mirror of https://github.com/langgenius/dify.git
add app convert codes
This commit is contained in:
parent
3642dd3a73
commit
c028e5f889
|
|
@ -21,7 +21,7 @@ from fields.conversation_fields import (
|
|||
)
|
||||
from libs.helper import datetime_string
|
||||
from libs.login import login_required
|
||||
from models.model import Conversation, Message, MessageAnnotation, AppMode
|
||||
from models.model import AppMode, Conversation, Message, MessageAnnotation
|
||||
|
||||
|
||||
class CompletionConversationApi(Resource):
|
||||
|
|
|
|||
|
|
@ -26,7 +26,7 @@ from fields.conversation_fields import annotation_fields, message_detail_fields
|
|||
from libs.helper import uuid_value
|
||||
from libs.infinite_scroll_pagination import InfiniteScrollPagination
|
||||
from libs.login import login_required
|
||||
from models.model import Conversation, Message, MessageAnnotation, MessageFeedback, AppMode
|
||||
from models.model import AppMode, Conversation, Message, MessageAnnotation, MessageFeedback
|
||||
from services.annotation_service import AppAnnotationService
|
||||
from services.errors.conversation import ConversationNotExistsError
|
||||
from services.errors.message import MessageNotExistsError
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
from flask_restful import Resource, reqparse, marshal_with
|
||||
from flask_restful import Resource, marshal_with, reqparse
|
||||
|
||||
from controllers.console import api
|
||||
from controllers.console.app.error import DraftWorkflowNotExist
|
||||
|
|
@ -6,8 +6,8 @@ from controllers.console.app.wraps import get_app_model
|
|||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
from fields.workflow_fields import workflow_fields
|
||||
from libs.login import login_required, current_user
|
||||
from models.model import App, ChatbotAppEngine, AppMode
|
||||
from libs.login import current_user, login_required
|
||||
from models.model import App, AppMode, ChatbotAppEngine
|
||||
from services.workflow_service import WorkflowService
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@ from typing import Optional, Union
|
|||
from controllers.console.app.error import AppNotFoundError
|
||||
from extensions.ext_database import db
|
||||
from libs.login import current_user
|
||||
from models.model import App, ChatbotAppEngine, AppMode
|
||||
from models.model import App, AppMode, ChatbotAppEngine
|
||||
|
||||
|
||||
def get_app_model(view: Optional[Callable] = None, *,
|
||||
|
|
|
|||
|
|
@ -22,7 +22,7 @@ from core.model_runtime.entities.message_entities import AssistantPromptMessage,
|
|||
from core.model_runtime.entities.model_entities import ModelPropertyKey
|
||||
from core.model_runtime.errors.invoke import InvokeBadRequestError
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.prompt.prompt_transform import PromptTransform
|
||||
from core.prompt.simple_prompt_transform import SimplePromptTransform
|
||||
from models.model import App, Message, MessageAnnotation
|
||||
|
||||
|
||||
|
|
@ -140,12 +140,11 @@ class AppRunner:
|
|||
:param memory: memory
|
||||
:return:
|
||||
"""
|
||||
prompt_transform = PromptTransform()
|
||||
prompt_transform = SimplePromptTransform()
|
||||
|
||||
# get prompt without memory and context
|
||||
if prompt_template_entity.prompt_type == PromptTemplateEntity.PromptType.SIMPLE:
|
||||
prompt_messages, stop = prompt_transform.get_prompt(
|
||||
app_mode=app_record.mode,
|
||||
prompt_template_entity=prompt_template_entity,
|
||||
inputs=inputs,
|
||||
query=query if query else '',
|
||||
|
|
@ -155,17 +154,7 @@ class AppRunner:
|
|||
model_config=model_config
|
||||
)
|
||||
else:
|
||||
prompt_messages = prompt_transform.get_advanced_prompt(
|
||||
app_mode=app_record.mode,
|
||||
prompt_template_entity=prompt_template_entity,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
files=files,
|
||||
context=context,
|
||||
memory=memory,
|
||||
model_config=model_config
|
||||
)
|
||||
stop = model_config.stop
|
||||
raise NotImplementedError("Advanced prompt is not supported yet.")
|
||||
|
||||
return prompt_messages, stop
|
||||
|
||||
|
|
|
|||
|
|
@ -15,7 +15,7 @@ from core.memory.token_buffer_memory import TokenBufferMemory
|
|||
from core.model_manager import ModelInstance
|
||||
from core.moderation.base import ModerationException
|
||||
from extensions.ext_database import db
|
||||
from models.model import App, Conversation, Message, AppMode
|
||||
from models.model import App, AppMode, Conversation, Message
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
|
|
|||
|
|
@ -28,7 +28,8 @@ from core.entities.application_entities import (
|
|||
ModelConfigEntity,
|
||||
PromptTemplateEntity,
|
||||
SensitiveWordAvoidanceEntity,
|
||||
TextToSpeechEntity, VariableEntity,
|
||||
TextToSpeechEntity,
|
||||
VariableEntity,
|
||||
)
|
||||
from core.entities.model_entities import ModelStatus
|
||||
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
|
||||
|
|
@ -541,8 +542,7 @@ class ApplicationManager:
|
|||
query_variable=query_variable,
|
||||
retrieve_strategy=DatasetRetrieveConfigEntity.RetrieveStrategy.value_of(
|
||||
dataset_configs['retrieval_model']
|
||||
),
|
||||
single_strategy=datasets.get('strategy', 'router')
|
||||
)
|
||||
)
|
||||
)
|
||||
else:
|
||||
|
|
|
|||
|
|
@ -156,7 +156,6 @@ class DatasetRetrieveConfigEntity(BaseModel):
|
|||
query_variable: Optional[str] = None # Only when app mode is completion
|
||||
|
||||
retrieve_strategy: RetrieveStrategy
|
||||
single_strategy: Optional[str] = None # for temp
|
||||
top_k: Optional[int] = None
|
||||
score_threshold: Optional[float] = None
|
||||
reranking_model: Optional[dict] = None
|
||||
|
|
|
|||
|
|
@ -0,0 +1,198 @@
|
|||
from typing import Optional
|
||||
|
||||
from core.entities.application_entities import PromptTemplateEntity, ModelConfigEntity, \
|
||||
AdvancedCompletionPromptTemplateEntity
|
||||
from core.file.file_obj import FileObj
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageRole, UserPromptMessage, \
|
||||
SystemPromptMessage, AssistantPromptMessage, TextPromptMessageContent
|
||||
from core.prompt.prompt_template import PromptTemplateParser
|
||||
from core.prompt.prompt_transform import PromptTransform
|
||||
from core.prompt.simple_prompt_transform import ModelMode
|
||||
|
||||
|
||||
class AdvancePromptTransform(PromptTransform):
|
||||
"""
|
||||
Advanced Prompt Transform for Workflow LLM Node.
|
||||
"""
|
||||
|
||||
def get_prompt(self, prompt_template_entity: PromptTemplateEntity,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
files: list[FileObj],
|
||||
context: Optional[str],
|
||||
memory: Optional[TokenBufferMemory],
|
||||
model_config: ModelConfigEntity) -> list[PromptMessage]:
|
||||
prompt_messages = []
|
||||
|
||||
model_mode = ModelMode.value_of(model_config.mode)
|
||||
if model_mode == ModelMode.COMPLETION:
|
||||
prompt_messages = self._get_completion_model_prompt_messages(
|
||||
prompt_template_entity=prompt_template_entity,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
context=context,
|
||||
memory=memory,
|
||||
model_config=model_config
|
||||
)
|
||||
elif model_mode == ModelMode.CHAT:
|
||||
prompt_messages = self._get_chat_model_prompt_messages(
|
||||
prompt_template_entity=prompt_template_entity,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
files=files,
|
||||
context=context,
|
||||
memory=memory,
|
||||
model_config=model_config
|
||||
)
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _get_completion_model_prompt_messages(self,
|
||||
prompt_template_entity: PromptTemplateEntity,
|
||||
inputs: dict,
|
||||
files: list[FileObj],
|
||||
context: Optional[str],
|
||||
memory: Optional[TokenBufferMemory],
|
||||
model_config: ModelConfigEntity) -> list[PromptMessage]:
|
||||
"""
|
||||
Get completion model prompt messages.
