feat: Enhances OpenTelemetry node parsers (#30706)

Co-authored-by: autofix-ci[bot] <114827586+autofix-ci[bot]@users.noreply.github.com>
This commit is contained in:
heyszt 2026-01-27 15:30:21 +08:00 committed by GitHub
parent febc9b930d
commit eca26a9b9b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
15 changed files with 675 additions and 81 deletions

View File

@ -8,7 +8,7 @@ intercept and respond to GraphEngine events.
from abc import ABC, abstractmethod
from core.workflow.graph_engine.protocols.command_channel import CommandChannel
from core.workflow.graph_events import GraphEngineEvent
from core.workflow.graph_events import GraphEngineEvent, GraphNodeEventBase
from core.workflow.nodes.base.node import Node
from core.workflow.runtime import ReadOnlyGraphRuntimeState
@ -98,7 +98,7 @@ class GraphEngineLayer(ABC):
"""
pass
def on_node_run_start(self, node: Node) -> None: # noqa: B027
def on_node_run_start(self, node: Node) -> None:
"""
Called immediately before a node begins execution.
@ -109,9 +109,11 @@ class GraphEngineLayer(ABC):
Args:
node: The node instance about to be executed
"""
pass
return
def on_node_run_end(self, node: Node, error: Exception | None) -> None: # noqa: B027
def on_node_run_end(
self, node: Node, error: Exception | None, result_event: GraphNodeEventBase | None = None
) -> None:
"""
Called after a node finishes execution.
@ -121,5 +123,6 @@ class GraphEngineLayer(ABC):
Args:
node: The node instance that just finished execution
error: Exception instance if the node failed, otherwise None
result_event: The final result event from node execution (succeeded/failed/paused), if any
"""
pass
return

View File

@ -1,61 +0,0 @@
"""
Node-level OpenTelemetry parser interfaces and defaults.
"""
import json
from typing import Protocol
from opentelemetry.trace import Span
from opentelemetry.trace.status import Status, StatusCode
from core.workflow.nodes.base.node import Node
from core.workflow.nodes.tool.entities import ToolNodeData
class NodeOTelParser(Protocol):
"""Parser interface for node-specific OpenTelemetry enrichment."""
def parse(self, *, node: Node, span: "Span", error: Exception | None) -> None: ...
class DefaultNodeOTelParser:
"""Fallback parser used when no node-specific parser is registered."""
def parse(self, *, node: Node, span: "Span", error: Exception | None) -> None:
span.set_attribute("node.id", node.id)
if node.execution_id:
span.set_attribute("node.execution_id", node.execution_id)
if hasattr(node, "node_type") and node.node_type:
span.set_attribute("node.type", node.node_type.value)
if error:
span.record_exception(error)
span.set_status(Status(StatusCode.ERROR, str(error)))
else:
span.set_status(Status(StatusCode.OK))
class ToolNodeOTelParser:
"""Parser for tool nodes that captures tool-specific metadata."""
def __init__(self) -> None:
self._delegate = DefaultNodeOTelParser()
def parse(self, *, node: Node, span: "Span", error: Exception | None) -> None:
self._delegate.parse(node=node, span=span, error=error)
tool_data = getattr(node, "_node_data", None)
if not isinstance(tool_data, ToolNodeData):
return
span.set_attribute("tool.provider.id", tool_data.provider_id)
span.set_attribute("tool.provider.type", tool_data.provider_type.value)
span.set_attribute("tool.provider.name", tool_data.provider_name)
span.set_attribute("tool.name", tool_data.tool_name)
span.set_attribute("tool.label", tool_data.tool_label)
if tool_data.plugin_unique_identifier:
span.set_attribute("tool.plugin.id", tool_data.plugin_unique_identifier)
if tool_data.credential_id:
span.set_attribute("tool.credential.id", tool_data.credential_id)
if tool_data.tool_configurations:
span.set_attribute("tool.config", json.dumps(tool_data.tool_configurations, ensure_ascii=False))

