mirror of https://github.com/langgenius/dify.git
174 lines
6.7 KiB
Python
174 lines
6.7 KiB
Python
import logging
|
|
|
|
from core.app.app_queue_manager import AppQueueManager
|
|
from core.app.base_app_runner import AppRunner
|
|
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
|
from core.entities.application_entities import (
|
|
ApplicationGenerateEntity,
|
|
)
|
|
from core.model_manager import ModelInstance
|
|
from core.moderation.base import ModerationException
|
|
from core.rag.retrieval.dataset_retrieval import DatasetRetrieval
|
|
from extensions.ext_database import db
|
|
from models.model import App, Message
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class CompletionAppRunner(AppRunner):
|
|
"""
|
|
Completion Application Runner
|
|
"""
|
|
|
|
def run(self, application_generate_entity: ApplicationGenerateEntity,
|
|
queue_manager: AppQueueManager,
|
|
message: Message) -> None:
|
|
"""
|
|
Run application
|
|
:param application_generate_entity: application generate entity
|
|
:param queue_manager: application queue manager
|
|
:param message: message
|
|
:return:
|
|
"""
|
|
app_record = db.session.query(App).filter(App.id == application_generate_entity.app_id).first()
|
|
if not app_record:
|
|
raise ValueError("App not found")
|
|
|
|
app_orchestration_config = application_generate_entity.app_orchestration_config_entity
|
|
|
|
inputs = application_generate_entity.inputs
|
|
query = application_generate_entity.query
|
|
files = application_generate_entity.files
|
|
|
|
# Pre-calculate the number of tokens of the prompt messages,
|
|
# and return the rest number of tokens by model context token size limit and max token size limit.
|
|
# If the rest number of tokens is not enough, raise exception.
|
|
# Include: prompt template, inputs, query(optional), files(optional)
|
|
# Not Include: memory, external data, dataset context
|
|
self.get_pre_calculate_rest_tokens(
|
|
app_record=app_record,
|
|
model_config=app_orchestration_config.model_config,
|
|
prompt_template_entity=app_orchestration_config.prompt_template,
|
|
inputs=inputs,
|
|
files=files,
|
|
query=query
|
|
)
|
|
|
|
# organize all inputs and template to prompt messages
|
|
# Include: prompt template, inputs, query(optional), files(optional)
|
|
prompt_messages, stop = self.organize_prompt_messages(
|
|
app_record=app_record,
|
|
model_config=app_orchestration_config.model_config,
|
|
prompt_template_entity=app_orchestration_config.prompt_template,
|
|
inputs=inputs,
|
|
files=files,
|
|
query=query
|
|
)
|
|
|
|
# moderation
|
|
try:
|
|
# process sensitive_word_avoidance
|
|
_, inputs, query = self.moderation_for_inputs(
|
|
app_id=app_record.id,
|
|
tenant_id=application_generate_entity.tenant_id,
|
|
app_orchestration_config_entity=app_orchestration_config,
|
|
inputs=inputs,
|
|
query=query,
|
|
)
|
|
except ModerationException as e:
|
|
self.direct_output(
|
|
queue_manager=queue_manager,
|
|
app_orchestration_config=app_orchestration_config,
|
|
prompt_messages=prompt_messages,
|
|
text=str(e),
|
|
stream=application_generate_entity.stream
|
|
)
|
|
return
|
|
|
|
# fill in variable inputs from external data tools if exists
|
|
external_data_tools = app_orchestration_config.external_data_variables
|
|
if external_data_tools:
|
|
inputs = self.fill_in_inputs_from_external_data_tools(
|
|
tenant_id=app_record.tenant_id,
|
|
app_id=app_record.id,
|
|
external_data_tools=external_data_tools,
|
|
inputs=inputs,
|
|
query=query
|
|
)
|
|
|
|
# get context from datasets
|
|
context = None
|
|
if app_orchestration_config.dataset and app_orchestration_config.dataset.dataset_ids:
|
|
hit_callback = DatasetIndexToolCallbackHandler(
|
|
queue_manager,
|
|
app_record.id,
|
|
message.id,
|
|
application_generate_entity.user_id,
|
|
application_generate_entity.invoke_from
|
|
)
|
|
|
|
dataset_config = app_orchestration_config.dataset
|
|
if dataset_config and dataset_config.retrieve_config.query_variable:
|
|
query = inputs.get(dataset_config.retrieve_config.query_variable, "")
|
|
|
|
dataset_retrieval = DatasetRetrieval()
|
|
context = dataset_retrieval.retrieve(
|
|
tenant_id=app_record.tenant_id,
|
|
model_config=app_orchestration_config.model_config,
|
|
config=dataset_config,
|
|
query=query,
|
|
invoke_from=application_generate_entity.invoke_from,
|
|
show_retrieve_source=app_orchestration_config.show_retrieve_source,
|
|
hit_callback=hit_callback
|
|
)
|
|
|
|
# reorganize all inputs and template to prompt messages
|
|
# Include: prompt template, inputs, query(optional), files(optional)
|
|
# memory(optional), external data, dataset context(optional)
|
|
prompt_messages, stop = self.organize_prompt_messages(
|
|
app_record=app_record,
|
|
model_config=app_orchestration_config.model_config,
|
|
prompt_template_entity=app_orchestration_config.prompt_template,
|
|
inputs=inputs,
|
|
files=files,
|
|
query=query,
|
|
context=context
|
|
)
|
|
|
|
# check hosting moderation
|
|
hosting_moderation_result = self.check_hosting_moderation(
|
|
application_generate_entity=application_generate_entity,
|
|
queue_manager=queue_manager,
|
|
prompt_messages=prompt_messages
|
|
)
|
|
|
|
if hosting_moderation_result:
|
|
return
|
|
|
|
# Re-calculate the max tokens if sum(prompt_token + max_tokens) over model token limit
|
|
self.recale_llm_max_tokens(
|
|
model_config=app_orchestration_config.model_config,
|
|
prompt_messages=prompt_messages
|
|
)
|
|
|
|
# Invoke model
|
|
model_instance = ModelInstance(
|
|
provider_model_bundle=app_orchestration_config.model_config.provider_model_bundle,
|
|
model=app_orchestration_config.model_config.model
|
|
)
|
|
|
|
invoke_result = model_instance.invoke_llm(
|
|
prompt_messages=prompt_messages,
|
|
model_parameters=app_orchestration_config.model_config.parameters,
|
|
stop=stop,
|
|
stream=application_generate_entity.stream,
|
|
user=application_generate_entity.user_id,
|
|
)
|
|
|
|
# handle invoke result
|
|
self._handle_invoke_result(
|
|
invoke_result=invoke_result,
|
|
queue_manager=queue_manager,
|
|
stream=application_generate_entity.stream
|
|
)
|
|
|