|
||||
"""
|
||||
raw_prompt = prompt_template_entity.advanced_completion_prompt_template.prompt
|
||||
|
||||
prompt_messages = []
|
||||
|
||||
prompt_template = PromptTemplateParser(template=raw_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
|
||||
self._set_context_variable(context, prompt_template, prompt_inputs)
|
||||
|
||||
role_prefix = prompt_template_entity.advanced_completion_prompt_template.role_prefix
|
||||
self._set_histories_variable(
|
||||
memory=memory,
|
||||
raw_prompt=raw_prompt,
|
||||
role_prefix=role_prefix,
|
||||
prompt_template=prompt_template,
|
||||
prompt_inputs=prompt_inputs,
|
||||
model_config=model_config
|
||||
)
|
||||
|
||||
prompt = prompt_template.format(
|
||||
prompt_inputs
|
||||
)
|
||||
|
||||
if files:
|
||||
prompt_message_contents = [TextPromptMessageContent(data=prompt)]
|
||||
for file in files:
|
||||
prompt_message_contents.append(file.prompt_message_content)
|
||||
|
||||
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
|
||||
else:
|
||||
prompt_messages.append(UserPromptMessage(content=prompt))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _get_chat_model_prompt_messages(self,
|
||||
prompt_template_entity: PromptTemplateEntity,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
files: list[FileObj],
|
||||
context: Optional[str],
|
||||
memory: Optional[TokenBufferMemory],
|
||||
model_config: ModelConfigEntity) -> list[PromptMessage]:
|
||||
"""
|
||||
Get chat model prompt messages.
|
||||
"""
|
||||
raw_prompt_list = prompt_template_entity.advanced_chat_prompt_template.messages
|
||||
|
||||
prompt_messages = []
|
||||
|
||||
for prompt_item in raw_prompt_list:
|
||||
raw_prompt = prompt_item.text
|
||||
|
||||
prompt_template = PromptTemplateParser(template=raw_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
|
||||
self._set_context_variable(context, prompt_template, prompt_inputs)
|
||||
|
||||
prompt = prompt_template.format(
|
||||
prompt_inputs
|
||||
)
|
||||
|
||||
if prompt_item.role == PromptMessageRole.USER:
|
||||
prompt_messages.append(UserPromptMessage(content=prompt))
|
||||
elif prompt_item.role == PromptMessageRole.SYSTEM and prompt:
|
||||
prompt_messages.append(SystemPromptMessage(content=prompt))
|
||||
elif prompt_item.role == PromptMessageRole.ASSISTANT:
|
||||
prompt_messages.append(AssistantPromptMessage(content=prompt))
|
||||
|
||||
if memory:
|
||||
self._append_chat_histories(memory, prompt_messages, model_config)
|
||||
|
||||
if files:
|
||||
prompt_message_contents = [TextPromptMessageContent(data=query)]
|
||||
for file in files:
|
||||
prompt_message_contents.append(file.prompt_message_content)
|
||||
|
||||
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
|
||||
else:
|
||||
prompt_messages.append(UserPromptMessage(content=query))
|
||||
elif files:
|
||||
# get last message
|
||||
last_message = prompt_messages[-1] if prompt_messages else None
|
||||
if last_message and last_message.role == PromptMessageRole.USER:
|
||||
# get last user message content and add files
|
||||
prompt_message_contents = [TextPromptMessageContent(data=last_message.content)]
|
||||
for file in files:
|
||||
prompt_message_contents.append(file.prompt_message_content)
|
||||
|
||||
last_message.content = prompt_message_contents
|
||||
else:
|
||||
prompt_message_contents = [TextPromptMessageContent(data=query)]
|
||||
for file in files:
|
||||
prompt_message_contents.append(file.prompt_message_content)
|
||||
|
||||
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _set_context_variable(self, context: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
|
||||
if '#context#' in prompt_template.variable_keys:
|
||||
if context:
|
||||
prompt_inputs['#context#'] = context
|
||||
else:
|
||||
prompt_inputs['#context#'] = ''
|
||||
|
||||
def _set_query_variable(self, query: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
|
||||
if '#query#' in prompt_template.variable_keys:
|
||||
if query:
|
||||
prompt_inputs['#query#'] = query
|
||||
else:
|
||||
prompt_inputs['#query#'] = ''
|
||||
|
||||
def _set_histories_variable(self, memory: TokenBufferMemory,
|
||||
raw_prompt: str,
|
||||
role_prefix: AdvancedCompletionPromptTemplateEntity.RolePrefixEntity,
|
||||
prompt_template: PromptTemplateParser,
|
||||
prompt_inputs: dict,
|
||||
model_config: ModelConfigEntity) -> None:
|
||||
if '#histories#' in prompt_template.variable_keys:
|
||||
if memory:
|
||||
inputs = {'#histories#': '', **prompt_inputs}
|
||||
prompt_template = PromptTemplateParser(raw_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
tmp_human_message = UserPromptMessage(
|
||||
content=prompt_template.format(prompt_inputs)
|
||||
)
|
||||
|
||||
rest_tokens = self._calculate_rest_token([tmp_human_message], model_config)
|
||||
|
||||
histories = self._get_history_messages_from_memory(
|
||||
memory=memory,
|
||||
max_token_limit=rest_tokens,
|
||||
human_prefix=role_prefix.user,
|
||||
ai_prefix=role_prefix.assistant
|
||||
)
|
||||
prompt_inputs['#histories#'] = histories
|
||||
else:
|
||||
prompt_inputs['#histories#'] = ''
|
||||
|
|
@ -1,13 +1,13 @@
|
|||
{
|
||||
"human_prefix": "用户",
|
||||
"assistant_prefix": "助手",
|
||||
"context_prompt": "用户在与一个客观的助手对话。助手会尊重找到的材料,给出全面专业的解释,但不会过度演绎。同时回答中不会暴露引用的材料:\n\n```\n{{context}}\n```\n\n",
|
||||
"histories_prompt": "用户和助手的历史对话内容如下:\n```\n{{histories}}\n```\n\n",
|
||||
"context_prompt": "用户在与一个客观的助手对话。助手会尊重找到的材料,给出全面专业的解释,但不会过度演绎。同时回答中不会暴露引用的材料:\n\n```\n{{#context#}}\n```\n\n",
|
||||
"histories_prompt": "用户和助手的历史对话内容如下:\n```\n{{#histories#}}\n```\n\n",
|
||||
"system_prompt_orders": [
|
||||
"context_prompt",
|
||||
"pre_prompt",
|
||||
"histories_prompt"
|
||||
],
|
||||
"query_prompt": "\n\n用户:{{query}}",
|
||||
"query_prompt": "\n\n用户:{{#query#}}",
|
||||
"stops": ["用户:"]
|
||||
}
|
||||
|
|
@ -1,9 +1,9 @@
|
|||
{
|
||||
"context_prompt": "用户在与一个客观的助手对话。助手会尊重找到的材料,给出全面专业的解释,但不会过度演绎。同时回答中不会暴露引用的材料:\n\n```\n{{context}}\n```\n",
|
||||
"context_prompt": "用户在与一个客观的助手对话。助手会尊重找到的材料,给出全面专业的解释,但不会过度演绎。同时回答中不会暴露引用的材料:\n\n```\n{{#context#}}\n```\n",
|
||||
"system_prompt_orders": [
|
||||
"context_prompt",
|
||||
"pre_prompt"
|
||||
],
|
||||
"query_prompt": "{{query}}",
|
||||
"query_prompt": "{{#query#}}",
|
||||
"stops": null
|
||||
}
|
||||
|
|
@ -1,13 +1,13 @@
|
|||
{
|
||||
"human_prefix": "Human",
|
||||
"assistant_prefix": "Assistant",
|
||||
"context_prompt": "Use the following context as your learned knowledge, inside <context></context> XML tags.\n\n<context>\n{{context}}\n</context>\n\nWhen answer to user:\n- If you don't know, just say that you don't know.\n- If you don't know when you are not sure, ask for clarification.\nAvoid mentioning that you obtained the information from the context.\nAnd answer according to the language of the user's question.\n\n",
|
||||
"histories_prompt": "Here is the chat histories between human and assistant, inside <histories></histories> XML tags.\n\n<histories>\n{{histories}}\n</histories>\n\n",
|
||||
"context_prompt": "Use the following context as your learned knowledge, inside <context></context> XML tags.\n\n<context>\n{{#context#}}\n</context>\n\nWhen answer to user:\n- If you don't know, just say that you don't know.\n- If you don't know when you are not sure, ask for clarification.\nAvoid mentioning that you obtained the information from the context.\nAnd answer according to the language of the user's question.\n\n",