View File

@ -18,12 +18,15 @@ from typing_extensions import override
from configs import dify_config
from core.workflow.enums import NodeType
from core.workflow.graph_engine.layers.base import GraphEngineLayer
from core.workflow.graph_engine.layers.node_parsers import (
from core.workflow.graph_events import GraphNodeEventBase
from core.workflow.nodes.base.node import Node
from extensions.otel.parser import (
DefaultNodeOTelParser,
LLMNodeOTelParser,
NodeOTelParser,
RetrievalNodeOTelParser,
ToolNodeOTelParser,
)
from core.workflow.nodes.base.node import Node
from extensions.otel.runtime import is_instrument_flag_enabled
logger = logging.getLogger(__name__)
@ -72,6 +75,8 @@ class ObservabilityLayer(GraphEngineLayer):
"""Initialize parser registry for node types."""
self._parsers = {
NodeType.TOOL: ToolNodeOTelParser(),
NodeType.LLM: LLMNodeOTelParser(),
NodeType.KNOWLEDGE_RETRIEVAL: RetrievalNodeOTelParser(),
}
def _get_parser(self, node: Node) -> NodeOTelParser:
@ -119,7 +124,9 @@ class ObservabilityLayer(GraphEngineLayer):
logger.warning("Failed to create OpenTelemetry span for node %s: %s", node.id, e)
@override
def on_node_run_end(self, node: Node, error: Exception | None) -> None:
def on_node_run_end(
self, node: Node, error: Exception | None, result_event: GraphNodeEventBase | None = None
) -> None:
"""
Called when a node finishes execution.
@ -139,7 +146,7 @@ class ObservabilityLayer(GraphEngineLayer):
span = node_context.span
parser = self._get_parser(node)
try:
parser.parse(node=node, span=span, error=error)
parser.parse(node=node, span=span, error=error, result_event=result_event)
span.end()
finally:
token = node_context.token

View File

@ -17,7 +17,7 @@ from typing_extensions import override
from core.workflow.context import IExecutionContext
from core.workflow.graph import Graph
from core.workflow.graph_engine.layers.base import GraphEngineLayer
from core.workflow.graph_events import GraphNodeEventBase, NodeRunFailedEvent
from core.workflow.graph_events import GraphNodeEventBase, NodeRunFailedEvent, is_node_result_event
from core.workflow.nodes.base.node import Node
from .ready_queue import ReadyQueue
@ -131,6 +131,7 @@ class Worker(threading.Thread):
node.ensure_execution_id()
error: Exception | None = None
result_event: GraphNodeEventBase | None = None
# Execute the node with preserved context if execution context is provided
if self._execution_context is not None:
@ -140,22 +141,26 @@ class Worker(threading.Thread):
node_events = node.run()
for event in node_events:
self._event_queue.put(event)
if is_node_result_event(event):
result_event = event
except Exception as exc:
error = exc
raise
finally:
self._invoke_node_run_end_hooks(node, error)
self._invoke_node_run_end_hooks(node, error, result_event)
else:
self._invoke_node_run_start_hooks(node)
try:
node_events = node.run()
for event in node_events:
self._event_queue.put(event)
if is_node_result_event(event):
result_event = event
except Exception as exc:
error = exc
raise
finally:
self._invoke_node_run_end_hooks(node, error)
self._invoke_node_run_end_hooks(node, error, result_event)
def _invoke_node_run_start_hooks(self, node: Node) -> None:
"""Invoke on_node_run_start hooks for all layers."""
@ -166,11 +171,13 @@ class Worker(threading.Thread):
# Silently ignore layer errors to prevent disrupting node execution
continue
def _invoke_node_run_end_hooks(self, node: Node, error: Exception | None) -> None:
def _invoke_node_run_end_hooks(
self, node: Node, error: Exception | None, result_event: GraphNodeEventBase | None = None
) -> None:
"""Invoke on_node_run_end hooks for all layers."""
for layer in self._layers:
try:
layer.on_node_run_end(node, error)
layer.on_node_run_end(node, error, result_event)
except Exception:
# Silently ignore layer errors to prevent disrupting node execution
continue

