dify/api/extensions/otel/parser/llm.py

156 lines
5.1 KiB
Python

"""
Parser for LLM nodes that captures LLM-specific metadata.
"""
import logging
from collections.abc import Mapping
from typing import Any
from opentelemetry.trace import Span
from core.workflow.graph_events import GraphNodeEventBase
from core.workflow.nodes.base.node import Node
from extensions.otel.parser.base import DefaultNodeOTelParser, safe_json_dumps
from extensions.otel.semconv.gen_ai import LLMAttributes
logger = logging.getLogger(__name__)
def _format_input_messages(process_data: Mapping[str, Any]) -> str:
"""
Format input messages from process_data for LLM spans.
Args:
process_data: Process data containing prompts
Returns:
JSON string of formatted input messages
"""
try:
if not isinstance(process_data, dict):
return safe_json_dumps([])
prompts = process_data.get("prompts", [])
if not prompts:
return safe_json_dumps([])
valid_roles = {"system", "user", "assistant", "tool"}
input_messages = []
for prompt in prompts:
if not isinstance(prompt, dict):
continue
role = prompt.get("role", "")
text = prompt.get("text", "")
if not role or role not in valid_roles:
continue
if text:
message = {"role": role, "parts": [{"type": "text", "content": text}]}
input_messages.append(message)
return safe_json_dumps(input_messages)
except Exception as e:
logger.warning("Failed to format input messages: %s", e, exc_info=True)
return safe_json_dumps([])
def _format_output_messages(outputs: Mapping[str, Any]) -> str:
"""
Format output messages from outputs for LLM spans.
Args:
outputs: Output data containing text and finish_reason
Returns:
JSON string of formatted output messages
"""
try:
if not isinstance(outputs, dict):
return safe_json_dumps([])
text = outputs.get("text", "")
finish_reason = outputs.get("finish_reason", "")
if not text:
return safe_json_dumps([])
valid_finish_reasons = {"stop", "length", "content_filter", "tool_call", "error"}
if finish_reason not in valid_finish_reasons:
finish_reason = "stop"
output_message = {
"role": "assistant",
"parts": [{"type": "text", "content": text}],
"finish_reason": finish_reason,
}
return safe_json_dumps([output_message])
except Exception as e:
logger.warning("Failed to format output messages: %s", e, exc_info=True)
return safe_json_dumps([])
class LLMNodeOTelParser:
"""Parser for LLM nodes that captures LLM-specific metadata."""
def __init__(self) -> None:
self._delegate = DefaultNodeOTelParser()
def parse(
self, *, node: Node, span: "Span", error: Exception | None, result_event: GraphNodeEventBase | None = None
) -> None:
self._delegate.parse(node=node, span=span, error=error, result_event=result_event)
if not result_event or not result_event.node_run_result:
return
node_run_result = result_event.node_run_result
process_data = node_run_result.process_data or {}
outputs = node_run_result.outputs or {}
# Extract usage data (from process_data or outputs)
usage_data = process_data.get("usage") or outputs.get("usage") or {}
# Model and provider information
model_name = process_data.get("model_name") or ""
model_provider = process_data.get("model_provider") or ""
if model_name:
span.set_attribute(LLMAttributes.REQUEST_MODEL, model_name)
if model_provider:
span.set_attribute(LLMAttributes.PROVIDER_NAME, model_provider)
# Token usage
if usage_data:
prompt_tokens = usage_data.get("prompt_tokens", 0)
completion_tokens = usage_data.get("completion_tokens", 0)
total_tokens = usage_data.get("total_tokens", 0)
span.set_attribute(LLMAttributes.USAGE_INPUT_TOKENS, prompt_tokens)
span.set_attribute(LLMAttributes.USAGE_OUTPUT_TOKENS, completion_tokens)
span.set_attribute(LLMAttributes.USAGE_TOTAL_TOKENS, total_tokens)
# Prompts and completion
prompts = process_data.get("prompts", [])
if prompts:
prompts_json = safe_json_dumps(prompts)
span.set_attribute(LLMAttributes.PROMPT, prompts_json)
text_output = str(outputs.get("text", ""))
if text_output:
span.set_attribute(LLMAttributes.COMPLETION, text_output)
# Finish reason
finish_reason = outputs.get("finish_reason") or ""
if finish_reason:
span.set_attribute(LLMAttributes.RESPONSE_FINISH_REASON, finish_reason)
# Structured input/output messages
gen_ai_input_message = _format_input_messages(process_data)
gen_ai_output_message = _format_output_messages(outputs)
span.set_attribute(LLMAttributes.INPUT_MESSAGE, gen_ai_input_message)
span.set_attribute(LLMAttributes.OUTPUT_MESSAGE, gen_ai_output_message)