|
||||
"histories_prompt": "Here is the chat histories between human and assistant, inside <histories></histories> XML tags.\n\n<histories>\n{{#histories#}}\n</histories>\n\n",
|
||||
"system_prompt_orders": [
|
||||
"context_prompt",
|
||||
"pre_prompt",
|
||||
"histories_prompt"
|
||||
],
|
||||
"query_prompt": "\n\nHuman: {{query}}\n\nAssistant: ",
|
||||
"query_prompt": "\n\nHuman: {{#query#}}\n\nAssistant: ",
|
||||
"stops": ["\nHuman:", "</histories>"]
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,9 +1,9 @@
|
|||
{
|
||||
"context_prompt": "Use the following context as your learned knowledge, inside <context></context> XML tags.\n\n<context>\n{{context}}\n</context>\n\nWhen answer to user:\n- If you don't know, just say that you don't know.\n- If you don't know when you are not sure, ask for clarification.\nAvoid mentioning that you obtained the information from the context.\nAnd answer according to the language of the user's question.\n\n",
|
||||
"context_prompt": "Use the following context as your learned knowledge, inside <context></context> XML tags.\n\n<context>\n{{#context#}}\n</context>\n\nWhen answer to user:\n- If you don't know, just say that you don't know.\n- If you don't know when you are not sure, ask for clarification.\nAvoid mentioning that you obtained the information from the context.\nAnd answer according to the language of the user's question.\n\n",
|
||||
"system_prompt_orders": [
|
||||
"context_prompt",
|
||||
"pre_prompt"
|
||||
],
|
||||
"query_prompt": "{{query}}",
|
||||
"query_prompt": "{{#query#}}",
|
||||
"stops": null
|
||||
}
|
||||
|
|
@ -1,10 +0,0 @@
|
|||
from core.prompt.prompt_template import PromptTemplateParser
|
||||
|
||||
|
||||
class PromptBuilder:
|
||||
@classmethod
|
||||
def parse_prompt(cls, prompt: str, inputs: dict) -> str:
|
||||
prompt_template = PromptTemplateParser(prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
prompt = prompt_template.format(prompt_inputs)
|
||||
return prompt
|
||||
|
|
@ -32,7 +32,8 @@ class PromptTemplateParser:
|
|||
return PromptTemplateParser.remove_template_variables(value)
|
||||
return value
|
||||
|
||||
return re.sub(REGEX, replacer, self.template)
|
||||
prompt = re.sub(REGEX, replacer, self.template)
|
||||
return re.sub(r'<\|.*?\|>', '', prompt)
|
||||
|
||||
@classmethod
|
||||
def remove_template_variables(cls, text: str):
|
||||
|
|
|
|||
|
|
@ -1,393 +1,13 @@
|
|||
import enum
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
from typing import Optional, cast
|
||||
|
||||
from core.entities.application_entities import (
|
||||
AdvancedCompletionPromptTemplateEntity,
|
||||
ModelConfigEntity,
|
||||
PromptTemplateEntity,
|
||||
)
|
||||
from core.file.file_obj import FileObj
|
||||
from core.entities.application_entities import ModelConfigEntity
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
PromptMessage,
|
||||
PromptMessageRole,
|
||||
SystemPromptMessage,
|
||||
TextPromptMessageContent,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.message_entities import PromptMessage
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.prompt.prompt_builder import PromptBuilder
|
||||
from core.prompt.prompt_template import PromptTemplateParser
|
||||
from models.model import AppMode
|
||||
|
||||
|
||||
class ModelMode(enum.Enum):
|
||||
COMPLETION = 'completion'
|
||||
CHAT = 'chat'
|
||||
|
||||
@classmethod
|
||||
def value_of(cls, value: str) -> 'ModelMode':
|
||||
"""
|
||||
Get value of given mode.
|
||||
|
||||
:param value: mode value
|
||||
:return: mode
|
||||
"""
|
||||
for mode in cls:
|
||||
if mode.value == value:
|
||||
return mode
|
||||
raise ValueError(f'invalid mode value {value}')
|
||||
|
||||
|
||||
class PromptTransform:
|
||||
def get_prompt(self,
|
||||
app_mode: str,
|
||||
prompt_template_entity: PromptTemplateEntity,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
files: list[FileObj],
|
||||
context: Optional[str],
|
||||
memory: Optional[TokenBufferMemory],
|
||||
model_config: ModelConfigEntity) -> \
|
||||
tuple[list[PromptMessage], Optional[list[str]]]:
|
||||
app_mode = AppMode.value_of(app_mode)
|
||||
model_mode = ModelMode.value_of(model_config.mode)
|
||||
|
||||
prompt_rules = self._read_prompt_rules_from_file(self._prompt_file_name(
|
||||
app_mode=app_mode,
|
||||
provider=model_config.provider,
|
||||
model=model_config.model
|
||||
))
|
||||
|
||||
if app_mode == AppMode.CHAT and model_mode == ModelMode.CHAT:
|
||||
stops = None
|
||||
|
||||
prompt_messages = self._get_simple_chat_app_chat_model_prompt_messages(
|
||||
prompt_rules=prompt_rules,
|
||||
pre_prompt=prompt_template_entity.simple_prompt_template,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
files=files,
|
||||
context=context,
|
||||
memory=memory,
|
||||
model_config=model_config
|
||||
)
|
||||
else:
|
||||
stops = prompt_rules.get('stops')
|
||||
if stops is not None and len(stops) == 0:
|
||||
stops = None
|
||||
|
||||
prompt_messages = self._get_simple_others_prompt_messages(
|
||||
prompt_rules=prompt_rules,
|
||||
pre_prompt=prompt_template_entity.simple_prompt_template,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
files=files,
|
||||
context=context,
|
||||
memory=memory,
|
||||
model_config=model_config
|
||||
)
|
||||
return prompt_messages, stops
|
||||
|
||||
def get_advanced_prompt(self, app_mode: str,
|
||||
prompt_template_entity: PromptTemplateEntity,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
files: list[FileObj],
|
||||
context: Optional[str],
|
||||
memory: Optional[TokenBufferMemory],
|
||||
model_config: ModelConfigEntity) -> list[PromptMessage]:
|
||||
app_mode = AppMode.value_of(app_mode)
|
||||
model_mode = ModelMode.value_of(model_config.mode)
|
||||
|
||||
prompt_messages = []
|
||||
|
||||
if app_mode == AppMode.CHAT:
|
||||
if model_mode == ModelMode.COMPLETION:
|
||||
prompt_messages = self._get_chat_app_completion_model_prompt_messages(
|
||||
prompt_template_entity=prompt_template_entity,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
files=files,
|
||||
context=context,
|
||||
memory=memory,
|
||||
model_config=model_config
|
||||
)
|
||||
elif model_mode == ModelMode.CHAT:
|
||||
prompt_messages = self._get_chat_app_chat_model_prompt_messages(
|
||||
prompt_template_entity=prompt_template_entity,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
files=files,
|
||||
context=context,
|
||||
memory=memory,
|
||||
model_config=model_config
|
||||
)
|
||||
elif app_mode == AppMode.COMPLETION:
|
||||
if model_mode == ModelMode.CHAT:
|
||||
prompt_messages = self._get_completion_app_chat_model_prompt_messages(
|
||||
prompt_template_entity=prompt_template_entity,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
context=context,
|
||||
)
|
||||
elif model_mode == ModelMode.COMPLETION:
|
||||
prompt_messages = self._get_completion_app_completion_model_prompt_messages(
|
||||
prompt_template_entity=prompt_template_entity,
|
||||
inputs=inputs,
|
||||
context=context,
|
||||
)
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _get_history_messages_from_memory(self, memory: TokenBufferMemory,
|
||||
max_token_limit: int,
|
||||
human_prefix: Optional[str] = None,
|
||||
ai_prefix: Optional[str] = None) -> str:
|
||||
"""Get memory messages."""
