MemoryScope
|
|
|
|
app_memory_specs = [spec for spec in workflow.memory_blocks if spec.scope == MemoryScope.APP]
|
|
return ChatflowMemoryService.get_memories_by_specs(
|
|
memory_block_specs=app_memory_specs,
|
|
tenant_id=tenant_id,
|
|
app_id=workflow.app_id,
|
|
conversation_id=conversation_id
|
|
)
|
|
|
|
@staticmethod
|
|
def get_node_memories_by_workflow(workflow, node_id: str, tenant_id: str) -> list[MemoryBlock]:
|
|
"""Get node-scoped memories based on workflow configuration"""
|
|
from core.memory.entities import MemoryScope
|
|
|
|
node_memory_specs = [
|
|
spec for spec in workflow.memory_blocks
|
|
if spec.scope == MemoryScope.NODE and spec.id == node_id
|
|
]
|
|
return ChatflowMemoryService.get_memories_by_specs(
|
|
memory_block_specs=node_memory_specs,
|
|
tenant_id=tenant_id,
|
|
app_id=workflow.app_id,
|
|
node_id=node_id
|
|
)
|
|
|
|
# Core Memory Orchestration features
|
|
|
|
@staticmethod
|
|
def update_memory_if_needed(tenant_id: str, app_id: str,
|
|
memory_block_spec: MemoryBlockSpec,
|
|
conversation_id: str,
|
|
variable_pool: VariablePool,
|
|
is_draft: bool = False) -> bool:
|
|
"""Update app-level memory if conditions are met
|
|
|
|
Args:
|
|
tenant_id: Tenant ID
|
|
app_id: Application ID
|
|
memory_block_spec: Memory block specification
|
|
conversation_id: Conversation ID
|
|
variable_pool: Variable pool for context
|
|
is_draft: Whether in draft mode
|
|
"""
|
|
if not ChatflowMemoryService._should_update_memory(
|
|
tenant_id, app_id, memory_block_spec, conversation_id
|
|
):
|
|
return False
|
|
|
|
if memory_block_spec.schedule_mode == MemoryScheduleMode.SYNC:
|
|
# Sync mode: will be processed in batch after the App run completes
|
|
# This only marks the need; actual update happens in _update_app_memory_after_run
|
|
return True
|
|
else:
|
|
# Async mode: submit asynchronous update immediately
|
|
ChatflowMemoryService._submit_async_memory_update(
|
|
tenant_id, app_id, memory_block_spec, conversation_id, variable_pool, is_draft
|
|
)
|
|
return True
|
|
|
|
@staticmethod
|
|
def update_node_memory_if_needed(tenant_id: str, app_id: str,
|
|
memory_block_spec: MemoryBlockSpec,
|
|
node_id: str, llm_output: str,
|
|
variable_pool: VariablePool,
|
|
is_draft: bool = False) -> bool:
|
|
"""Update node-level memory after LLM execution
|
|
|
|
Args:
|
|
tenant_id: Tenant ID
|
|
app_id: Application ID
|
|
memory_block_spec: Memory block specification
|
|
node_id: Node ID
|
|
llm_output: LLM output content
|
|
variable_pool: Variable pool for context
|
|
is_draft: Whether in draft mode
|
|
"""
|
|
conversation_id_segment = variable_pool.get(('sys', 'conversation_id'))
|
|
if not conversation_id_segment:
|
|
return False
|
|
conversation_id = conversation_id_segment.value
|
|
|
|
# Save LLM output to node conversation history
|
|
assistant_message = AssistantPromptMessage(content=llm_output)
|
|
ChatflowHistoryService.save_node_message(
|
|
prompt_message=assistant_message,
|
|
node_id=node_id,
|
|
conversation_id=str(conversation_id),
|
|
app_id=app_id,
|
|
tenant_id=tenant_id
|
|
)
|
|
|
|
if not ChatflowMemoryService._should_update_memory(
|
|
tenant_id, app_id, memory_block_spec, str(conversation_id), node_id
|
|
):
|
|
return False
|
|
|
|
if memory_block_spec.schedule_mode == MemoryScheduleMode.SYNC:
|
|
# Node-level sync: blocking execution
|
|
ChatflowMemoryService._update_node_memory_sync(
|
|
tenant_id, app_id, memory_block_spec, node_id,
|
|
