mirror of https://github.com/langgenius/dify.git
fix: fix DatasetRetrieval._process_metadata_filter_func miss in operator (#30199)
This commit is contained in:
parent
6044f0666a
commit
8611301722
|
|
@ -7,7 +7,7 @@ from collections.abc import Generator, Mapping
|
|||
from typing import Any, Union, cast
|
||||
|
||||
from flask import Flask, current_app
|
||||
from sqlalchemy import and_, or_, select
|
||||
from sqlalchemy import and_, literal, or_, select
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from core.app.app_config.entities import (
|
||||
|
|
@ -1036,7 +1036,7 @@ class DatasetRetrieval:
|
|||
if automatic_metadata_filters:
|
||||
conditions = []
|
||||
for sequence, filter in enumerate(automatic_metadata_filters):
|
||||
self._process_metadata_filter_func(
|
||||
self.process_metadata_filter_func(
|
||||
sequence,
|
||||
filter.get("condition"), # type: ignore
|
||||
filter.get("metadata_name"), # type: ignore
|
||||
|
|
@ -1072,7 +1072,7 @@ class DatasetRetrieval:
|
|||
value=expected_value,
|
||||
)
|
||||
)
|
||||
filters = self._process_metadata_filter_func(
|
||||
filters = self.process_metadata_filter_func(
|
||||
sequence,
|
||||
condition.comparison_operator,
|
||||
metadata_name,
|
||||
|
|
@ -1168,8 +1168,9 @@ class DatasetRetrieval:
|
|||
return None
|
||||
return automatic_metadata_filters
|
||||
|
||||
def _process_metadata_filter_func(
|
||||
self, sequence: int, condition: str, metadata_name: str, value: Any | None, filters: list
|
||||
@classmethod
|
||||
def process_metadata_filter_func(
|
||||
cls, sequence: int, condition: str, metadata_name: str, value: Any | None, filters: list
|
||||
):
|
||||
if value is None and condition not in ("empty", "not empty"):
|
||||
return filters
|
||||
|
|
@ -1218,6 +1219,18 @@ class DatasetRetrieval:
|
|||
|
||||
case "≥" | ">=":
|
||||
filters.append(DatasetDocument.doc_metadata[metadata_name].as_float() >= value)
|
||||
case "in":
|
||||
if isinstance(value, str):
|
||||
value_list = [v.strip() for v in value.split(",") if v.strip()]
|
||||
elif isinstance(value, (list, tuple)):
|
||||
value_list = [str(v) for v in value if v is not None]
|
||||
else:
|
||||
value_list = [str(value)] if value is not None else []
|
||||
|
||||
if not value_list:
|
||||
filters.append(literal(False))
|
||||
else:
|
||||
filters.append(json_field.in_(value_list))
|
||||
case _:
|
||||
pass
|
||||
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@ from collections import defaultdict
|
|||
from collections.abc import Mapping, Sequence
|
||||
from typing import TYPE_CHECKING, Any, cast
|
||||
|
||||
from sqlalchemy import and_, func, literal, or_, select
|
||||
from sqlalchemy import and_, func, or_, select
|
||||
from sqlalchemy.orm import sessionmaker
|
||||
|
||||
from core.app.app_config.entities import DatasetRetrieveConfigEntity
|
||||
|
|
@ -460,7 +460,7 @@ class KnowledgeRetrievalNode(LLMUsageTrackingMixin, Node[KnowledgeRetrievalNodeD
|
|||
if automatic_metadata_filters:
|
||||
conditions = []
|
||||
for sequence, filter in enumerate(automatic_metadata_filters):
|
||||
self._process_metadata_filter_func(
|
||||
DatasetRetrieval.process_metadata_filter_func(
|
||||
sequence,
|
||||
filter.get("condition", ""),
|
||||
filter.get("metadata_name", ""),
|
||||
|
|
@ -504,7 +504,7 @@ class KnowledgeRetrievalNode(LLMUsageTrackingMixin, Node[KnowledgeRetrievalNodeD
|
|||
value=expected_value,
|
||||
)
|
||||
)
|
||||
filters = self._process_metadata_filter_func(
|
||||
filters = DatasetRetrieval.process_metadata_filter_func(