|
||||
kwargs = {
|
||||
"max_token_limit": max_token_limit
|
||||
}
|
||||
|
||||
if human_prefix:
|
||||
kwargs['human_prefix'] = human_prefix
|
||||
|
||||
if ai_prefix:
|
||||
kwargs['ai_prefix'] = ai_prefix
|
||||
|
||||
return memory.get_history_prompt_text(
|
||||
**kwargs
|
||||
)
|
||||
|
||||
def _get_history_messages_list_from_memory(self, memory: TokenBufferMemory,
|
||||
max_token_limit: int) -> list[PromptMessage]:
|
||||
"""Get memory messages."""
|
||||
return memory.get_history_prompt_messages(
|
||||
max_token_limit=max_token_limit
|
||||
)
|
||||
|
||||
def _prompt_file_name(self, app_mode: AppMode, provider: str, model: str) -> str:
|
||||
# baichuan
|
||||
if provider == 'baichuan':
|
||||
return self._prompt_file_name_for_baichuan(app_mode)
|
||||
|
||||
baichuan_supported_providers = ["huggingface_hub", "openllm", "xinference"]
|
||||
if provider in baichuan_supported_providers and 'baichuan' in model.lower():
|
||||
return self._prompt_file_name_for_baichuan(app_mode)
|
||||
|
||||
# common
|
||||
if app_mode == AppMode.COMPLETION:
|
||||
return 'common_completion'
|
||||
else:
|
||||
return 'common_chat'
|
||||
|
||||
def _prompt_file_name_for_baichuan(self, app_mode: AppMode) -> str:
|
||||
if app_mode == AppMode.COMPLETION:
|
||||
return 'baichuan_completion'
|
||||
else:
|
||||
return 'baichuan_chat'
|
||||
|
||||
def _read_prompt_rules_from_file(self, prompt_name: str) -> dict:
|
||||
# Get the absolute path of the subdirectory
|
||||
prompt_path = os.path.join(
|
||||
os.path.dirname(os.path.realpath(__file__)),
|
||||
'generate_prompts')
|
||||
|
||||
json_file_path = os.path.join(prompt_path, f'{prompt_name}.json')
|
||||
# Open the JSON file and read its content
|
||||
with open(json_file_path, encoding='utf-8') as json_file:
|
||||
return json.load(json_file)
|
||||
|
||||
def _get_simple_chat_app_chat_model_prompt_messages(self, prompt_rules: dict,
|
||||
pre_prompt: str,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
files: list[FileObj],
|
||||
memory: Optional[TokenBufferMemory],
|
||||
model_config: ModelConfigEntity) -> list[PromptMessage]:
|
||||
prompt_messages = []
|
||||
|
||||
context_prompt_content = ''
|
||||
if context and 'context_prompt' in prompt_rules:
|
||||
prompt_template = PromptTemplateParser(template=prompt_rules['context_prompt'])
|
||||
context_prompt_content = prompt_template.format(
|
||||
{'context': context}
|
||||
)
|
||||
|
||||
pre_prompt_content = ''
|
||||
if pre_prompt:
|
||||
prompt_template = PromptTemplateParser(template=pre_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
pre_prompt_content = prompt_template.format(
|
||||
prompt_inputs
|
||||
)
|
||||
|
||||
prompt = ''
|
||||
for order in prompt_rules['system_prompt_orders']:
|
||||
if order == 'context_prompt':
|
||||
prompt += context_prompt_content
|
||||
elif order == 'pre_prompt':
|
||||
prompt += pre_prompt_content
|
||||
|
||||
prompt = re.sub(r'<\|.*?\|>', '', prompt)
|
||||
|
||||
if prompt:
|
||||
prompt_messages.append(SystemPromptMessage(content=prompt))
|
||||
|
||||
self._append_chat_histories(
|
||||
memory=memory,
|
||||
prompt_messages=prompt_messages,
|
||||
model_config=model_config
|
||||
)
|
||||
|
||||
if files:
|
||||
prompt_message_contents = [TextPromptMessageContent(data=query)]
|
||||
for file in files:
|
||||
prompt_message_contents.append(file.prompt_message_content)
|
||||
|
||||
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
|
||||
else:
|
||||
prompt_messages.append(UserPromptMessage(content=query))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _get_simple_others_prompt_messages(self, prompt_rules: dict,
|
||||
pre_prompt: str,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
memory: Optional[TokenBufferMemory],
|
||||
files: list[FileObj],
|
||||
model_config: ModelConfigEntity) -> list[PromptMessage]:
|
||||
context_prompt_content = ''
|
||||
if context and 'context_prompt' in prompt_rules:
|
||||
prompt_template = PromptTemplateParser(template=prompt_rules['context_prompt'])
|
||||
context_prompt_content = prompt_template.format(
|
||||
{'context': context}
|
||||
)
|
||||
|
||||
pre_prompt_content = ''
|
||||
if pre_prompt:
|
||||
prompt_template = PromptTemplateParser(template=pre_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
pre_prompt_content = prompt_template.format(
|
||||
prompt_inputs
|
||||
)
|
||||
|
||||
prompt = ''
|
||||
for order in prompt_rules['system_prompt_orders']:
|
||||
if order == 'context_prompt':
|
||||
prompt += context_prompt_content
|
||||
elif order == 'pre_prompt':
|
||||
prompt += pre_prompt_content
|
||||
|
||||
query_prompt = prompt_rules['query_prompt'] if 'query_prompt' in prompt_rules else '{{query}}'
|
||||
|
||||
if memory and 'histories_prompt' in prompt_rules:
|
||||
# append chat histories
|
||||
tmp_human_message = UserPromptMessage(
|
||||
content=PromptBuilder.parse_prompt(
|
||||
prompt=prompt + query_prompt,
|
||||
inputs={
|
||||
'query': query
|
||||
}
|
||||
)
|
||||
)
|
||||
|
||||
rest_tokens = self._calculate_rest_token([tmp_human_message], model_config)
|
||||
|
||||
histories = self._get_history_messages_from_memory(
|
||||
memory=memory,
|
||||
max_token_limit=rest_tokens,
|
||||
ai_prefix=prompt_rules['human_prefix'] if 'human_prefix' in prompt_rules else 'Human',
|
||||
human_prefix=prompt_rules['assistant_prefix'] if 'assistant_prefix' in prompt_rules else 'Assistant'
|
||||
)
|
||||
prompt_template = PromptTemplateParser(template=prompt_rules['histories_prompt'])
|
||||
histories_prompt_content = prompt_template.format({'histories': histories})
|
||||
|
||||
prompt = ''
|
||||
for order in prompt_rules['system_prompt_orders']:
|
||||
if order == 'context_prompt':
|
||||
prompt += context_prompt_content
|
||||
elif order == 'pre_prompt':
|
||||
prompt += (pre_prompt_content + '\n') if pre_prompt_content else ''
|
||||
elif order == 'histories_prompt':
|
||||
prompt += histories_prompt_content
|
||||
|
||||
prompt_template = PromptTemplateParser(template=query_prompt)
|
||||
query_prompt_content = prompt_template.format({'query': query})
|
||||
|
||||
prompt += query_prompt_content
|
||||
|
||||
prompt = re.sub(r'<\|.*?\|>', '', prompt)
|
||||
|
||||
model_mode = ModelMode.value_of(model_config.mode)
|
||||
|
||||
if model_mode == ModelMode.CHAT and files:
|
||||
prompt_message_contents = [TextPromptMessageContent(data=prompt)]
|
||||
for file in files:
|
||||
prompt_message_contents.append(file.prompt_message_content)
|
||||
|
||||
prompt_message = UserPromptMessage(content=prompt_message_contents)
|
||||
else:
|
||||
if files:
|
||||
prompt_message_contents = [TextPromptMessageContent(data=prompt)]
|
||||
for file in files:
|
||||
prompt_message_contents.append(file.prompt_message_content)
|
||||
|
||||
prompt_message = UserPromptMessage(content=prompt_message_contents)
|
||||
else:
|
||||
prompt_message = UserPromptMessage(content=prompt)
|
||||
|
||||
return [prompt_message]
|
||||
|
||||
def _set_context_variable(self, context: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
|
||||
if '#context#' in prompt_template.variable_keys:
|
||||
if context:
|
||||
prompt_inputs['#context#'] = context
|
||||
else:
|
||||
prompt_inputs['#context#'] = ''
|
||||
|
||||
def _set_query_variable(self, query: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
|
||||
if '#query#' in prompt_template.variable_keys:
|
||||
if query:
|
||||
prompt_inputs['#query#'] = query
|
||||
else:
|
||||
prompt_inputs['#query#'] = ''
|
||||
|
||||
def _set_histories_variable(self, memory: TokenBufferMemory,
|
||||
raw_prompt: str,
|
||||
role_prefix: AdvancedCompletionPromptTemplateEntity.RolePrefixEntity,
|
||||
prompt_template: PromptTemplateParser,
|
||||
prompt_inputs: dict,
|
||||
model_config: ModelConfigEntity) -> None:
|
||||
if '#histories#' in prompt_template.variable_keys:
|
||||
if memory:
|
||||
tmp_human_message = UserPromptMessage(
|
||||
content=PromptBuilder.parse_prompt(
|
||||
prompt=raw_prompt,
|
||||