View File

@ -44,6 +44,7 @@ from .node import (
NodeRunStartedEvent,
NodeRunStreamChunkEvent,
NodeRunSucceededEvent,
is_node_result_event,
)
__all__ = [
@ -73,4 +74,5 @@ __all__ = [
"NodeRunStartedEvent",
"NodeRunStreamChunkEvent",
"NodeRunSucceededEvent",
"is_node_result_event",
]

View File

@ -56,3 +56,26 @@ class NodeRunRetryEvent(NodeRunStartedEvent):
class NodeRunPauseRequestedEvent(GraphNodeEventBase):
reason: PauseReason = Field(..., description="pause reason")
def is_node_result_event(event: GraphNodeEventBase) -> bool:
"""
Check if an event is a final result event from node execution.
A result event indicates the completion of a node execution and contains
runtime information such as inputs, outputs, or error details.
Args:
event: The event to check
Returns:
True if the event is a node result event (succeeded/failed/paused), False otherwise
"""
return isinstance(
event,
(
NodeRunSucceededEvent,
NodeRunFailedEvent,
NodeRunPauseRequestedEvent,
),
)

View File

@ -0,0 +1,20 @@
"""
OpenTelemetry node parsers for workflow nodes.
This module provides parsers that extract node-specific metadata and set
OpenTelemetry span attributes according to semantic conventions.
"""
from extensions.otel.parser.base import DefaultNodeOTelParser, NodeOTelParser, safe_json_dumps
from extensions.otel.parser.llm import LLMNodeOTelParser
from extensions.otel.parser.retrieval import RetrievalNodeOTelParser
from extensions.otel.parser.tool import ToolNodeOTelParser
__all__ = [
"DefaultNodeOTelParser",
"LLMNodeOTelParser",
"NodeOTelParser",
"RetrievalNodeOTelParser",
"ToolNodeOTelParser",
"safe_json_dumps",
]