|
||||
sequence,
|
||||
condition.comparison_operator,
|
||||
metadata_name,
|
||||
|
|
@ -603,87 +603,6 @@ class KnowledgeRetrievalNode(LLMUsageTrackingMixin, Node[KnowledgeRetrievalNodeD
|
|||
return [], usage
|
||||
return automatic_metadata_filters, usage
|
||||
|
||||
def _process_metadata_filter_func(
|
||||
self, sequence: int, condition: str, metadata_name: str, value: Any, filters: list[Any]
|
||||
) -> list[Any]:
|
||||
if value is None and condition not in ("empty", "not empty"):
|
||||
return filters
|
||||
|
||||
json_field = Document.doc_metadata[metadata_name].as_string()
|
||||
|
||||
match condition:
|
||||
case "contains":
|
||||
filters.append(json_field.like(f"%{value}%"))
|
||||
|
||||
case "not contains":
|
||||
filters.append(json_field.notlike(f"%{value}%"))
|
||||
|
||||
case "start with":
|
||||
filters.append(json_field.like(f"{value}%"))
|
||||
|
||||
case "end with":
|
||||
filters.append(json_field.like(f"%{value}"))
|
||||
case "in":
|
||||
if isinstance(value, str):
|
||||
value_list = [v.strip() for v in value.split(",") if v.strip()]
|
||||
elif isinstance(value, (list, tuple)):
|
||||
value_list = [str(v) for v in value if v is not None]
|
||||
else:
|
||||
value_list = [str(value)] if value is not None else []
|
||||
|
||||
if not value_list:
|
||||
filters.append(literal(False))
|
||||
else:
|
||||
filters.append(json_field.in_(value_list))
|
||||
|
||||
case "not in":
|
||||
if isinstance(value, str):
|
||||
value_list = [v.strip() for v in value.split(",") if v.strip()]
|
||||
elif isinstance(value, (list, tuple)):
|
||||
value_list = [str(v) for v in value if v is not None]
|
||||
else:
|
||||
value_list = [str(value)] if value is not None else []
|
||||
|
||||
if not value_list:
|
||||
filters.append(literal(True))
|
||||
else:
|
||||
filters.append(json_field.notin_(value_list))
|
||||
|
||||
case "is" | "=":
|
||||
if isinstance(value, str):
|
||||
filters.append(json_field == value)
|
||||
elif isinstance(value, (int, float)):
|
||||
filters.append(Document.doc_metadata[metadata_name].as_float() == value)
|
||||
|
||||
case "is not" | "≠":
|
||||
if isinstance(value, str):
|
||||
filters.append(json_field != value)
|
||||
elif isinstance(value, (int, float)):
|
||||
filters.append(Document.doc_metadata[metadata_name].as_float() != value)
|
||||
|
||||
case "empty":
|
||||
filters.append(Document.doc_metadata[metadata_name].is_(None))
|
||||
|
||||
case "not empty":
|
||||
filters.append(Document.doc_metadata[metadata_name].isnot(None))
|
||||
|
||||
case "before" | "<":
|
||||
filters.append(Document.doc_metadata[metadata_name].as_float() < value)
|
||||
|
||||
case "after" | ">":
|
||||
filters.append(Document.doc_metadata[metadata_name].as_float() > value)
|
||||
|
||||
case "≤" | "<=":
|
||||
filters.append(Document.doc_metadata[metadata_name].as_float() <= value)
|
||||
|
||||
case "≥" | ">=":
|
||||
filters.append(Document.doc_metadata[metadata_name].as_float() >= value)
|
||||
|
||||
case _:
|
||||
pass
|
||||
|
||||
return filters
|
||||
|
||||
@classmethod
|
||||
def _extract_variable_selector_to_variable_mapping(
|
||||
cls,
|
||||
|
|
|
|||
|
|
@ -0,0 +1,873 @@
|
|||
"""
|
||||
Unit tests for DatasetRetrieval.process_metadata_filter_func.
|
||||
|
||||
This module provides comprehensive test coverage for the process_metadata_filter_func
|
||||
method in the DatasetRetrieval class, which is responsible for building SQLAlchemy
|
||||
filter expressions based on metadata filtering conditions.