str(conversation_id), variable_pool, is_draft
|
|
)
|
|
else:
|
|
# Node-level async: execute asynchronously
|
|
ChatflowMemoryService._update_node_memory_async(
|
|
tenant_id, app_id, memory_block_spec, node_id,
|
|
llm_output, str(conversation_id), variable_pool, is_draft
|
|
)
|
|
return True
|
|
|
|
@staticmethod
|
|
def _should_update_memory(tenant_id: str, app_id: str,
|
|
memory_block_spec: MemoryBlockSpec,
|
|
conversation_id: str, node_id: Optional[str] = None) -> bool:
|
|
"""Check if memory should be updated based on strategy"""
|
|
if memory_block_spec.strategy != MemoryStrategy.ON_TURNS:
|
|
return False
|
|
|
|
# Check turn count
|
|
turn_key = f"memory_turn_count:{tenant_id}:{app_id}:{conversation_id}"
|
|
if node_id:
|
|
turn_key += f":{node_id}"
|
|
|
|
current_turns = redis_client.get(turn_key)
|
|
current_turns = int(current_turns) if current_turns else 0
|
|
current_turns += 1
|
|
|
|
# Update count
|
|
redis_client.set(turn_key, current_turns)
|
|
|
|
return current_turns % memory_block_spec.update_turns == 0
|
|
|
|
# App-level async update method
|
|
@staticmethod
|
|
def _submit_async_memory_update(tenant_id: str, app_id: str,
|
|
block: MemoryBlockSpec,
|
|
conversation_id: str,
|
|
variable_pool: VariablePool,
|
|
is_draft: bool = False):
|
|
"""Submit async memory update task"""
|
|
|
|
# Execute update asynchronously using thread
|
|
thread = threading.Thread(
|
|
target=ChatflowMemoryService._update_single_memory,
|
|
kwargs={
|
|
'tenant_id': tenant_id,
|
|
'app_id': app_id,
|
|
'memory_block_spec': block,
|
|
'conversation_id': conversation_id,
|
|
'variable_pool': variable_pool,
|
|
'is_draft': is_draft
|
|
},
|
|
daemon=True
|
|
)
|
|
thread.start()
|
|
|
|
# Node-level sync update method
|
|
@staticmethod
|
|
def _update_node_memory_sync(tenant_id: str, app_id: str,
|
|
memory_block_spec: MemoryBlockSpec,
|
|
node_id: str, conversation_id: str,
|
|
variable_pool: VariablePool,
|
|
is_draft: bool = False):
|
|
"""Synchronously update node memory (blocking execution)"""
|
|
ChatflowMemoryService._perform_memory_update(
|
|
tenant_id=tenant_id,
|
|
app_id=app_id,
|
|
memory_block_spec=memory_block_spec,
|
|
conversation_id=conversation_id,
|
|
variable_pool=variable_pool,
|
|
node_id=node_id,
|
|
is_draft=is_draft
|
|
)
|
|
# Wait for update to complete before returning
|
|
|
|
# Node-level async update method
|
|
@staticmethod
|
|
def _update_node_memory_async(tenant_id: str, app_id: str,
|
|
memory_block_spec: MemoryBlockSpec,
|
|
node_id: str, llm_output: str,
|
|
conversation_id: str,
|
|
variable_pool: VariablePool,
|
|
is_draft: bool = False):
|
|
"""Asynchronously update node memory (submit task)"""
|
|
|
|
# Execute update asynchronously using thread
|
|
thread = threading.Thread(
|
|
target=ChatflowMemoryService._perform_node_memory_update,
|
|
kwargs={
|
|
'memory_block_spec': memory_block_spec,
|
|
'tenant_id': tenant_id,
|
|
'app_id': app_id,
|
|
'node_id': node_id,
|
|
'llm_output': llm_output,
|
|
'variable_pool': variable_pool,
|
|
'is_draft': is_draft
|
|
},
|
|
daemon=True
|
|
)
|
|
thread.start()
|
|
# Return immediately without waiting
|
|
|
|
@staticmethod
|
|
def _perform_node_memory_update(*, memory_block_spec: MemoryBlockSpec,
|
|
tenant_id: str, app_id: str, node_id: str,
|
|
llm_output: str, variable_pool: VariablePool,
|
|
is_draft: bool = False):
|
|
"""Execute node memory update"""
|
|
try:
|
|
# Call existing _perform_memory_update method here
|
|