inputs={'#histories#': '', **prompt_inputs}
|
||||
)
|
||||
)
|
||||
|
||||
rest_tokens = self._calculate_rest_token([tmp_human_message], model_config)
|
||||
|
||||
histories = self._get_history_messages_from_memory(
|
||||
memory=memory,
|
||||
max_token_limit=rest_tokens,
|
||||
human_prefix=role_prefix.user,
|
||||
ai_prefix=role_prefix.assistant
|
||||
)
|
||||
prompt_inputs['#histories#'] = histories
|
||||
else:
|
||||
prompt_inputs['#histories#'] = ''
|
||||
|
||||
def _append_chat_histories(self, memory: TokenBufferMemory,
|
||||
prompt_messages: list[PromptMessage],
|
||||
model_config: ModelConfigEntity) -> None:
|
||||
|
|
@ -422,152 +42,28 @@ class PromptTransform:
|
|||
|
||||
return rest_tokens
|
||||
|
||||
def _format_prompt(self, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> str:
|
||||
prompt = prompt_template.format(
|
||||
prompt_inputs
|
||||
def _get_history_messages_from_memory(self, memory: TokenBufferMemory,
|
||||
max_token_limit: int,
|
||||
human_prefix: Optional[str] = None,
|
||||
ai_prefix: Optional[str] = None) -> str:
|
||||
"""Get memory messages."""
|
||||
kwargs = {
|
||||
"max_token_limit": max_token_limit
|
||||
}
|
||||
|
||||
if human_prefix:
|
||||
kwargs['human_prefix'] = human_prefix
|
||||
|
||||
if ai_prefix:
|
||||
kwargs['ai_prefix'] = ai_prefix
|
||||
|
||||
return memory.get_history_prompt_text(
|
||||
**kwargs
|
||||
)
|
||||
|
||||
prompt = re.sub(r'<\|.*?\|>', '', prompt)
|
||||
return prompt
|
||||
|
||||
def _get_chat_app_completion_model_prompt_messages(self,
|
||||
prompt_template_entity: PromptTemplateEntity,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
files: list[FileObj],
|
||||
context: Optional[str],
|
||||
memory: Optional[TokenBufferMemory],
|
||||
model_config: ModelConfigEntity) -> list[PromptMessage]:
|
||||
|
||||
raw_prompt = prompt_template_entity.advanced_completion_prompt_template.prompt
|
||||
role_prefix = prompt_template_entity.advanced_completion_prompt_template.role_prefix
|
||||
|
||||
prompt_messages = []
|
||||
|
||||
prompt_template = PromptTemplateParser(template=raw_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
|
||||
self._set_context_variable(context, prompt_template, prompt_inputs)
|
||||
|
||||
self._set_query_variable(query, prompt_template, prompt_inputs)
|
||||
|
||||
self._set_histories_variable(
|
||||
memory=memory,
|
||||
raw_prompt=raw_prompt,
|
||||
role_prefix=role_prefix,
|
||||
prompt_template=prompt_template,
|
||||
prompt_inputs=prompt_inputs,
|
||||
model_config=model_config
|
||||
def _get_history_messages_list_from_memory(self, memory: TokenBufferMemory,
|
||||
max_token_limit: int) -> list[PromptMessage]:
|
||||
"""Get memory messages."""
|
||||
return memory.get_history_prompt_messages(
|
||||
max_token_limit=max_token_limit
|
||||
)
|
||||
|
||||
prompt = self._format_prompt(prompt_template, prompt_inputs)
|
||||
|
||||
if files:
|
||||
prompt_message_contents = [TextPromptMessageContent(data=prompt)]
|
||||
for file in files:
|
||||
prompt_message_contents.append(file.prompt_message_content)
|
||||
|
||||
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
|
||||
else:
|
||||
prompt_messages.append(UserPromptMessage(content=prompt))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _get_chat_app_chat_model_prompt_messages(self,
|
||||
prompt_template_entity: PromptTemplateEntity,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
files: list[FileObj],
|
||||
context: Optional[str],
|
||||
memory: Optional[TokenBufferMemory],
|
||||
model_config: ModelConfigEntity) -> list[PromptMessage]:
|
||||
raw_prompt_list = prompt_template_entity.advanced_chat_prompt_template.messages
|
||||
|
||||
prompt_messages = []
|
||||
|
||||
for prompt_item in raw_prompt_list:
|
||||
raw_prompt = prompt_item.text
|
||||
|
||||
prompt_template = PromptTemplateParser(template=raw_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
|
||||
self._set_context_variable(context, prompt_template, prompt_inputs)
|
||||
|
||||
prompt = self._format_prompt(prompt_template, prompt_inputs)
|
||||
|
||||
if prompt_item.role == PromptMessageRole.USER:
|
||||
prompt_messages.append(UserPromptMessage(content=prompt))
|
||||
elif prompt_item.role == PromptMessageRole.SYSTEM and prompt:
|
||||
prompt_messages.append(SystemPromptMessage(content=prompt))
|
||||
elif prompt_item.role == PromptMessageRole.ASSISTANT:
|
||||
prompt_messages.append(AssistantPromptMessage(content=prompt))
|
||||
|
||||
self._append_chat_histories(memory, prompt_messages, model_config)
|
||||
|
||||
if files:
|
||||
prompt_message_contents = [TextPromptMessageContent(data=query)]
|
||||
for file in files:
|
||||
prompt_message_contents.append(file.prompt_message_content)
|
||||
|
||||
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
|
||||
else:
|
||||
prompt_messages.append(UserPromptMessage(content=query))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _get_completion_app_completion_model_prompt_messages(self,
|
||||
prompt_template_entity: PromptTemplateEntity,
|
||||
inputs: dict,
|
||||
context: Optional[str]) -> list[PromptMessage]:
|
||||
raw_prompt = prompt_template_entity.advanced_completion_prompt_template.prompt
|
||||
|
||||
prompt_messages = []
|
||||
|
||||
prompt_template = PromptTemplateParser(template=raw_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
|
||||
self._set_context_variable(context, prompt_template, prompt_inputs)
|
||||
|
||||
prompt = self._format_prompt(prompt_template, prompt_inputs)
|
||||
|
||||
prompt_messages.append(UserPromptMessage(content=prompt))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _get_completion_app_chat_model_prompt_messages(self,
|
||||
prompt_template_entity: PromptTemplateEntity,
|
||||
inputs: dict,
|
||||
files: list[FileObj],
|
||||
context: Optional[str]) -> list[PromptMessage]:
|
||||
raw_prompt_list = prompt_template_entity.advanced_chat_prompt_template.messages
|
||||
|
||||
prompt_messages = []
|
||||
|
||||
for prompt_item in raw_prompt_list:
|
||||
raw_prompt = prompt_item.text
|
||||
|
||||
prompt_template = PromptTemplateParser(template=raw_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
|
||||
self._set_context_variable(context, prompt_template, prompt_inputs)
|
||||
|
||||
prompt = self._format_prompt(prompt_template, prompt_inputs)
|
||||
|
||||
if prompt_item.role == PromptMessageRole.USER:
|
||||
prompt_messages.append(UserPromptMessage(content=prompt))
|
||||
elif prompt_item.role == PromptMessageRole.SYSTEM and prompt:
|
||||
prompt_messages.append(SystemPromptMessage(content=prompt))
|
||||
elif prompt_item.role == PromptMessageRole.ASSISTANT:
|
||||
prompt_messages.append(AssistantPromptMessage(content=prompt))
|
||||
|
||||
for prompt_message in prompt_messages[::-1]:
|
||||
if prompt_message.role == PromptMessageRole.USER:
|
||||
if files:
|
||||
prompt_message_contents = [TextPromptMessageContent(data=prompt_message.content)]
|
||||
for file in files:
|
||||
prompt_message_contents.append(file.prompt_message_content)
|
||||
|
||||
prompt_message.content = prompt_message_contents
|
||||
break
|
||||
|
||||
return prompt_messages
|
||||
|
|
|
|||
|
|
@ -0,0 +1,298 @@
|
|||
import enum
|
||||
import json
|
||||
import os
|
||||
from typing import Optional, Tuple
|
||||
|
||||
from core.entities.application_entities import (
|
||||
ModelConfigEntity,
|
||||
PromptTemplateEntity,
|
||||
)
|
||||
from core.file.file_obj import FileObj
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
PromptMessage,
|
||||
SystemPromptMessage,
|
||||
TextPromptMessageContent,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.prompt.prompt_template import PromptTemplateParser
|
||||
from core.prompt.prompt_transform import PromptTransform
|
||||
from models.model import AppMode
|
||||
|
||||
|
||||
class ModelMode(enum.Enum):
|
||||
COMPLETION = 'completion'
|
||||
CHAT = 'chat'
|
||||
|
||||
@classmethod
|
||||
def value_of(cls, value: str) -> 'ModelMode':
|
||||
"""
|
||||
Get value of given mode.