|
||||
|
||||
Conditions Tested:
|
||||
==================
|
||||
1. **String Conditions**: contains, not contains, start with, end with
|
||||
2. **Equality Conditions**: is / =, is not / ≠
|
||||
3. **Null Conditions**: empty, not empty
|
||||
4. **Numeric Comparisons**: before / <, after / >, ≤ / <=, ≥ / >=
|
||||
5. **List Conditions**: in
|
||||
6. **Edge Cases**: None values, different data types (str, int, float)
|
||||
|
||||
Test Architecture:
|
||||
==================
|
||||
- Direct instantiation of DatasetRetrieval
|
||||
- Mocking of DatasetDocument model attributes
|
||||
- Verification of SQLAlchemy filter expressions
|
||||
- Follows Arrange-Act-Assert (AAA) pattern
|
||||
|
||||
Running Tests:
|
||||
==============
|
||||
# Run all tests in this module
|
||||
uv run --project api pytest \
|
||||
api/tests/unit_tests/core/rag/retrieval/test_dataset_retrieval_metadata_filter.py -v
|
||||
|
||||
# Run a specific test
|
||||
uv run --project api pytest \
|
||||
api/tests/unit_tests/core/rag/retrieval/test_dataset_retrieval_metadata_filter.py::\
|
||||
TestProcessMetadataFilterFunc::test_contains_condition -v
|
||||
"""
|
||||
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import pytest
|
||||
|
||||
from core.rag.retrieval.dataset_retrieval import DatasetRetrieval
|
||||
|
||||
|
||||
class TestProcessMetadataFilterFunc:
|
||||
"""
|
||||
Comprehensive test suite for process_metadata_filter_func method.
|
||||
|
||||
This test class validates all metadata filtering conditions supported by
|
||||
the DatasetRetrieval class, including string operations, numeric comparisons,
|
||||
null checks, and list operations.
|
||||
|
||||
Method Signature:
|
||||
==================
|
||||
def process_metadata_filter_func(
|
||||
self, sequence: int, condition: str, metadata_name: str, value: Any | None, filters: list
|
||||
) -> list:
|
||||
|
||||
The method builds SQLAlchemy filter expressions by:
|
||||
1. Validating value is not None (except for empty/not empty conditions)
|
||||
2. Using DatasetDocument.doc_metadata JSON field operations
|
||||
3. Adding appropriate SQLAlchemy expressions to the filters list
|
||||
4. Returning the updated filters list
|
||||
|
||||
Mocking Strategy:
|
||||
==================
|
||||
- Mock DatasetDocument.doc_metadata to avoid database dependencies
|
||||
- Verify filter expressions are created correctly
|
||||
- Test with various data types (str, int, float, list)
|
||||
"""
|
||||
|
||||
@pytest.fixture
|
||||
def retrieval(self):
|
||||
"""
|
||||
Create a DatasetRetrieval instance for testing.
|
||||
|
||||
Returns:
|
||||
DatasetRetrieval: Instance to test process_metadata_filter_func
|
||||
"""
|
||||
return DatasetRetrieval()
|
||||
|
||||
@pytest.fixture
|
||||
def mock_doc_metadata(self):
|
||||
"""
|
||||
Mock the DatasetDocument.doc_metadata JSON field.
|
||||
|
||||
The method uses DatasetDocument.doc_metadata[metadata_name] to access
|
||||
JSON fields. We mock this to avoid database dependencies.