ChatflowMemoryService._perform_memory_update(
|
|
tenant_id=tenant_id,
|
|
app_id=app_id,
|
|
memory_block_spec=memory_block_spec,
|
|
conversation_id=str(variable_pool.get(('sys', 'conversation_id'))),
|
|
variable_pool=variable_pool,
|
|
node_id=node_id,
|
|
is_draft=is_draft
|
|
)
|
|
except Exception as e:
|
|
logger.exception(
|
|
"Failed to update node memory %s for node %s",
|
|
memory_block_spec.id,
|
|
node_id,
|
|
exc_info=e
|
|
)
|
|
|
|
@staticmethod
|
|
def _update_single_memory(*, tenant_id: str, app_id: str,
|
|
memory_block_spec: MemoryBlockSpec,
|
|
conversation_id: str,
|
|
variable_pool: VariablePool,
|
|
is_draft: bool = False):
|
|
"""Update single memory"""
|
|
ChatflowMemoryService._perform_memory_update(
|
|
tenant_id=tenant_id,
|
|
app_id=app_id,
|
|
memory_block_spec=memory_block_spec,
|
|
conversation_id=conversation_id,
|
|
variable_pool=variable_pool,
|
|
node_id=None, # App-level memory doesn't have node_id
|
|
is_draft=is_draft
|
|
)
|
|
|
|
@staticmethod
|
|
def _perform_memory_update(tenant_id: str, app_id: str,
|
|
memory_block_spec: MemoryBlockSpec,
|
|
conversation_id: str, variable_pool: VariablePool,
|
|
node_id: Optional[str] = None,
|
|
is_draft: bool = False):
|
|
"""Perform the actual memory update using LLM
|
|
|
|
Args:
|
|
tenant_id: Tenant ID
|
|
app_id: Application ID
|
|
memory_block_spec: Memory block specification
|
|
conversation_id: Conversation ID
|
|
variable_pool: Variable pool for context
|
|
node_id: Optional node ID for node-level memory updates
|
|
is_draft: Whether in draft mode
|
|
"""
|
|
# Get conversation history
|
|
history = ChatflowHistoryService.get_visible_chat_history(
|
|
conversation_id=conversation_id,
|
|
app_id=app_id,
|
|
tenant_id=tenant_id,
|
|
node_id=node_id, # Pass node_id, if None then get app-level history
|
|
max_visible_count=memory_block_spec.preserved_turns
|
|
)
|
|
|
|
# Get current memory value
|
|
current_memory = ChatflowMemoryService.get_memory(
|
|
memory_id=memory_block_spec.id,
|
|
tenant_id=tenant_id,
|
|
app_id=app_id,
|
|
conversation_id=conversation_id if memory_block_spec.term == MemoryTerm.SESSION else None,
|
|
node_id=node_id
|
|
)
|
|
|
|
current_value = current_memory.value if current_memory else memory_block_spec.template
|
|
|
|
# Build update prompt - adjust wording based on whether there's a node_id
|
|
context_type = "Node conversation history" if node_id else "Conversation history"
|
|
memory_update_prompt = f"""
|
|
Based on the following {context_type}, update the memory content:
|
|
|
|
Current memory: {current_value}
|
|
|
|
{context_type}:
|
|
{[msg.content for msg in history]}
|
|
|
|
Update instruction: {memory_block_spec.instruction}
|
|
|
|
Please output the updated memory content:
|
|
"""
|
|
|
|
# Invoke LLM to update memory - extracted as a separate method
|
|
updated_value = ChatflowMemoryService._invoke_llm_for_memory_update(
|
|
tenant_id,
|
|
memory_block_spec,
|
|
memory_update_prompt,
|
|
current_value
|
|
)
|
|
|
|
if updated_value is None:
|
|
return # LLM invocation failed
|
|
|
|
# Save updated memory
|
|
updated_memory = MemoryBlock(
|
|
id=current_memory.id if current_memory else "",
|
|
memory_id=memory_block_spec.id,
|
|
name=memory_block_spec.name,
|
|
value=updated_value,
|
|
scope=memory_block_spec.scope,
|
|
term=memory_block_spec.term,
|
|
app_id=app_id,
|
|
conversation_id=conversation_id if memory_block_spec.term == MemoryTerm.SESSION else None,
|
|