View File

@ -0,0 +1,117 @@
"""
Base parser interface and utilities for OpenTelemetry node parsers.
"""
import json
from typing import Any, Protocol
from opentelemetry.trace import Span
from opentelemetry.trace.status import Status, StatusCode
from pydantic import BaseModel
from core.file.models import File
from core.variables import Segment
from core.workflow.enums import NodeType
from core.workflow.graph_events import GraphNodeEventBase
from core.workflow.nodes.base.node import Node
from extensions.otel.semconv.gen_ai import ChainAttributes, GenAIAttributes
def safe_json_dumps(obj: Any, ensure_ascii: bool = False) -> str:
"""
Safely serialize objects to JSON, handling non-serializable types.
Handles:
- Segment types (ArrayFileSegment, FileSegment, etc.) - converts to their value
- File objects - converts to dict using to_dict()
- BaseModel objects - converts using model_dump()
- Other types - falls back to str() representation
Args:
obj: Object to serialize
ensure_ascii: Whether to ensure ASCII encoding
Returns:
JSON string representation of the object
"""
def _convert_value(value: Any) -> Any:
"""Recursively convert non-serializable values."""
if value is None:
return None
if isinstance(value, (bool, int, float, str)):
return value
if isinstance(value, Segment):
# Convert Segment to its underlying value
return _convert_value(value.value)
if isinstance(value, File):
# Convert File to dict
return value.to_dict()
if isinstance(value, BaseModel):
# Convert Pydantic model to dict
return _convert_value(value.model_dump(mode="json"))
if isinstance(value, dict):
return {k: _convert_value(v) for k, v in value.items()}
if isinstance(value, (list, tuple)):
return [_convert_value(item) for item in value]
# Fallback to string representation for unknown types
return str(value)
try:
converted = _convert_value(obj)
return json.dumps(converted, ensure_ascii=ensure_ascii)
except (TypeError, ValueError) as e:
# If conversion still fails, return error message as string
return json.dumps(
{"error": f"Failed to serialize: {type(obj).__name__}", "message": str(e)}, ensure_ascii=ensure_ascii
)
class NodeOTelParser(Protocol):
"""Parser interface for node-specific OpenTelemetry enrichment."""
def parse(
self, *, node: Node, span: "Span", error: Exception | None, result_event: GraphNodeEventBase | None = None
) -> None: ...
class DefaultNodeOTelParser:
"""Fallback parser used when no node-specific parser is registered."""
def parse(
self, *, node: Node, span: "Span", error: Exception | None, result_event: GraphNodeEventBase | None = None
) -> None:
span.set_attribute("node.id", node.id)
if node.execution_id:
span.set_attribute("node.execution_id", node.execution_id)
if hasattr(node, "node_type") and node.node_type:
span.set_attribute("node.type", node.node_type.value)
span.set_attribute(GenAIAttributes.FRAMEWORK, "dify")
node_type = getattr(node, "node_type", None)
if isinstance(node_type, NodeType):
if node_type == NodeType.LLM:
span.set_attribute(GenAIAttributes.SPAN_KIND, "LLM")
elif node_type == NodeType.KNOWLEDGE_RETRIEVAL:
span.set_attribute(GenAIAttributes.SPAN_KIND, "RETRIEVER")
elif node_type == NodeType.TOOL:
span.set_attribute(GenAIAttributes.SPAN_KIND, "TOOL")
else:
span.set_attribute(GenAIAttributes.SPAN_KIND, "TASK")
else:
span.set_attribute(GenAIAttributes.SPAN_KIND, "TASK")
# Extract inputs and outputs from result_event
if result_event and result_event.node_run_result:
node_run_result = result_event.node_run_result
if node_run_result.inputs:
span.set_attribute(ChainAttributes.INPUT_VALUE, safe_json_dumps(node_run_result.inputs))
if node_run_result.outputs:
span.set_attribute(ChainAttributes.OUTPUT_VALUE, safe_json_dumps(node_run_result.outputs))
if error:
span.record_exception(error)
span.set_status(Status(StatusCode.ERROR, str(error)))
else:
span.set_status(Status(StatusCode.OK))