|
||||
|
||||
Returns:
|
||||
Mock: Mocked doc_metadata attribute
|
||||
"""
|
||||
mock_metadata_field = MagicMock()
|
||||
|
||||
# Create mock for string access
|
||||
mock_string_access = MagicMock()
|
||||
mock_string_access.like = MagicMock()
|
||||
mock_string_access.notlike = MagicMock()
|
||||
mock_string_access.__eq__ = MagicMock(return_value=MagicMock())
|
||||
mock_string_access.__ne__ = MagicMock(return_value=MagicMock())
|
||||
mock_string_access.in_ = MagicMock(return_value=MagicMock())
|
||||
|
||||
# Create mock for float access (for numeric comparisons)
|
||||
mock_float_access = MagicMock()
|
||||
mock_float_access.__eq__ = MagicMock(return_value=MagicMock())
|
||||
mock_float_access.__ne__ = MagicMock(return_value=MagicMock())
|
||||
mock_float_access.__lt__ = MagicMock(return_value=MagicMock())
|
||||
mock_float_access.__gt__ = MagicMock(return_value=MagicMock())
|
||||
mock_float_access.__le__ = MagicMock(return_value=MagicMock())
|
||||
mock_float_access.__ge__ = MagicMock(return_value=MagicMock())
|
||||
|
||||
# Create mock for null checks
|
||||
mock_null_access = MagicMock()
|
||||
mock_null_access.is_ = MagicMock(return_value=MagicMock())
|
||||
mock_null_access.isnot = MagicMock(return_value=MagicMock())
|
||||
|
||||
# Setup __getitem__ to return appropriate mock based on usage
|
||||
def getitem_side_effect(name):
|
||||
if name in ["author", "title", "category"]:
|
||||
return mock_string_access
|
||||
elif name in ["year", "price", "rating"]:
|
||||
return mock_float_access
|
||||
else:
|
||||
return mock_string_access
|
||||
|
||||
mock_metadata_field.__getitem__ = MagicMock(side_effect=getitem_side_effect)
|
||||
mock_metadata_field.as_string.return_value = mock_string_access
|
||||
mock_metadata_field.as_float.return_value = mock_float_access
|
||||
mock_metadata_field[metadata_name:str].is_ = mock_null_access.is_
|
||||
mock_metadata_field[metadata_name:str].isnot = mock_null_access.isnot
|
||||
|
||||
return mock_metadata_field
|
||||
|
||||
# ==================== String Condition Tests ====================
|
||||
|
||||
def test_contains_condition_string_value(self, retrieval):
|
||||
"""
|
||||
Test 'contains' condition with string value.
|
||||
|
||||
Verifies:
|
||||
- Filters list is populated with LIKE expression
|
||||
- Pattern matching uses %value% syntax
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "contains"
|
||||
metadata_name = "author"
|
||||
value = "John"
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
def test_not_contains_condition(self, retrieval):
|
||||
"""
|
||||
Test 'not contains' condition.
|
||||
|
||||
Verifies:
|
||||
- Filters list is populated with NOT LIKE expression
|
||||
- Pattern matching uses %value% syntax with negation
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "not contains"
|
||||
metadata_name = "title"
|
||||
value = "banned"
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
def test_start_with_condition(self, retrieval):
|
||||
"""
|
||||
Test 'start with' condition.
|
||||
|
||||
Verifies:
|
||||
- Filters list is populated with LIKE expression
|
||||
- Pattern matching uses value% syntax
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "start with"
|
||||
metadata_name = "category"
|
||||
value = "tech"
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
def test_end_with_condition(self, retrieval):
|
||||
"""
|
||||
Test 'end with' condition.
|
||||
|
||||
Verifies:
|
||||
- Filters list is populated with LIKE expression
|
||||
- Pattern matching uses %value syntax
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "end with"
|
||||
metadata_name = "filename"
|
||||
value = ".pdf"
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
# ==================== Equality Condition Tests ====================
|
||||
|
||||
def test_is_condition_with_string_value(self, retrieval):
|
||||
"""
|
||||
Test 'is' (=) condition with string value.
|
||||
|
||||
Verifies:
|
||||
- Filters list is populated with equality expression
|
||||
- String comparison is used
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "is"
|
||||
metadata_name = "author"
|
||||
value = "Jane Doe"
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
def test_equals_condition_with_string_value(self, retrieval):
|
||||
"""
|
||||
Test '=' condition with string value.
|
||||
|
||||
Verifies:
|
||||
- Same behavior as 'is' condition
|
||||
- String comparison is used
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "="
|
||||
metadata_name = "category"
|
||||
value = "technology"
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
def test_is_condition_with_int_value(self, retrieval):
|
||||
"""
|
||||
Test 'is' condition with integer value.