node_id=node_id
|
|
)
|
|
|
|
ChatflowMemoryService.save_memory(updated_memory, tenant_id, is_draft)
|
|
|
|
# Not implemented yet: Send success event
|
|
# self._send_memory_update_event(memory_block_spec.id, "completed", updated_value)
|
|
|
|
@staticmethod
|
|
def _invoke_llm_for_memory_update(tenant_id: str,
|
|
memory_block_spec: MemoryBlockSpec,
|
|
prompt: str, current_value: str) -> Optional[str]:
|
|
"""Invoke LLM to update memory content
|
|
|
|
Args:
|
|
tenant_id: Tenant ID
|
|
memory_block_spec: Memory block specification
|
|
prompt: Update prompt
|
|
current_value: Current memory value (used for fallback on failure)
|
|
|
|
Returns:
|
|
Updated value, returns None if failed
|
|
"""
|
|
from core.model_manager import ModelManager
|
|
from core.model_runtime.entities.llm_entities import LLMResult
|
|
from core.model_runtime.entities.model_entities import ModelType
|
|
|
|
model_manager = ModelManager()
|
|
|
|
# Use model configuration defined in memory_block_spec, use default model if not specified
|
|
if hasattr(memory_block_spec, 'model') and memory_block_spec.model:
|
|
model_instance = model_manager.get_model_instance(
|
|
tenant_id=tenant_id,
|
|
model_type=ModelType.LLM,
|
|
provider=memory_block_spec.model.get("provider", ""),
|
|
model=memory_block_spec.model.get("name", "")
|
|
)
|
|
model_parameters = memory_block_spec.model.get("completion_params", {})
|
|
else:
|
|
# Use default model
|
|
model_instance = model_manager.get_default_model_instance(
|
|
tenant_id=tenant_id,
|
|
model_type=ModelType.LLM
|
|
)
|
|
model_parameters = {"temperature": 0.7, "max_tokens": 1000}
|
|
|
|
try:
|
|
response = cast(
|
|
LLMResult,
|
|
model_instance.invoke_llm(
|
|
prompt_messages=[UserPromptMessage(content=prompt)],
|
|
model_parameters=model_parameters,
|
|
stream=False
|
|
)
|
|
)
|
|
return response.message.get_text_content()
|
|
except Exception as e:
|
|
logger.exception("Failed to update memory using LLM", exc_info=e)
|
|
# Not implemented yet: Send failure event
|
|
# ChatflowMemoryService._send_memory_update_event(memory_block_spec.id, "failed", current_value, str(e))
|
|
return None
|
|
|
|
|
|
def _send_memory_update_event(self, memory_id: str, status: str, value: str, error: str = ""):
|
|
"""Send memory update event
|
|
|
|
Note: Event system integration not implemented yet, this method is retained as a placeholder
|
|
"""
|
|
# Not implemented yet: Event system integration will be added in future versions
|
|
pass
|
|
|
|
# App-level sync batch update related methods
|
|
@staticmethod
|
|
def wait_for_sync_memory_completion(workflow, conversation_id: str):
|
|
"""Wait for sync memory update to complete, maximum 50 seconds
|
|
|
|
Args:
|
|
workflow: Workflow object
|
|
conversation_id: Conversation ID
|
|
|
|
Raises:
|
|
MemorySyncTimeoutError: Raised when timeout is reached
|
|
"""
|
|
from core.memory.entities import MemoryScope
|
|
|
|
memory_blocks = workflow.memory_blocks
|
|
sync_memory_blocks = [
|
|
block for block in memory_blocks
|
|
if block.scope == MemoryScope.APP and block.update_mode == "sync"
|
|
]
|
|
|
|
if not sync_memory_blocks:
|
|
return
|
|
|
|
lock_key = _get_memory_sync_lock_key(workflow.app_id, conversation_id)
|
|
|
|
# Retry up to 10 times, wait 5 seconds each time, total 50 seconds
|
|
max_retries = 10
|
|
retry_interval = 5
|
|
|
|
for i in range(max_retries):
|
|
if not redis_client.exists(lock_key):
|
|
# Lock doesn't exist, can continue
|
|
return