|
||||
|
||||
:param value: mode value
|
||||
:return: mode
|
||||
"""
|
||||
for mode in cls:
|
||||
if mode.value == value:
|
||||
return mode
|
||||
raise ValueError(f'invalid mode value {value}')
|
||||
|
||||
|
||||
prompt_file_contents = {}
|
||||
|
||||
|
||||
class SimplePromptTransform(PromptTransform):
|
||||
"""
|
||||
Simple Prompt Transform for Chatbot App Basic Mode.
|
||||
"""
|
||||
def get_prompt(self,
|
||||
prompt_template_entity: PromptTemplateEntity,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
files: list[FileObj],
|
||||
context: Optional[str],
|
||||
memory: Optional[TokenBufferMemory],
|
||||
model_config: ModelConfigEntity) -> \
|
||||
tuple[list[PromptMessage], Optional[list[str]]]:
|
||||
model_mode = ModelMode.value_of(model_config.mode)
|
||||
if model_mode == ModelMode.CHAT:
|
||||
prompt_messages, stops = self._get_chat_model_prompt_messages(
|
||||
pre_prompt=prompt_template_entity.simple_prompt_template,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
files=files,
|
||||
context=context,
|
||||
memory=memory,
|
||||
model_config=model_config
|
||||
)
|
||||
else:
|
||||
prompt_messages, stops = self._get_completion_model_prompt_messages(
|
||||
pre_prompt=prompt_template_entity.simple_prompt_template,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
files=files,
|
||||
context=context,
|
||||
memory=memory,
|
||||
model_config=model_config
|
||||
)
|
||||
|
||||
return prompt_messages, stops
|
||||
|
||||
def get_prompt_str_and_rules(self, app_mode: AppMode,
|
||||
model_config: ModelConfigEntity,
|
||||
pre_prompt: str,
|
||||
inputs: dict,
|
||||
query: Optional[str] = None,
|
||||
context: Optional[str] = None,
|
||||
histories: Optional[str] = None,
|
||||
) -> Tuple[str, dict]:
|
||||
# get prompt template
|
||||
prompt_template_config = self.get_prompt_template(
|
||||
app_mode=app_mode,
|
||||
provider=model_config.provider,
|
||||
model=model_config.model,
|
||||
pre_prompt=pre_prompt,
|
||||
has_context=context is not None,
|
||||
query_in_prompt=query is not None,
|
||||
with_memory_prompt=histories is not None
|
||||
)
|
||||
|
||||
variables = {k: inputs[k] for k in prompt_template_config['custom_variable_keys'] if k in inputs}
|
||||
|
||||
for v in prompt_template_config['special_variable_keys']:
|
||||
# support #context#, #query# and #histories#
|
||||
if v == '#context#':
|
||||
variables['#context#'] = context if context else ''
|
||||
elif v == '#query#':
|
||||
variables['#query#'] = query if query else ''
|
||||
elif v == '#histories#':
|
||||
variables['#histories#'] = histories if histories else ''
|
||||
|
||||
prompt_template = prompt_template_config['prompt_template']
|
||||
prompt = prompt_template.format(variables)
|
||||
|
||||
return prompt, prompt_template_config['prompt_rules']
|
||||
|
||||
def get_prompt_template(self, app_mode: AppMode,
|
||||
provider: str,
|
||||
model: str,
|
||||
pre_prompt: str,
|
||||
has_context: bool,
|
||||
query_in_prompt: bool,
|
||||
with_memory_prompt: bool = False) -> dict:
|
||||
prompt_rules = self._get_prompt_rule(
|
||||
app_mode=app_mode,
|
||||
provider=provider,
|
||||
model=model
|
||||
)
|
||||
|
||||
custom_variable_keys = []
|
||||
special_variable_keys = []
|
||||
|
||||
prompt = ''
|
||||
for order in prompt_rules['system_prompt_orders']:
|
||||
if order == 'context_prompt' and has_context:
|
||||
prompt += prompt_rules['context_prompt']
|
||||
special_variable_keys.append('#context#')
|
||||
elif order == 'pre_prompt' and pre_prompt:
|
||||
prompt += pre_prompt + '\n'
|
||||
pre_prompt_template = PromptTemplateParser(template=pre_prompt)
|
||||
custom_variable_keys = pre_prompt_template.variable_keys
|
||||
elif order == 'histories_prompt' and with_memory_prompt:
|
||||
prompt += prompt_rules['histories_prompt']
|
||||
special_variable_keys.append('#histories#')
|
||||
|
||||
if query_in_prompt:
|
||||
prompt += prompt_rules['query_prompt'] if 'query_prompt' in prompt_rules else '{{#query#}}'
|
||||
special_variable_keys.append('#query#')
|
||||
|
||||
return {
|
||||
"prompt_template": PromptTemplateParser(template=prompt),
|
||||
"custom_variable_keys": custom_variable_keys,
|
||||
"special_variable_keys": special_variable_keys,
|
||||
"prompt_rules": prompt_rules
|
||||
}
|
||||
|
||||
def _get_chat_model_prompt_messages(self, pre_prompt: str,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
files: list[FileObj],
|
||||
memory: Optional[TokenBufferMemory],
|
||||
model_config: ModelConfigEntity) \
|
||||
-> Tuple[list[PromptMessage], Optional[list[str]]]:
|
||||
prompt_messages = []
|
||||
|
||||
# get prompt
|
||||
prompt, _ = self.get_prompt_str_and_rules(
|
||||
app_mode=AppMode.CHAT,
|
||||
model_config=model_config,
|
||||
pre_prompt=pre_prompt,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
context=context
|
||||
)
|
||||
|
||||
if prompt:
|
||||
prompt_messages.append(SystemPromptMessage(content=prompt))
|
||||
|
||||
self._append_chat_histories(
|
||||
memory=memory,
|
||||
prompt_messages=prompt_messages,
|
||||
model_config=model_config
|
||||
)
|
||||
|
||||
prompt_messages.append(self.get_last_user_message(query, files))
|
||||
|
||||
return prompt_messages, None
|
||||
|
||||
def _get_completion_model_prompt_messages(self, pre_prompt: str,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
files: list[FileObj],
|
||||
memory: Optional[TokenBufferMemory],
|
||||
model_config: ModelConfigEntity) \
|
||||
-> Tuple[list[PromptMessage], Optional[list[str]]]:
|
||||
# get prompt
|
||||
prompt, prompt_rules = self.get_prompt_str_and_rules(
|
||||
app_mode=AppMode.CHAT,
|
||||
model_config=model_config,
|
||||
pre_prompt=pre_prompt,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
context=context
|
||||
)
|
||||
|
||||
if memory:
|
||||
tmp_human_message = UserPromptMessage(
|
||||
content=prompt
|
||||
)
|
||||
|
||||
rest_tokens = self._calculate_rest_token([tmp_human_message], model_config)
|
||||
histories = self._get_history_messages_from_memory(
|
||||
memory=memory,
|
||||
max_token_limit=rest_tokens,
|
||||
ai_prefix=prompt_rules['human_prefix'] if 'human_prefix' in prompt_rules else 'Human',
|
||||
human_prefix=prompt_rules['assistant_prefix'] if 'assistant_prefix' in prompt_rules else 'Assistant'
|
||||
)
|
||||
|
||||
# get prompt
|
||||
prompt, prompt_rules = self.get_prompt_str_and_rules(
|
||||
app_mode=AppMode.CHAT,
|
||||
model_config=model_config,
|
||||
pre_prompt=pre_prompt,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
context=context,
|
||||
histories=histories
|
||||
)
|
||||
|
||||
stops = prompt_rules.get('stops')
|
||||
if stops is not None and len(stops) == 0:
|
||||
stops = None
|
||||
|
||||
return [self.get_last_user_message(prompt, files)], stops
|
||||
|
||||
def get_last_user_message(self, prompt: str, files: list[FileObj]) -> UserPromptMessage:
|
||||
if files:
|
||||
prompt_message_contents = [TextPromptMessageContent(data=prompt)]
|
||||
for file in files:
|
||||
prompt_message_contents.append(file.prompt_message_content)
|
||||
|
||||
prompt_message = UserPromptMessage(content=prompt_message_contents)
|
||||
else:
|
||||
prompt_message = UserPromptMessage(content=prompt)
|
||||
|
||||
return prompt_message
|
||||
|
||||
def _get_prompt_rule(self, app_mode: AppMode, provider: str, model: str) -> dict:
|
||||
"""
|
||||
Get simple prompt rule.