|
||||
|
||||
Verifies:
|
||||
- Numeric comparison is used
|
||||
- as_float() is called on the metadata field
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "is"
|
||||
metadata_name = "year"
|
||||
value = 2023
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
def test_is_condition_with_float_value(self, retrieval):
|
||||
"""
|
||||
Test 'is' condition with float value.
|
||||
|
||||
Verifies:
|
||||
- Numeric comparison is used
|
||||
- as_float() is called on the metadata field
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "is"
|
||||
metadata_name = "price"
|
||||
value = 19.99
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
def test_is_not_condition_with_string_value(self, retrieval):
|
||||
"""
|
||||
Test 'is not' (≠) condition with string value.
|
||||
|
||||
Verifies:
|
||||
- Filters list is populated with inequality expression
|
||||
- String comparison is used
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "is not"
|
||||
metadata_name = "author"
|
||||
value = "Unknown"
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
def test_not_equals_condition(self, retrieval):
|
||||
"""
|
||||
Test '≠' condition with string value.
|
||||
|
||||
Verifies:
|
||||
- Same behavior as 'is not' condition
|
||||
- Inequality expression is used
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "≠"
|
||||
metadata_name = "category"
|
||||
value = "archived"
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
def test_is_not_condition_with_numeric_value(self, retrieval):
|
||||
"""
|
||||
Test 'is not' condition with numeric value.
|
||||
|
||||
Verifies:
|
||||
- Numeric inequality comparison is used
|
||||
- as_float() is called on the metadata field
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "is not"
|
||||
metadata_name = "year"
|
||||
value = 2000
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
# ==================== Null Condition Tests ====================
|
||||
|
||||
def test_empty_condition(self, retrieval):
|
||||
"""
|
||||
Test 'empty' condition (null check).
|
||||
|
||||
Verifies:
|
||||
- Filters list is populated with IS NULL expression
|
||||
- Value can be None for this condition
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "empty"
|
||||
metadata_name = "author"
|
||||
value = None
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
def test_not_empty_condition(self, retrieval):
|
||||
"""
|
||||
Test 'not empty' condition (not null check).
|
||||
|
||||
Verifies:
|
||||
- Filters list is populated with IS NOT NULL expression
|
||||
- Value can be None for this condition
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "not empty"
|
||||
metadata_name = "description"
|
||||
value = None
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
# ==================== Numeric Comparison Tests ====================
|
||||
|
||||
def test_before_condition(self, retrieval):
|
||||
"""
|
||||
Test 'before' (<) condition.
|
||||
|
||||
Verifies:
|
||||
- Filters list is populated with less than expression
|
||||
- Numeric comparison is used
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "before"
|
||||
metadata_name = "year"
|
||||
value = 2020
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
def test_less_than_condition(self, retrieval):
|
||||
"""
|
||||
Test '<' condition.
|
||||
|
||||
Verifies:
|
||||
- Same behavior as 'before' condition
|
||||
- Less than expression is used
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "<"
|
||||
metadata_name = "price"
|
||||
value = 100.0
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
def test_after_condition(self, retrieval):
|
||||
"""
|
||||
Test 'after' (>) condition.
|
||||
|
||||
Verifies:
|
||||
- Filters list is populated with greater than expression
|
||||
- Numeric comparison is used
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "after"
|
||||
metadata_name = "year"
|
||||
value = 2020
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
def test_greater_than_condition(self, retrieval):
|
||||
"""
|
||||
Test '>' condition.
|
||||
|
||||
Verifies:
|
||||
- Same behavior as 'after' condition
|
||||
- Greater than expression is used
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = ">"
|
||||
metadata_name = "rating"
|
||||
value = 4.5
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
def test_less_than_or_equal_condition_unicode(self, retrieval):
|
||||
"""
|
||||
Test '≤' condition.
|
||||
|
||||
Verifies:
|
||||
- Filters list is populated with less than or equal expression
|
||||
- Numeric comparison is used
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "≤"
|
||||
metadata_name = "price"
|
||||
value = 50.0
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
def test_less_than_or_equal_condition_ascii(self, retrieval):
|
||||
"""
|
||||
Test '<=' condition.