View File

@ -0,0 +1,155 @@
"""
Parser for LLM nodes that captures LLM-specific metadata.
"""
import logging
from collections.abc import Mapping
from typing import Any
from opentelemetry.trace import Span
from core.workflow.graph_events import GraphNodeEventBase
from core.workflow.nodes.base.node import Node
from extensions.otel.parser.base import DefaultNodeOTelParser, safe_json_dumps
from extensions.otel.semconv.gen_ai import LLMAttributes
logger = logging.getLogger(__name__)
def _format_input_messages(process_data: Mapping[str, Any]) -> str:
"""
Format input messages from process_data for LLM spans.
Args:
process_data: Process data containing prompts
Returns:
JSON string of formatted input messages
"""
try:
if not isinstance(process_data, dict):
return safe_json_dumps([])
prompts = process_data.get("prompts", [])
if not prompts:
return safe_json_dumps([])
valid_roles = {"system", "user", "assistant", "tool"}
input_messages = []
for prompt in prompts:
if not isinstance(prompt, dict):
continue
role = prompt.get("role", "")
text = prompt.get("text", "")
if not role or role not in valid_roles:
continue
if text:
message = {"role": role, "parts": [{"type": "text", "content": text}]}
input_messages.append(message)
return safe_json_dumps(input_messages)
except Exception as e:
logger.warning("Failed to format input messages: %s", e, exc_info=True)
return safe_json_dumps([])
def _format_output_messages(outputs: Mapping[str, Any]) -> str:
"""
Format output messages from outputs for LLM spans.
Args:
outputs: Output data containing text and finish_reason
Returns:
JSON string of formatted output messages
"""
try:
if not isinstance(outputs, dict):
return safe_json_dumps([])
text = outputs.get("text", "")
finish_reason = outputs.get("finish_reason", "")
if not text:
return safe_json_dumps([])
valid_finish_reasons = {"stop", "length", "content_filter", "tool_call", "error"}
if finish_reason not in valid_finish_reasons:
finish_reason = "stop"
output_message = {
"role": "assistant",
"parts": [{"type": "text", "content": text}],
"finish_reason": finish_reason,
}
return safe_json_dumps([output_message])
except Exception as e:
logger.warning("Failed to format output messages: %s", e, exc_info=True)
return safe_json_dumps([])
class LLMNodeOTelParser:
"""Parser for LLM nodes that captures LLM-specific metadata."""
def __init__(self) -> None:
self._delegate = DefaultNodeOTelParser()
def parse(
self, *, node: Node, span: "Span", error: Exception | None, result_event: GraphNodeEventBase | None = None
) -> None:
self._delegate.parse(node=node, span=span, error=error, result_event=result_event)
if not result_event or not result_event.node_run_result:
return
node_run_result = result_event.node_run_result
process_data = node_run_result.process_data or {}
outputs = node_run_result.outputs or {}
# Extract usage data (from process_data or outputs)
usage_data = process_data.get("usage") or outputs.get("usage") or {}
# Model and provider information
model_name = process_data.get("model_name") or ""
model_provider = process_data.get("model_provider") or ""
if model_name:
span.set_attribute(LLMAttributes.REQUEST_MODEL, model_name)
if model_provider:
span.set_attribute(LLMAttributes.PROVIDER_NAME, model_provider)
# Token usage
if usage_data:
prompt_tokens = usage_data.get("prompt_tokens", 0)
completion_tokens = usage_data.get("completion_tokens", 0)
total_tokens = usage_data.get("total_tokens", 0)
span.set_attribute(LLMAttributes.USAGE_INPUT_TOKENS, prompt_tokens)
span.set_attribute(LLMAttributes.USAGE_OUTPUT_TOKENS, completion_tokens)
span.set_attribute(LLMAttributes.USAGE_TOTAL_TOKENS, total_tokens)
# Prompts and completion
prompts = process_data.get("prompts", [])
if prompts:
prompts_json = safe_json_dumps(prompts)
span.set_attribute(LLMAttributes.PROMPT, prompts_json)
text_output = str(outputs.get("text", ""))
if text_output:
span.set_attribute(LLMAttributes.COMPLETION, text_output)
# Finish reason
finish_reason = outputs.get("finish_reason") or ""
if finish_reason:
span.set_attribute(LLMAttributes.RESPONSE_FINISH_REASON, finish_reason)
# Structured input/output messages
gen_ai_input_message = _format_input_messages(process_data)
gen_ai_output_message = _format_output_messages(outputs)
span.set_attribute(LLMAttributes.INPUT_MESSAGE, gen_ai_input_message)
span.set_attribute(LLMAttributes.OUTPUT_MESSAGE, gen_ai_output_message)