|
||||
:param app_mode: app mode
|
||||
:param provider: model provider
|
||||
:param model: model name
|
||||
:return:
|
||||
"""
|
||||
prompt_file_name = self._prompt_file_name(
|
||||
app_mode=app_mode,
|
||||
provider=provider,
|
||||
model=model
|
||||
)
|
||||
|
||||
# Check if the prompt file is already loaded
|
||||
if prompt_file_name in prompt_file_contents:
|
||||
return prompt_file_contents[prompt_file_name]
|
||||
|
||||
# Get the absolute path of the subdirectory
|
||||
prompt_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'generate_prompts')
|
||||
json_file_path = os.path.join(prompt_path, f'{prompt_file_name}.json')
|
||||
|
||||
# Open the JSON file and read its content
|
||||
with open(json_file_path, encoding='utf-8') as json_file:
|
||||
content = json.load(json_file)
|
||||
|
||||
# Store the content of the prompt file
|
||||
prompt_file_contents[prompt_file_name] = content
|
||||
|
||||
def _prompt_file_name(self, app_mode: AppMode, provider: str, model: str) -> str:
|
||||
# baichuan
|
||||
is_baichuan = False
|
||||
if provider == 'baichuan':
|
||||
is_baichuan = True
|
||||
else:
|
||||
baichuan_supported_providers = ["huggingface_hub", "openllm", "xinference"]
|
||||
if provider in baichuan_supported_providers and 'baichuan' in model.lower():
|
||||
is_baichuan = True
|
||||
|
||||
if is_baichuan:
|
||||
if app_mode == AppMode.WORKFLOW:
|
||||
return 'baichuan_completion'
|
||||
else:
|
||||
return 'baichuan_chat'
|
||||
|
||||
# common
|
||||
if app_mode == AppMode.WORKFLOW:
|
||||
return 'common_completion'
|
||||
else:
|
||||
return 'common_chat'
|
||||
|
|
@ -2,7 +2,6 @@ from flask_restful import fields
|
|||
|
||||
from libs.helper import TimestampField
|
||||
|
||||
|
||||
annotation_fields = {
|
||||
"id": fields.String,
|
||||
"question": fields.String,
|
||||
|
|
|
|||
|
|
@ -5,7 +5,6 @@ from flask_restful import fields
|
|||
from fields.member_fields import simple_account_fields
|
||||
from libs.helper import TimestampField
|
||||
|
||||
|
||||
workflow_fields = {
|
||||
'id': fields.String,
|
||||
'graph': fields.Raw(attribute=lambda x: json.loads(x.graph) if hasattr(x, 'graph') else None),
|
||||
|
|
|
|||
|
|
@ -2,9 +2,17 @@ import json
|
|||
from typing import Optional
|
||||
|
||||
from core.application_manager import ApplicationManager
|
||||
from core.entities.application_entities import ModelConfigEntity, PromptTemplateEntity, FileUploadEntity, \
|
||||
ExternalDataVariableEntity, DatasetEntity, VariableEntity
|
||||
from core.entities.application_entities import (
|
||||
DatasetEntity,
|
||||
ExternalDataVariableEntity,
|
||||
FileUploadEntity,
|
||||
ModelConfigEntity,
|
||||
PromptTemplateEntity,
|
||||
VariableEntity, DatasetRetrieveConfigEntity,
|
||||
)
|
||||
from core.model_runtime.entities.llm_entities import LLMMode
|
||||
from core.model_runtime.utils import helper
|
||||
from core.prompt.simple_prompt_transform import SimplePromptTransform
|
||||
from core.workflow.entities.NodeEntities import NodeType
|
||||
from core.workflow.nodes.end.entities import EndNodeOutputType
|
||||
from extensions.ext_database import db
|
||||
|
|
@ -32,6 +40,9 @@ class WorkflowConverter:
|
|||
:param account: Account instance
|
||||
:return: workflow instance
|
||||
"""
|
||||
# get new app mode
|
||||
new_app_mode = self._get_new_app_mode(app_model)
|
||||
|
||||
# get original app config
|
||||
app_model_config = app_model.app_model_config
|
||||
|
||||
|
|
@ -75,14 +86,17 @@ class WorkflowConverter:
|
|||
# convert to knowledge retrieval node
|
||||
if app_model_config.dataset:
|
||||
knowledge_retrieval_node = self._convert_to_knowledge_retrieval_node(
|
||||
dataset=app_model_config.dataset,
|
||||
show_retrieve_source=app_model_config.show_retrieve_source
|
||||
new_app_mode=new_app_mode,
|
||||
dataset_config=app_model_config.dataset
|
||||
)
|
||||
|
||||
graph = self._append_node(graph, knowledge_retrieval_node)
|
||||
if knowledge_retrieval_node:
|
||||
graph = self._append_node(graph, knowledge_retrieval_node)
|
||||
|
||||
# convert to llm node
|
||||
llm_node = self._convert_to_llm_node(
|
||||
new_app_mode=new_app_mode,
|
||||
graph=graph,
|
||||
model_config=app_model_config.model_config,
|
||||
prompt_template=app_model_config.prompt_template,
|
||||
file_upload=app_model_config.file_upload
|
||||
|
|
@ -95,14 +109,11 @@ class WorkflowConverter:
|
|||
|
||||
graph = self._append_node(graph, end_node)
|
||||
|
||||
# get new app mode
|
||||
app_mode = self._get_new_app_mode(app_model)
|
||||
|
||||
# create workflow record
|
||||
workflow = Workflow(
|
||||
tenant_id=app_model.tenant_id,
|
||||
app_id=app_model.id,
|
||||
type=WorkflowType.from_app_mode(app_mode).value,
|
||||
type=WorkflowType.from_app_mode(new_app_mode).value,
|
||||
version='draft',
|
||||
graph=json.dumps(graph),
|
||||
created_by=account.id
|
||||
|
|
@ -124,7 +135,7 @@ class WorkflowConverter:
|
|||
new_app_model_config.completion_prompt_config = ''
|
||||
new_app_model_config.dataset_configs = ''
|
||||
new_app_model_config.chatbot_app_engine = ChatbotAppEngine.WORKFLOW.value \
|
||||
if app_mode == AppMode.CHAT else ChatbotAppEngine.NORMAL.value
|
||||
if new_app_mode == AppMode.CHAT else ChatbotAppEngine.NORMAL.value
|
||||
new_app_model_config.workflow_id = workflow.id
|
||||
|
||||
db.session.add(new_app_model_config)
|
||||
|
|
@ -157,18 +168,22 @@ class WorkflowConverter:
|
|||
# TODO: implement
|
||||
pass
|
||||
|
||||
def _convert_to_knowledge_retrieval_node(self, new_app_mode: AppMode, dataset: DatasetEntity) -> dict:
|
||||
def _convert_to_knowledge_retrieval_node(self, new_app_mode: AppMode, dataset_config: DatasetEntity) \
|
||||
-> Optional[dict]:
|
||||
"""
|
||||
Convert datasets to Knowledge Retrieval Node
|
||||
:param new_app_mode: new app mode
|
||||
:param dataset: dataset
|
||||