|
||||
|
||||
Verifies:
|
||||
- Same behavior as '≤' condition
|
||||
- Less than or equal expression is used
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "<="
|
||||
metadata_name = "year"
|
||||
value = 2023
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
def test_greater_than_or_equal_condition_unicode(self, retrieval):
|
||||
"""
|
||||
Test '≥' condition.
|
||||
|
||||
Verifies:
|
||||
- Filters list is populated with greater than or equal expression
|
||||
- Numeric comparison is used
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "≥"
|
||||
metadata_name = "rating"
|
||||
value = 3.5
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
def test_greater_than_or_equal_condition_ascii(self, retrieval):
|
||||
"""
|
||||
Test '>=' condition.
|
||||
|
||||
Verifies:
|
||||
- Same behavior as '≥' condition
|
||||
- Greater than or equal expression is used
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = ">="
|
||||
metadata_name = "year"
|
||||
value = 2000
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
# ==================== List/In Condition Tests ====================
|
||||
|
||||
def test_in_condition_with_comma_separated_string(self, retrieval):
|
||||
"""
|
||||
Test 'in' condition with comma-separated string value.
|
||||
|
||||
Verifies:
|
||||
- String is split into list
|
||||
- Whitespace is trimmed from each value
|
||||
- IN expression is created
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "in"
|
||||
metadata_name = "category"
|
||||
value = "tech, science, AI "
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
def test_in_condition_with_list_value(self, retrieval):
|
||||
"""
|
||||
Test 'in' condition with list value.
|
||||
|
||||
Verifies:
|
||||
- List is processed correctly
|
||||
- None values are filtered out
|
||||
- IN expression is created with valid values
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "in"
|
||||
metadata_name = "tags"
|
||||
value = ["python", "javascript", None, "golang"]
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
def test_in_condition_with_tuple_value(self, retrieval):
|
||||
"""
|
||||
Test 'in' condition with tuple value.
|
||||
|
||||
Verifies:
|
||||
- Tuple is processed like a list
|
||||
- IN expression is created
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "in"
|
||||
metadata_name = "category"
|
||||
value = ("tech", "science", "ai")
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
def test_in_condition_with_empty_string(self, retrieval):
|
||||
"""
|
||||
Test 'in' condition with empty string value.
|
||||
|
||||
Verifies:
|
||||
- Empty string results in literal(False) filter
|
||||
- No valid values to match
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "in"
|
||||
metadata_name = "category"
|
||||
value = ""
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
# Verify it's a literal(False) expression
|
||||
# This is a bit tricky to test without access to the actual expression
|
||||
|
||||
def test_in_condition_with_only_whitespace(self, retrieval):
|
||||
"""
|
||||
Test 'in' condition with whitespace-only string value.
|
||||
|
||||
Verifies:
|
||||
- Whitespace-only string results in literal(False) filter
|
||||
- All values are stripped and filtered out
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "in"
|
||||
metadata_name = "category"
|
||||
value = " , , "
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
def test_in_condition_with_single_string(self, retrieval):
|
||||
"""
|
||||
Test 'in' condition with single non-comma string.
|
||||
|
||||
Verifies:
|
||||
- Single string is treated as single-item list
|
||||
- IN expression is created with one value
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "in"
|
||||
metadata_name = "category"
|
||||
value = "technology"
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
# ==================== Edge Case Tests ====================
|
||||
|
||||
def test_none_value_with_non_empty_condition(self, retrieval):
|
||||
"""
|
||||
Test None value with conditions that require value.
|
||||
|
||||
Verifies:
|
||||
- Original filters list is returned unchanged
|
||||
- No filter is added for None values (except empty/not empty)
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "contains"
|
||||
metadata_name = "author"
|
||||
value = None
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 0 # No filter added
|
||||
|
||||
def test_none_value_with_equals_condition(self, retrieval):
|
||||
"""
|
||||
Test None value with 'is' (=) condition.
|
||||
|
||||
Verifies:
|
||||
- Original filters list is returned unchanged
|
||||
- No filter is added for None values
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "is"
|
||||
metadata_name = "author"
|
||||
value = None
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 0
|
||||
|
||||
def test_none_value_with_numeric_condition(self, retrieval):
|
||||
"""
|
||||
Test None value with numeric comparison condition.