|
|
|
|
if i < max_retries - 1:
|
|
# Still have retry attempts, wait
|
|
time.sleep(retry_interval)
|
|
else:
|
|
# Maximum retry attempts reached, raise exception
|
|
raise MemorySyncTimeoutError(
|
|
app_id=workflow.app_id,
|
|
conversation_id=conversation_id
|
|
)
|
|
|
|
@staticmethod
|
|
def update_app_memory_after_run(workflow, conversation_id: str, variable_pool: VariablePool,
|
|
is_draft: bool = False):
|
|
"""Update app-level memory after run completion
|
|
|
|
Args:
|
|
workflow: Workflow object
|
|
conversation_id: Conversation ID
|
|
variable_pool: Variable pool
|
|
is_draft: Whether in draft mode
|
|
"""
|
|
from core.memory.entities import MemoryScope
|
|
|
|
memory_blocks = workflow.memory_blocks
|
|
|
|
# Separate sync and async memory blocks
|
|
sync_blocks = []
|
|
async_blocks = []
|
|
|
|
for block in memory_blocks:
|
|
if block.scope == MemoryScope.APP:
|
|
if block.update_mode == "sync":
|
|
sync_blocks.append(block)
|
|
else:
|
|
async_blocks.append(block)
|
|
|
|
# async mode: submit individual async tasks directly
|
|
for block in async_blocks:
|
|
ChatflowMemoryService._submit_async_memory_update(
|
|
tenant_id=workflow.tenant_id,
|
|
app_id=workflow.app_id,
|
|
block=block,
|
|
conversation_id=conversation_id,
|
|
variable_pool=variable_pool,
|
|
is_draft=is_draft
|
|
)
|
|
|
|
# sync mode: submit a batch update task
|
|
if sync_blocks:
|
|
ChatflowMemoryService._submit_sync_memory_batch_update(
|
|
workflow=workflow,
|
|
sync_blocks=sync_blocks,
|
|
conversation_id=conversation_id,
|
|
variable_pool=variable_pool,
|
|
is_draft=is_draft
|
|
)
|
|
|
|
@staticmethod
|
|
def _submit_sync_memory_batch_update(workflow,
|
|
sync_blocks: list[MemoryBlockSpec],
|
|
conversation_id: str,
|
|
variable_pool: VariablePool,
|
|
is_draft: bool = False):
|
|
"""Submit sync memory batch update task"""
|
|
|
|
# Execute batch update asynchronously using thread
|
|
thread = threading.Thread(
|
|
target=ChatflowMemoryService._batch_update_sync_memory,
|
|
kwargs={
|
|
'workflow': workflow,
|
|
'sync_blocks': sync_blocks,
|
|
'conversation_id': conversation_id,
|
|
'variable_pool': variable_pool,
|
|
'is_draft': is_draft
|
|
},
|
|
daemon=True
|
|
)
|
|
thread.start()
|
|
|
|
@staticmethod
|
|
def _batch_update_sync_memory(*, workflow,
|
|
sync_blocks: list[MemoryBlockSpec],
|
|
conversation_id: str,
|
|
variable_pool: VariablePool,
|
|
is_draft: bool = False):
|
|
"""Batch update sync memory (with Redis lock)"""
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
|
|
lock_key = _get_memory_sync_lock_key(workflow.app_id, conversation_id)
|
|
|
|
# Use Redis lock context manager (30 seconds timeout)
|
|
with redis_client.lock(lock_key, timeout=30):
|
|
try:
|
|
# Update all sync memory in parallel
|
|
with ThreadPoolExecutor(max_workers=5) as executor:
|
|
futures = []
|
|
for block in sync_blocks:
|
|
future = executor.submit(
|
|
ChatflowMemoryService._update_single_memory,
|
|
tenant_id=workflow.tenant_id,
|
|
app_id=workflow.app_id,
|
|
memory_block_spec=block,
|
|
conversation_id=conversation_id,
|
|
variable_pool=variable_pool,
|
|
is_draft=is_draft
|
|
)
|
|
futures.append(future)
|
|
|
|
# Wait for all updates to complete
|
|
for future in futures:
|
|
try:
|
|
future.result()
|
|
except Exception as e:
|
|
logger.exception("Failed to update memory", exc_info=e)
|
|
except Exception as e:
|
|
logger.exception("Failed to update sync memory for app %s", workflow.app_id, exc_info=e)
|