:param dataset_config: dataset
|
||||
:return:
|
||||
"""
|
||||
# TODO: implement
|
||||
retrieve_config = dataset_config.retrieve_config
|
||||
if new_app_mode == AppMode.CHAT:
|
||||
query_variable_selector = ["start", "sys.query"]
|
||||
elif retrieve_config.query_variable:
|
||||
# fetch query variable
|
||||
query_variable_selector = ["start", retrieve_config.query_variable]
|
||||
else:
|
||||
pass
|
||||
return None
|
||||
|
||||
return {
|
||||
"id": "knowledge-retrieval",
|
||||
|
|
@ -176,20 +191,139 @@ class WorkflowConverter:
|
|||
"data": {
|
||||
"title": "KNOWLEDGE RETRIEVAL",
|
||||
"type": NodeType.KNOWLEDGE_RETRIEVAL.value,
|
||||
"query_variable_selector": query_variable_selector,
|
||||
"dataset_ids": dataset_config.dataset_ids,
|
||||
"retrieval_mode": retrieve_config.retrieve_strategy.value,
|
||||
"multiple_retrieval_config": {
|
||||
"top_k": retrieve_config.top_k,
|
||||
"score_threshold": retrieve_config.score_threshold,
|
||||
"reranking_model": retrieve_config.reranking_model
|
||||
}
|
||||
if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE
|
||||
else None,
|
||||
}
|
||||
}
|
||||
|
||||
def _convert_to_llm_node(self, model_config: ModelConfigEntity,
|
||||
def _convert_to_llm_node(self, new_app_mode: AppMode,
|
||||
graph: dict,
|
||||
model_config: ModelConfigEntity,
|
||||
prompt_template: PromptTemplateEntity,
|
||||
file_upload: Optional[FileUploadEntity] = None) -> dict:
|
||||
"""
|
||||
Convert to LLM Node
|
||||
:param new_app_mode: new app mode
|
||||
:param graph: graph
|
||||
:param model_config: model config
|
||||
:param prompt_template: prompt template
|
||||
:param file_upload: file upload config (optional)
|
||||
"""
|
||||
# TODO: implement
|
||||
pass
|
||||
# fetch start and knowledge retrieval node
|
||||
start_node = next(filter(lambda n: n['data']['type'] == NodeType.START.value, graph['nodes']))
|
||||
knowledge_retrieval_node = next(filter(
|
||||
lambda n: n['data']['type'] == NodeType.KNOWLEDGE_RETRIEVAL.value,
|
||||
graph['nodes']
|
||||
), None)
|
||||
|
||||
role_prefix = None
|
||||
|
||||
# Chat Model
|
||||
if model_config.mode == LLMMode.CHAT.value:
|
||||
if prompt_template.prompt_type == PromptTemplateEntity.PromptType.SIMPLE:
|
||||
# get prompt template
|
||||
prompt_transform = SimplePromptTransform()
|
||||
prompt_template_config = prompt_transform.get_prompt_template(
|
||||
app_mode=AppMode.WORKFLOW,
|
||||
provider=model_config.provider,
|
||||
model=model_config.model,
|
||||
pre_prompt=prompt_template.simple_prompt_template,
|
||||
has_context=knowledge_retrieval_node is not None,
|
||||
query_in_prompt=False
|
||||
)
|
||||
prompts = [
|
||||
{
|
||||
"role": 'user',
|
||||
"text": prompt_template_config['prompt_template'].template
|
||||
}
|
||||
]
|
||||
else:
|
||||
advanced_chat_prompt_template = prompt_template.advanced_chat_prompt_template
|
||||
prompts = [helper.dump_model(m) for m in advanced_chat_prompt_template.messages] \
|
||||
if advanced_chat_prompt_template else []
|
||||
# Completion Model
|
||||
else:
|
||||
if prompt_template.prompt_type == PromptTemplateEntity.PromptType.SIMPLE:
|
||||
# get prompt template
|
||||
prompt_transform = SimplePromptTransform()
|
||||
prompt_template_config = prompt_transform.get_prompt_template(
|
||||
app_mode=AppMode.WORKFLOW,
|
||||
provider=model_config.provider,
|
||||
model=model_config.model,
|
||||
pre_prompt=prompt_template.simple_prompt_template,
|
||||
has_context=knowledge_retrieval_node is not None,
|
||||
query_in_prompt=False
|
||||
)
|
||||
prompts = {
|
||||
"text": prompt_template_config['prompt_template'].template
|
||||
}
|
||||
|
||||
prompt_rules = prompt_template_config['prompt_rules']
|
||||
role_prefix = {
|
||||
"user": prompt_rules['human_prefix'] if 'human_prefix' in prompt_rules else 'Human',
|
||||
"assistant": prompt_rules['assistant_prefix'] if 'assistant_prefix' in prompt_rules else 'Assistant'
|
||||
}
|
||||
else:
|
||||
advanced_completion_prompt_template = prompt_template.advanced_completion_prompt_template
|
||||
prompts = {
|
||||
"text": advanced_completion_prompt_template.prompt,
|
||||
} if advanced_completion_prompt_template else {"text": ""}
|
||||
|
||||
if advanced_completion_prompt_template.role_prefix:
|
||||
role_prefix = {
|
||||
"user": advanced_completion_prompt_template.role_prefix.user,
|
||||
"assistant": advanced_completion_prompt_template.role_prefix.assistant
|
||||
}
|
||||
|
||||
memory = None
|
||||
if new_app_mode == AppMode.CHAT:
|
||||
memory = {
|
||||
"role_prefix": role_prefix,
|
||||
"window": {
|
||||
"enabled": False
|
||||
}
|
||||
}
|
||||
|
||||
return {
|
||||
"id": "llm",
|
||||
"position": None,
|
||||
"data": {
|
||||
"title": "LLM",
|
||||
"type": NodeType.LLM.value,
|
||||
"model": {
|
||||
"provider": model_config.provider,
|
||||
"name": model_config.model,
|
||||
"mode": model_config.mode,
|
||||
"completion_params": model_config.parameters.update({"stop": model_config.stop})
|
||||
},
|
||||
"variables": [{
|
||||
"variable": v['variable'],
|
||||
"value_selector": ["start", v['variable']]
|
||||
} for v in start_node['data']['variables']],
|
||||
"prompts": prompts,
|
||||
"memory": memory,
|
||||
"context": {
|
||||
"enabled": knowledge_retrieval_node is not None,
|
||||
"variable_selector": ["knowledge-retrieval", "result"]
|
||||
if knowledge_retrieval_node is not None else None
|
||||
},
|
||||
"vision": {
|
||||
"enabled": file_upload is not None,
|
||||
"variable_selector": ["start", "sys.files"] if file_upload is not None else None,
|
||||
"configs": {
|
||||
"detail": file_upload.image_config['detail']
|
||||
} if file_upload is not None else None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
def _convert_to_end_node(self, app_model: App) -> dict:
|
||||
"""
|
||||
|
|
|
|||
Loading…
Reference in New Issue