View File

@ -0,0 +1,105 @@
"""
Parser for knowledge retrieval nodes that captures retrieval-specific metadata.
"""
import logging
from collections.abc import Sequence
from typing import Any
from opentelemetry.trace import Span
from core.variables import Segment
from core.workflow.graph_events import GraphNodeEventBase
from core.workflow.nodes.base.node import Node
from extensions.otel.parser.base import DefaultNodeOTelParser, safe_json_dumps
from extensions.otel.semconv.gen_ai import RetrieverAttributes
logger = logging.getLogger(__name__)
def _format_retrieval_documents(retrieval_documents: list[Any]) -> list:
"""
Format retrieval documents for semantic conventions.
Args:
retrieval_documents: List of retrieval document dictionaries
Returns:
List of formatted semantic documents
"""
try:
if not isinstance(retrieval_documents, list):
return []
semantic_documents = []
for doc in retrieval_documents:
if not isinstance(doc, dict):
continue
metadata = doc.get("metadata", {})
content = doc.get("content", "")
title = doc.get("title", "")
score = metadata.get("score", 0.0)
document_id = metadata.get("document_id", "")
semantic_metadata = {}
if title:
semantic_metadata["title"] = title
if metadata.get("source"):
semantic_metadata["source"] = metadata["source"]
elif metadata.get("_source"):
semantic_metadata["source"] = metadata["_source"]
if metadata.get("doc_metadata"):
doc_metadata = metadata["doc_metadata"]
if isinstance(doc_metadata, dict):
semantic_metadata.update(doc_metadata)
semantic_doc = {
"document": {"content": content, "metadata": semantic_metadata, "score": score, "id": document_id}
}
semantic_documents.append(semantic_doc)
return semantic_documents
except Exception as e:
logger.warning("Failed to format retrieval documents: %s", e, exc_info=True)
return []
class RetrievalNodeOTelParser:
"""Parser for knowledge retrieval nodes that captures retrieval-specific metadata."""
def __init__(self) -> None:
self._delegate = DefaultNodeOTelParser()
def parse(
self, *, node: Node, span: "Span", error: Exception | None, result_event: GraphNodeEventBase | None = None
) -> None:
self._delegate.parse(node=node, span=span, error=error, result_event=result_event)
if not result_event or not result_event.node_run_result:
return
node_run_result = result_event.node_run_result
inputs = node_run_result.inputs or {}
outputs = node_run_result.outputs or {}
# Extract query from inputs
query = str(inputs.get("query", "")) if inputs else ""
if query:
span.set_attribute(RetrieverAttributes.QUERY, query)
# Extract and format retrieval documents from outputs
result_value = outputs.get("result") if outputs else None
retrieval_documents: list[Any] = []
if result_value:
value_to_check = result_value
if isinstance(result_value, Segment):
value_to_check = result_value.value
if isinstance(value_to_check, (list, Sequence)):
retrieval_documents = list(value_to_check)
if retrieval_documents:
semantic_retrieval_documents = _format_retrieval_documents(retrieval_documents)
semantic_retrieval_documents_json = safe_json_dumps(semantic_retrieval_documents)
span.set_attribute(RetrieverAttributes.DOCUMENT, semantic_retrieval_documents_json)

View File

@ -0,0 +1,47 @@
"""
Parser for tool nodes that captures tool-specific metadata.
"""
from opentelemetry.trace import Span
from core.workflow.enums import WorkflowNodeExecutionMetadataKey
from core.workflow.graph_events import GraphNodeEventBase
from core.workflow.nodes.base.node import Node
from core.workflow.nodes.tool.entities import ToolNodeData
from extensions.otel.parser.base import DefaultNodeOTelParser, safe_json_dumps
from extensions.otel.semconv.gen_ai import ToolAttributes
class ToolNodeOTelParser:
"""Parser for tool nodes that captures tool-specific metadata."""
def __init__(self) -> None:
self._delegate = DefaultNodeOTelParser()
def parse(
self, *, node: Node, span: "Span", error: Exception | None, result_event: GraphNodeEventBase | None = None
) -> None:
self._delegate.parse(node=node, span=span, error=error, result_event=result_event)
tool_data = getattr(node, "_node_data", None)
if not isinstance(tool_data, ToolNodeData):
return
span.set_attribute(ToolAttributes.TOOL_NAME, node.title)
span.set_attribute(ToolAttributes.TOOL_TYPE, tool_data.provider_type.value)
# Extract tool info from metadata (consistent with aliyun_trace)
tool_info = {}
if result_event and result_event.node_run_result:
node_run_result = result_event.node_run_result
if node_run_result.metadata:
tool_info = node_run_result.metadata.get(WorkflowNodeExecutionMetadataKey.TOOL_INFO, {})
if tool_info:
span.set_attribute(ToolAttributes.TOOL_DESCRIPTION, safe_json_dumps(tool_info))
if result_event and result_event.node_run_result and result_event.node_run_result.inputs:
span.set_attribute(ToolAttributes.TOOL_CALL_ARGUMENTS, safe_json_dumps(result_event.node_run_result.inputs))
if result_event and result_event.node_run_result and result_event.node_run_result.outputs:
span.set_attribute(ToolAttributes.TOOL_CALL_RESULT, safe_json_dumps(result_event.node_run_result.outputs))