|
||||
|
||||
Verifies:
|
||||
- Original filters list is returned unchanged
|
||||
- No filter is added for None values
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = ">"
|
||||
metadata_name = "year"
|
||||
value = None
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 0
|
||||
|
||||
def test_existing_filters_preserved(self, retrieval):
|
||||
"""
|
||||
Test that existing filters are preserved.
|
||||
|
||||
Verifies:
|
||||
- Existing filters in the list are not removed
|
||||
- New filters are appended to the list
|
||||
"""
|
||||
existing_filter = MagicMock()
|
||||
filters = [existing_filter]
|
||||
sequence = 0
|
||||
condition = "contains"
|
||||
metadata_name = "author"
|
||||
value = "test"
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 2
|
||||
assert filters[0] == existing_filter
|
||||
|
||||
def test_multiple_filters_accumulated(self, retrieval):
|
||||
"""
|
||||
Test multiple calls to accumulate filters.
|
||||
|
||||
Verifies:
|
||||
- Each call adds a new filter to the list
|
||||
- All filters are preserved across calls
|
||||
"""
|
||||
filters = []
|
||||
|
||||
# First filter
|
||||
retrieval.process_metadata_filter_func(0, "contains", "author", "John", filters)
|
||||
assert len(filters) == 1
|
||||
|
||||
# Second filter
|
||||
retrieval.process_metadata_filter_func(1, ">", "year", 2020, filters)
|
||||
assert len(filters) == 2
|
||||
|
||||
# Third filter
|
||||
retrieval.process_metadata_filter_func(2, "is", "category", "tech", filters)
|
||||
assert len(filters) == 3
|
||||
|
||||
def test_unknown_condition(self, retrieval):
|
||||
"""
|
||||
Test unknown/unsupported condition.
|
||||
|
||||
Verifies:
|
||||
- Original filters list is returned unchanged
|
||||
- No filter is added for unknown conditions
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "unknown_condition"
|
||||
metadata_name = "author"
|
||||
value = "test"
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 0
|
||||
|
||||
def test_empty_string_value_with_contains(self, retrieval):
|
||||
"""
|
||||
Test empty string value with 'contains' condition.
|
||||
|
||||
Verifies:
|
||||
- Filter is added even with empty string
|
||||
- LIKE expression is created
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "contains"
|
||||
metadata_name = "author"
|
||||
value = ""
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
def test_special_characters_in_value(self, retrieval):
|
||||
"""
|
||||
Test special characters in value string.
|
||||
|
||||
Verifies:
|
||||
- Special characters are handled in value
|
||||
- LIKE expression is created correctly
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "contains"
|
||||
metadata_name = "title"
|
||||
value = "C++ & Python's features"
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
def test_zero_value_with_numeric_condition(self, retrieval):
|
||||
"""
|
||||
Test zero value with numeric comparison condition.
|
||||
|
||||
Verifies:
|
||||
- Zero is treated as valid value
|
||||
- Numeric comparison is performed
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = ">"
|
||||
metadata_name = "price"
|
||||
value = 0
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
def test_negative_value_with_numeric_condition(self, retrieval):
|
||||
"""
|
||||
Test negative value with numeric comparison condition.
|
||||
|
||||
Verifies:
|
||||
- Negative numbers are handled correctly
|
||||
- Numeric comparison is performed
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = "<"
|
||||
metadata_name = "temperature"
|
||||
value = -10.5
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
|
||||
def test_float_value_with_integer_comparison(self, retrieval):
|
||||
"""
|
||||
Test float value with numeric comparison condition.
|
||||
|
||||
Verifies:
|
||||
- Float values work correctly
|
||||
- Numeric comparison is performed
|
||||
"""
|
||||
filters = []
|
||||
sequence = 0
|
||||
condition = ">="
|
||||
metadata_name = "rating"
|
||||
value = 4.5
|
||||
|
||||
result = retrieval.process_metadata_filter_func(sequence, condition, metadata_name, value, filters)
|
||||
|
||||
assert result == filters
|
||||
assert len(filters) == 1
|
||||
Loading…
Reference in New Issue