View File

@ -1,6 +1,13 @@
"""Semantic convention shortcuts for Dify-specific spans."""
from .dify import DifySpanAttributes
from .gen_ai import GenAIAttributes
from .gen_ai import ChainAttributes, GenAIAttributes, LLMAttributes, RetrieverAttributes, ToolAttributes
__all__ = ["DifySpanAttributes", "GenAIAttributes"]
__all__ = [
"ChainAttributes",
"DifySpanAttributes",
"GenAIAttributes",
"LLMAttributes",
"RetrieverAttributes",
"ToolAttributes",
]

View File

@ -62,3 +62,37 @@ class ToolAttributes:
TOOL_CALL_RESULT = "gen_ai.tool.call.result"
"""Tool invocation result."""
class LLMAttributes:
"""LLM operation attribute keys."""
REQUEST_MODEL = "gen_ai.request.model"
"""Model identifier."""
PROVIDER_NAME = "gen_ai.provider.name"
"""Provider name."""
USAGE_INPUT_TOKENS = "gen_ai.usage.input_tokens"
"""Number of input tokens."""
USAGE_OUTPUT_TOKENS = "gen_ai.usage.output_tokens"
"""Number of output tokens."""
USAGE_TOTAL_TOKENS = "gen_ai.usage.total_tokens"
"""Total number of tokens."""
PROMPT = "gen_ai.prompt"
"""Prompt text."""
COMPLETION = "gen_ai.completion"
"""Completion text."""
RESPONSE_FINISH_REASON = "gen_ai.response.finish_reason"
"""Finish reason for the response."""
INPUT_MESSAGE = "gen_ai.input.messages"
"""Input messages in structured format."""
OUTPUT_MESSAGE = "gen_ai.output.messages"
"""Output messages in structured format."""

View File

@ -99,3 +99,38 @@ def mock_is_instrument_flag_enabled_true():
"""Mock is_instrument_flag_enabled to return True."""
with patch("core.workflow.graph_engine.layers.observability.is_instrument_flag_enabled", return_value=True):
yield
@pytest.fixture
def mock_retrieval_node():
"""Create a mock Knowledge Retrieval Node."""
node = MagicMock()
node.id = "test-retrieval-node-id"
node.title = "Retrieval Node"
node.execution_id = "test-retrieval-execution-id"
node.node_type = NodeType.KNOWLEDGE_RETRIEVAL
return node
@pytest.fixture
def mock_result_event():
"""Create a mock result event with NodeRunResult."""
from datetime import datetime
from core.workflow.graph_events.node import NodeRunSucceededEvent
from core.workflow.node_events.base import NodeRunResult
node_run_result = NodeRunResult(
inputs={"query": "test query"},
outputs={"result": [{"content": "test content", "metadata": {}}]},
process_data={},
metadata={},
)
return NodeRunSucceededEvent(
id="test-execution-id",
node_id="test-node-id",
node_type=NodeType.LLM,
start_at=datetime.now(),
node_run_result=node_run_result,
)

View File

@ -4,7 +4,8 @@ Tests for ObservabilityLayer.
Test coverage:
- Initialization and enable/disable logic
- Node span lifecycle (start, end, error handling)
- Parser integration (default and tool-specific)
- Parser integration (default, tool, LLM, and retrieval parsers)
- Result event parameter extraction (inputs/outputs)
- Graph lifecycle management
- Disabled mode behavior
"""
@ -134,9 +135,101 @@ class TestObservabilityLayerParserIntegration:
assert len(spans) == 1
attrs = spans[0].attributes
assert attrs["node.id"] == mock_tool_node.id
assert attrs["tool.provider.id"] == mock_tool_node._node_data.provider_id
assert attrs["tool.provider.type"] == mock_tool_node._node_data.provider_type.value
assert attrs["tool.name"] == mock_tool_node._node_data.tool_name
assert attrs["gen_ai.tool.name"] == mock_tool_node.title
assert attrs["gen_ai.tool.type"] == mock_tool_node._node_data.provider_type.value
@patch("core.workflow.graph_engine.layers.observability.dify_config.ENABLE_OTEL", True)
@pytest.mark.usefixtures("mock_is_instrument_flag_enabled_false")
def test_llm_parser_used_for_llm_node(
self, tracer_provider_with_memory_exporter, memory_span_exporter, mock_llm_node, mock_result_event
):
"""Test that LLM parser is used for LLM nodes and extracts LLM-specific attributes."""
from core.workflow.node_events.base import NodeRunResult
mock_result_event.node_run_result = NodeRunResult(
inputs={},
outputs={"text": "test completion", "finish_reason": "stop"},
process_data={
"model_name": "gpt-4",
"model_provider": "openai",
"usage": {"prompt_tokens": 10, "completion_tokens": 20, "total_tokens": 30},
"prompts": [{"role": "user", "text": "test prompt"}],
},
metadata={},
)
layer = ObservabilityLayer()
layer.on_graph_start()
layer.on_node_run_start(mock_llm_node)
layer.on_node_run_end(mock_llm_node, None, mock_result_event)
spans = memory_span_exporter.get_finished_spans()
assert len(spans) == 1
attrs = spans[0].attributes
assert attrs["node.id"] == mock_llm_node.id
assert attrs["gen_ai.request.model"] == "gpt-4"
assert attrs["gen_ai.provider.name"] == "openai"
assert attrs["gen_ai.usage.input_tokens"] == 10
assert attrs["gen_ai.usage.output_tokens"] == 20
assert attrs["gen_ai.usage.total_tokens"] == 30
assert attrs["gen_ai.completion"] == "test completion"
assert attrs["gen_ai.response.finish_reason"] == "stop"
@patch("core.workflow.graph_engine.layers.observability.dify_config.ENABLE_OTEL", True)
@pytest.mark.usefixtures("mock_is_instrument_flag_enabled_false")
def test_retrieval_parser_used_for_retrieval_node(
self, tracer_provider_with_memory_exporter, memory_span_exporter, mock_retrieval_node, mock_result_event
):
"""Test that retrieval parser is used for retrieval nodes and extracts retrieval-specific attributes."""
from core.workflow.node_events.base import NodeRunResult
mock_result_event.node_run_result = NodeRunResult(
inputs={"query": "test query"},
outputs={"result": [{"content": "test content", "metadata": {"score": 0.9, "document_id": "doc1"}}]},
process_data={},
metadata={},
)
layer = ObservabilityLayer()
layer.on_graph_start()
layer.on_node_run_start(mock_retrieval_node)
layer.on_node_run_end(mock_retrieval_node, None, mock_result_event)
spans = memory_span_exporter.get_finished_spans()
assert len(spans) == 1
attrs = spans[0].attributes
assert attrs["node.id"] == mock_retrieval_node.id
assert attrs["retrieval.query"] == "test query"
assert "retrieval.document" in attrs
@patch("core.workflow.graph_engine.layers.observability.dify_config.ENABLE_OTEL", True)
@pytest.mark.usefixtures("mock_is_instrument_flag_enabled_false")
def test_result_event_extracts_inputs_and_outputs(
self, tracer_provider_with_memory_exporter, memory_span_exporter, mock_start_node, mock_result_event
):
"""Test that result_event parameter allows parsers to extract inputs and outputs."""
from core.workflow.node_events.base import NodeRunResult
mock_result_event.node_run_result = NodeRunResult(
inputs={"input_key": "input_value"},
outputs={"output_key": "output_value"},
process_data={},
metadata={},
)
layer = ObservabilityLayer()
layer.on_graph_start()
layer.on_node_run_start(mock_start_node)
layer.on_node_run_end(mock_start_node, None, mock_result_event)
spans = memory_span_exporter.get_finished_spans()
assert len(spans) == 1
attrs = spans[0].attributes
assert "input.value" in attrs
assert "output.value" in attrs
class TestObservabilityLayerGraphLifecycle: